小升初平面几何图形

合集下载

小升初专题复习几何图形

小升初专题复习几何图形

小升初专题复习——几何图形一、三视图及展开图例题1:用同样大小的正方体摆成的物体,从正面看到,从上面看到,从右面看到〔 〕A .B .C .D .变式练习:如图,它是用6个棱长为1分米的正方体拼成的. ①它的外表积是 . ②它的体积是 .二、三角形的底边及面积关系例题1:如图.A 、B 是长方形长和宽的中点,阴影局部的面积是长方形面积的 %.例题2:如图,三角形ABC 面积为27平方厘米,AE=CE ,BF=BC ,求三角形BEF 的面积.变式练习1:如图,直角梯形ADCB 中,三角形BEC 、四边形CEAF 和三角形CFD 的面积一样大.BC=16、AD=20、AB=12,求三角形AEF 的面积.教师姓名 学科 数学 上课时间 讲义序号 (同一学生)学生姓名年级六年级组长签字日期课题名称 几何图形变式练习2:如图,梯形ABCD中共有〔〕对面积相等的三角形A. 22 B. 3 C. 4 D. 5变式练习3:在如图中,平行四边形的面积是20平方厘米,图中甲、丙两个三角形的面积比是,阴影局部的面积是平方厘米.三、多边形内角和例题1:把表填完整多边形…边数 3 4 5 6 …内角和180°180°×2 180°×3 180°×5 …变式练习:探索〔1〕完成表格中未填局部.〔2〕根据表中规律,八边形的内角和是度.〔3〕假设图形的边数为a,内角和为s,请你用一个含有字母的关系式表示图形边数及内角和的关系..图形边数 3 4 5内角和180 180×2 180×3四、长度比拟例题1:面积相等的情况下,长方形、正方形和圆相比,〔〕的周长最短.A.长方形B.正方形C.圆例题2:如图,A是一个圆,B是由三个半圆围成的图形,那么它们周长的大小关系是C A C B.变式练习1:下面三个图形中,哪两个图形的周长相等?〔〕A.图形①和②B.图形②和③C.图形①和③变式练习2:在图形中甲的周长〔〕乙的周长.A.大于B.小于C.等于拓展提升:某高层公寓大火时,小王逃生的时候看了下疏散通道如下图,那么最快逃离到楼梯〔图中阴影〕的通道共有〔〕条.A. 3 B. 9 C. 6 D. 12五、组合图形计数例题1:如图中直角的个数为〔〕个.A. 4 B. 8 C. 10 D. 12例题2:如图,共有〔〕条线段.A. 4 B. 8 C. 10 D. 12例题3:数一数,在右图中共有〔〕个三角形.A.10 B. 11 C. 12 D. 13 E.14A.4 B. 8 C. 10 D. 12变式练习2:如图中直角有〔〕个.A. 1 B. 2 C. 3 D. 4变式练习3:这里共有〔〕条线段.A.三条B.四条C.五条D.六条变式练习4:如下图的7×7的方格内,有许多边长为整数的正方形,其中在有的正方形中黑方格及白方格的个数占一半〔同样多〕.像这样的正方形有〔〕个.A.26 B. 36 C. 46 D. 56E.66变式练习5:图中共有〔〕个长方形.A. 30 B. 28 C. 26 D. 24变式练习6:如图,三角形一共有个.拓展提升1:如图是半个正方形,它被分成一个一个小的等腰三角形,图中,正方形有10 个,三角形有47 个.拓展提升2:如图中,三角形的个数有多少?六、图形的拆拼〔切拼〕例题1:一个圆的周长是15.7分米,把这个圆等分成假设干个小扇形,拼成一个近似的长方形,这个近似的长方形的长是分米,宽是分米.例题2:爸爸给女儿买了一个圆柱形的大生日蛋糕,女儿把蛋糕竖直方向切成22块分给22个小朋友,切成的大小不一定相等.那么至少需切的刀数为?变式练习1:在一块边长为4厘米的正方形的铁皮上,剪出直径为2厘米的小圆片,最多可剪〔〕片.A. 3 B. 4 C. 5 D. 6变式练习2:用一条直线将一个正方形分成两个完全一样的两局部,有几种分法〔〕A. 1种B. 2种C. 3种D. 4种变式练习3:在一块长10分米、宽5分米的长方形铁板上,最多能截取11 个直径是2分米的圆形铁板.拓展提升:请将下面等边三角形按要求分割成假设干个形状和大小都一样的三角形〔1〕分成2个〔2〕分成3个〔3〕分成4个〔4〕分成6个七、立体图形的外表积例题1:把14个棱长为1的正方体,在地面上堆叠成如下图的立体,然后将露出的外表局部染成红色.那么红色局部的面积为〔〕A. 21 B. 24 C. 33 D. 37例题2:如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,那么所得物体的外表积为.变式练习2:把假设干个边长2厘米的正方体重叠起来堆成如下图的立体图形,这个立体图形的外表积是平方厘米.变式练习3:如图是一个长3厘米、宽及高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的外表积〔〕A.比原来大B.比原来小C.不变拓展提升〔难〕:在一个棱长为8的立方体上切去一个三棱柱〔如图〕,那么外表积减少.八、立体图形的体积例题1:如图的体积是.〔单位:厘米〕例题2:一支没有用过的圆柱形铅笔,长18厘米,体积是9立方厘米,使用一段时间后变成了如图的样子,这时铅笔的体积是多少立方厘米?变式练习1:有一棱长为5cm的正方体机器零件,现在它的上下面挖去了一个直径为2cm的圆孔,求剩下机器零件的外表积和体积?九、等积变形例题1:如下图,把底面直径8厘米的圆柱切成假设干等分,拼成一个近似的长方体.这个长方体的外表积比原来增加80平方厘米,那么长方体的体积是立方厘米.例题2:一个酸奶瓶〔如图〕,它的瓶身呈圆柱形〔不包括瓶颈〕,容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余局部高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?变式练习1:一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?变式练习2:有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形〔不包括瓶颈〕.现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余局部的高度为5厘米.瓶内现有饮料立方厘米.变式练习3:水平桌面上放着高度都为10厘米的两个圆柱形容器A和B,在它们高度的一半处有一连通管相连〔连通管的容积忽略不计〕,容器A、B底面直径分别为10厘米和16厘米.关闭连通管,10秒钟可注满容器B,如果翻开连通管,水管向B容器注水6秒钟后,容器A中水的高度是多少呢?〔π取3.14〕变式练习4:A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A 注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通〔连通管的容积忽略不计〕,仍用该水龙头向A注水,求〔1〕2分钟容器A中的水有多高?〔2〕3分钟时容器A中的水有多高.十、数阵图中找规律的问题例题1:把自然数依次排成以下数阵:1,2,4,7,11,…3,5,8,12,…6,9,13,…10,14,…15,……现规定横为行,纵为列.求〔1〕第10行第5列排的是哪一个数?〔2〕第5行第10列排的是哪一个数?〔3〕2004排在第几行第几列?变式练习1:淘气用小棒搭房子,他搭3间用了13根小棒,像这样搭15间房子要用〔〕根小棒.A. 60 B. 61 C. 65 D. 75。

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题训练含参考答案(5篇)

小升初数学几何图形专题知识训练含答案一、单选题1.甲数和乙数的比是4∶7,甲数是乙数的()A.47B.74C.342.甲数的14和乙数的34相等,那么甲数()乙数。

A.大于B.小于C.等于D.不能比较3.在一张长8厘米,宽6厘米的长方形纸上,剪下一个最大的正方形,这个正方形的面积是()。

A.36平方厘米B.48平方厘米C.64平方厘米4.下面图形都是由3个边长1厘米的小正方形组成的,其中周长最长的是()。

A.B.C.5.旋转能得到()A.圆柱B.圆锥C.一个空心的球6.如图,图中的物体从()看到的形状是相同的.A.正面和上面B.正面和右面C.上面和右面7.下面运用“转化”思想方法的是()。

A.①和②B.①和③C.②和③8.下列叙述正确的是()A.两个数的最小公倍数是它们最大公因数的倍数。

B.三角形的底和高扩大2倍,它的面积也扩大2倍。

C.相邻两个非0的自然数,其中一定有一个是合数。

9.两个完全相同的长方形(如图),将图①和图②阴影部分的面积相比,()A.图①大B.图②大C.图①和图②相等10.下列说法中正确的有()。

①2厘米长的线段向上平移10厘米,线段的长还是2厘米。

②8080008000这个数只读出一个“零”。

③万级包括亿万、千万、百万、十万、万五个数位。

④三位数乘两位数,积不可能是六位数。

A.2个B.3个C.4个二、填空题11.在一个宽为6厘米的长方形里恰好能画两个同样尽量大的圆(如图).圆的直径为厘米,半径为厘米;一个圆的周长为厘米,面积为平方厘米;长方形的面积是平方厘米,阴影部分的面积是平方厘米.12.一个梯形的上底是5.8厘米,下底是6.2厘米,高是2.5厘米,它的面积是平方厘米。

13.是由几个拼成的。

;;。

14.在横线上填上“平移”或“旋转”。

汽车行驶中车轮的运动是现象;推拉门被推开是现象。

15.把一个棱长为6 cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是。

小升初数学几何的初步知识总结及平面图形知识考点

小升初数学几何的初步知识总结及平面图形知识考点

小升初数学几何的初步知识总结及平面图形知识考点线和角(1)线*直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

*射线射线只有一个端点;长度无限。

*线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

*平行线在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

*垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角(1)从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。

平角180°。

周角:角的一边旋转一周,与另一边重合。

周角是360°。

小升初数学平面图形知识考点复习1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

专题4-等积变形(位移、割补)小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、等积变形的主要方法:(1)三角形内等底等高的三角形;(2)平行线内等底等高的三角形;(3)公共部分的传递性;(4)极值原理(变与不变)。

【典例一】如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.求小路的占地面积?【分析】无论这曲折小路如何再曲折,都可以将曲折小路分成两类,一类是竖的,一类是横的,可以把竖的往左拼,横的往上拼,如下图则小路面积不难算出,竖的部分14×2,横的部分20×2,计算重叠2×2,则小路面积为(20+14)×2-2×2=64(平方米).【解答】解:小路面积为:(20+14)×2-2×2=64(平方米),答:小路的占地面积64平方米.【点评】利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形,横的长方形和重叠的小正方形,进而解答.【典例二】如图,五边形ABCDE是一片荒地的示意图,陈家承包后想将其中的小路E M N---改成直路EG,然后在直路EG,然后在直路EG两旁分别种植不同的蔬菜,并使改道前后路两旁的面积,保持不变,请你左图中画出这条直路.(图中体现画法1)【分析】利用尺规作图做//EN MG,如图根据两条平行线之间的垂线段相等和同底等高的三角形的面积相等,可得S ENG S EMN∆=∆,由此作图即可.【解答】解:画法如图所示,连接EN,过点M作//MG EN,交CB于点G,连接EG,EG即为所求直路的位置.【点评】此题利用两条平行线之间的垂线段相等和同底等高的三角形的面积相等的知识作图.【典例三】A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A 注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.【分析】已知B容器的底面半径是A容器的2倍,高相等,B容器的容积就是A容器的4倍;因此,单独注满B容器需要4分钟,要把两个容器都注满一共需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即1226÷=(厘米)(其余的水流到B容器了);由此可知,用2.5分钟的时间两个容器中的水的高度相等,都是6厘米;以后的时间两个容器中的水位同时上升,用3 2.50.5-=(分钟)分钟注入两个容器的高度加上6厘米即是3分钟后的高度.【解答】解:(1)A 容器的容积是:23.141 3.141 3.14⨯=⨯=(立方厘米),B 容器的容积是:23.142 3.14412.56⨯=⨯=(立方厘米),12.56 3.144÷=,即B 容器的容积是A 容器容积的4倍,因为一水龙头单独向A 注水,一分钟可注满,所以要注满B 容器需要4分钟,因此注满A 、B 两个容器需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A 中的水位是容器高的一半,即1226÷=(厘米);(2)因为注满A 、B 两个容器需要145+=(分钟),所以52 2.5÷=(分钟)时,A 、B 容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3 2.50.5-=(分钟)水位是同时上升的,10.5510÷=,112 1.210⨯=(厘米),6 1.27.2+=(厘米);答:2分钟时,容器A 中的高度是6厘米,3分钟时,容器A 中水的高度是7.2厘米.【点评】此题主要考查圆柱的体积(容积)的计算,解答关键是理解现在两个容器在它们高度一半处用一个细管连通,当A 中的水高是容器高的一半时,其余的水流到B 容器了;以后的时间两个容器中的水位同时上升,即注满两容器时间的110乘容器高就是0.5分钟上升的水的高度.一.选择题(共4小题)1.我国古代数学家刘徽利用“出入相补”原理计算平面图形的面积,其原理是:把一个图形分割、移补,而面积保持不变。

小升初平面几何题目

小升初平面几何题目

小升初模块(二)几何1.如图:一个三角形的三个顶点分别为三个半径为3 厘米的圆的圆心,则图中阴影部分的面积是__________.(保留π)2.如图,在三角形ABC 中,BD:DC=1:2,E 为AD 的中点,若三角形ABC 的面积为120 平方厘米,则阴影部分的面积是多少平方厘米?3.求图中阴影部分的面积(单位:厘米)4. 在△ABC 中,BD=DE=EC,CF:AC=1:3.若△ADH 的面积比△HEF 的面积多24 平方厘米,求三角形ABC的面积是多少平方厘米?5、求阴影部分的面积.(单位:厘米)6、如图,长方形的ABCD 面积被线段AE,AF 分成三等份,且三角形AEF 的面积是35 平方厘米,求长方形的面积.7.求下列图形的周长和面积.8.有一种圆锥形容器,给里面装入1 千克水后,水面正好到圆锥高的一半,如下图所示.若要将此容器装满水,还需要注入多少千克水?9.将方格里的梯形面积按1:2:3 分成三个三角形.10.如图,一个正方形的每条边上的半圆直径都相等,每条边在半圆外的两条线段都分别长8 厘米、3 厘米.中间阴影面积减去四个角阴影面积的和,差为平方厘米.11.如图所示,正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米,边BC落在EH上.已知三角形AGC的面积为6.75平方厘米,求三角形ABE的面积.12.如图是学校一个正方形花圃的设计图,图中阴影部分是花圃,空白部分是草坪.求花圃的面积是多少平方米?13.如图,这个无盖长方体铁皮水箱的容积是40 升,底面面积是10 平方分米,距箱口0.8 分米处出现了漏洞,现在这个水箱平放在地面上,最多能装水多少升?(铁皮厚度不计)14. 已知梯形的面积是75 平方厘米,求图中阴影部分的面积.。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初分班奥数平面图形面积

小升初分班奥数平面图形面积

小升初奥数几何部分辅导讲义讲义编号:学员编号: 年 级:小六 课时数:3 学员姓名: 辅导科目:奥数 学科教师: 课 题 平面图形面积问题授课时间: 备课时间:教学目标1. 掌握五大模型的特征,会从复杂图形中找出基本模型.2. 灵活运用五大模型求直线型图形的面积和线段长度.教学内容【专题知识点概述】一、等积变换模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;baS 2S 1 DC BA如左图12::S S a b =③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④正方形的面积等于对角线长度平方的一半;⑤三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵推理过程连接BE ,再利用等积变换模型即可三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:GF E ABCD (金字塔模型)AB CDEF G(沙漏模型)①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;五、燕尾定理模型 S △ABG :S △AGC =S △BGE :S △EGC =BE :EC ;S △BGA :S △BGC =S △AGF :S △FGC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ; 【习题精讲】【例1】(难度等级 ※※)用四种不同的方法,把任意一个三角形分成四个面积相等的三角形.【例2】(难度等级 ※※)如右图,已知在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积为1平方厘米.求三角形ABC 的面积.【例3】(难度等级 ※※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.G F E DC B AHGFE D CBA【例4】(难度等级 ※※)如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.【例5】(难度等级 ※※)(2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.FE DCBA【举一反三】(难度等级 ※※)如右图,在平行四边形ABCD 中,E 、F 分别是AC 、BC 的三等分点,且SABCD=54平方厘米,求S △BEF .【例6】(难度等级 ※※※)图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【例7】(难度等级 ※※)如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【举一反三】(难度等级 ※※)如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【例8】(难度等级 ※※)如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA【例9】(难度等级 ※※)如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?EFD CBA【例10】(难度等级 ※※※)已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【例11】(难度等级 ※※※)(2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.FEDC BA【例12】(难度等级 ※※※)如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【例13】(难度等级 ※※※)如图所示,已知 1.,2.ABCSAE ED BD DC ===求图中阴影部分的面积.【举一反三】(难度等级 ※※※)下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【例14】(难度等级※※※)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?【例15】(难度等级※※※)梯形ABCD的上底长为3厘米,下底长为9厘米,而三角形ABO的面积为12平方厘米。

小升初经典题型—小学平面几何图形的十大解法

小升初经典题型—小学平面几何图形的十大解法

几何图形的十大解法(30例)一、分割法例1:将两个相等的长方形重合在一起,求组合图形的面积。

(单位:厘米)2例2:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。

例3:左图中两个正方形的边长分别为8厘米和6厘米。

求阴影部分面积。

二、添辅助线例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。

求阴影部分面积。

CPD BA例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。

梯形下底是多少厘米?例3:平行四边形的面积是48平方厘米,BC分别是A 这个平行四边形相邻两条边的中点,连接A、B B、C得到4个三角形。

求阴影部分的面积。

C三、倍比法例1: A B 已知:OC=2AO,S ABO=2㎡,求梯形ABCDO 的面积。

D C例2:7.5 已知:S阴=8.75㎡,求下图梯形的面积。

2.5例3: A 下图AB是AD的3倍,AC是AE的5倍,D E 那么三角形ABC的面积是三角形ADE的多少倍?B C四、割补平移例1: A B 已知:S阴=20㎡, EF为中位线E F 求梯形ABCD的面积。

D C例2:10 求左图面积(单位:厘米)5510例3:把一个长方形的长和宽分别增加2厘米,面积增加24平方厘米。

求原长方形的周长。

2五、等量代换例已知:AB平行于EC,求阴影部分面积。

8E 10 D(单位:m)例2:下图两个正方形边长分别是6分米、4分米。

求阴影部分面积。

例3:已知三角形ABC的面积等于三角形AED的面积(形状大小都相同),它们重叠在一起,比较三角形BDF和三角形CEF的面积大小。

()A A 三角形DBF大B三角形CEF大D C C两个三角形一样大D无法比较B FE六、等腰直角三角形例1:已知长方形周长为22厘米,长7 厘米,求阴影部分面积。

45°例2:已知下列两个等腰直角三角形,直角边分别是10厘米和6厘米。

【平面图形的面积问题】2023年小升初数学无忧衔接 (通用版)(解析版)

【平面图形的面积问题】2023年小升初数学无忧衔接 (通用版)(解析版)

平面图形的面积问题在初中几何中,随着变量和演绎推理证明等知识的进入,初中学生学习几何就需要提高相应的思维能力,比如抽象思维,推理等等。

难度自不必说,思维的层次也大为不同。

甚至一些证明,必须用演绎推理来完成,比如“两直线垂直于同一条直线,那么这两条直线平行”,这个命题就需要演绎推理思维,学生必须要在自己的心中构建直观图形,难度加大了。

如“三角形的内角和等于180°”这个定理,在小学教材中是由实验得出的,学生较熟悉。

因此,在教学中既让学生通过实验得出结论,又要强调说明不能满足于实验,而必须从理论上给予严格论证。

求几何图形面积常见方法及运用:【解题技巧】常见模型例1.(2022春·六年级统考期末)下图中阴影部分的面积是( )平方厘米。

【答案】8平方厘米【分析】观察图形可知,小正方形部分阴影面积等于长方形空白处面积,如下图:阴影部分面积等于长是(2+2)厘米,宽是2厘米长方形面积;根据长方形面积公式:面积=长×宽,代入数据,即可解答。

【详解】(2+2)×2=4×2=8(平方厘米)【答案】4平方厘米【分析】通过观察图形可知,把阴影部分通过“旋转”或“割补”法,把阴影部分拼成三角形的面积,根据三角形的面积公式:S=ah÷2,求出大三角形的面积,再除以2,即可求出阴影部分的面积。

【详解】如图:4×4÷2÷2=16÷2÷2=8÷2=4(平方厘米)变式1.(2023秋·北京西城·五年级统考期末)将等腰三角形ABC沿虚线对折,折下来的部分恰好拼成了一个长方形(如图)。

已知三角形ABC的底是6cm,高是4cm,图中涂色部分的面积是()cm2。

A.24 B.12 C.6 D.3【答案】D【分析】如图:观察图形可知,三角形ABC左右两边的涂色小三角形完全一样,把左边的涂色小三角形平移至右边,与右边涂色小三角形组合成一个与①一样大的三角形;这样三角形ABC平均分成4份,涂色部分占其中的一份;根据三角形的面积=底×高÷2,求出三角形ABC的面积,再除以4即是涂色部分的面积。

小升初数学专题2:图形与几何(1)图形的认识及计算-附答案

小升初数学专题2:图形与几何(1)图形的认识及计算-附答案

【解析】【解答】解:根据弧的知识可知,只有圆上 AB 是弧,而 AO 和 BO 都是半径. 故答案为:C
【分析】圆上两点间的部分叫作弧,A 和 B 都是圆上的点,这两个点之间的曲线就是弧.
11.【答案】 C
【考点】圆的面积
【解析】【解答】 把一个圆平均分成若干份,沿半径剪开后,拼成一个近似的长方形,长方形的宽相当
30. ( 1 分 ) 下图有________个正方形?
31. ( 1 分 ) 两个边长是 6dm 的等边三角形拼成一个平行四边形,拼成的平行四边形周长是________dm. 32. ( 4 分 ) 先写出每个钟面上的时间,再量一量钟面上的分针和时针所组成的角的度数。①
时间________角度________
50. ( 5 分 ) 画一个直径是 12 厘米的圆,并在圆中画一个圆心角是 100°的扇形。求这个扇形的面积。
51. ( 5 分 ) 计算阴影部分的面积
52. ( 10 分 ) 安居小区门前的水池长 9m,长是宽的 1.5 倍,深 1.2m。 (1)这个水池的占地面积是多少平方米? (2)如果把水池四周和底面贴上瓷砖,贴瓷砖的面积是多少平方米? 53. ( 5 分 ) 一根铁丝可以围成一个直径是 6cm 的圆,如果用它围成一个等边三角形,每边的长是多少厘米? 54. ( 5 分 ) 长青桥小学有一块面积是 490 平方米的长方形苗圃,苗圃长 35 米,宽是多少米?周长是多少 米? 55. ( 5 分 ) 有一块平行四边形麦田,底是 200 米,高是 45 米,平均每公顷收获小麦 7.05 吨,这块地共收 获小麦多少吨? 56. ( 5 分 ) 李爷爷把牛栓在草原的木桩上,木桩到牛鼻的绳子长 6 米,牛能吃到草的面积有多大? 57. ( 5 分 ) 压路机的滚筒是一个圆柱体,它的底面直径是 1 米,长 2 米。每滚动一周能压多大面积的路面? 58. ( 5 分 ) 有一个近似圆锥形的小麦堆,测得麦堆底面直径 4 米,高 1.5 米,如果每立方米小麦重 740 千 克,这堆小麦大约重多少千克?

小升初复习2平面几何综合复习

小升初复习2平面几何综合复习

第二讲 平面几何综合复习1、三角形 (1)特性:①由三条线段围成的图形;②具有稳定性;③任意两边的和大于第三边;④内角和是180度。

(2)分类:①按角分:锐角三角形、直角三角形、钝角三角形; ②按边分:等腰三角形、等边三角形、一般三角形。

2、四边形 (1)长方形:两条对边相等,4个角都是直角的四边形。

(2)正方形:四条边都相等,四个角都是直角的四边形。

(3)平行四边形:两组对边分别平行且相等的四边形。

(4)梯形:只有一组对边平行的四边形。

可分类为:等腰梯形、 直角梯形、一般梯形。

3、圆、圆环圆(1)圆的大小由半径决定。

(2)同一个圆里有无数条直径,所有的直径都相等。

圆环(1)特征:由两个半径不相等的同心圆相减而成,有无数条对称轴。

(2)面积计算公式:)(22r R S -=π4、轴对称图形特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合, 这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

5、平面图形的周长6、平面图形的面积常用办法:(1)公式法 (2)整体减部分 (3)割补法 (4)三角形等底等高 (5)添加辅助线 (6)图形的平移、翻转等。

(一)求周长例1 如图,有8个半径为2厘米的小圆,用它们的圆周的一部分连成一个花瓣图 形,图中正方形的顶点为这些圆的圆心,那么这个花瓣图形的周长是多少厘米? 练习1:如图,将3个边长为8厘米的正方形叠放在一起,后一个正方形的顶点恰好落在前一个正方形的正中心,那么它们覆盖住的图形周长是多少厘米?(二)求三角形面积例2 如图由两个正方形组成,边长分别为6cm和4cm,阴影部分的面积是多少?练习2:如图大正方形边长是5厘米,小正方形边长是3厘米,求阴影部分的面积。

例3 如图大三角形面积为18平方厘米,边上的点E、F为中点,求阴影部分的面积。

练习3:如图,直角三角形ABC中,已知AB=15厘米,BC=36厘米,且AE=EF=FC,求阴影部分的面积是多少?例4 计算下图中,两个图形阴影部分的面积。

小升初数学专题2:图形与几何(1)图形的认识及计算 经典题型及详细解析

小升初数学专题2:图形与几何(1)图形的认识及计算 经典题型及详细解析

小升初数学专题二:图形与几何--图形的认识及计算一、选择题(共16题;共36分)1.(2分)在一个三角形中,有两个锐角的和是90°,那么这个三角形是()。

A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.(2分)一张长8厘米、宽5厘米的长方形纸,从中剪出一个最大的正方形,正方形的边长是()。

A.8厘米B.5厘米C.6厘米3.(2分)从如图的长方形纸上剪下一个最大的正方形,这个正方形的周长是()厘米.A.12B.16C.204.(2分)下列图中,甲乙两部分的周长不相同的是()A. B. C.5.(2分)下图中,甲和乙两部分面积的关系是()。

A.甲>乙B.甲<乙C.甲=乙6.(2分)射线()端点。

A.没有B.有一个C.有两个7.(2分)如图,中有()条线段。

A.3B.4C.5D.68.(2分)把半圆平均分成180份,每一份所对的角的度数是()A.10°B.1°C.18°9.(2分)如图阴影部分的面积是()A.39.25B.38.35C.38.58D.39.4810.(2分)以下哪个选项是弧()A.半径AO+BOB.半径AO+BO+圆上ABC.圆上ABD.都不是11.(2分)把一个圆平均分成若干份,沿半径剪开后,拼成一个近似的长方形,长方形的宽相当于()。

A.圆的周长B.圆的直径C.圆的半径D.圆的面积12.(2分)小圆与大圆的半径之比是1:3,小圆与大圆的面积之比是()。

A.1:3B.1:6C.1:9D.1:9.4213.(6分)在一个大正方形上挖去一个棱长是1cm的小正方体,大正方体的表面积发生怎样的变化?(1)表面积不变的是()A. B. C.(2)表面积增加2的是()A. B. C.(3)表面积增加4的是()A. B. C.14.(2分)一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。

A.πB.2πC.r15.(2分)把一个圆锥沿底面直径到顶点切开,切面是一个()。

图形问题

图形问题

DC BD S S S S S S AEC ABE EDC EBD ADC ABD ===∆∆∆∆∆∆DE AES S S S S S DBC ABC DEC AEC DEB AEB ===∆∆∆∆∆∆小升初考前专项冲刺集训——空间与图形(一)考点方法扫描图形问题是小升初考试的必考内容,而且常常以大题形式出现,重点名校选拔考试题目分值较高,并且难度有所增加,题型形式多样化。

本讲主要举例学习解答平面几何图形问题的方法与技巧,旨在训练同学们敏锐的观察力和空间想象力、灵活的思考能力和动手操作能力,悟出考题规律,积累解题方法技巧,快速提升图形问题的解题能力。

一、转化法在求图形面积时,有时需要把某个图形进行变换,变成另一个比较方便求的图形,常用的几何变换法有:平移、旋转、对称法 。

二、代数法18.设而要求,构造方程。

列出方程,巧用代数法来解决面积问题。

19.设而不求,整体代换。

设一个或几个字母参加列式运算,不求字母的值作整体代换。

三、比例法1、等底等高的三角形或平行四边形面积相等。

2、如果两个长方形的长(或宽)相等,那么它们面积之比等于它们的宽(或长)之比。

3、如果两个三角形(或平行四边形)的底(或高)相等,那么它们的面积比等于它们的高(或底)之比。

于是我们可以得出以下情形:四、差不变的原理若甲比乙的面积大,则甲和乙同时加上或减去相等的面积,他们的差不变。

五、面积一半的应用1、在正方形、长方形、平行四边形中,以其中一条边为底,在它的对边上任意取一点,所得到的三角形的面积等于整个图形面积的一半。

2、平行四边形内任意一点与四个顶点的连线所分成的四个三角形中,相对的两个三角形的面积之和相等。

3、以下图形中,阴影部分面积都占整个图形面积的一半:六、蝶形定理在任意凸四边形(如下左图)中有如下关系:(1)DO ∶OB=)()(32413421S S ∶S S S ∶S S ∶S ++==或者4231S S S S ⨯=⨯(2)AO ∶OC=)()(34213241S S ∶S S S ∶S S ∶S ++==七、在梯形(如下右图)中有如下关系:(1)42S S = (2)4231S S S S ⨯=⨯八、勾股定理如下图,在直角三角形ABC 中有222c b a =+名师经典解析例1 如图1所示,长方形ABCD 面积是40平方厘米,E 、F 、G 分别为AB 、BC 、CD 的中点,H 为AD 上任意一点,求阴影部分的面积。

小升初22次课程14-等积变化和一半模型教师版)

小升初22次课程14-等积变化和一半模型教师版)

平面几何图形的面积计算公式不仅要记住,而且要理解其推导过程,最好在理解的基础上记忆。

这样不仅记得牢,而且运用起来也更灵活自如。

对于较复杂的组合图形,要注意观察图形的特点,寻找图形中的内在联系,通过等积变形、一半模型、添加辅助线等方法,推导求解。

所谓“等积变换”是指在解某些几何问题 时,通过几何图形的面积相等,相互间进行转换,从而使问题得到解决,主要依据是:平行线间的距离处处相等”以及“等底等高的三角形面积相等”,运用“等积变换”的方法可以简捷、巧妙地解决某些复杂图形的面积; 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如左图12::S S a b等积变化和一半模型知识结构模块一:等积变化知识精讲内容分析等积变化和一半模型 等积变化 一半模型baS 2S 1 DC BA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. ⑦平移前后面积相等【例1】如图,在ABC 中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与ABE 等积的三角形一共有哪几个三角形?【难度】★【答案】,,AEC BED DEC【解析】因为D 、E 是BC 、AD 中点,所以BD=DC 、AE=ED ,从而有等底同高可得出答案 【总结】考查等底同高模型例题解析【例2】如右图,E在AD上,AD垂直BC,12AD=厘米,3DE=厘米.求三角形ABC的面积是三角形EBC面积的几倍?ED CBA【难度】★【答案】4【解析】当BC为三角形ABC和三角形EBC的底时,AD是三角形ABC的高,ED是三角形EBC 的高,于是三角形ABC的面积=BC×12÷2=BC×6,三角形EBC的面积=BC×3÷2=BC×1.5,所以面积的倍数是4【总结】等相同看高【例3】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。

2019小升初数学系列课件-平面图形的认识 l (通用版,含答案,双击可编辑) (共63张PPT)

2019小升初数学系列课件-平面图形的认识  l  (通用版,含答案,双击可编辑) (共63张PPT)

二、判断。 (对的画“√”,错的画“×”)(16 分) 1.直线比射线长,射线比线段长。 ( × ) 2.两条直线要么平行,要么相交。 ( × ) 3.一个角的两边越长,这个角就越大。 ( × 4.直径是圆内最长的一条线段。 ( √ ) 5. 等底等高的两个三角形可以拼成一个平行四边形。 ( × ) )
5.下面三组小棒,不能围成三角形的是 (
C )。
6.一个圆至少对折 ( A. 1 B. 2
B )次才能找到它的圆心。 D. 4
C. 3
7.下面几幅图中,不能直接判断出三角形种类的是 (
B 图,三角形 ABD 中 AB 边上的高是 (
A. AC C. AD
B. DE D. BE
四、操作题。 (24 分) 1.按要求在下面的图形中各画一条线段。 (6 分 )
(1)把图①分成两个梯形。
(2)把图②分成一个平行四边形和一个梯形。
2.过 P 点作 AB 的垂线和 CD 的平行线。(6 分 )
答案:
3.如图,一只贪玩的小驯鹿滞留在 A 点,面前有一条河流, 驯鹿群在 B 点休息,此时小驯鹿忽然意识到狼群正向它逼近。你 能想办法帮助它逃离危险吗?(狼群无法过河)(6 分)
4. 角的分类 名称 图形 角的一边 角的两边 大于 0° 而 意义 小于 90° 的 角 等于 90° 的角 大于 90° 而小于 180° 的角 成一条直 线所成的 角, 平角等 于 180° 绕角的顶 点旋转一 周与另一 边重合所 成的角, 周 角等于 360° 锐角 直角 钝角 平角 周角
考点六
四边形
1.四边形的定义 由四条线段首尾相接所围成的图形叫做四边形。
2.常见的四边形 名 称 图 形 长方形 正方形 平行四边形 梯 形

小升初数学培优之平面几何常用技巧

小升初数学培优之平面几何常用技巧
A Q B D C P
【例6】(★★★) 如图所示的四边形ABCD 中, ∠A=∠C=45° ∠ ABC=105°, AB=CD=10厘米,连接对角线 , ∠ABD =30° .求四边形 ABCD的面积.
C DAΒιβλιοθήκη B2【例7】 (★★) 如图,大正方形边长是6厘米,小正方形边长是4厘米,两块阴 影的面积差是多少?
【例1】(★★★) 如图所示,正八边形中的阴影部分面积是125平方厘米,那么 正八边形的面积是多少?
【例2】(★★★) 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三 角形,一共有12个.请算出阴影部分的面积.
1cm
1
【例3】(★★★★) 如右图,正十二边形和中心白色的正六边形的边长均为12,图 中阴影部分的面积_________。
【例4】(★★★) 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个 直角三角形.已知甲三角形两条直角边分别为2 和 4,乙三角 形两条直角边分别为3 和 6,求图中阴影部分的面积. 求图中阴影部分的面积
甲23 4 乙 6
【例5】(★★★★) 如图,三角形ABC是等腰直角三角形, P是三角形外的一点, 其中AP= 10厘米,∠BPC=90°,求四边形ABPC 的面积.
【例8】(★★★)华杯赛复赛试题 右 中的 方形的边长为10厘米, 则阴影部分的面积为多少平 右图中的正方形的边长为 则 影部分的 积为多少 方厘米?
【本讲总结】 一、特殊图形的性质 二、割补法、差不变:化不可求为可求 三 平移 旋转 对称 动态几何 三、平移、旋转、对称:动态几何 ——改变位置不改变形状 重点例题:例3、例4、例5、例6、例8
3
平面几何常用技巧 【加油站】
常见正多边形: 常 多 正三 正方形 正五边 正六 正八边形 正十边形 正十二 角形 形 边形 边形 图形 内角和 每个 内角
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初平面几何图形
平面几何图形
板块一、经典模型回顾
知识点1.共高定理
共高定理结论:
结论:
用途:线段比与面积比之间的相互转化。

鸟头模型结论:
用途:根据大面积求小面积。

例1
例2
如图,将四边形ABCD的四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5,则四边形EFGH的面积是。

如图,三角形ABC的面积为1,且1
3
AD AB
=,14
BE BC
=,1
5
CF CA
=,则三角形DEF的面
积是________。

知识点2:蝴蝶模型
结论:1.
2.S1×S3=S2×S4
用途:借助面积比来反求线段比。

例3
知识点3:梯形蝴蝶
结论:1.S2=S3
2.S 1×S 4=S 22=S 32
3.
4.S1=a2份,S4=b2份,
S
2
=S3=ab 份;S=(a+b)2份
用途:梯形中的面积比例关系。

如图,正方形ABCD的面积是64平方厘米,正方形CEFG 的面积是
36平方厘米,DF与BG相交于O。

则DBO
的面积等于多少平米厘米?
例4
知识点4:燕尾定理 结论:
用途:推面积间的比例关系。

例 5
【阶段总结1】
1.五大模型分别是什么?各有什么妙用? 2.每个模型中都应注意的小技巧有哪些?
如图,ABC △中BD DA =2,CE EB
=2,AF FC =2,那么ABC △的面积是阴影三角形面积的__________倍。

如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O ,已知AB =5,
CD =3, 且梯形ABCD 的面积为4,求三角形OAB 的面积。

板块二、综合运用(一)例6
例7
例8
如图所示,长方形ABCD内部的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO的面积为______。

如图,在△ABC中,△AEO的面积是1
,△ABO 的面积是2,△BOD的面积是3,则四边形DCEO 的面积是多少?
三条边长分别为5、12、13的直角三角形如图所示,将它的短直角边对折到斜边上去,与斜边相重合,问图中阴影部分的面积是多少?
例9
板块三、综合运用(二) 例10
例11
如图,四边形ABCD 面积是1。

E 、F 、G 、H 分别是四边形的三等分点,即AE =2EB
、HD =2AH 、CG =2GD 、BF =2CF ,那么四边形EFGH 的面积是_______。

(2008年日本小学算术奥林匹克初小组初赛) 如图,阴影部分四边形的外接图形是边长为10cm 的正方形,则阴影部分四边形的面积是________cm 2。

如图,在长方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 的中点,已知长方形ABCD 的面积是40平方厘米,则四边形MFNP 的面积是多少平方厘米?
家庭作业
1.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?
2.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8。

三角形BOC的面积为多少?
O
C
A
3. (2008年小机灵杯决赛)如图,长方形ABCD中,8
AD=厘米,5
AB=厘米,对角线AC和BD交于O,四边形OEFG的面积是4平方厘米,则阴影部分面积的和为平方厘米。

第12题
G E
D
B
A
O
4. (2009年第七届希望杯五年级一试改编题)如图,三角形ABC 的面积是12,E 是AC 的中点,点D 在
BC 上,且:1:2BD DC =,AD 与BE 交于点F 。

则四边形DFEC 的面积等于 。

F
E
D C
B
A
5. (清华附中分班考试题,2005全国华罗庚金杯少年数学邀请赛)
如图如果长方形的面积为56平方厘米,且2MD =厘米、3QC =厘米、5CP =厘米、6BN =厘米,那么请你求出四边形MNPQ 的面积是多少厘米?。

相关文档
最新文档