新人教版高中数学必修5知识点总结(详细)
高中必修五数学知识点总结
高中必修五数学知识点总结
等差数列:等差数列是一种特殊的数列,其中每一项与它的前一项的差都等于同一个常数,这个常数被称为等差数列的公差。
等差数列的通项公式是 an = a1 + (n - 1)d,其中 a1 是首项,d 是公差,n 是项数。
等差数列还有一个重要的性质,即等差中项,即任意三个连续的项构成等差数列时,中间的项是前后两项的算术平均。
集合:集合是数学中的一个基本概念,它表示一组对象的集合。
集合之间的关系主要有包含关系和相等关系。
如果集合A的每一个元素都是集合B 的元素,那么A是B的子集,记作A⊆B。
如果A是B的子集,且B是A的子集,那么A和B是相等的集合,记作A=B。
函数:函数是描述输入和输出之间关系的一种数学模型。
函数有定义域和值域,定义域是函数可以接受的所有输入值的集合,值域是函数可以产生的所有输出值的集合。
函数可以用列表法、图像法和解析法来表示。
解析法包括以通项公式给出数列和以递推公式给出数列。
以上是高中必修五数学的主要知识点,掌握这些知识点对于理解更高级的数学概念和解决复杂问题至关重要。
同时,也需要通过大量的练习来加深对这些知识点的理解和应用。
高二数学必修5知识点总结
高二数学必修5知识点总结高二数学必修5主要包括数列与数学归纳法、函数与导数、三角函数与导数、指数与对数函数、统计与概率五个主要知识点。
下面将对这些知识点进行总结和回顾。
1. 数列与数学归纳法数列是按照一定规律排列的一系列数。
常见的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
数学归纳法是一种证明数列性质的方法,分为基本步骤和归纳步骤。
2. 函数与导数函数是一个映射关系,将一个集合的元素映射到另一个集合的元素。
函数的定义域、值域、反函数、复合函数是常见的概念。
导数是函数在某一点的变化率,表示为f'(x)或dy/dx。
导数的计算可以利用导数的定义或基本的导数公式,如常数倍法则、和差法则、乘法法则、除法法则等。
3. 三角函数与导数三角函数包括正弦函数、余弦函数、正切函数等。
这些函数与导数的计算有一定的关系。
正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数,正切函数的导数是其平方的倒数。
利用这些导数公式可以简化三角函数的导数计算。
4. 指数与对数函数指数函数是以底数为常数的指数幂,对数函数是指数函数的逆运算。
指数函数的图像呈现指数增长或指数衰减的趋势,对数函数的图像表现为增长率逐渐减少的趋势。
指数函数和对数函数有一些重要的性质,如指数函数的性质:指数函数的值域为正实数集,指数函数在原点取值为1;对数函数的性质:对数函数的定义域为正实数集,对数函数在x=1时取值为0。
5. 统计与概率统计是研究数据收集、整理、分析和解释的方法。
概率是描述随机事件发生可能性的数值。
统计与概率在实际问题中有广泛的应用,包括抽样调查、数据处理、概率模型等。
常见的统计与概率问题包括频率分布、均值与方差、正态分布、概率的计算等。
以上是高二数学必修5的主要知识点总结。
必修5数学知识点总结
必修5数学知识点总结在必修5数学课程中,有许多重要的知识点需要我们掌握和理解。
这些知识点不仅对我们学习数学课程有着重要的指导作用,也对我们日常生活中的问题解决有着积极的影响。
下面我将对必修5数学知识点进行总结,希望能够帮助大家更好地理解和掌握这些知识。
一、函数与导数。
在必修5数学课程中,函数与导数是一个非常重要的知识点。
函数是描述两个变量之间关系的一种数学工具,而导数则是函数的变化率。
通过学习函数与导数,我们可以更好地理解和描述各种变化规律,例如物体的运动规律、曲线的变化趋势等。
同时,函数与导数也是许多其他数学知识的基础,例如微积分、微分方程等。
二、三角函数与三角恒等变换。
三角函数是必修5数学课程中的另一个重要知识点。
三角函数描述了角度和直角三角形的边长之间的关系,是解决角度和边长相关问题的重要工具。
而三角恒等变换则是三角函数的重要性质,通过三角恒等变换,我们可以将复杂的三角函数式子简化为更简单的形式,从而更方便地进行计算和推导。
三、概率与统计。
概率与统计是必修5数学课程中的另一个重要内容。
概率是描述随机事件发生可能性的数学工具,而统计则是描述和分析数据的数学方法。
通过学习概率与统计,我们可以更好地理解和预测各种随机事件的发生规律,同时也可以更好地分析和解释各种数据的特征和规律。
四、向量与空间几何。
向量与空间几何是必修5数学课程中的另一个重要知识点。
向量是描述空间中方向和大小的数学工具,而空间几何则是描述空间中图形和位置的数学方法。
通过学习向量与空间几何,我们可以更好地理解和描述各种空间中的图形和位置关系,同时也可以更好地解决各种空间中的几何问题。
五、数学证明。
数学证明是必修5数学课程中的另一个重要内容。
数学证明是数学思维和逻辑推理的重要体现,通过学习数学证明,我们可以更好地培养自己的逻辑思维能力和数学推理能力,同时也可以更好地理解和掌握各种数学定理和结论。
总结。
通过对必修5数学知识点的总结,我们可以看到,这些知识点不仅在数学课程中具有重要的地位,同时也在我们日常生活中具有重要的应用价值。
高中数学必修5知识点总结归纳(人教版最全)
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
(完整版)人教版高二数学必修5知识点归纳(最完整版).doc
现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。
高中数学必修5全册知识点总结(理科)
高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
数学必修五知识点总结
数学必修五知识点总结1、数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N某或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列1、等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+14、等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。
高中数学必修5知识点总结归纳8篇
高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。
本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。
二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。
2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。
3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。
三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。
2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。
四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。
2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。
五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。
2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。
3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。
4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。
5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。
6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。
7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。
六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。
2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。
3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。
(完整版)高中数学必修五知识点大全,推荐文档
知识点串讲必修五3 第一章:解三角形 1.1.1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a =b = csi n A si n B si n C一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、已知∆ ABC 中, ∠ A = 600 ,a = ,求 a +b +csi n A + si n B + si n C证 明 出 a = b = c = a +b +c si n A si n B si n C si n A + s i n B + si n C解 : 设 a = b = c=k (k >o)si n A si n B si n C则有a = k si n A ,b = k si n B ,c = k si n C从而 a +b +c = k si n A + k si n B + k si n C k si n A + si n B +si n C si n A + s i n B + si n C = 又 a = 3 = 2 = k , 所以 a +b +c =2 si n A si n600 si n A + si n B + si n C评述:在 ∆ ABC 中,等式 a = b = c = a +b +c = k (k >0) si n A si n B si n C si n A + si n B + si n C 恒成立。
3、已知 ∆ ABC 中, si n A : si n B : si n C = 1: 2: 3 ,求a : b : c(答案:1:2:3)1.1.2 余弦定理1、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的 积的两倍。
即a 2 =b 2 +c 2 - 2b c cos A b 2 = a 2 +c 2 - 2a c cos B c 2 = a 2 +b 2- 2a b cos C从余弦定理,又可得到以下推论:b 2 +c 2 - a 2 cos A =cos B =cos C =2bc a 2 + c 2 -b 22ac b 2 + a 2 -c 22ba(2 2)2 +( 6 + 2 ) 2 -(2 3)22⨯2 2 ⨯( 6 + 2)2 3 3 2 2、在 ∆ A BC 中,已知 a =2 , c = 6 + , B =600 ,求 b 及 A ⑴解:∵ b 2 = a 2 + c 2 -2ac cos B= (2 3)2 +( 6 +2)2 -2⋅2 3⋅( 6 + 2) cos 450=12+( 6 + = 8 ∴ b =2 2.2)2 -4 3( 3 +1) 求 A 可以利用余弦定理,也可以利用正弦定理:b 2 +c 2 - a 21 ⑵解法一:∵cos A =∴ A =600.2bc== 2,解法二:∵sin A = a sin B = 2 3⋅sin450,b 2 又 ∵ 6 + > 2.4+1.4=3.8,2 < 2⨯1.8=3.6,∴ a < c ,即00 < A < 900, ∴ A =600.评述:解法二应注意确定 A 的取值范围。
高二数学必修五知识点总结(最新6篇)
高二数学必修五知识点总结(最新6篇)高二数学必修五知识点总结篇一【不等关系及不等式】一、不等关系及不等式知识点1、不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。
2、比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba3、不等式的性质(1)对称性:ab(2)传递性:ab,ba(3)可加性:aa+cb+c,ab,ca+c(4)可乘性:ab,cacb0,c0bd;(5)可乘方:a0bn(nN,n(6)可开方:a0(nN,n2)。
注意:一个技巧作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。
一种方法待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。
高二年级数学必修五知识点总结篇二空间直线与直线之间的位置关系(1)异面直线定义:不同在任何一个平面内的两条直线(2)异面直线性质:既不平行,又不相交。
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(4)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角C、利用三角形来求角(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(6)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα(7)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线。
高中数学人教版必修五不等式知识点最完全精炼总结
2012.3.264.公式: 1.两实数大小的比较⎪⎩⎪⎨⎧<-⇔<=-⇔=>-⇔>0b a b a 0b a b a 0b a b a 一. 不等式(精简版)3.基 本不等式定理⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧-≤+⇒<≥+⇒>≥+⎪⎪⎩⎪⎪⎨⎧+≤+≥+⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+≤⎪⎭⎫ ⎝⎛+≤+≥+≥+2a 1a 0a 2a 1a 0ab ,a (2b aa b )b a (2b a ab 2b a 2b a ab 2b a ab )b a (21b a ab 2b a 2222222222倒数形式同号)分式形式根式形式整式形式1122a b a b --+≤≤≤+2.不等式的性质:8条性质.3.解不等式(1)一元一次不等式 (2)一元二次不等式:一元二次不等式的求 解流程:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根.⎪⎪⎨⎧<<>>≠>)0a (bx )0a (a bx )0a (b ax四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. (3)解分式不等式:高次不等式:(4)解含参数的不等式:(1) (x – 2)(ax – 2)>0(2)x 2 –(a +a 2)x +a 3>0;(3)2x 2 +ax +2 > 0;注:解形如ax 2+bx+c>0的不等式时分类讨论的标准有:1、讨论a 与0的大小;2、讨论⊿与0的大小;3、讨论两根的大小;二、运用的数学思想:1、分类讨论的思想;2、数形结合的思想;3、等与不等的化归思想(4)含参不等式恒成立的问题:⎪⎩⎪⎨⎧用图象分离参数后用最值函数、、、321例1.已知关于x 的不等式在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式22(3)210x a x a +-+-<)1(log 22++-=ax ax y ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧≠≤⋅⇔≤>⋅⇔>0)x (g 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)x (g )x (f 0)())((21>---n a x a x a x对所有实数x ∈R 都成立,求a 的取值范围.(5)一元二次方程根的分布问题:方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、函数值三个角度列出不等式组,总之都是转化为一元二次不等式组求解. 二次方程根的分布问题的讨论:20,31xx a x x >≤++恒成立,例3.若对任意则 的取值范围.a()02f kbka>⎧⎪⎪-<⎨⎪∆>⎪⎩1.x1< x2< k()02f kbka>⎧⎪⎪->⎨⎪∆>⎪⎩2.k < x1< x()0f k<3.x1< k < x24.k1 < x1 < x2 < k25.x1 < k1 < k2 < x21212()0()002f k f k b k k a >⎧⎪>⎪⎪⎨∆>⎪⎪<-<⎪⎩12()0()0f k f k >⎧⎨>⎩6.k 1 <x 1 < k 2 < x 2< k 3122()0()0()0f k f k f k >⎧⎪<⎨⎪>⎩ 4解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
高一数学必修5的知识点
高一数学必修5的知识点高一数学必修5主要涵盖了三角函数、解三角形、数列和序列、概率与统计四个部分的知识点。
这些知识点既是数学学科的基础,也是高中数学教学中的重要环节。
下面我们将逐个介绍这些知识点,并对其应用进行一定的拓展。
一、三角函数1. 弧度制三角函数是我们学习高中数学时必须掌握的重要概念。
在学习三角函数时,最先接触到的就是角的单位,其中弧度制是重要的角度单位之一。
弧度的定义是:一弧度是角所对的弧的长度等于半径的弧,即弧长与半径相等。
弧度制相对于度数制在一些计算上更加方便,特别是在与三角函数的运算中。
2. 三角函数的定义在传统的数学教学中,我们学习了三角函数的定义:正弦函数、余弦函数和正切函数。
在高一数学必修5中,我们对这些函数的定义进行了深入的研究,并学习了它们的性质和图像。
拓展:三角函数的应用三角函数具有广泛的应用,不仅在数学中,在物理、工程学等领域也具有重要的作用。
例如,在物理学中,三角函数可以描述振动和波动的规律;在工程学中,三角函数可以帮助我们解决各种空间问题。
因此,学好三角函数是建立后续学科知识的基础。
二、解三角形解三角形是三角学的重要内容之一,主要通过已知三边、两边一角或一个角和一个边来求解三角形的相关信息,如角度、边长等。
在高一数学必修5中,我们学习了解直角三角形和解一般三角形的方法。
1. 解直角三角形解直角三角形是较为简单的一类问题。
我们可以利用三角函数的定义和性质来求解一个已知角度的直角三角形的边长。
例如,已知一个角的正弦值和斜边,我们可以通过正弦函数的逆函数求得该角的度数。
2. 解一般三角形解一般三角形是相对较复杂的一类问题。
在解一般三角形时,我们可以利用余弦定理、正弦定理和正切定理等公式来求解。
这些公式是解决三角形问题的重要工具,通过它们可以计算出三角形的边长、角度等信息。
拓展:应用题解三角形的知识点在实际问题中有着广泛的应用。
例如,在地理学中,我们可以利用三角函数解决测量球面上两个地点之间的距离;在建筑学中,我们可以利用解三角形的方法计算出建筑物的高度。
高中数学必修五知识点总结整理【经典最全版】.docx
《必修五知识点整理》第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1、正眩定理:在一个三角形屮,各边和它所对角的正眩的比相等,即一纟一=-^一=亠- sin A sin B sinC 正弦定理推论:①~^— = ~^— = ~^ = 2Rsin A sin B sin C®a = 2Rsm A, b = 2Rsin B, c = 2/?sinC @a:b:c = sinA:sinB: sin C ⑤ -------------------sin A sin B sin C sin A + sin B + sinC2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。
任何一个三角形都有六个元素:三条边(a,b,c )和三个内角(A,B,C ).在三角形中,己知三 角形的几个元素求其他元素的过程叫做解三角形。
3、正眩泄理确定三角形解的情况(/?为三角形外接圆的半径)a sin A h sin B a sin A®~ =-—,-=-—,-=-—b sin Bc sin C c sinC b c a+b+c4. 任意三角形而积公式为:=—he sin A = — acsin B = —ah sinC =2 2 21.1.2余弦定理5、余弦定理:三角形屮任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角 的余弦的积的两倍,即a 2 =b 2 +c 2 - 2bccos A , b 2 = a 2 + c 2 一 2ca cos B, c 2 = a 2 +b 2- lab cos C .6、不常用的三角函数值15° 75° 105° 165°sin erV6-V2 V6+V2 V6 + V2V6 — V24 4 4 4 COS (7V6 + V2V6-V2 —V6 + V2V6+V2 4 4 4 4 tana2-V32 + V3-2-V3-2 + V31.2应用举例(浏览即可)1、 方位角:如图1,从正北方向顺时针转到目标方向线的水平角。
高中必修五数学知识点笔记整理
高中必修五数学知识点笔记整理高中必修五数学知识点一、基础知识(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.二、重难点与易错点重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.(1)区分逆命题与命题的否定;(2)理解充分条件与必要条件;(3)椭圆、双曲线与抛物线的定义;(4)椭圆与双曲线的几何性质,特别是离心率问题;(5)直线与圆锥曲线的位置关系问题;(6)直线与圆锥曲线中的弦长与面积问题;(7)直线与圆锥曲线问题中的参数求解与性质证明;(8)轨迹与轨迹求法;(9)运用空间向量求空间中的角度与距离;(10)立体几何中的动态问题探究.高中必修五数学必背知识点一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
(完整word版)人教版数学必修五知识点总结
第一章 解三角形1、内角和定理:(1)三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.2、正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径). C R c B R b A R a C B A c b a sin 2,sin 2,sin 2)2(;sin :sin :sin ::)1(==== )(3解三角形:已知三角形的几个元素求另外几个元素的过程。
⎩⎨⎧,可求其它元素已知两边和一边的对角可求其它边和角已知两角和任意一边, 注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解.3、余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(求边) 或 (求角)⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab cb a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222 ⎪⎩⎪⎨⎧求其它已知两边和一边对角,已知三边求所有三个角已知两边一角求第三边(注:常用余弦定理鉴定三角形的类型). 4、三角形面积公式:R abc B ac A bc Cab ah S a 4sin 21sin 21sin 2121=⎪⎪⎪⎩⎪⎪⎪⎨⎧==. 5、解三角形应用(1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。
(2)从正北方向顺时针转到目标方向的水平角叫方位角。
(3)坡面与水平面所成的二面角度数的正切值叫做坡度。
(4)解斜三角形应用题的一般步骤:分析→建模→求解→检验第二章 数 列1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n 项和公式的关系:{11,(1),(2)n n n S n a S S n -==-≥(必要时请分类讨论).注意:112211()()()n n n n n a a a a a a a a ---=-+-++-+;121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅. 2.等差数列{}n a 中: (1)等差数列公差的取值与等差数列的单调性..000R d d d d d ∈⎪⎩⎪⎨⎧→<→=→>的取值为,可知数列单调递减数列为常数列数列单调递增 (2)1(1)n a a n d =+-()m a n m d =+-;p q m n p q m n a a a a +=+⇒+=+.(3){}n n b a 21λλ+、{}n ka 也成等差数列.(4)在等差数列{}n a 中,若.0),(,=≠==+n m n m a n m m a n a 则(5)1211,,m k k k m a a a a a a ++-++++++仍成等差数列. (6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d d S n a n =+-,2121n n S a n -=-,。
高中数学 知识点总结 新人教A版必修5
高中数学必修5知识点总结第一章:解三角形1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;(正弦定理的变形经常用在有三角函数的等式中)③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余 定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =o为直角三角形;②若222a b c +>,则90C <o为锐角三角形;③若222a b c +<,则90C >o为钝角三角形.第二章:数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列.6、递减数列:从第2项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n ma a d n m-=-.14、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+;下角标成等差数列的项仍是等差数列;连续m 项和构成的数列成等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修5知识点总结第一章 解三角形1、三角形三角关系:A+B+C=180°;C=180°-(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C ===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.8、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。
2.已知三边求角) 9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角)10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.注:正余弦定理的综合应用:如图所示:隔河看两目标A、B,但不能到达,在岸边选取相距3千米的C、D两点,并测得∠ACB=75O, ∠BCD=45O, ∠ADC=30O, ∠ADB=45O(A、B、C、D在同一平面内),求两目标A、B之间的距离。
(本题解答过程略)11、三角形面积公式:12、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1)外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等)内心——三角形三内角的平分线相交于一点(内心到三边距离相等)13 、请同学们自己复习巩固三角函数中诱导公式及辅助角公式(和差角、倍角等)。
附加:第二章数列1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:a n+1>a n ).6、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:a n+1<a n ).7、常数列:各项相等的数列(即:a n+1=a n ).8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.符号表示:1n n a a d +-=。
注:看数列是不是等差数列有以下三种方法: ① ),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数12、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项. 13、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.14、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.15、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.16.等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+.③12n n s a a a =+++17、等差数列的前n 项和的性质:①若项数为()*2n n ∈N,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S n S n =-奇偶(其中n S na =奇,()1n S n a =-偶).18、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:1n na q a +=(注:①等比数列中不会出现值为0的项;②同号位上的值同号)注:看数列是不是等比数列有以下四种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a ) ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.19、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.(注:由2G ab =不能得出a ,G ,b 成等比,由a ,G ,b ⇒2G ab =) 20、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.21、通项公式的变形:①n mn ma a q -=;②()11n n a a q --=;③11n na qa -=;④n m n m a q a -=. 22、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.23、等比数列{}n a 的前n 项和的公式:①()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.②12nn s a a a =+++24、对任意的数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 附:几种常见的数列的思想方法:1.等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值. 2.数列通项公式、求和公式与函数对应关系如下: 数列 通项公式对应函数等差数列(时为一次函数)等比数列(指数型函数)我们用函数的观点揭开了数列神秘的“面纱”,将数列的通项公式以及前n 项和看成是关于n 的函数,为我们解决数列有关问题提供了非常有益的启示。
3.例题:1、等差数列中,,则.分析:因为是等差数列,所以是关于n 的一次函数,一次函数图像是一条直线,则(n,m ),(m,n),(m+n,)三点共线,所以利用每两点形成直线斜率相等,即,得=0(图像如上),这里利用等差数列通项公式与一次函数的对应关系,并结合图像,直观、简洁。
例题:2、等差数列中,,前n 项和为,若,n 为何值时最大?分析:等差数列前n 项和可以看成关于n 的二次函数=,是抛物线=上的离散点,根据题意,,则因为欲求最大值,故其对应二次函数图像开口向下,并且对称轴为,即当时,数列前n 项和公式对应函数等差数列(时为二次函数)等比数列(指数型函数)最大。
例题:3递增数列,对任意正整数n ,恒成立,求分析:构造一次函数,由数列递增得到:对于一切恒成立,即恒成立,所以对一切恒成立,设,则只需求出的最大值即可,显然有最大值,所以的取值范围是:。
构造二次函数,看成函数,它的定义域是,因为是递增数列,即函数为递增函数,单调增区间为,抛物线对称轴,因为函数f(x)为离散函数,要函数单调递增,就看动轴与已知区间的位置。
从对应图像上看,对称轴在的左侧也可以(如图),因为此时B 点比A 点高。
于是,,得4.如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅5.两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.6. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。