数字信号处理试题及答案
数字信号处理试卷及详细答案1
数字信号处理试卷及详细答案1数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。
2、某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
3、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
4、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2TΩ=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ωωj j e H eH =,则其对应的相位函数为ωω?21)(--=N 。
8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。
二、判断题(每题2分,共10分)1、一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。
(╳)2、用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。
(√)3、阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。
(╳)五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a 试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=crad ,写出数字滤波器的系统函数。
数字信号处理试卷及答案
A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。
三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理习题与答案
==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试卷和答案
数字信号处理试卷和答案一判断1.模拟信号也可以像数字信号一样在计算机上处理,只要添加采样过程。
(w)2、已知某离散时间系统为,则该系统为线性时不变系统。
(w)3、一个信号序列,如果能做序列的傅里叶变换(dtft),也就能对其做变换。
(w)4.采用双线性变换方法设计数字滤波器时,预失真不能消除变换中所有频点的非线性失真。
(√)5、时域周期序列的离散傅里叶级数在频域也是一个周期序列(√)二填空题(每题3分,共5题)1在对模拟信号(一维信号,它是时间的函数)进行采样后,在振幅量化后,它是___________________。
2.为了在采样后恢复原始信号而不失真,采样频率必须为_u,这是奈奎斯特采样定理。
3.系统稳定的充要条件。
4、快速傅里叶变换(fft)算法基本可分为两大类,分别是:_____;_____。
5、线性移不变系统的性质有______、______和分配律。
1.离散数字2大于信号3最大频率的2倍。
系统的单位冲激响应绝对可加4。
时间提取法和频率提取法5。
汇率与三大法律问题相结合1、对一个带限为f?3khz的连续时间信号采样构成一离散信号,为了保证从此离散信号中能恢复出原信号,每秒钟理论上的最小采样数为多少?如将此离散信号恢复为原信号,则所用的增益为1,延迟为0的理想低通滤波器的截止频率该为多少?答:根据奈奎斯特采样定理,采样频率必须大于信号最大频率FS的两倍?2.3khz?在6 kHz时,每秒的理论最小样本数为6000。
如果离散信号恢复为原始信号,为了避免混淆,理想低通滤波器的截止频率为采样频率的一半,即?s3khz2.2。
有限频带信号f(T)?5.2个cos(2?f1t)?Cos(4?F1t),F1在哪里?1khz,有FS吗?5KHz脉冲函数序列?T(T)表示取样。
(1)画出f(t)及采样信号fs(t)在频率区间(?10khz,10khz)的频谱图。
(2)若由fs(t)恢复原信号,理想低通滤波器的截止频率fc。
数字信号处理考试试题及答案
数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x (n )的长度为N ,h(n )的长度为M ,则其卷积和的长度L为 N+M-1。
4、傅里叶变换的几种形式:连续时间、连续频率-傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。
6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n)一定绝对可和.7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 .8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器.11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。
12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等.14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。
15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
二、选择题(20分,每空2分)1。
数字信号处理试题和答案
一. 填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax 关系为: fs>=2fmax。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是 (N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用xm (n)表示,其数学表达式为xm(n)=x((n-m))N RN (n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
(完整word版)数字信号处理习题及答案
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试卷及详细答案三套
数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、 双边序列z 变换的收敛域形状为 圆环或空集 。
3、 某序列的DFT 表达式为∑-==1)()(N n kn MWn x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理试题和答案
二.选择填空题
1、δ(n)的 z 变换是 A 。
A. 1
B.δ(w)
C. 2πδ(w)
D. 2π
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 fs
与信号最高频率 fmax 关系为: A 。
A. fs≥ 2fmax
A.h(n)=δ(n)
B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)
D.h(n)=u(n)-u(n+1)
21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆
B.原点
C.实轴
D.虚轴
22.已知序列 Z 变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列
。
A. 2y(n),y(n-3) B. 2y(n),y(n+3)
C. y(n),y(n-3)
D. y(n),y(n+3)
9、用窗函数法设计 FIR 数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带
比加三角窗时
,阻带衰减比加三角窗时
。
A. 窄,小
B. 宽,小
C. 宽,大
D. 窄,大
10、在 N=32 的基 2 时间抽取法 FFT 运算流图中,从 x(n)到 X(k)需 B 级蝶形运
B。
A. N/2
B. (N-1)/2
C. (N/2)-1
D. 不确定
7、若正弦序列 x(n)=sin(30nπ/120)是周期的,则周期是 N= D 。
A. 2π
B. 4π
C. 2
数字信号处理试卷及答案
数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。
–[ ] B. 采样频率必须是信号最高频率的两倍。
–[ ] C. 采样频率必须是信号最高频率的四倍。
–[ ] D. 采样频率必须大于信号最高频率的两倍。
2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。
–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。
–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。
–[ ] D. DFT和DTFT是完全相同的。
3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。
–[ ] B. 抽样频率必须是信号最高频率的两倍。
–[ ] C. 抽样频率必须是信号最高频率的四倍。
–[ ] D. 信号频率必须是抽样频率的两倍。
5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。
–[ ] B. 具有无限阶。
–[ ] C. 比其他类型的滤波器更加陡峭。
–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。
…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。
2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。
数字信号处理试题和答案
一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。
数字信号处理练习及答案
数字信号处理练习及答案数字信号处理练习题⼀、填空题1、⼀个线性时不变因果系统的系统函数为()11111-----=az z a z H ,若系统稳定则a 的取值范围为。
2、输⼊()()n n x 0cos ω=中仅包含频率为0ω的信号,输出()()n x n y 2=中包含的频率为。
3、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的,⽽周期序列可以看成有限长序列的。
4、对长度为N 的序列()n x 圆周移位m 位得到的序列⽤()n x m 表⽰,其数学表达式为()n x m = ,它是序列。
5、对按时间抽取的基2—FFT 流图进⾏转置,即便得到按频率抽取的基2—FFT 流图。
6、FIR 数字滤波器满⾜线性相位条件()()0,≠-=βτωβωθ时,()n h 满⾜关系式。
7、序列傅⽴叶变换与其Z 变换的关系为。
8、已知()113--=z z z X ,顺序列()n x = 。
9、()()1-z H z H 的零、极点分布关于单位圆。
10、序列()n R 4的Z 变换为,其收敛域为;已知左边序列()n x 的Z 变换是()()()2110--=z z z z X ,那么其收敛域为。
11、使⽤DFT 分析模拟信号的频谱时,可能出现的问题有、栅栏效应和。
12、⽆限长单位冲激响应滤波器的基本结构有直接型,和三种。
13、如果通⽤计算机的速度为平均每次复数乘需要s µ5,每次复数加需要s µ1,则在此计算机上计算210点的基2FFT 需要级蝶形运算,总的运算时间是s µ。
14、线性系统实际上包含了和两个性质。
15、求z 反变换通常有围线积分法、和等⽅法。
16、有限长序列()()()()()342312-+-+-+=n n n n n x δδδδ,则圆周移位()()()n R n x N N 2+= 。
17、直接计算LN 2=(L 为整数)点DFT 与相应的基-2 FFT 算法所需要的复数乘法次数分别为和。
(完整word版)数字信号处理试卷及答案(word文档良心出品)
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
《数字信号处理》习题及答案
《数字信号处理》习题及答案试题1一、境空题(本题满分30分,共含4道小堰,短空2分)1.两个有限长序列x:(n),04n433和Xz(n),04n436,做线性卷积后结果的长度是jp,若对这两个序列做64点圆周卷积,则圆周卷积结果中n江至生为线性卷积结果。
2. DFT是利用町:的对称性、可约性和周期性一三个固有特性来实现FFT快速运算的。
3. HR数字波波器设计指标一般由M、巴q、之和9」等四项组成。
(巴。
町33)4.FIR一字疹豉器有窗函数法和频率抽样设计法两种设计方法,茸结构有横截型(卷枳型/直接型)、级联型和频率抽样型(线性相位型)等多种结构。
二、判断题(本题满分16分,共含8道小踞,每小跪2分,正确打V,错误打x)1.相同的Z变换表达式一定对应相同的时间序列。
(X)2. Chirps变换的频率采样点数M可以不等于时域采样点数N。
(V)3.按频率抽取基2 FFT首先将序列x(n)分成奇数序列和偶数序列。
(X )4.冲激响应不变法不适于设计数字带阻波波器。
(J)5.双线性变换法的模拟角频率。
与数字角频率3成线性关系。
(X)6.巴特天思波波器的幅度特性必在一个频带中(通常或阻带)具有等波纹特性。
(X)7.只有FIR波波器才能做到线性相位,对于HR滤波器做不到线性相位。
(X)8.在只要求相同的幅频特性时,用IIR速波器实现其阶数一定低于FIR阶数。
(J)三、综合题若x(n)={3,2,1,2,1,2},0<n<5,1)求序列x(n)的 6 点DFT,X(k)=?2)若G(© =。
尸7{g(〃)]=开左),试确定6点序列g(n)二?3)若丫(n)=x(n)⑨x(n),求y(n)=?<丫伏)= £、(〃/『2分<-0=3 + 2冏 + W;k+ 2%” + 甲J + 2 甲产解:1) =3 + 2%*+犷;*+2%务-町以-2咛上2分= 3+4 cos—+2 cos-i^- + 2(-1)*3 3= [11,22-122] 0<*<5, 2 分, 5g(w) = ZD尸7P『丫(切=£ X3 严/讦广=£ X(kW^2)k2)“0 E= x(”2) = {32L2J02<n<lJ,G) = xS)*M〃) = -m) = {9,12,10,16,15,20,14,894,4}3)sy(ri)= 2>(m)x((” 泄))9&(3={13,16,10,1615,20,14,8,} 0<n<9习题2一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
数字信号处理试卷及答案
A一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列 二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和 四种。
三、1)(-≤≥⎩⎨⎧-=n n b a n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理试题及答案一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、 双边序列z 变换的收敛域形状为 圆环或空集 。
3、 某序列的DFT 表达式为∑-==10)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
(╳)2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。
(╳)3、 一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。
(╳)4、 用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产生的所有频率点的非线性畸变。
(√) 5、 阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。
(╳) 三、(15分)、已知某离散时间系统的差分方程为)1(2)()2(2)1(3)(-+=-+--n x n x n y n y n y系统初始状态为1)1(=-y ,2)2(=-y ,系统激励为)()3()(n u n x n =, 试求:(1)系统函数)(z H ,系统频率响应)(ωj e H 。
(2)系统的零输入响应)(n y zi 、零状态响应)(n y zs 和全响应)(n y 。
解:(1)系统函数为23223121)(22211+-+=+-+=---z z z z zzz z H系统频率响应232)()(22+-+===ωωωωωωj j j j e z j e e e e z H eH j解一:(2)对差分方程两端同时作z 变换得)(2)(])2()1()([2])1()([3)(1221z X z z X z y z y z Y z z y z Y z z Y ---+=-+-++-+-即:)(231)21(231)2(2)1(2)1(3)(211211z X z z z z z y y z y z Y ------+-+++------=上式中,第一项为零输入响应的z 域表示式,第二项为零状态响应的z 域表示式,将初始状态及激励的z 变换3)(-=z zz X 代入,得零输入响应、零状态响应的z 域表示式分别为 23223121)(22211+-+-=+---=---z z z z zzz z Y zi3232323121)(22211-⋅+-+=-⋅+-+=---z zz z z z z z z z z z Y zs 将)(),(z Y z Y zs zi 展开成部分分式之和,得2413232)(2--+-=+-+-=z z z z z z z Y zi 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 2413)(--+-=z z z z z Y zi 321528123)(-+--+-=z zz z z z z Y zs 对上两式分别取z 反变换,得零输入响应、零状态响应分别为)(])2(43[)(k k y k zi ε-=)(])3(215)2(823[)(k k y k k zs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=解二、(2)系统特征方程为0232=+-λλ,特征根为:11=λ,22=λ; 故系统零输入响应形式为 k zi c c k y )2()(21+=将初始条件1)1(=-y ,2)2(=-y 带入上式得⎪⎪⎩⎪⎪⎨⎧=+=-=+=-2)41()2(1)21()1(2121c c y c c y zi zi 解之得 31=c ,42-=c , 故系统零输入响应为: k zi k y )2(43)(-= 0≥k 系统零状态响应为3232323121)()()(22211-⋅+-+=-⋅+-+==---z zz z z z z z z z z z X z H z Y zs 32152812331232)(22-+--+-=-⋅+-+=z z z z z z z z z z Y zs 即 321528123)(-+--+-=z zz z z z z Y zs对上式取z 反变换,得零状态响应为 )(])3(215)2(823[)(k k y k k zs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k k k ε+-=四、回答以下问题:(1) 画出按时域抽取4=N点基FFT 2的信号流图。
(2) 利用流图计算4点序列)4,3,1,2()(=n x (3,2,1,0=n )的DFT 。
(3) 试写出利用FFT 计算IFFT 的步骤。
解:(1))0(x 1(x )2(x 3(x )0(X )1(X )2(X )3(Xkr001102W 02W 02W 12W k l001104W 04W 14W 2304W 04W 04W 24W 34W4点按时间抽取FFT 流图 加权系数 (2) ⎩⎨⎧-=-=-==+=+=112)2()0()1(532)2()0()0(00x x Q x x Q⎩⎨⎧-=-=-==+=+=341)3()1()1(541)3()1()0(11x x Q x x Q1055)0()0()0(10=+=+=Q Q X 31)1()1()1(1140⋅+-=+=j Q W Q X 055)0()0()2(1240=-=+=Q W Q X j Q W Q X 31)1()1()3(1340--=+=即: 3,2,1,0),31,0,31,10()(=--+-=k j j k X (3)1)对)(k X 取共轭,得)(k X *; 2)对)(k X *做N 点FFT ; 3)对2)中结果取共轭并除以N 。
五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=c rad ,写出数字滤波器的系统函数,并用正准型结构实现之。
(要预畸,设1=T )解:(1)预畸2)25.0arctan(2)2arctan(2===ΩπωT T c c (2)反归一划4828.241)2(414.1)2(1)()(22++=++==Ω=s s ss s H s H css a(3) 双线性变换得数字滤波器4112828.2)112(44828.24)()(1121121121111211++-⋅++-=++==----+-=-+--=--z z zz s s s H z H z z s zz T s2212211716.01)21(2929.0344.2656.13)21(4------+++=+++=zz z zz z(4)用正准型结构实现(n x )(n y六、(12分)设有一FIR 数字滤波器,其单位冲激响应)(n h 如图1所示:图1试求:(1)该系统的频率响应)(ωj eH ;(2)如果记)()()(ωϕωωj j e H eH =,其中,)(ωH 为幅度函数(可以取负值),)(ωϕ为相位函数,试求)(ωH 与)(ωϕ;(3)判断该线性相位FIR 系统是何种类型的数字滤波器?(低通、高通、带通、带阻),说明你的判断依据。
(4)画出该FIR 系统的线性相位型网络结构流图。
解:(1))2,1,0,1,2()(--=n hωωωωωω4324)4()3()2()1()0()()(j j j j n nj j e h e h e h e h h en h eH ----=-++++==∑)()1(2223443ωωωωωωj j j j j j e e e e e e -------+-=--+=)]sin(2)2sin(4[)()(222222ωωωωωωωωωj j e e e e e e e j j j j j j j +=-+-=-----(2))]sin(2)2sin(4[)]sin(2)2sin(4[)()22(22ωωωωωππωω+=+=--j jj j e e e e H)sin(2)2sin(4)(ωωω+=H , ωπωϕ22)(-=(3))()sin(2)2sin(4)2sin(2)]2(2sin[4)2(ωωωωπωπωπH H -=--=-+-=- 故 当0=ω时,有)0()0()2(H H H =-=π,即)(ωH 关于0点奇对称,0)0(=H ;当πω=时,有))()(ππH H -=,即)(ωH 关于π点奇对称,0)(=πH 上述条件说明,该滤波器为一个线性相位带通滤波器。
(4)线性相位结构流图1-)(n x)(n y。