汽车常用机构与传动资料

合集下载

常用机构机械传动

常用机构机械传动
(5)工作可靠和寿命长 缺陷: (1)对制造和安装精度要求较高,成本高 (2)精度↓时 → 噪声和振动↑ (3)不宜用于中心距较大旳传动
齿轮机构旳分类 1.平面齿轮机构 — 用于传递两平行轴之间旳运
动和动力。 * 根据轮齿旳排列位置可分为:内齿轮、外齿轮和 齿条;
* 根据轮齿旳方向可分为:直齿轮、斜齿轮和人字齿 轮。
ABCD构成旳双摇杆机构旳运动能够使悬吊 在E出旳物体做平移运动。
上料机械手 经过连杆旳上下运动,实现加紧与松开旳动作。
手动抽水机中旳定块机构
3为固定旳机架(定块),经过手柄(1)旳转 动使移动导杆(4)往复运动,实现抽水功能。
牛头刨床摆动机构
曲柄BC转动,带动AD摆动,EF在AD旳作用 下做往复运动。
其他常用连杆机构应用
更多 动画
2-1-3.连杆机构设计 连杆机构设计旳基本问题:
(1) 实现预定旳运动规律; (2) 实现预定旳连杆位置(刚体导引问题) ; 1. (3)实现预定旳轨迹。 连杆机构设计旳基本措施: (1) 图解法,直观、概念清楚、简朴易行,精度低; (2) 解析法,精度高、计算量大; (3) 试验法,用于运动要求较复杂旳设计或初步
件工作行程旳平均速度不大于回程旳平均速度,则 称该机构具有急回特征。 Ө(极位夹角):是摇杆处于两 极限位置线所夹旳锐角 K为行程速度变化系数,即空 回行程和工作行程平均速度 旳比值:
K V2 C1C2 t2 t1 180 V1 C1C2 t1 t2 180

180 K 1
K 1
独立运动。一种自由构件在空间具有6个自由度。 约束:指经过运动副联接旳两构件之间旳某些
相对独立运动所受到旳限制。 根据运动副对被联接旳两构件相对运动约束旳

《汽车机械基础》课件——第三章 机械传动与常用机构知识

《汽车机械基础》课件——第三章 机械传动与常用机构知识
图3-4挠性传动工作原理 1-主动轮 2­-挠性元件 3-从动轮
这类传动具有吸收振动载荷以及阻尼振动影响的作用,所以传动平稳,而且结构简单,易于制造。常用于中心距较大情况下的传动。在情况 相同的条件下,与其他传动相比,简化了机构,降低了成本。
2.2.2挠性传动的类型和应用 (1)挠性摩擦传动 (2)挠性啮合传动 (3)牵引式挠性传动
二、螺纹联接的防松
螺纹联接的防松件
螺纹联接多采用单线普通螺纹,其导程角为1.50---3.50,当量摩擦角60---90,一般都具有自锁性; 在静载荷和工作环境温度变化不大的情况下不会自动松脱。但在振动、冲击、变载荷或温度变化很大时,联接就有可能松脱。为保证联接安全可靠,设计时必须考虑放松问题。 1.防松目的:防止因外载荷的变化、材料蠕变等因素造成螺纹联接 松驰,从而使联接失效。 2.防松原理:消除或限制螺纹副之间的相对运动。 3.防松办法及措施 摩擦防松:双螺母、弹簧垫圈、尼龙垫圈、自锁螺母等。 机械防松:开槽螺母与开口销、圆螺母与止动垫圈、弹簧垫片、 轴用带翅垫片、止动垫片、串联钢丝等。 永久防松:端铆、冲点(破坏螺纹)、点焊、粘合。
第三章 机械传动与常用机构知识
学习支持: 知识目标: 通过本章的学习具备联接与支承零部件的基础知识;具备汽车机械所涉及的带传动与链传动的基本知识;具备汽车机械所应用的齿轮传动的基本知识;具备汽车机械中齿轮系与减速器的基本知识;具备常用机构的基本知识。 能力目标: 通过本章的学习能认识相应联接件;掌握带传动、链传动的类型、特点与应用;掌握渐开线齿轮基本特征以及传动特点,掌握渐开线斜齿轮的传动特点与应用;掌握定轴齿轮系的传动比计算方法及轮系中各个齿轮的转动方向的判别,会确定主、从动轮的转向关系;掌握平面连杆机构、凸轮机构、间歇机构、螺旋机构等的基本形式与应用特点。

2013汽车机械基础6常用机构和机械传动

2013汽车机械基础6常用机构和机械传动

图21-8
惯性筛机构
图21-6 缝纫机踏板机构 图21-9 双曲柄机构
图21-10
车门启闭机构
☆ 两连架杆都是曲柄(整周转),主动曲柄匀速转, 从动曲柄变速转。
在双曲柄机构中,如果组成四边形的对边长度分别相等, 则根据曲柄相对位臵的不同,可得到正平行四边形机构和反 平行四边形机构。
特例:平行四边形机构
设曲柄以ω逆时针匀速旋转。 从 AB1 转 到 AB2 , 转 过 180°+θ时为工作行程,所 花时间为t1 ;此时摇杆从C1D 摆到 C2D ,平均速度为 V1, 则 有:
t1 (180 ) /
V1 C1C2 t1 C1C2 /(180 )
曲柄从AB2 继续转过180°-θ到AB1时为回程,所花时间 为t2 ,此时摇杆从C2D摆到C1D,平均速度为V2 ,那么有
特征:两连架杆等长且平行,
连杆作平动。
AB = CD BC = AD
图21-7 摄影车的升降机构
机车车轮联动机构
1)正平行双曲柄机构:
反平行双曲柄机构: 公共汽车车门启闭机构
平行四边形机构存在运动不确定位臵。
可采用两组机构错开排列 的方法予以克服。
C.双摇杆机构-连架杆均为摇杆
例: 鹤式起重机的变速机构: CD(杆3)为原动件, 悬挂重 物的E 点在连杆上→保持E点运动轨迹在近似水平线上。 (平移货物→平稳、减小能量消耗)
K 1 180 K 1

机构急回的作用: 节省空回时间,提高工作效率。
简易刨床
2、压力角和传动角
(1).压力角α
作用在从动件上的驱动力F与该力作用 点绝对速度VC之间所夹的锐角。
分析: BC是二力杆,驱动力F沿BC方向 VC沿连杆BC (⊥CD) α↓ → 有效力

传动系的结构和组成

传动系的结构和组成

传动系的结构和组成
传动系一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。

离合器:用于切断和连接发动机与变速器之间的动力传递。

变速器:用于改变发动机输出转速和转矩的大小,以适应不同的行驶工况。

万向传动装置:用于将变速器输出的动力传递到驱动轮,同时允许驱动轮在一定范围内相对车架偏转。

主减速器:用于降低变速器输出的转速和增加转矩,以提高车辆的牵引力。

差速器:用于允许左右驱动轮以不同的转速旋转,以适应车辆转弯时内外侧车轮的不同行驶轨迹。

半轴:用于将差速器输出的动力传递到驱动轮。

传动系的各个组成部分协同工作,将发动机的动力有效地传递到驱动轮,实现车辆的行驶。

不同类型的车辆可能会有一些差异,但基本结构和组成大致相同。

传动系的设计和性能对车辆的动力性、燃油经济性和驾驶舒适性等方面都有着重要的影响。

汽车机械基础 第13讲 汽车常用机构-机构常识

汽车机械基础 第13讲 汽车常用机构-机构常识

由此可见,人是机器的制造者、使用者,当然不 是机器。毫无疑问,人是一种生物,而生物是“自然 界中由活物质构成并具有生长、发育、繁殖等能力的 物体。”生物能通过新陈代谢作用跟周围环境进行物 质交换,生物具有应激性、遗传与变异等特性,而这 些都是机器所没有的。可以说,机器的工作,完全听 令于人类的指挥,所以机器不是生物。这样看来仅从 “生物”这一概念上就可以划清“人”和“机器”的 界限。人不是机器。
实用机构定义-按预定形式传递运动的构件 组合系统。
在一般情况,为了传递运动和力,机构各构 件间应具有确定的相对运动。
机构分类
(1)平面机构:各构件在同一平面或相 互平行的平面内运动的机构。
(2)空间机构:不满足平面机构条件的机 构。
机构实例
削铅笔器、照相机快门、折叠 椅、可调台灯、电风扇、雨伞骨架、 食物搅拌器、汽车变速器等。
《汽车机械基础》 第13讲 汽车常用机构
机构常识
一、机器的组成
机器是执行机械运动、 用来变 换或传递能?
教材中对机器的定义是:“机器是执行机械运动、 用来变换或传递能量、物料、信息的装置。”而人也 可执行机械运动变换或传递能量、物料和信息。
《现代汉语词典》上对机器的定义是:“由零件装 成,能运转、能变换能量或产生有用功的装置。机器 可以作为生产工具,能减轻人的劳动强度,提高生产 效率。”而对人的定义是:“能制造工具并使用工具 进行劳动的高等动物。”
之外还包含电气、液压等其他装置,具有变换 或传递能量、物料、信息的功能。
4.机械
机器与机构的总称
5.零件(parts)
组成机械的各个制造单元,如螺钉、螺母、 轴等。
6.构件(links) 组成机械的各个运动单元(可以是单独加 工的单元体,如车床的主轴;也可是多个 零件的组合体,如连杆)。

2汽车常见四杆机构

2汽车常见四杆机构
曲柄滑块机构演化为具有两个移动副的四杆机 构,称为双滑块机构。
在图示的曲柄滑块机构中,将转动副B扩大,则 图a所示的曲柄滑块机构,可等效为图b所示的机构。
将圆弧槽mm的半径逐渐增至无穷大,则图2b 所示机构就演化为图示的机构。此时连杆2转化为沿 直线mm移动的滑块2;转动副c则变成为移动副,滑 块3转化为移动导杆。
其连架杆2和4均为曲柄 C
B
A
a
D
(3)最短杆的对边(杆3)为机架 (最短杆为连杆)
C
2
r
B
3
1
o
A
4
D
两连架杆2和4都不能整周转动
故图所示为双摇杆机构。
铰链四杆机构存在曲柄的必要条件
最短杆和最长杆长度之和小于或等于其余两杆长 度之和。
满足这个条件的机构究竟有一个曲柄、两个曲柄 或没有曲柄,还需根据取何杆为机架来判断。
max=900时,=0 →Ft=F 太小易自锁, 限制min,以 保证机构正常工作。
3)最小传动角的位置
曲柄与机架共线的两位置出现最小传动角。
F Ft vC
3)最小传动角的位置 曲柄与机架共线的两位置出现最小传动角。
平面四杆机构的最小传动角位置:
3.死点
在曲柄摇杆机构,如以摇杆3 为原动件,而曲 柄1 为从动件,连杆2与曲柄1共线,这种位置称为死 点。机构处于压力角=90(传力角=0)的位置时, 驱动力的有效力为0。此力对A点不产生力矩,因此 不能使曲柄转动。
➢死点
B
2
C
1
5
A
3
N
P D
利用死点夹紧工件的夹具

树立质量法制观念、提高全员质量意 识。21. 1.1821. 1.18Mo nday , January 18, 2021

汽车机械基础

汽车机械基础
2、机构
定义:是用来传递运动和力的构件系统 特征:传递或转变运动的形式
3、区别
机器的功用:利用机械能做功或实现能量的转换; 机构的功用:在于传递或转变运动的形式
4、机器的组成
图0-1单缸内燃机
组成:汽缸、活塞、连杆、 曲轴、轴承。
机器的组成
动力部分:动力的来源
如:电动机、内燃机、空气压缩机
工作部分:完成工作,处于传动装置的终端
图1-3
工作原理和传动比
定义:带传动是由带和带轮组成,传递运动和动力
的传动。
分类(图1-4):摩擦传动(平带、V带、圆带) 和啮合传动(同步带) 工作原理:利用带(扰性件)与带轮之间的摩擦力
或啮合来传递运动和动力
传动比 :i=n1成:平带、带轮 工作面:平带内侧面 1、平带传动形式 2、平带传动的主要参数 3、平带的类型:皮革平带、帆布芯 平带、编织平带、复合平带。 4、平带的接头方式(图1-9):胶合、 缝合、铰链带扣。
§0-1引言
机械是人类劳动的主要工具,也是生产 力发展水平的重要标志。
§0-2性质、任务、内容
性质:专业基础课
任务:
1、熟悉和掌握基本知识、工作原理、应用特点 2、掌握分析机械工作原理的基本方法 3、能做简单的计算 4、会查资料、会选 标准件
• 内容:
• 1、常用机械传动:带、螺旋、链、齿轮、蜗杆、轮系 2、常用机构:平面连杆机构、凸轮机构、其他常用机构 3、轴系零件:常用连接、轴、轴承、联轴器、离合器、 制动器 4、液压传动:基本概念、液压元件、液压回路、液压系 统
2、带长L:带的内周长 3、传动比i:i=n1/n2=D2/D1
三、V带传动
工作面 : V带的两侧面 1、V带的结构和类型 2、普通V带传动的主要参数 3、普通V带传动的选用要点 4、普通V带传动的正确使用

简述常用的传动机构

简述常用的传动机构

简述常用的传动机构
传动机构是指将动力通过机械连接传递到需要运动的部件中的机构,是机械系统中的重要组成部分。

常见的传动机构包括齿轮传动、链传动、带传动、轴传动等。

1. 齿轮传动
齿轮传动是一种常用的传动机构,将动力通过齿轮的咬合传递到需要运动的部件。

齿轮传动的优点是传递功率大、平稳、精度高,缺点是制造成本高、维护麻烦。

2. 链传动
链传动是一种将动力通过链状部件传递的传动机构,适用于需要一定速度范围内的运动,具有传递功率大、结构简单、维护方便等优点。

3. 带传动
带传动是将动力通过带状部件传递的传动机构,适用于高速、高精度、低噪音、易于维护等特点,是许多工业设备中常用的传动方式之一。

4. 轴传动
轴传动是将动力通过轴传递的传动机构,适用于需要一定速度范围内的运动,但传递功率不如其他传动方式大。

轴传动的优点是制造成本低、结构简单、维护方便,缺点是精度较低。

除了上述常见的传动机构,还有一些其他类型的传动机构,例如弹性传动、气动传动等。

不同的传动机构适用于不同的场合,选择合适的传动机构对于机械系统的正常运行至关重要。

写出汽车常用的机构及其应用

写出汽车常用的机构及其应用

汽车中常用的机构包括:
1. 曲柄连杆机构:用于将活塞的往复运动转化为旋转运动,驱动汽车的车轮。

2. 配气机构:用于控制发动机的进气和排气,保证燃烧过程的正常进行。

3. 传动机构:用于将发动机的动力传递到车轮,实现汽车的行驶。

4. 转向机构:用于控制汽车的行驶方向。

5. 制动机构:用于使汽车减速或停止。

6. 悬挂机构:用于缓冲和减少路面冲击,提高汽车的行驶舒适性和稳定性。

这些机构在汽车的设计和制造中起着重要的作用,它们的性能和可靠性直接影响着汽车的性能和安全性。

最新常用机构(机械传动)

最新常用机构(机械传动)

平面连杆机构能够实现多种运动轨迹和运动规 律,广泛应用于各种机械于仪表中。
主要有:四杆机构、六杆 机构、多杆机构等。 平面连杆机构的组成: 机架——固定不动的构件; 连架杆——与机架相联的构件; 连杆——连接两连架杆且作
平面运动的构件; 曲柄——作整周定轴回转的构件; 摇杆——作定轴摆动的构件。
平面四连杆机构的类型: 曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。
1-2.机构设计的原则 原则:利用机构组成原理进行机构设计时,在满 足相同工作要求的条件下,机构的结构越简单、杆组 的级别越低、构件数和运动副数越少越好。 合理的机构设计是机器平稳实用的基础。机器特 定运动的实现,都是通过机构的协调运动来完成的。 一部较复杂的机器一般是由很多常用机构组成的,如 :连杆机构、轮系机构、凸轮机构、间隙机构和其它 机构,它们之间的相互组合,为实现不同的运动方案 提供了基础 ,而这使机械设计更加丰富与更富有挑,K值越大,机构的急回性质越明显。
平面机构具有急回特性的条件: (1)原动件等角速整周转动; (2)输出件具有正、反行程的往复运动; (3)极位夹角Ө>0。
应用:节省回程时间,提高生产率
平面连杆机构的死点 对于曲柄摇杆机构,当摇杆为主动件时,在
连杆与曲柄两次共线的位置,机构均不能运动。 机构的这种位置称为“死点”(机构的死点位置 ) 在“死点”位置,机构的传动角 γ=0。 “死点”位置应用:
平面连杆机构的压力角与传动角 压力角:作用在从动件上的驱动力F与力作用点
绝对速度之间所夹锐角α。 传动角( γ ):压力角的余角
切向分力 Ft= Fcosα = Fsinγ 法向分力 Fn=Fcosγ
γ↑ Ft↑ 对传 动有利,常用γ的大小 来表示机构传力性能的 好坏(越大越好)

汽车机械基础-常用机构

汽车机械基础-常用机构

图b所示为飞机起落架处于放下机轮的位置, 地面反力作用于机轮上使AB件为主动件,从 动件CD与连杆BC成一直线,机构处于止点, 只要用很小的锁紧力作用于CD杆即可有效
地保持着支撑状态。当飞机升空离地要收起 机轮时,只要用较小力量推动CD,因主动 件改为CD破坏了止点位置而轻易地收起机轮。
4.1 平面连杆机构
模块四常用机构
4.1
平面连杆机构
4.2
凸轮机构
4.1 平面连杆机构
平面连杆机构是由若干个刚性构件通过转动副或移动副连接而成 的机构,也称平面低副机构,组成平面连杆机构各构件的相对运动 均在同一平面或相互平行的平面内。
4.1 平面连杆机构
平面连杆机构的主要优点 :
(1)各构件之间的运动副元素均为面接触,故这类运动中单位面积上的压力较 小,承受载荷大。 (2)润滑条件好,磨损较轻。 (3)结构简单、易于加工,能保证较高的制造精度。 (4)能方便地实现转动、摆动、移动等基本运动形式,以及相互之间的转换。 (5)能实现一些较复杂的平面规律,从而获得多种运动轨迹,以满足不同工作 的要求。
1—ห้องสมุดไป่ตู้轮 2—导筒 3—气门
4.2 凸轮机构
一、凸轮机构概述 1. 凸轮机构的组成与特点
凸轮机构主要由凸轮、从动杆、机架3个部分组成
凸轮为主动件,做定轴等速运动
从动件按一定规律做往复移动或摆动
特点:
(1)凸轮机构结构简单、紧凑,只需改变凸轮的外廓形状,就可改变从 动件的运动规律,容易实现复杂运动的要求。 (2)凸轮外廓与从动件是点接触或线接触,易磨损,多用在传递动力不 大的场合; (3)凸轮机构可以高速启动,动作准确可靠。
K=
4.1 平面连杆机构
三、平面四杆机构的性质 2.压力角和传动角

汽车常用机构分析-机构的组成及运动简图

汽车常用机构分析-机构的组成及运动简图

电动机
内燃机
机器
2.机器的类型
加工机器:用来改变加工对象的尺寸形状、性质和状态。
车床
铣床
机器
2.机器的类型
运输机器:用来运输人员或物品。
客车
叉车
机器
2.机器的类型
信息机器:用来获取或变换信息。
照相机
传真机
机构
机构是具有确定相对运动的构件的组合,它是用来传递运动和动力的构件系统。机器可以看
成是一个或若干机构的组合。
机器特征: (1)属于人为的实体组合体, (2)各运动实体之间具有确定的相对运动, (3)能代替或减轻人类的劳动,利用机械能做功或进行能量转换,
机器
1.机器的组成
根据组成部分功能不同,一部完整的机器一般包括5个部分。下面以轿车为例,介绍机器各组 成部分的含义:
机器
动力部分:
将其他形式的能量转换为机 械能,是整个机器的动力源。
简图
分析机构运动,确定构件类型和数目 该曲柄连杆机构由曲轴1、连杆2、活塞3、汽 缸体4等构件组成,往复直线运动的活塞通过 连杆驱动曲轴转动。其中,汽缸体4是机架, 活塞3是主动件,其余为从动件。
确定各构件间运动副的类型和数目
2 曲轴1与汽缸体4、连杆2与曲轴1之间均发生 相对转动,构成2个转动副;活塞3既与连杆之 间发生相对转动,又与汽缸体之间发生相对直 线运动,构成1个转动副和1个移动副。
汽车机械基础
模块三 汽车常用机构分析
Hale Waihona Puke 单元六 机构的组成及运动简图
学习目标
1.知识目标 (1)掌握机器、机构,构件和零件的概念。 (2)能区分高副和低副。 (3)能识读机构运动简图。 2.能力目标
能绘制常用机构的运动简图

汽车机械基础课件第6章汽车常用机构

汽车机械基础课件第6章汽车常用机构
双摇杆机构
4、铰链四杆机构的应用实例1
1、分析缝纫机运动形式,说明其平面连杆机构 的形式。
2、分析汽车刮水器的机构形式及工作过程。
3、分析起重机的机构形式及工作过程。
三、曲柄滑块机构
1、组成 曲柄滑块机构由滑块、连杆、曲柄和机架四个构件 通过转动副和移动副连接而成。
2、运动形式的转换
当滑块为主动件时 ,机构将滑块的往 复移动转变为曲柄 的旋转运动;
用rmin表示。 (2)推程:推程运动角δt;
(3)远休止、远休止角δs; (4)回程、回程运动角δh; (5)近休止、近休止角δs ˊ ; (6)行程:从动件在推程或回程中移动的距离,用 h
表示。
2、凸轮机构从动件的常用运动规律
(1)等速运动规律:等速运动规律的特点是当凸轮 等速回转时,从动件推程或回程中的速度为常数。
6.2 平面连杆机构
1、什么是机构? 2、说明下列运动副的类型?
一、平面连杆机构
若干刚性构件通过低副(转动副和移动副) 联接而成的机构,是一种低副机构。
二、铰链四杆机构 1、定义
由四个构件通过转动副连接而成的平面 连杆机构。 2、组成
3、铰链四杆机构的基本形式 曲柄摇杆机构
双曲柄机构
机架
永久联接与转动副
齿轮与轴的固定联接
移动副
移动副
直齿圆柱轮机构(外啮合)
外啮合
内啮合
内啮合
二、机构运动简图
用国标规定的简单符号和线 条代表运动副和构件,并按 比例定出各运动副的位置, 说明机构各构件间相对运动 关系的简化图形,称为机构 运动简图。
不严格按比例来绘制简 图,这样的简图通常称为机 构示意图。
讨论:机构 存在急回特 性的条件?

常见的传动机构

常见的传动机构

链条
(liàntiáo)
常用链条(liàntiáo)有滚子链、齿形 链等
滚子链可以做成多排,排数越多 ,传动能力越大
第十页,共三十二页。
链轮(liàn
lún)
链轮的齿形应保证链节能平稳而自由的 进入和退出齿合,并便于加工(jiā gōng)
小直径的链轮为实心
中等直径的链轮为孔板式
大直径的链轮为组合式,组合式链轮 磨损后可更换
六、螺旋 传动 (luóxuán)
螺旋传动是利用螺杆和螺母组成的 螺旋副来实现传动要求的,主要(zhǔyào)用 于将回转运动变为直线运动,同时传递 运动和动力。
第二十六页,共三十二页。
螺旋(luóxuán)传动的 a分.传类力螺旋:以传递动力为主,要求以较小的转矩产生较大的
轴向推力,用于克服工作阻力。如各种起重或加压装置的螺旋。 这种传力螺旋主要是承受很大的轴向力,一般为简写工作,每 次工作时间较短,工作速度也不高。
胶合。
第二十二页,共三十二页。
f.塑形变形 轮齿在过大的应力作用下,轮齿 材料处于屈服状态而产生的齿面 或齿体塑形流动所形成的,属于 齿轮永久变形一大类的失效(shī xiào)形式。
针对齿轮的失效形式,可以采取提高齿芯材料(cáiliào)韧性、 减小齿根应力集中,改用闭式齿轮传动,选用合适的润滑 剂及润滑方法,适当选配主、从懂齿轮的材料(cáiliào)及硬 度,减小齿面粗糙度,并进行适当的磨合(跑合)等方式来 提高齿轮的寿命。
a.可用于两轴中心距离较大的传动; b.皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪 声小;
c.当过载时,皮带在轮上打滑,可防止其它零件损 坏; d.结构简单、维护方便; e.由于皮带在工作中有滑动,故不能保持精确的传动比。 外廓尺寸大,传动效率(xiào lǜ)低,皮带寿命短; f.由于带传动中存在“弹性滑动”现象 ,故带传动的传

汽车机械基础第六节常用机构

汽车机械基础第六节常用机构

第六节常用机构6.1 平面连杆机构平面四杆机构是平面机构的基础,按其构件的运动形式不同,可分为铰链四杆机构和滑块四杆机构两大类,前者是平面四杆机构的基本形式,后者由前者衍生而成。

一、铰链四杆机构的基本形式及应用铰链四杆机构是指联接构件间,都是作回转运动的平面四杆机构。

如图3-64所示。

图3-64 平面四杆机构按两连架杆是曲柄还是摇杆的不同,可将铰链四杆机构分为以下三种形式。

1.曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的铰链四杆机构,称为曲柄摇杆机构。

曲柄摇杆机构主要用以实现将曲柄的匀速转动变成摇杆的摆动,如图3-65所示的雷达天线俯仰角调整机构;或是将摇杆的往复摆动变成曲柄的整周转动,如图3-66所示的缝纫机脚踏板机构。

图3-65雷达天线俯仰角调整机构图3-66缝纫机脚踏板机构2.双曲柄机构两连架杆均为曲柄的铰链四杆机构,称为双曲柄机构。

双曲柄机构中,通常主动曲柄作匀速转动,从动曲柄作同向变速转动。

如图3-67所示的惯性筛机构,当曲柄AB作匀速转动时,曲柄CD作变速转动,通过构件CF使筛子产生变速直线运动,筛子内的物料因惯性而来回抖动,从而达到筛选的目的。

图3-67 惯性筛机构在双曲柄机构中,若相对的两杆长度分别相等,则称为平行四边形机构。

它有如图3-68a 所示的正平行双曲柄机构和如图3-68b所示的反平行双曲柄机构两种形式。

前者的运动特点是两曲柄的转向相同且角速度相等,连杆作平动;后者的运动特点是两曲柄的转向相反且角速度不等。

图3-68 平行双曲柄机构图3-69所示的机车驱动轮联动机构是正平行双曲柄机构的应用实例。

图3-70所示为车门启闭机构,是反平行双曲柄机构的一个应用,它使两扇车门朝相反的方向转动,从而保证两扇门能同时开启或关闭。

在正平行双曲柄机构中,当各构件共线时,可能出现从动曲柄与主动曲柄转向相反的现象,即运动不梯形;当汽车转弯时,两摇杆摆过不同的角度,使两前轮转动轴线汇交于后轮轴线上的O点,以确保车辆转弯的每一瞬时,四个轮子与地面之间均绕O点作纯滚动。

汽车常用机构与传动ppt课件

汽车常用机构与传动ppt课件

t1 > t2 V2 > V1
摇杆在回程运动速度较大的这种 运动特性称为急回特性。
4、行程速比系数
摇杆摆回速度V2与摆去速度V1的比值。
K
v2 v1
t1 t2
φ1 φ2
180 180
θ θ
已知K时,
θ 180 K 1 K 1
θ > 0,K > 1,机构具有急回特性。
K越大,急回作用越明显。
θ = 0, K=1, 机构不具有急回特性。
A
D
C
B
飞机起落架

基本概念
回 (以曲柄摇杆机构为例)


具有急回特性 的四杆机构
1、摆角ψ 2、极位夹角θ 3、急回特性 4、行程速比系数
曲柄摇杆机构 曲柄滑块机构
摆动导杆机构
1、摆角ψ
设曲柄AB为原动件,摇杆CD为从动件。在曲柄回转 一周的过程中,曲柄与连杆BC有两次共线,此时摇杆CD 分别处于左、右两极线位置C1D和C2D的夹角。
(2)滚动螺旋传动机构 摩擦性质为滚动摩擦。滚动螺旋传动是在具有圆弧形螺旋槽的螺杆 和螺母之间连续装填若干滚动体(多用钢球),当传动工作时,滚 动体沿螺纹滚道滚动并形成循环
2、当机构中最短构件长度lmin与最长构件长度lmax之和大于或等于其余 两构件l´、l˝之和,即:
lmin lmax l l
则不论取哪一构件为机架,均无曲柄存在,为双摇杆机构。
四、平面四杆机构的演化(滑块四杆机构);
1.演化方式(一个转动副转化为移动副)
2.类型
对心曲柄滑块机构 偏置曲柄滑块机构
v
h 2 0
sin
0
a
2 h 2 0

常用传动机构

常用传动机构




三. 铰链四杆机构的演化机构 1. 曲柄滑块机构 曲柄滑块机构如图8-10所示,一个连架杆相对于机架 作往复直线移动而成为滑块。其中一个转动副成为移动 副。
a.对心曲柄滑块机构
b. 偏置曲柄滑块机构 c.偏心轮的曲柄滑块机构 图8-10 曲柄滑块机构
在曲柄滑块机构中,若曲柄为主动件,当滑块作往复直 线运动时,可通过连杆带动滑块作往复直线运动;反之, 若滑块为主动件,当滑块作往复直线运动时,又可通过连 杆带动曲柄作整周连续转动。
图8-7 平行双曲柄机构
图8-8 反向双曲柄机构


若两曲柄等长,连杆与机架也等长,则该机构又称为平 行四边形机构或平行双曲柄机构。根据曲柄相对位置的 不同,可得到平行双曲柄机构(如图8-7所示)和反向 双曲柄机构(如图8-8所示)。前者两曲柄的回转方向 相同,且角速度时时相等;而后者两曲柄的回转方向相 反,且角速度不等。由于平行双曲柄机构具有等传动比 的特点,故在传动机械中常用。 3. 双摇杆机构 两个连架杆均为摇杆的机构,则称为双摇杆机构,如 图8-9所示的汽车前轮转向系统即为双摇杆机构。
按照接触部分的几何形状分类:可以分为圆柱副、平面 与平面副、球面副、螺旋副等。




表8-1 运动副的分类
运动副名称 运动副符号 两运动构件构成的运 动副 两构件之一为固定时的 运动副
平面 运动 副
转动副 移动副 平面高副
空间 运动 副
螺旋副
球面副及球销副
8.2 平面连杆机构

平面连杆机构是由若干构件以低副(转动副和移动副)联 接而成的机构,在生产过程中用来实现运动的变换和传 递动力。因构件形状多呈杆状,并作平面运动,所以称 为平面连杆机构。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、平面四杆机构的类型与应用
铰链四杆机构(无移动副)
类型:
滑块杆机构
(一)铰链四杆机构
组成:
机架(固定不动)
2个连架杆
曲柄 摇杆
连杆
连杆 连架杆
机架
连架杆
分类:曲柄摇杆机构、双曲柄机构、双摇杆机构
1.曲柄摇杆机构(取与最短杆相邻杆为机架) 特点:两连架杆一个是曲柄(整周转);一个是摇杆(摆动)
应用:转动---摆动,摆动—转动,所需运动轨迹
雷达天线仰俯机构
汽车前窗刮雨器
搅拌机
缝 纫 机
2.双曲柄机构(取最短杆为机架)
特点:1.两连架杆都是曲柄(整周转) 2.主动曲柄匀速转,从动曲柄变速转 分类:不等长双曲柄机构、平行四边形双曲柄机构、反向双曲柄机构
不等长双曲柄机构:对边不相等
平行双曲柄机构:对边相等且两曲柄转向相同
a.曲柄滑块机构
b.转动导杆机构
增加机架长度
转动导杆机构
摆动导杆机构
应用
简易刨床
牛头刨床机构
曲柄滑块机构中,当将连杆改为机架时,就演化成摇块机构。
a.曲柄滑块机构
b.摇块机构
(2)、应用
自卸卡车的翻斗机构

曲柄滑块机构中,当将滑块改为机架时,就演化成移动导杆 机构(定块机构)
a.曲柄滑块机构
单元2常用机械机构
知识目标
了解并掌握平面连杆机构、凸轮机构等汽车常用机构的作 用和特点。 掌握铰链四杆机构的组成、基本类型及演化机构。 掌握凸轮机构的组成、工作原理及类型。
能力目标
熟悉汽车中平面连杆机构和凸轮机构的应用情况。 会安装、演示铰链四杆机构。 能正确拆装汽车发动机配气机构的凸轮轴。
认识平面连杆机 构
让我们一起来认识平面连杆机构吧!
平面连杆机构 在汽车中的 应用
一、平面连杆机构的特点 平面连杆传动机构:由若干个构件用低副联接 并作平面运动的机构。 平面四杆机构:由四个构件组成的平面连杆机构。
优点:1.压强小、磨损低、寿命长 2.易于加工、成本较低
缺点:1.间隙引入运动误差,运动精度降低 2.不易实现复杂的运动
应用: 天平秤
反向双曲柄机构:对边相等但不平行,但两曲柄转向相反 公共汽车车门启闭机构
3、双摇杆机构 特点:两连架杆都是摇杆(摆动)
港口起重机
等腰梯形双摇杆机构
汽车前轮转向机构 目的:当汽车转弯时,为了保证轮胎与地面之间的纯滚动,以减轻轮胎磨损, 希望两前轮转动轴线与后轮转动轴线交于一点。
死点位置 的判断
从动件与连杆共线位置
死点的影响
α = 90º γ =0º
1、机构卡死 2、运动不确定
避免措施: 两组机构错开排列,如火车轮机构;
B’
F’
C’
A’
E’
D’
G’
A
E
D
G
B
F
C
靠飞轮的惯性(如内燃机、缝纫机等)。
死点位置的利用:
夹紧工具
当在FP力作用下夹紧工件时,铰链中心B、C、D共线,机构处于死点位置,此时工件加在 构件1上的反作用力FQ无论多大,也不能使构件3转动。这就保证在去掉外力FP之后,仍能 可靠夹紧工件。当需要取出工件时,只要在手柄上施加向上的外力,就可使机构离开死点 位置,从而松脱工件。
2、当机构中最短构件长度lmin与最长构件长度lmax之和大于或等于其余 两构件l´、l˝之和,即:
lmin lmax l l
则不论取哪一构件为机架,均无曲柄存在,为双摇杆机构。
四、平面四杆机构的演化(滑块四杆机构);
1.演化方式(一个转动副转化为移动副)
2.类型
对心曲柄滑块机构 偏置曲柄滑块机构
A
D
C
B
飞机起落架

基本概念
回 (以曲柄摇杆机构为例)


具有急回特性 的四杆机构
1、摆角ψ 2、极位夹角θ 3、急回特性 4、行程速比系数
曲柄摇杆机构 曲柄滑块机构
摆动导杆机构
1、摆角ψ
设曲柄AB为原动件,摇杆CD为从动件。在曲柄回转 一周的过程中,曲柄与连杆BC有两次共线,此时摇杆CD 分别处于左、右两极线位置C1D和C2D的夹角。
汽车升降机构
活塞连杆机构
曲柄连杆机构
汽车前轮转向机构 汽车雨刮曲柄摇杆机构
汽车的正常工作,需要各种机构来实 现特定形式的运动。例如,发动机利用活 塞连杆机构的连续运转来提供动力,如图 (a)所示;汽车前后窗利用雨刮器的左 右摆动来清洁玻璃,如图(b)所示;载 货汽车利用车厢的自动翻转来卸载货物, 如图(c)所示。汽车上述功能的实现都离 不开平面连杆机构。那你知道什么是平面 连杆机构吗?它在汽车中还有哪些应用?
F1 Vc
传力性能越好。
B
3
1
A
4
D
在机构运动过程中,传动角γ是不断变化的。
一般情况下,应使 机构在一个运动循 环中的最小传动角
γ min 40
传递较大功率时,
γ min 50
死点的概念
若连杆BC与从动件AB共线, 连杆BC对从动件AB的作用力, 通过铰链A的中心,不能使从动 件转动,整个机构处于静止状态, 机构的这种位置称为死点。
3.改变构件的尺寸
在曲柄滑块机构中,若曲柄很短,可将曲柄制成偏心轮的形式称为偏心轮机构。
偏心轮机构结构简单,偏心轮轴颈的强度和刚度大,且易于安装整体式连杆,广泛用于曲 柄长度要求较短、冲击在和较大的机械中。
颚式破碎机
3.曲柄滑块机构的演化
曲柄滑块机构中,当将最短杆改为机架时,就演化成转动 导杆机构。
b.定块机构
应用
定块机构:手摇唧筒
五、平面四杆机构的基本特性
压力角和传动角 传力特性
死点
运动特性 急回特性
压力角——力F与C点运动方向之间的夹角α
F1 F cos α
推动从动件运动的有效分力。
F2 F sin α
有害分力。
F2
F
α γ 传动角——将压力角 的余角 称为传动角。
γ
C
α
γ α F1 2
三、铰链四杆机构类型的判别
铰链四杆机构的三种基本型式的 主要区别,在于连架杆是否存在曲柄。 机构中是否存在曲柄,取决于:
各构件的相对长度。 选取哪一构件为机架。
1、当最短杆长度与最长杆长度之和小于等于其余两杆长度之和(Lma x+Lmin<=L´+L")
a.最短杆为连架杆,曲柄摇杆机构 b.最短杆为机架,双曲柄机构 c.最短杆为连杆,双摇杆机构
2、极位夹角θ
当摇杆处于两极限位置时,曲柄在两相应 位置所夹的锐角。
3、急回特性
若曲柄以等角速度ω逆时针转动。
曲柄 AB1
AB2
φ 1 180 θ
摇杆C1D C2D
t1
φ1 ω
v1
相关文档
最新文档