幂函数与二次函数专题

合集下载

2024年新高考版数学专题1_3.2 二次函数与幂函数(分层集训)

2024年新高考版数学专题1_3.2 二次函数与幂函数(分层集训)

2.(2022湖南邵阳、郴州二模,4)“
(a
1)
1 2
<
(2
a)
1 2
”是“-2<a&.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
3.(2023届兰州五十五中开学考,15)幂函数f(x)= xm22m3(m∈Z)为偶函数,且
在区间(0,+∞)上是减函数,则m=
C.对任意x∈R, f(x)≥- 25 恒成立
4
D.∃x∈R,使得函数f(x)=π 答案 ACD
4.(2021广东深圳一模,13)已知函数的图象关于y轴对称,且与直线y=x相
切,则满足上述条件的二次函数可以为f(x)=
.
答案 x2+ 1 (答案不唯一)
4
5.(2022北京,14,5分)设函数f(x)=
(0,2]上恒成立,即a≤x+ 4 +1在(0,2]上恒成立,
x
因为x∈(0,2],所以x+ 4 +1≥2 x 4 +1=5,当且仅当x= 4 ,即x=2时取等号,所
x
x
x
以x+ 4 +1的最小值为5,所以a≤5,所以a的最大值为5.
x
考点二 幂函数 考向一 幂函数的图象问题
1.(多选)(2022江苏盐城阜宁中学段测,9)若点A(m,n)在幂函数y=xa(a∈R) 的图象上,则下列结论可能成立的是 ( )
f(x-1)-f 2(x)的最大值为
.
答案 - 3
4
4.(2022河北保定重点高中月考,14)若函数f(x)=(m+2)xa是幂函数,且其图象
过点(2,4),则函数g(x)=loga(x+m)的单调增区间为

二次函数与幂函数专题复习

二次函数与幂函数专题复习

学校:年级:教学课题:二次函数与幂函数学员姓名:辅导科目:数学学科教师:教学目标专题复习二次函数和幂函数的图像与性质教学内容一. 【复习目标】1.准确理解函数的有关概念.2.体会数形结合及函数与方程的数学思想方法.一、幂函数(1)幂函数的定义形如 (α∈R)的函数称为幂函数,其中x是自变量,α为常数(2)幂函数的图象函数y=x y=x2y=x3y=x12y=x-1定义域R R R[0,+∞){x|x∈R且x≠0} 值域R [0,+∞)R[0,+∞){y|y∈R y≠0} 奇偶性奇偶奇非奇非偶奇单调性增x∈[0,+∞)时,增,x∈(-∞,0]时,减增增x∈(-∞,0)时,减定点(0,0),(1,1) (1,1)例1.下列函数中是幂函数的是( )A .y =2x 2B .y =1x 2C .y =x 2+xD .y =-1x例2. (2011·陕西高考)函数y =13x的图象是( )例3.幂函数y =x m 2-2m -3(m ∈Z )的图象关于y 轴对称,且当x >0时,函数是减函数,则m 的值为( ). A .-1<m <3B .0C .1D .2练习:已知点(2,2)在幂函数y =f (x )的图象上,点⎝⎛⎭⎪⎫-2,12在幂函数y =g (x )的图象上,若f (x )=g (x ),则x =________.已知点M ⎝ ⎛⎭⎪⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为( )A .f (x )=x 2B .f (x )=x -2C .f (x )=x 12xD .f (x )=12x-设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为 ( )A .1,3B .-1,1C .-1,3D .-1,1,3对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图象关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图象都是抛物线型.其中正确的有________.二、二次函数1、二次函数的三种形式【1】【2】【3】2.二次函数的图像和性质二次函数())0(2≠++=a c bx ax x f 的图像是一条抛物线,对称轴的方程为 顶点坐标是( ) 。

二次函数与幂函数一轮复习课件(共21张PPT)

二次函数与幂函数一轮复习课件(共21张PPT)
4
点拨:解决二次函数最值问题的关键是抓住“三点一轴”,其中“三点”
是指区间的两个端点和抛物线的顶点,“一轴”指的是对称轴,结合配方法,
根据函数的单调性及分类讨论思想即可解题.
点拨
【追踪训练 2】已知函数 f(x)=-x2+2ax+1-a 在[0,1]上的最大值为 2,求
实数 a 的值.
【解析】函数 f(x)=-(x-a)2+a2-a+1 的图象的对称轴为直线 x=a,且函数图象开
有助于把握数学问题的本质,发现解题思路,并且能避开复杂的推理与计算,大大简化解题过程.解决
二次函数问题时,注重“形”与“数”的有机结合.
【突破训练 2】已知函数 f(x)=x2-2x+4 在区间[0,m](m>0)上的最大值为 4,最小
值为 3,则实数 m 的取值范围是 [1,2] .
【解析】作出函数 f(x)的图象,如图所示,从图
3-2
【解析】(1)函数 f(x)图象的对称轴为直线 x=
1
3-2
2
2
∵0<m≤ ,∴
2
.
≥1,
∴g(m)=max{|f(-1)|,|f(1)|}=max{|3m-2|,|4-m|}=max{2-3m,4-m}.
又∵(4-m)-(2-3m)=2+2m>0,∴g(m)=4-m.
解析
3-2
(2)函数 f(x)图象的对称轴为直线 x=
1
3
, 3 ,则 f
1
2
=
.
【解析】(1)设幂函数的解析式为 f(x)=xα,∵该函数的图象经过点
1
,
3
1
2
3 ,∴3-α= 3,解得 α=- ,

专题08 二次函数与幂函数(解析版)

专题08 二次函数与幂函数(解析版)

2023高考一轮复习讲与练08 二次函数与幂函数练高考 明方向1.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____【答案】1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-. 2.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 【答案】B【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--; ③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .3.(2016高考数学课标Ⅰ卷理科)若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c <(D )log log a b c c <【答案】C【解析】对A :由于01c <<,∴函数cy x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;对B :由于110c -<-<,∴函数1c y x-=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误;对C : 要比较log b a c 和log a b c ,只需比较ln ln a c b 和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a, 只需ln b b 和ln a a ,构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确,对D : 要比较log a c 和log b c ,只需比较 ln ln c a 和ln ln c b ,而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误 4.(2014北京)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t (单位:分钟)满足函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A .3.50分钟 B .3.75分钟 C .4.00分钟 D .4.25分钟【答案】B【解析】由题意可知2p at bt c =++过点(3,0.7),(4,0.8)(5,0.5),代入2p at bt c =++中可解得0.2, 1.5,2a b c =-==-,∴20.2 1.52p t t =-+-=20.2( 3.75)0.8125t --+, ∴当 3.75t =分钟时,可食用率最大.5.(2013广东)定义域为的四个函数,,,中,奇函数的个数是A .B .C .D .【答案】C【解析】是奇函数的为与,故选C .讲典例 备高考O 5430.80.70.5t p R 3y x =2x y =21y x =+2sin y x =43213y x =2sin y x =二次函数与幂函数奇函数的定义偶函数的定义 函数的对称性 奇偶性的判断奇偶性的应用周期性的判断 周期性的应用类型一、幂函数的定义 基础知识:1、幂函数的定义一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.基本题型:1.(幂函数的判断)下列函数中是幂函数的是( ) A .y =x 4+x 2 B .y =10x C .y =1x 3D .y =x +1【答案】C【详解】根据幂函数的定义知,y =1x 3是幂函数,y =x 4+x 2,y =10x ,y =x +1都不是幂函数.2.(幂函数的判断)给出下列函数:①31y x =;②32y x =-;③42y x x =+;④35y x=;⑤()21y x =-;⑥0.3xy =,其中是幂函数的有( )A .1个B .2个C .3个D .4个【答案】B【详解】由幂函数的定义:形如y x α=(α为常数)的函数为幂函数,则可知①331y x x -==和④5353y x x ==是幂函数.类型二、幂函数的图象 基础知识:1、五个常见幂函数的图象基本题型:1.(根据解析式确定图象)已知(),1,m n ∈+∞,且m n >,若26log log 13m n n m +=,则函数()nmf x x =的图像为( ).A .B .C .D .【答案】A【解析】由题意得:26log log 2log 6log 13m n m n n m n m +=+=,令()log 01m t n t =<<,则6213t t+=,解得12t =或6t =(舍去),所以n =,即21mn =,所以()2m n f x x =的图像即为()f x x =的图像.2.(根据图象确定解析式)图中1C 、2C 、3C 为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3 D .1-、12、3 【答案】D【详解】由题意得,根据幂函数的图象与性质可知,2310C C C ααα>>>,所以解析式中指数α的值依次可以是11,,32-, 3.(利用图象比较大小)对于幂函数()45f x x =,若120x x <<,则122x x f +⎛⎫⎪⎝⎭,()()122f x f x +的大小关系是( )A .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭B .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭C .()()121222f x f x x x f ++⎛⎫=⎪⎝⎭D .无法确定【答案】A【解析】幂函数()45f x x =在0,上是增函数,大致图象如图所示.设()1,0A x ,()2,0C x ,其中120x x <<,则AC 的中点E 的坐标为12,02x x +⎛⎫⎪⎝⎭,且()1AB f x =,()2CD f x =,122x x EF f +⎛⎫= ⎪⎝⎭.()12EF AB CD >+,()()121222f x f x x x f ++⎛⎫∴>⎪⎝⎭.4.(利用图象比较大小)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 【答案】A【解析】由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 5.(幂函数图象的性质)下列命题中,假命题的个数为_________. ①幂函数的图象有可能经过第四象限;②幂函数的图象都经过点()1,1;③当0a =时,函数a y x =的图象是一条直线;④当0a <时,函数a y x =在定义域内是严格减函数; ⑤过点()1,1-的幂函数图象关于y 轴对称. 【答案】3【详解】对于①,正数的指数幂为正数,故幂函数的图象不可能经过第四象限,故错误;对于②,1的任何指数幂均为1,所以幂函数的图象都经过点()1,1,故正确;对于③,当0a =时,函数a y x =的定义域为{}0x x ≠,其a y x =图象是两条射线,故错误;对于④,当1a =-时,1y x=在定义域内不具有单调性,故错误;对于⑤,当幂函数过点()1,1-时,()11a-=得a 为偶数,故幂函数图象关于y 轴对称,故正确.类型三、幂函数的性质 基础知识:1、五个常见幂函数的性质1.(幂函数单调性)已知点(2,8)在幂函数()nf x x =的图象上,设,(ln ),a f b f c f π===⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A .b a c << B .a b c << C .b c a << D .a c b <<【答案】D【解析】由已知得82n =,解得:3n =,所以3()f x x =1<1<,ln ln 1e π>=, 又0-==<,所以ln π<<,由3()f x x =在R 上递增,可得:(ln )f f f π<<⎝⎭⎝⎭,所以a c b <<.2.(幂函数图象的对称性)已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______. 【答案】1【详解】因为()()22322n nf x n n x-=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=. 3.(幂函数的奇偶性)设11,2,3,,12a ⎧⎫∈-⎨⎬⎩⎭,则使函数a y x =的定义域为R 且函数a y x =为奇函数的所有a 的值为( )A .1,3-B .1,1-C .1,3D .1,1,3-【答案】C【详解】1a =时,函数解析式为y x =满足题意;2a =时,函数解析式为2yx ,偶函数,不符合题意;3a =时,函数解析式为3y x =满足题意;12a =时,函数解析式为12y x =,定义域为[)0,+∞,不符合题意;1a =-时,函数解析式为1y x -=,定义域为(,0)(0,)-∞+∞,不符合题意.类型四、二次函数的解析式 基础知识:二次函数解析式的三种形式基本题型:1.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________. 【答案】12x 2-32x +2【解析】因为f (x )是二次函数且f (0)=2,所以设f (x )=ax 2+bx +2(a ≠0).又因为f (x +1)-f (x )=x -1,所以a (x +1)2+b (x +1)+2-(ax 2+bx +2)=x -1,整理得(2a -1)x +a +b +1=0,所以⎩⎪⎨⎪⎧2a -1=0,a +b +1=0,解得a =12,b =-32,所以f (x )=12x 2-32x +2.2.已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0),且有最小值-1,则f (x )=________. 【答案】f (x )=x 2+2x .【解析】法一:设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x . 法二:由二次函数f (x )与x 轴交于(0,0),(-2,0),知f (x )的图象关于x =-1对称.设f (x )=a (x +1)2-1(a >0),又f (0)=0,得a =1,所以f (x )=(x +1)2-1=x 2+2x .3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象经过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.基本方法:求二次函数解析式的方法类型五、二次函数的图象与性质 基础知识:函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b2a 上是减函数, 在⎣⎡⎭⎫-b 2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数, 在⎣⎡⎭⎫-b 2a,+∞上是减函数基本题型:1.(根据函数图象求范围)(多选)二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是( )A .b =-2aB .a +b +c <0C .a -b +c >0D .abc <0 【答案】AD【解析】根据对称轴x =-b2a=1得到b =-2a ,A 正确;当x =1时,y =a +b +c >0,B 错误;当x =-1时,y =a -b +c <0,C 错误;函数图象开口向下,所以a <0,b =-2a >0,当x =0时,y =c >0,故abc <0,D 正确.2.(根据解析式确定函数图象)(多选)在同一平面直角坐标系中,函数f (x )=ax 2+x +1和函数g (x )=ax +1的图象可能是( )【答案】ABD【解析】若a =0,则f (x )=x +1,g (x )=1,A 符合;若a <0,则f (x )的图象开口向下,过点(0,1),对称轴的方程为x =-12a ,g (x )的图象过点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a <-1a ,B 符合;若0<a <14, 则f (x )的图象开口向上,与x 轴有两个交点,过点(0,1),对称轴的方程为x =-12a,g (x )的图象过 点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a >-1a ,C 不符合;若a >14,则f (x )的图象开口向上,与x 轴没有交点, 过点(0,1),对称轴的方程为x =-12a ,g (x )的图象过点(0,1)和⎝⎛⎭⎫-1a ,0,且-12a >-1a ,D 符合. 基本方法:1、分析二次函数图象问题的要点一是看二次项系数的符号,它决定二次函数图象的开口方向; 二是看对称轴和顶点,它们决定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息. 类型四、二次函数给定区间上最值问题 基础知识:1、闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.2、二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论. 基本题型:1.(轴定区间定)已知函数y =2x 2-6x +3,x ∈[-1,1],则f (x )的最小值是________. 【答案】-1【解析】∵函数f (x )=2x 2-6x +3的图象的对称轴为x =32>1,∴函数f (x )=2x 2-6x +3在[-1,1]上单调递减,∴f (x )min =2-6+3=-1.2、(轴动区间定)已知函数f (x )=-x 2+2ax +1-a 在0≤x ≤1时有最大值2,则实数a 的值为________. 【答案】-1或2【解析】易知y =-x 2+2ax +1-a (x ∈R)的图象的对称轴为直线x =a .当a <0时,函数f (x )的图象如图①中实线部分所示,当x =0时,y max =f (0)=1-a ,∴1-a =2,即a =-1. 当0≤a ≤1时,函数f (x )的图象如图②中实线部分所示,当x =a 时,y max =f (a )=-a 2+2a 2+1-a =a 2-a +1.∴a 2-a +1=2,解得a =1±52.∵0≤a ≤1,∴a =1±52不满足题意.当a >1时,函数f (x )的图象如图③中实线部分所示,当x =1时,y max =f (1)=a =2,∴a =2.综上可知,a 的值为-1或2.3、(轴定区间动)设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解析】f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为直线x =1.当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.综上可知,当t ≤0时,f (x )min =t 2+1;当0<t <1时,f (x )min =1;当t ≥1时,f (x )min =t 2-2t +2.新预测 破高考1.已知幂函数()f x 的图象经过点(4,2),则下列命题正确的是( )A .()f x 是偶函数B .()f x 在定义域上是单调递增函数C .()f x 的值域为RD .()f x 在定义域内有最大值【答案】B【详解】设()f x x α=,则42α=,解得12α=,()12f x x ∴==()f x 的定义域为[)0,+∞,故A 错误;可得()f x 在定义域上是单调递增函数,故B 正确;值域为[)0,+∞,故C 错误;故()f x 在定义域内没有最大值,故D 错误.2.下列关于幂函数的结论,正确的是( ).A .幂函数的图象都过(0,0)点B .幂函数的图象不经过第四象限C .幂函数为奇函数或偶函数D .幂函数在其定义域内都有反函数【答案】B【解析】幂函数1y x -=不过点(0,0),则A 错误;当()0,x ∈+∞时,0a x >,则幂函数的图象不经过第四象限,则B 正确;12y x =的定义域为[0,)+∞,不关于原点或y 轴对称,则C 错误;2y x 在(,)-∞+∞内无反函数,则D 错误;3.已知函数:①2xy =;②12xy ⎛⎫= ⎪⎝⎭;③1y x -=;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②【答案】D【详解】①:函数2xy =是实数集上的增函数,且图象过点(0,1),因此从左到右第三个图象符合;②:函数12xy ⎛⎫= ⎪⎝⎭是实数集上的减函数,且图象过点(0,1),因此从左到右第四个图象符合;③:函数1y x-=在第一象限内是减函数,因此从左到右第二个图象符合;④:函数12y x =在第一象限内是增函数,因此从左到右第一个图象符合,4.(多选)函数f (x )=ax 2+2x +1与g (x )=x a 在同一坐标系中的图象可能为( )【答案】ACD【详解】当a <0时,g (x )=x a 为奇函数,定义域为{x |x ≠0},且在(0,+∞)上递减,而f (x )=ax 2+2x +1的图象开口向下,对称轴为x =-1a >0,f (0)=1,故A 符合;当a =2n (n ∈N *)时,g (x )=x a 为偶函数,且在(0,+∞)上递增,f (x )=ax 2+2x +1的图象开口向上,且对称轴为x =-1a <0,Δ=4-4a <0,其图象和x 轴没有交点,故D 符合;当a =12n (n ∈N *)时,函数g (x )=x a 的定义域为[0,+∞),且在[0,+∞)上递增,f (x )=ax 2+2x +1的图象开口向上,且对称轴为x =-1a <0,Δ=4-4a >0,图象和x 轴有两个交点,故C 符合.B 明显不符合题意,故选A 、C 、D. 5.若幂函数()222333m m y m m x+-=++的图象不过原点且关于原点对称,则( )A .2m =-B .1m =-C .2m =-或1m =-D .31m -≤≤-【答案】A【详解】根据幂函数的概念,得2331m m ++=,解得1m =-或2m =-,①若1m =-,则4y x -=,令()4f x x -=,其定义域为()(),00,-∞⋃+∞,且()()()44f x x x f x ---=-=≠-,显然幂函数为偶函数,不是奇函数,图象不关于原点对称,不符合题意,舍去;②若2m =-,则3y x -=,令()3f x x -=,其定义域为R ,且()()()33f x x x f x ---=-=-=-,即幂函数为奇函数,图象关于原点对称,符合题意.所以2m =-.6.若幂函数()y f x =的图象过点(8,,则函数()()21f x f x --的最大值为( )A .12B .12-C .34-D .-1【答案】C【解析】设幂函数()y f x x α==,图象过点(8,,故318=2=2ααα,故()f x =()()21f x f x x --=t =,则()21y t t =-+,0t ≥,∴12t =时,max 34y =-.7.幂函数()0y xαα=≠,当α取不同的正数时,在区间0,1上它们的图象是一簇曲线(如图).设点1,0A ,()0,1B ,连接AB ,线段AB 恰好被其中的两个幂函数m y x =,n y x =的图象三等分,即有BM MN NA ==,则mn 等于( )A .1B .2C .3D .无法确定【答案】A【解析】由题1,0A ,()0,1B ,BM MN NA ==,所以12,33M ⎛⎫ ⎪⎝⎭,21,33N ⎛⎫ ⎪⎝⎭,1233m ⎛⎫∴= ⎪⎝⎭,2133n⎛⎫= ⎪⎝⎭,11213333mmnn m⎡⎤⎛⎫⎛⎫⎛⎫∴===⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,1mn ∴=.8.幂函数f(x)=x 3m -5(m∈N)在(0,+∞)上是减函数,且f(-x)=f(x),则m 可能等于( )A .0B .1C .2D .3【答案】B【解析】∵幂函数f(x)=x 3m -5(m∈N)在(0,+∞)上是减函数,∴3m-5<0,即m <53.又∵m∈N, ∴m=0,1.∵f(-x)=f(x),∴函数f(x)是偶函数.当m =0时,f(x)=x -5是奇函数;当m =1时, f(x)=x -2是偶函数.∴m =1,故选B.9.已知当[0,1]x ∈ 时,函数2(1)y mx =-的图象与y m = 的图象有且只有一个交点,则正实数m的取值范围是A.(0,1])⋃+∞ B . (0,1][3,)⋃+∞ C .)⋃+∞ D .[3,)⋃+∞【答案】B【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m=单调递增,且[,1]y m m m =∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥. 10.已知幂函数()()22644m m f x m m x--=-+,()m R ∈,对任意1x ,()20,x ∈+∞,且12x x ≠,都有()()()12120x x f x f x --<⎡⎤⎣⎦,则()3f -,()1f -,()f π的大小关系是( )A .()()()π31f f f <-<-B .()()()13πf f f -<-<C .()()()31πf f f -<-<D .()()()3π1f f f -<<-【答案】A【详解】对任意1x ,()20,x ∈+∞,且12x x ≠,都有()()()12120x x f x f x --<⎡⎤⎣⎦,即()f x 在0,上单调减,又()f x 是幂函数,知:2244160m m m m ⎧-+=⎪⎨--≠⎪⎩,解得1m =或3m =(舍去),∴6()f x x -=,()f x是偶函数,∴(1)(1)f f -=,(3)(3)f f -=,而(1)(3)()f f f π>>,即(1)(3)()f f f π->->, 11.已知点⎝⎛⎭⎫2,18在幂函数f (x )=x n 的图象上,设a =f ⎝⎛⎭⎫33,b =f (ln π),c =f ⎝⎛⎭⎫22,则a ,b ,c 的大小关系为( )A .b <a <cB .a <b <cC .b <c <aD .a <c <b【答案】C【解析】因为点⎝⎛⎭⎫2,18在函数f (x )的图象上,所以18=2n ,解得n =-3,所以f (x )=x -3,易知当x >0时,f (x )单调递减.因为33<22<1,ln π>ln e =1,所以f ⎝⎛⎭⎫33>f ⎝⎛⎭⎫22>f (ln π),即a >c >b ,故选C. 12.(多选)已知函数f (x )=3x 2-6x -1,则( )A .函数f (x )有两个不同的零点B .函数f (x )在(-1,+∞)上单调递增C .当a >1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =3D .当0<a <1时,若f (a x )在x ∈[-1,1]上的最大值为8,则a =13【答案】ACD【解析】因为二次函数对应的一元二次方程的判别式Δ=(-6)2-4×3×(-1)=48>0,所以函数f (x )有两个不同的零点,A 正确.因为二次函数f (x )图象的对称轴为x =1,且图象开口向上,所以f (x )在(1,+∞)上单调递增,B 不正确.令t =a x ,则f (a x )=g (t )=3t 2-6t -1=3(t -1)2-4. 当a >1时,1a ≤t ≤a ,故g (t )在⎣⎡⎦⎤1a ,a 上先减后增,又a +1a 2>1,故最大值为g (a )=3a 2-6a -1=8, 解得a =3(负值舍去).同理当0<a <1时,a ≤t ≤1a ,g (t )在⎣⎡⎦⎤a ,1a 上的最大值为g ⎝⎛⎭⎫1a =3a 2-6a -1=8, 解得a =13(负值舍去).故C 、D 正确.13.已知幂函数()223mm y f x x --+==(其中22m -<<,m ∈Z )满足:①在区间,0上为减函数;②对任意的x ∈R ,都有()()0f x f x --=.则()f x 在[]0,4x ∈的值域为__________. 【答案】()4f x x =,值域为[]0,256【解析】22m -<<,m ∈Z ,1m ∴=-,0,1.对任意x ∈R ,都有()()0f x f x --=,即()()f x f x -=,f x 是偶函数.当1m =-时,()4f x x =,满足条件①②;当1m =时,()0f x x =,不满足条件①;当0m =时,()3f x x =,条件①②都不满足,故同时满足条件①②的幂函数()f x 的解析式为()4f x x =,且在区间[]0,4上是增函数,∴当[]0,4x ∈时,函数()f x 的值域为[]0,256。

专题07 二次函数与幂函数 高考复习资料(解析版)

专题07 二次函数与幂函数 高考复习资料(解析版)

a x= .
2
a ①当 ≥1,即 a≥2 时,f(x)在[0,1]上单调递增,
2
∴f(x)max=f(1)=-4-a2. 令-4-a2=-5,得 a=±1(舍去).
a a ②当 0< <1,即 0<a<2 时,f(x)max=f 2 =-4a. 2
5 令-4a=-5,得 a= .
4
a ③当 ≤0,即 a≤0 时,f(x)在[0,1]上单调递减,
【答案】(1)-1 或 2 (2)[0,2] 【解析】 (1)函数 f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为 x=a.
当 a<0 时,f(x)max=f(0)=1-a, 所以 1-a=2,所以 a=-1. 当 0≤a≤1 时,f(x)max=a2-a+1, 所以 a2-a+1=2,所以 a2-a-1=0,
B.幂函数的图象都经过点(0,0),(1,1) C.若幂函数 y=xα是奇函数,则 y=xα是增函数
D.幂函数的图象不可能出现在第四象限
【答案】D 【解析】 A 中,点(0,1)不在直线上,A 错;B 中,y=xα,当α<0 时,图象不过原点,B 错;C 中,当 α<0 时,y=xα在(-∞,0),(0,+∞)上为减函数,C 错.幂函数图象一定过第一象限,一定不过第四象
2021 高考领跑一轮复习资料·数学篇
专题 07 二次函数与幂函数
一、【知识精讲】 1.幂函数 (1)幂函数的定义 一般地,形如 y=xα的函数称为幂函数,其中 x 是自变量,α为常数. (2)常见的 5 种幂函数的图象
(3)幂函数的性质
①幂函数在(0,+∞)上都有定义;
②当α>0 时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;

高三数学知识点总结9:二次函数和幂函数

高三数学知识点总结9:二次函数和幂函数

(十一)二次函数一.二次函数解析式(1)一般式:).0()(2≠++=a c bx ax x f(2)顶点式:若二次函数的顶点坐标为),,(k h 则其解析式).0()()(2≠+-=a k h x a x f(3)交点式:若二次函数的图象与x 轴的交点为),0,(),0,(21x x 则),)(()(21x x x x a x f --= .0≠a二.二次函数的对称轴(1)对于二次函数)(x f y =的定义域内有21,x x 满足),()(21x f x f =则二次函数的对称轴为.221x x x += (2)对于一般函数)(x f y =对定义域内所有,x 都有)()(x a f x a f -=+成立,那么函数 )(x f y =图像的对称轴方程为:a x =.三.二次函数)0(2≠++=a c bx ax y 在],[n m 上的最值(1)0>a ① 最小值讨论三种情况 1.)(2min m f y m a b =≤-,;2.)2(2min a b f y n a b m -=<-<,;3.)(2min n f y n ab =≥-,. ② 最大值讨论两种情况 1.)(,22max n f y n m a b =+≤-;2.)(22max m f y n m a b =+>-,. (2)0<a ① 最大值讨论三种情况 1.)(2max m f y m a b =≤-,;2.)2(2max a b f y n a b m -=<-<,;3.)(,2max n f y n ab =≥-. ② 最小值讨论两种情况 1.)(,22min n f y n m a b =+≤-;2.)(22min m f y n m a b =+>-,. 四.三个二次的关系一元二次方程的根=一元二次函数的零点=一元二次不等式解集的端点.五.一元二次方程)0(02≠=++a c bx ax 的实根分布(1)数的角度:① 两实根异号等价于0<a c ;② 有两个正根等价于.0,0,0>>-≥∆a c a b ;③ 有两个负根等价于.0,0,0><-≥∆ac a b (2)形的角度:画出满足要求的图像,用“内有无,内无有”(开口内有端点则不需要考虑对称轴和,∆开口内无端点则需要考虑对称轴和.∆)。

二次函数与幂函数的知识点总结与题型归纳

二次函数与幂函数的知识点总结与题型归纳

二次函数与幂函数的知识点总结与题型归纳1.二次函数的定义与解析式(1) 二次函数的定义形如:f(x)=ax2+bx+c_(a≠0)的函数叫作二次函数.(2) 二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c_(a≠ 0).②顶点式:f(x)=a(x-m)2+n(a≠ 0).③零点式:f(x)=a(x-x1)(x-x2)_(a≠ 0).2.二次函数的图象和性质3. 幂函数形如y=xα(α∈R)的函数称为幂函数,其中x 是自变量,α是常数.4.幂函数的图象及性质(1) 幂函数的图象比较(2) 幂函数的性质比较1(1) 已知三个点的坐标时,宜用一般式.(2) 已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(3) 已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2. 幂函数的图象(1)在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴,在 (1,+ ∞) 上幂函数中指数越大,函数图象越远离 x 轴.1(2)函数 y =x ,y =x 2,y =x 3,y =x 2,y =x -1 可作为研究和学习幂函数 图象和性质的代表.题型一 求二次函数的解析式例1 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是8, 试确定此二次函数.思维启迪: 确定二次函数采用待定系数法,有三种形式,可根据条件 灵活运用.解 方法一 设 f(x)=ax 2+bx +c (a ≠0),∴所求二次函数解析式为 f(x)=-4x 2+4x +7.方法二 设 f(x)=a(x -m)2+n ,a ≠ 0.∵f(2)=f(-1),2+ - 1 1 1 ∴抛物线对称轴为 x = 2 = 2.∴m = 2. 又根据题意函数有最大值为 n = 8,12∴y =f(x)=a (x )2 +8.依题意有4a +2b +c =-1, a -b +c =-1, 4ac -b 2 4a =8, a =-4,解之,得 b =4, c =7,∵f(2)=-1,∴a(x 1) +8=-1,解之,得a=- 4.2∴f(x)=-4(x 1)2+8=-4x2+4x+7.2方法三依题意知,f(x)+1=0 的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),a≠0.即f(x)=ax2-ax-2a-1.4a -2a-1 -a2又函数有最大值y max=8,即4a=8,解之,得a=-4或a=0(舍去).∴函数解析式为f(x)=-4x2+4x+7.探究提高二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.题型二二次函数的图象与性质例 2 已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2 时,求f(x)的最值;(2)求实数 a 的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3) 当a=1 时,求f(|x|)的单调区间.思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解:(1)当a=-2 时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.(3) 当a=1 时,f(x)=x2+2x+3,∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],x2+2x+3,x∈0,6]且f(x)=2,x2-2x+3,x∈[-6,0]∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.题型三二次函数的综合应用例 3 若二次函数f(x)=ax2+bx+ c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m 恒成立,求实数m 的取值范围.思维启迪:对于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,进而确定f(x)的解析式.对于(2),可利用函数思想求得.解(1)由f(0)=1,得c=1.∴f(x)=ax2+bx+1.又f(x+1)-f(x)=2x,∴ a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,2a=2,a=1,即2ax+a+b=2x,∴∴a+b=0,b=- 1.因此,f(x)=x2-x+1.(2)f(x)>2x+m 等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0 即可.∵g(x)=x2-3x+1-m 在[-1,1]上单调递减,∴g(x)min =g(1) =-m-1,由-m-1>0 得,m<-1.因此满足条件的实数m 的取值范围是(-∞,-1).探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.题型四幂函数的图象和性质例 4 已知幂函数f(x)=xm2-2m-3 (m∈N*)的图象关于y轴对称,且在(0,+∞ )上是减函数,求满足(a+1)-m3<(3-2a)-m3的 a 的取值范围.思维启迪:由幂函数的性质可得到幂指数m2-2m-3<0,再结合m 是整数,及幂函数是偶函数可得m 的值.解∵函数在(0,+∞)上递减,∴ m2-2m-3<0,解得-1<m<3.∵m∈N*,∴m=1,2.又函数的图象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,1∴m=1.而f(x)=x-3在(-∞,0),(0,+∞)上均为减函数,11∴(a+1)-3<(3 -2a)-3等价于a+1>3-2a>0 或0>a+1>3-2a 或 a+1<0<3-2a.2 3 2 3解得a<-1 或3<a<2. 故 a 的取值范围为a|a<-1或3<a<2 .探究提高(1)幂函数解析式一定要设为y=xα(α为常数的形式);(2)可以借助幂函数的图象理解函数的对称性、单调性.方法与技巧1.二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数 形结合来解,一般从 ①开口方向; ②对称轴位置; ③判别式; ④端点 函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时, 一般需借助于二次函数的图 象、性质求解.2. 与二次函数有关的不等式恒成立问题(1)ax 2+ bx + c>0, a ≠ 0 恒成立的充要条件是(2)ax 2+ bx + c<0, a ≠ 0 恒成立的充要条件是3. 幂函数 y =x α(α∈R),其中 α为常数,其本质特征是以幂的底 x 为自变 量,指数 α为常数.失误与防范1. 对于函数 y = ax 2+bx + c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明 a ≠0时,就要讨论 a =0和 a ≠0两种情况. 2. 幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象a>0 b 2-4ac<0a<0最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.。

高考数学学业水平测试复习专题三第11讲二次函数与幂函数pptx课件

高考数学学业水平测试复习专题三第11讲二次函数与幂函数pptx课件

1.求二次函数的解析式 (1)二次函数的图象过点(0,1),对称轴为x=2,最小值为
-1,则它的解析式是________________. (2)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它 的值域为(-∞,4],则该函数的解析式f(x)=________.
解析:(1)依题意可设 f(x)=a(x-2)2-1,又其图象过点(0,1),所 以 4a-1=1,所以 a=12. 所以 f(x)=12(x-2)2-1.
解:(1)设 f(x)=ax2+bx+c(a≠0), 则ff( (-3)1) == 9aa+-3bb+ +cc= =33, ,
f(1)=a+b+c=-1, 解得 a=1,b=-2,c=0. 所以 f(x)=x2-2x.
(2)根据题意: a-1≤1≤a+1, (a+1)-1≥1-(a-1), 解得 1≤a≤2, 所以 a 的取值范围为[1,2].
1.幂函数f(x)=xa2-10a+23(a∈Z)为偶函数,且f(x)在区间(0,
+∞)上是减函数,则a等于( )
A.3
B.4
C.5
D.6
C 因为a2-10a+23=(a-5)2-2,
f(x)=x(a-5)2-2(a∈Z)为偶函数,且在区间(0,+∞)上是减
函数,
所以(a-5)2-2<0,从而a=4,5,6,
因为 0<x<1,
当 x=12时,函数取得最大值34.
故选 C.
5 . 已 知 函 数 y = 2x2 - 6x + 3 , x∈( - 1 , 1) , 则 y 的 最 小 值 是 ______.
解析:函数 y=2x2-6x+3 的图象的对称轴为 x=32>1,所以函数 y=2x2-6x+3 在(-1,1)上单调递减,所以 ymin=2-6+3=-1.

2024年新高考版数学专题1_3.2 二次函数与幂函数

2024年新高考版数学专题1_3.2  二次函数与幂函数

b 2a
,
4ac 4a
b2
图象关于直线x=- b 对称
2a
考点二 幂函数 1.定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数. 2.几个常用幂函数的图象
3.几个常用幂函数的性质
y=x
y=x2
y=x3
定义域
R
R
R
值域
R
[0,+∞)
R
奇偶性 单调性 定点



y=x
y=x2
y=x3
3
故m的取值范围为
2 3
,1
.
例4 已知f(x)=x2+(2t-1)x+1-2t. (1)求证:对于任意t∈R,关于x的方程f(x)=1必有实数根;
(2)若方程f(x)=0在区间(-1,0)和
0,
1 2
内各有一个实数根,求实数t的取值范
围.
解析 (1)证明:方程f(x)=1⇒x2+(2t-1)x-2t=0,因为Δ=(2t-1)2+8t=4t2+4t+1=(2 t+1)2≥0,所以方程f(x)=1必有实数根.
例1 (2022广东深圳六校联考二,2)若不等式ax2+bx+2>0的解集为{x|-2<x <1},则二次函数y=2bx2+4x+a在区间[0,3]上的最大值、最小值分别为
()
A.-1,-7 B.0,-8
C.1,-1 D.1,-7
解析 ∵不等式ax2+bx+2>0的解集为{x|-2<x<1},∴-2,1是关于x的方程ax2 +bx+2=0的两个实数根,且a<0,

高考数学专题06二次函数与幂函数(含解析)理(2021年整理)

高考数学专题06二次函数与幂函数(含解析)理(2021年整理)

考点06 二次函数与幂函数(1)了解幂函数的概念.(2)结合函数的图象,了解它们的变化情况.一、二次函数 1.二次函数的概念形如的函数叫做二次函数. 2.表示形式(1)一般式:f (x )=ax 2+bx +c (a ≠0).(2)顶点式:f (x )=a (x −h )2+k (a ≠0),其中(h ,k )为抛物线的顶点坐标.(3)两根式:f (x )=a (x −x 1)(x −x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标. 3.二次函数的图象与性质R 12321,,,,y x y xy xy y xx =====2()(0)fxa xb x c a =++≠4.(1)函数f (x )=ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标是方程ax 2+bx +c =0的实根.(2)若x 1,x 2为f (x )=0的实根,则f (x )在x 轴上截得的线段长应为|x 1−x 2.(3)当且()时,恒有f (x )〉0();当且()时,恒有f (x )〈0().学.科 二、幂函数 1.幂函数的概念一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 为自变量,α为常数。

2.几个常见幂函数的图象与性质0a >0∆<0∆≤()0f x ≥0a <0∆<0∆≤()0f x ≤RRR[0,)+∞{|0}x x ≠3(1)幂函数在上都有定义.(2)幂函数的图象均过定点。

(3)当时,幂函数的图象均过定点,且在上单调递增。

(4)当时,幂函数的图象均过定点,且在上单调递减.(5)幂函数在第四象限无图象。

考向一求二次函数或幂函数的解析式1.求二次函数解析式的方法求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式.一般选择规律如下:(0,)+∞(1,1)0α>(0,0),(1,1)(0,)+∞0α<(1,1)(0,)+∞2.求幂函数解析式的方法幂函数的解析式是一个幂的形式,且需满足: (1)指数为常数; (2)底数为自变量; (3)系数为1。

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质二次函数和幂函数是高中数学中重要的概念,它们在数学中有着广泛的应用。

本文将重点讨论二次函数与幂函数之间的关系与性质。

一、二次函数的定义和性质二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

二次函数的图像通常是一条U形曲线,被称为抛物线。

1. 零点和解析式二次函数的零点是指使函数值等于零的x值,即f(x) = 0的解。

二次函数的求解可以使用配方法、因式分解或求根公式来进行。

2. 对称轴和顶点二次函数的对称轴是指抛物线的对称轴线,它与抛物线的顶点重合。

二次函数的对称轴的方程为x = -b/2a,顶点的坐标为(-b/2a, f(-b/2a))。

3. 函数的增减性当a > 0时,二次函数是开口向上的,即函数的图像在对称轴的两侧递增;当a < 0时,二次函数是开口向下的,即函数的图像在对称轴的两侧递减。

4. 函数的最值当a > 0时,二次函数的最小值为f(-b/2a);当a < 0时,二次函数的最大值为f(-b/2a)。

二、幂函数的定义和性质幂函数是指形如f(x) = ax^b的函数,其中a为非零实数,b为实数。

幂函数的特点是具有不同的增长速度和变化趋势。

1. 底数和指数幂函数中的x称为底数,b称为指数。

不同的底数和指数会导致幂函数的图像形状和性质的差异。

2. 增减性与奇偶性当b > 0时,幂函数是递增的;当b < 0时,幂函数是递减的。

当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像不对称。

3. 渐近线和极限当b > 1时,幂函数的图像会趋近于x轴正半轴;当b < 1时,幂函数的图像会趋近于x轴负半轴。

幂函数在x = 0处的极限取决于指数b的正负性。

三、二次函数与幂函数的关系二次函数其实可以看作是幂函数的一种特殊情况,即当指数b为2时。

因此,二次函数可以被视为幂函数的一种扩展形式,二次函数的性质也可以通过幂函数的性质进行类比和推导。

高中 幂函数与二次函数知识点+例题+练习 含答案

高中 幂函数与二次函数知识点+例题+练习 含答案

教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。

专题08 幂函数与二次函数(学生版)高中数学53个题型归纳与方法技巧总结篇

专题08 幂函数与二次函数(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题08幂函数与二次函数幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2.幂函数的特征:同时满足一下三个条件才是幂函数①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质3.常见的幂函数图像及性质:函数y x=2y x =3y x =12y x=1y x -=图象定义域R R R {|0}x x ≥{|0}x x ≠值域R {|0}y y ≥R {|0}y y ≥{|0}y y ≠奇偶性奇偶奇非奇非偶奇单调性在R上单调递增在(0)-∞,上单调递减,在(0+)∞,上单调递增在R 上单调递增在[0+)∞,上单调递增在(0)-∞,和(0+)∞,上单调递减公共点(11),4.二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程.(3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标.5.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--.(1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a-=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2b x a =-时,;2max 4()4ac b f x a-=.(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||M M x x =-==.6.二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=:(1)若2bp a-≤,则(),()m f p M f q ==;(2)若02b p x a <-<,则(()2bm f M f q a =-=;(3)若02b x q a ≤-<,则(),()2bm f M f p a=-=;(4)若2bq a-≥,则(),()m f q M f p ==.【方法技巧与总结】1.幂函数()a y x a R =∈在第一象限内图象的画法如下:①当0a <时,其图象可类似1y x -=画出;②当01a <<时,其图象可类似12y x =画出;③当1a >时,其图象可类似2y x =画出.2.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<3.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪>⎪⎩12x m x <<()0f m <y(1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.【题型归纳目录】题型一:幂函数的定义及其图像题型二:幂函数性质的综合应用题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件题型四:二次函数“动轴定区间”、“定轴动区间”问题【典例例题】题型一:幂函数的定义及其图像例1.(2022·全国·高三专题练习)幂函数()()22121m f x m m x -=-+在()0,∞+上为增函数,则实数m 的值为()A .2-B .0或2C .0D .2例2.(2022·全国·高三专题练习)已知幂函数pq y x =(p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则()A .p ,q 均为奇数,且0p q >B .q 为偶数,p 为奇数,且0p q <C .q 为奇数,p 为偶数,且0p q >D .q 为奇数,p 为偶数,且0p q<例3.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________.例4.(2022·黑龙江·哈九中高三开学考试(文))已知幂函数()f x 的图象过点()8,2--,且()()13f a f a +≤--,则a 的取值范围是______.例5.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质:①都经过点(0,0)和(1,1);②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.例6.(2022·全国·高三专题练习)已知幂函数223()m m y f x x --==(m ∈Z )在(0,)+∞是严格减函数,且为偶函数.(1)求()y f x =的解析式;(2)讨论函数5()(2)()y af x a x f x =+-⋅的奇偶性,并说明理由.【方法技巧与总结】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.题型二:幂函数性质的综合应用例7.(2022·河北石家庄·高三期末)已知实数a ,b 满足3e e 1a a a -+=+,3e e 1b b b -+=-,则a b +=()A .-2B .0C .1D .2例8.(2022·四川眉山·三模(文))下列结论正确的是()A.2<B.2<C.2log <D.2<例9.(2022·广西·高三阶段练习(理))已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围为()A .()0,1B .(),1-∞C .(]0,1D .()0,∞+例10.(2022·浙江·模拟预测)已知0a >,函数()(0)xa f x x a x =->的图象不可能是()A .B .C .D .例11.(2022·全国·高三专题练习)不等式()10112200221210x x x -++-≤的解集为:_________.例12.(2022·上海市实验学校高三阶段练习)若函数()()()3,a f x m x m a =+∈R 是幂函数,且其图象过点(,则函数()()2log 3ag x xmx =+-的单调递增区间为___________.例13.(2020·四川·泸州老窖天府中学高二期中(理))已知函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若方程2()()20f x bf x ++=有8个相异的实数根,则实数b 的取值范围是_________________________.例14.(2022·全国·高三专题练习)已知幂函数()()224222mm f x m m x-+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由.【方法技巧与总结】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件例15.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例16.(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是()A .(),4-∞B .()3,+∞C .()3,4D .(),3-∞例17.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.例18.(2022·湖北·高一期末)已知函数()2sin 1f x x =-,[0,]x π∈.(1)求()f x 的最大值及()f x 取最大值时x 的值;(2)设实数a R ∈,求方程23[()]2()10f x af x -+=存在8个不等的实数根时a 的取值范围.【方法技巧与总结】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.题型四:二次函数“动轴定区间”、“定轴动区间”问题例19.(2022·全国·高三专题练习)已知2()(0)f x ax bx c a =++>,()(())g x f f x =,若()g x 的值域为[2,)+∞,()f x 的值域为[k ,)+∞,则实数k 的最大值为()A .0B .1C .2D .4例20.(2022·全国·高三专题练习)已知值域为[1,)-+∞的二次函数()f x 满足(1)(1)f x f x -+=--,且方程()0f x =的两个实根12,x x 满足122x x -=.(1)求()f x 的表达式;(2)函数()()g x f x kx =-在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -,求实数k 的取值范围.例21.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->.(1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.例22.(2022·全国·高三专题练习)问题:是否存在二次函数2()(0,,)f x ax bx c a b c R =++≠∈同时满足下列条件:(0)3f =,()f x 的最大值为4,____?若存在,求出()f x 的解析式;若不存在,请说明理由.在①(1)(1)f x f x +=-对任意x ∈R 都成立,②函数(2)y f x =+的图像关于y 轴对称,③函数()f x 的单调递减区间是1,2⎡⎫+∞⎪⎢⎣⎭这三个条件中任选一个,补充在上面问题中作答.例23.(2022·全国·高三专题练习)已知二次函数()f x 满足(1)(3)3,(1)1f f f -===-.(1)求()f x 的解析式;(2)若()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,求a 的取值范围.例24.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【方法技巧与总结】“动轴定区间”、“定轴动区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.【过关测试】一、单选题1.(2022·全国·高三阶段练习)已知函数()2f x a x bx c =++,其中0a >,()00f <,0a b c ++=,则()A .()0,1x ∀∈,都有()0f x >B .()0,1x ∀∈,都有()0f x <C .()00,1x ∃∈,使得()00f x =D .()00,1x ∃∈,使得()00f x >2.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是()A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x=D .y x x=3.(2022·全国·高三专题练习)已知幂函数()()()222nf x n n x n Z =+-∈在()0,∞+上是减函数,则n 的值为()A .1或3-B .1C .1-D .3-4.(2022·全国·高三专题练习(理))设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R ,且该函数为奇函数的α值为()A .1或3B .1-或1C .1-或3D .1-、1或35.(2022·全国·高三专题练习(理))已知幂函数()f x x α=的图像过点(8,4),则()f x x α=的值域是()A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞6.(2022·北京·高三专题练习)设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .67.(2022·全国·高三专题练习)若幂函数()mn f x x =(m ,n ∈N *,m ,n 互质)的图像如图所示,则()A .m ,n 是奇数,且mn<1B .m 是偶数,n 是奇数,且m n >1C .m 是偶数,n 是奇数,且m n <1D .m 是奇数,n 是偶数,且m n>18.(2022·全国·高三专题练习)已知3,0()3,0x xx f x e x x x ⎧⎪=⎨⎪-<⎩ ,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为()A .72(,)2e e--B .72](,2e e --C .72(,(,)2e e-∞--+∞ D .72(,(,2)e e-∞--+∞二、多选题9.(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是()A .2B .3C .4D .510.(2022·全国·高三专题练习)已知函数2()3232x x f x =-⋅+,定义域为M ,值域为[1,2],则下列说法中一定正确的是()A .[]30,log 2M =B .(]3,log 2M ⊆-∞C .3log 2M∈D .0M∈11.(2022·广东揭阳·高三期末)已知函数()3f x x x =+,实数,m n 满足不等式()()2320f m n f n -+->,则()A .e e m n >B .11n n m m +>+C .()ln 0m n ->D .20212021m n <12.(2022·全国·高三专题练习)设点(),x y 满足()55340x y x x y ++++=.则点(),x y ()A .只有有限个B .有无限多个C .位于同一条直线上D .位于同一条抛物线上三、填空题13.(2022·内蒙古赤峰·模拟预测(文))写出一个同时具有下列性质①②③的函数()f x =______.①()()f x f x -=;②当()0,x ∞∈+时,()0f x >;③()()()1212f xx f x f x =⋅;14.(2022·全国·高三专题练习(文))已知α∈112,1,,,1,2,322⎧⎫---⎨⎬⎩⎭.若幂函数f (x )=xα为奇函数,且在(0,+∞)上递减,则α=______.15.(2022·广东肇庆·模拟预测)已知函数21()2f x x ax =++,()lng x x =-,用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,若()h x 恰有3个零点,则实数a 的取值范围是___________.16.(2022·全国·高三专题练习)93,42M ⎛⎫⎪⎝⎭是幂函数()a f x x 图象上的点,将()f x 的图象向上平移32个单位长度,得到函数()y g x =的图象,若点(,)n T n m (*n ∈N ,且2n )在()g x 的图象上,则239M T M T M T +++=______.四、解答题17.(2022·全国·高三专题练习)解不等式3381050(1)1x x x x +-->++.18.(2022·全国·高三专题练习)已知幂函数()()2144m f x m m x+=+-在区间()0,+∞上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减.19.(2022·全国·高三专题练习)已知幂函数()2242()22m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为[4,11]-?若存在,求出a 的值;若不存在,请说明理由.20.(2022·全国·高三专题练习)已知二次函数()()2,f x x ax b a b R =++∈.(1)当6a =-时,函数()f x 定义域和值域都是[1,2b,求b 的值;(2)若函数()f x 在区间()0,1上与x 轴有两个不同的交点,求()1b a b ++的取值范围.21.(2022·全国·高三专题练习)已知函数24()3f x x x a =-++,a R ∈(1)若函数()y f x =在[1-,1]上存在零点,求a 的取值范围;(2)设函数()52g x bx b =+-,b R ∈,当0a =时,若对任意的1[1x ∈,4],总存在2[1x ∈,4],使得12()()f x g x =,求b 的取值范围.22.(2022·全国·高三专题练习)已知函数222()()m m f x x m Z -++=∈为偶函数,且(3)(2)f f >.(1)求m 的值,并确定()f x 的解析式;(2)若()log [()5](0,a g x f x ax a =-+>且1a ≠),是否存在实数a ,使得()g x 在区间[1,2]上为减函数.。

专题9 幂函数与二次函数-重难点题型精讲(新高考地区专用)(解析版)

专题9 幂函数与二次函数-重难点题型精讲(新高考地区专用)(解析版)

专题2.9 幂函数与二次函数-重难点题型精讲1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较函数 y =xy =x 2y =x 3y =12xy =x -1图象性质定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性奇函数 偶函数 奇函数 非奇非偶函数 奇函数 单调性 在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增 在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 RR值域[4ac −b 24a,+∞)(−∞,4ac −b 24a]单调性在x ∈(−∞,−b 2a]上单调递减;在x ∈[−b2a,+∞)上单调递增 在x ∈(−∞,−b 2a]上单调递增;在x ∈[−b 2a,+∞)上单调递减对称性 函数的图象关于直线x =-b2a对称【题型1 求幂函数的解析式】(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:①指数为常数;②底数为自变量;③系数为1.(2)对于幂函数过已知的某一点,求幂函数解析式问题:先设出幂函数的解析式y =x α(α为常数),再将已知点代入解析式,求出α,即可得出解析式.【例1】(2021秋•临渭区期末)已知幂函数y =f (x )的图像过点(2,8),则f (﹣2)的值为( ) A .8B .﹣8C .4D .﹣4【解题思路】设所求的幂函数为f (x )=x a ,由幂函数y =f (x )的图象经过点(2,8),解得f (x )=x 3,由此能求出f (﹣2)的值. 【解答过程】解:设所求的幂函数为f (x )=x a , ∵幂函数y =f (x )的图象经过点(2,8), ∴f (2)=2a =8,解得a =3, ∴f (x )=x 3,∴f (﹣2)=(﹣2)3=﹣8, 故选:B .【变式1-1】(2021秋•阳春市校级月考)已知幂函数y =f (x )的图象过点(3,√3),则f (4)的值为( ) A .﹣2B .1C .2D .4【解题思路】设幂函数的解析式为f (x )=x α,代入点可求α的值,从而可求f (4)的值.【解答过程】解:设幂函数的解析式为f (x )=x α,因为幂函数y =f (x )的图象过点(3,√3),所以3α=√3,解得α=12. 所以f (x )=√x ,f (4)=√4=2. 故选:C .【变式1-2】(2022春•无锡期末)已知幂函数y =f (x )的图像过点(2,√22),则f (16)=( )A .−14B .14C .﹣4D .4【解题思路】设出函数的解析式,代入点的坐标,求出函数f (x )的解析式,求出函数值即可.【解答过程】解:令f (x )=x α, 将点(2,√22)代入函数的解析式得:2α=√22=2−12,解得α=−12,故f (x )=x −12,f (16)=14, 故选:B .【变式1-3】(2022春•广陵区校级月考)若幂函数f (x )=x a 的图象经过点(2,√163),则函数f (x )的解析式是( ) A .f(x)=x 43B .f(x)=x 13C .f(x)=x−43D .f(x)=x 23【解题思路】由题意,利用幂函数的定义和性质,用待定系数法求出它的解析式. 【解答过程】解:∵幂函数f (x )=x a 的图象经过点(2,√163),∴2a=√163=234,解得a=43,∴f(x)=x 43,故选:A .【题型2 幂函数的图象和性质】(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【例2】(2022春•德州期末)幂函数f(x)=(m 2+m −5)x m2+2m−5在区间(0,+∞)上单调递增,则f (3)=( ) A .27B .9C .19D .127【解题思路】根据幂函数的概念及性质,求出实数m 的值,得到幂函数的解析式,由此能求出结果.【解答过程】解:∵幂函数f(x)=(m 2+m −5)x m2+2m−5在区间(0,+∞)上单调递增,∴{m2+m−5=1m2+2m−5是正数,解得m=2,∴f(x)=x3,∴f(3)=33=27.故选:A.【变式2-1】(2022春•玉林期末)幂函数y=x m2+m−2(0≤m≤3,m∈Z)的图象关于y轴对称,且在(0,+∞)上是增函数,则m的值为()A.0B.2C.3D.2和3【解题思路】由题意可得m2+m﹣2>0,且m2+m﹣2为偶数,结合0≤m≤3,m∈Z,求出m的值.【解答过程】解:由题意,可得m2+m﹣2>0,且m2+m﹣2为偶数,∵0≤m≤3,m∈Z,∴m=2或3.故选:D.【变式2-2】(2021秋•鹿城区校级期中)已知幂函数f(x)的图象过点(√2,√22),若x1>x2>1,则()A.f(x1)>f(x2)>1B.f(x1)>1>f(x2)C.f(x1)<f(x2)<1D.f(x1)<1>f(x2)【解题思路】求出幂函数的解析式,根据幂函数的单调性,判断f(x1),1,f(x2)的大小即可.【解答过程】解:幂函数f(x)的图象过点(√2,√22),所以√22=(√2)α,所以α=﹣1,所以幂函数为y=x﹣1,幂函数在x>0时是减函数,因为x1>x2>1,所以f(x1)<f(x2)<1.故选:C.【变式2-3】(2021秋•黟县校级期中)设α∈{﹣3,﹣2,﹣1,−12,12,1,2,3},则使y=xα为奇函数且在(0,+∞)上单调递减的α值的个数为()A.1B.2C.3D.4【解题思路】利用幂函数的性质、奇函数的定义、函数的单调性即可得出.【解答过程】解:只有当α=﹣3,﹣1时,满足幂函数y=x a为奇函数且在(0,+∞)上单调递减.故选:B.【题型3 求二次函数的解析式】 求二次函数解析式的方法: (1)已知三点坐标,选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等条件,选用顶点式; (3)已知与x 轴两交点坐标,选用零点式.【例3】已知二次函数f (x )的图象经过两点(0,3),(2,3),且最大值是5,则该函数的解析式是( ) A .f (x )=2x 2﹣8x +11 B .f (x )=﹣2x 2﹣8x ﹣1C .f (x )=2x 2﹣4x +3D .f (x )=﹣2x 2+4x +3【解题思路】由题意可得对称轴x =1,最大值是5,故可设f (x )=a (x ﹣1)2+5,代入其中一个点的坐标即可求出a 的值,问题得以解决.【解答过程】解:二次函数f (x )的图象经过两点(0,3),(2,3),则对称轴x =1,最大值是5,可设f (x )=a (x ﹣1)2+5, 于是3=a +5,解得a =﹣2,故f (x )=﹣2(x ﹣1)2+5=﹣2x 2+4x +3, 故选:D .【变式3-1】 二次函数y =ax 2+bx +c ,当y <0时,x 的取值范围是x <﹣2或x >3,则二次函数的解析式是( ) A .y =x 2﹣x ﹣6B .y =x 2+x ﹣5C .y =﹣x 2+x +6D .y =﹣2x 2+3x【解题思路】根据题意得出a <0,x =﹣2,x =3是ax 2+bx +c =0的根,判断即可得出答案.【解答过程】解:∵二次函数y =ax 2+bx +c ,当y <0时,x 的取值范围是x <﹣2或x >3, ∴a <0,x =﹣2,x =3是ax 2+bx +c =0的根, A ,B 的开口向上,故不正确, D 的零点为0,32,故不正确,故选:C .【变式3-2】(2021秋•增城市校级期中)已知二次函数的图象与x 轴交于点(﹣1,0)和(2,0),且与y 轴交于(0,﹣2),那么此函数的解析式是( ) A .y =﹣x 2+x +2B .y =x 2﹣x ﹣2C .y =x 2+x ﹣2D .y =2x 2﹣2x ﹣4【解题思路】由题意知,可用两根式设抛物线的解析式,然后将三点坐标代入抛物线的解析式中,即可求出待定系数的值.【解答过程】解:由于二次函数的图象与x轴交于点(﹣1,0)和(2,0),故可设这个二次函数的解析式是y=a(x+1)(x﹣2)(a≠0),又由二次函数的图象与y轴交于(0,﹣2),则﹣2=a(0+1)(0﹣2)解之得a=1;所以该函数的解析式为:y=(x+1)(x﹣2)=x2﹣x﹣2故选:B.【变式3-3】(2022•山东模拟)二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11B.f(x)=﹣2x2+8x﹣1C.f(x)=2x2﹣4x+3D.f(x)=﹣2x2+4x+3【解题思路】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答过程】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.【题型4 二次函数的图象】(1)研究二次函数图象应从“三点一线一开口”进行分析;(2)求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【例4】(2021秋•衢州期中)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.2a﹣b=0B.a+b+c<0C.a﹣b+c<0D.abc>0【解题思路】由已知结合二次函数的图象及性质分析各选项即可判断.【解答过程】解:由图象可知,a<0,c>0,−b2a=1,所以b=﹣2a,A错误;因为f(﹣1)=a﹣b+c<0,C正确,f(1)=a+b+c>0,B错误;所以abc<0,D错误.故选:C.【变式4-1】(2021秋•三元区校级月考)二次函数y=ax2+bx+c的图象如图所示,下列结论中:①4ac<b2;②a+c>b;③2a+b>0.其中正确的是()A.①②B.①③C.①②③D.②③【解题思路】结合函数的图象以及二次函数的性质判断即可.【解答过程】解:y=ax2+bx+c有2个零点,故Δ=b2﹣4ac>0,故①正确,结合图象f(﹣1)<0,故a﹣b+c<0,故②错误,函数对称轴是x=−b2a>1,(a<0),故2a+b>0,故③正确,故选:B.【变式4-2】(2021秋•上蔡县校级月考)二次函数y=ax2+bx+c的图象如图所示,则下列结论中正确的是()①b=﹣2a;②a+b+c<0;③a﹣b+c>0;④abc<0.A.①③B.②③C.②④D.①④【解题思路】结合图像,根据二次函数的性质分别判断即可.【解答过程】解:结合图像,对称轴x=−b2a=1,故b=﹣2a,故①正确;f(1)=a+b+b>0,故②错误;f(﹣1)=a﹣b+c<0,故③错误;a<0,b>0,c>0,故abc<0,故④正确;故选:D.【变式4-3】(2020春•霍邱县校级期末)二次函数f(x)的图象如图所示,则f(x﹣1)<0的解集为()A.(﹣2,1)B.(0,3)C.(﹣1,2)D.(﹣∞,0)∪(3,+∞)【解题思路】由图象知,当﹣1<x<2时,则f(x)<0,再列出不等式即可.【解答过程】解:由图象知,当﹣1<x<2时,则f(x)<0,∵f(x﹣1)<0,∴﹣1<x﹣1<2,∴0<x<3,∴不等式的解集为(0,3).故选:B.【题型5 二次函数的单调性与最值】(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.【例5】(2022春•兴庆区校级期末)函数y=x2﹣x+1,x∈[﹣1,1]的最大值与最小值之和为()A.1.75B.3.75C.4D.5【解题思路】数y=x2﹣x+1,对称轴为x=12,y min=f(12)=34,f(﹣1)=3,f(1)=1,故最大值为3,最小值为0.75,求出即可.【解答过程】解:函数y=x2﹣x+1,对称轴为x=1 2,y min=f(12)=34,f(﹣1)=3,f(1)=1,故最大值为3,最小值为0.75所以最大值和最小值的和为3.75,故选:B.【变式5-1】(2021秋•靖远县期中)已知函数f(x)=x2﹣4x在区间[﹣1,m]上的最大值为5,则实数m的取值范围是()A.(2,5]B.(﹣1,5]C.[2,5]D.(1,5]【解题思路】根据题意,f(x)=x2﹣4x=(x﹣2)2﹣4的对称轴为x=2,且当x=2时,函数有最小值f(2)=﹣4,且f(﹣1)=f(5)=5,又函数f(x)=x2﹣4x在区间[﹣1,m]上的最大值为5,从而可得﹣1<m≤5.【解答过程】解:根据题意,f(x)=x2﹣4x=(x﹣2)2﹣4的对称轴为x=2,且当x=2时,函数有最小值f(2)=﹣4,令f(x)=5,得x2﹣4x﹣5=0,解得x=﹣1或x=5,∵函数f(x)=x2﹣4x在区间[﹣1,m]上的最大值为5,∴﹣1<m≤5,即m的取值范围是(﹣1,5].故选:B.【变式5-2】(2021•天心区校级开学)二次函数f(x)满足f(2+x)=f(2﹣x),且f(x)在[0,2]上是减函数,若f(a)≤f(0),则实数a的取值范围为()A.[0,4]B.(﹣∞,0]C.[0,+∞)D.(﹣∞,0]∪[4,+∞)【解题思路】根据题意知f(x)的对称轴为x=2,由f(a)≤f(0)得出|a﹣2|≤2,从而求得a的取值范围.【解答过程】解:函数f(x)满足f(2+x)=f(2﹣x),则f(x)的对称轴为x=2;又f(x)在[0,2]上是减函数,则f(x)在[2,4]上是增函数;如图所示,若f(a)≤f(0),则有|a﹣2|≤2,解得:0≤a≤4,即a的取值范围是[0,4].故选:A.【变式5-3】(2022•东湖区校级模拟)已知二次函数f(x)=x2﹣2ax+5,若f(x)在区间(﹣∞,2]上是减函数,且对任意x1,x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,则实数a的取值范围是()A.[2,3]B.[1,2]C.[﹣1,3]D.[2,+∞)【解题思路】先由函数的解析式求出其对称轴及单调区间;然后根据f(x)在区间(﹣∞,2]上是减函数,得出a的一个取值范围;再对任意的x1,x2∈[1,a+1],|f(x1)﹣f(x2)|max=|f(a)﹣f(1)|≤4,又可求出a的一个取值范围;最后两者取交集,则问题解决.【解答过程】解:函数f(x)=x2﹣2ax+5的对称轴是x=a,则其单调减区间为(﹣∞,a],因为f(x)在区间(﹣∞,2]上是减函数,所以2≤a,即a≥2.则|a﹣1|≥|(a+1)﹣a|=1,因此任意的x1,x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,只需|f(a)﹣f(1)|≤4即可,即|(a2﹣2a2+5)﹣(1﹣2a+5)|=|a2﹣2a+1|=(a﹣1)2≤4,亦即﹣2≤a﹣1≤2,解得﹣1≤a≤3,又a≥2,因此a∈[2,3].故选:A.【题型6 二次函数的恒成立问题】【方法点拨】(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【例6】(2020秋•宁波期末)已知函数f (x )=4ax 2+4x ﹣1,∀x ∈(﹣1,1),f (x )<0恒成立,则实数a 的取值范围是( )A .a ≤−34B .a <﹣1C .−1<a ≤34D .a ≤﹣1【解题思路】对二次项系数a 的取值进行分类讨论,分a =0,a >0,a <0三种情况分别求解,即可得到答案.【解答过程】解:当a =0时,f (x )=4x ﹣1<0,解得x <14,故当x =34时,f (x )>0,故不符合题意;当a >0时,则有{f(−1)=4a −4−1≤0f(1)=4a +4−1≤0,无解; 当a <0时,则有{△≥0−42⋅4a ≤−1f(−1)≤0①,或{△≥0−42⋅4a ≥1f(1)≤0②,或Δ=16+16a <0③, 解得①无解,②无解,③a <﹣1,故a <﹣1,综上所述,实数a 的取值范围是a <﹣1.故选:B .【变式6-1】(2020春•玉林期末)已知函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,则k 的取值范围为( )A .(﹣∞,72)B .(72,+∞)C .(﹣∞,143)D .(143,+∞)【解题思路】由题意可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,结合y =g (x )的图象,只需g (1)<0,且g (2)<0,解不等式可得所求范围.【解答过程】解:函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立, 可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,由于y =g (x )的图象为开口向上的抛物线,只需g (1)<0且g (2)<0,所以{1+4−k −k +2<04+2(4−k)−k +2<0,即{k >72k >143, 可得k >143.故选:D .【变式6-2】(2020秋•湖北期中)已知f (x )=x 2+4x +1+a ,∀x ∈R ,f (f (x ))≥0恒成立,则实数a的取值范围为()A.[√5−12,+∞)B.[2,+∞)C.[﹣1,+∞)D.[3,+∞)【解题思路】换元,令t=f(x),则t≥a﹣3,所以f(t)≥0对任意t≥a﹣3恒成立,再求出f(t)的最小值后,解不等式即可.【解答过程】解:设t=f(x)=(x+2)2+a﹣3≥a﹣3,∴f(t)≥0对任意t≥a﹣3恒成立,即(t+2)2+a﹣3≥0对任意t∈[a﹣3,+∞)都成立,①当a﹣3≤﹣2,即a≤1时,f(t)min=f(﹣2)=a﹣3,则a﹣3≥0,即a≥3,与讨论a≤1矛盾,②当a﹣3>﹣2,即a>1时,f(t)min=f(a﹣3)=a2﹣a﹣2≥0,解得a≥2或a≤﹣1,∵a>1,∴a≥2,∴实数a的取值范围为[2,+∞).故选:B.【变式6-3】(2021秋•上高县校级月考)已知二次函数f(x)满足f(x+1)=x2﹣x+2,若f(x)>3x+m在区间[﹣1,3]上恒成立,则实数m的范围是()A.m<﹣5B.m>﹣5C.m<11D.m>11【解题思路】先令t=x+,则x=t﹣1,然后用换元法求出f(x)的解析式,再根据f(x)>3x+m对于x∈[﹣1,3]恒成立,转化为m<x2﹣6x+4对x∈[﹣1,3]恒成立,再确定g(x)=x2﹣6x+4的最小值即可.【解答过程】解:令t=x+1,则x=t﹣1.所以f(t)=(t﹣1)2﹣(t﹣1)+2=t2﹣3t+4,所以f(x)=x2﹣3x+4,因为f(x)>3x+m对于x∈[﹣1,3]恒成立,所以m<x2﹣6x+4对x∈[﹣1,3]恒成立,设g(x)=x2﹣6x+4,对g(x)配方得,g(x)=(x﹣3)2﹣5,当x=3时,g(x)有最小值﹣5,所以m<﹣5,故选:A.。

第03讲 幂函数与二次函数(八大题型)(课件)高考数学一轮复习(新教材新高考)

第03讲 幂函数与二次函数(八大题型)(课件)高考数学一轮复习(新教材新高考)
2025年高考数学
一轮复习讲练测
第03讲 幂函数与二次函数
目录
C O N T E N T S
01
考情透视·目标导航
02
知识导图·思维引航
03
考点突破·题型探究
04
真题练 习 ·命题 洞见
05
课本典例·高考素材
06
易错分析·答题模板
01
考点要求
(1)幂函数的定义、图像与
性质
(2)二次函数的图象与性质
对于③:由幂函数的图象可知, 在R上单调递增,故③正确;
对于④:因为2 + 1 ≥ 1,且 在R上单调递增,所以 2 + 1 ≥ 1 ,故④错误,
综上可知,②③正确,①④错误.故选:B.
题型二:幂函数性质的综合应用
题型突破·考法探究
2
1 2
+−2
2
【典例2-2】已知幂函数 =
数在(−∞, −
当 =


]上递减,在[− , +∞)上递增,
2
2

− 时,()min
2
=
4−2

4

− ,

知识梳理·基础回归
(2)二次函数的图像
二次函数() =

+ + ( ≠ )的图像是一条抛物线,对称轴方程为 =

顶点坐标为(− ,
间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位
置关系分类讨论:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过
区间内部.
题型突破·考法探究
题型一:幂函数的定义及其图像
【典例1-1】(2024·山东日照·二模)已知幂函数图象过点 2,4 ,则函数的解析式为

专题62个二级结论速解幂函数、二次函数问题

专题62个二级结论速解幂函数、二次函数问题

专题6 2个二级结论速解幂函数与二次函数问题二级结论1:幂函数的图象特征函数奇偶性(1)幂函数y x a =在第一象限的图像特征:①当1a >时,图像过点(0,0),(1,1),下凸递增.②当01a <<时,图像过点(0,0),(1,1),上凸递增.③当0a <时,图像过点(1,1),下凸递减,且以两条坐标轴为渐近线.(2) 形如()n m f x x =(m ,n ÎZ ,且m ,n 互质)的幂函数的奇偶性:①当m ,n 均为奇数时,()f x 为奇函数,图像关于原点对称.②当m 为偶数,n 为奇数时,()f x 为偶函数,图像关于y 轴对称.③当m 为奇数,n 为偶数时,()f x 是非奇非偶函数,图像只在第一象限内.二级结论2:一元二次函数与二次不等式恒成立的关系已知2()(0)f x ax bx c a =++¹.()0f x ³恒成立0a Û>且240D =-£b ac ;()0f x £恒成立0a Û<且240D =-£b ac ;()0f x >恒成立0a Û>且24<0b ac D =-;()0f x <恒成立0a Û<且24<0b ac D =-.【典例1】若函数()222433m m y m m x +-=-+为幂函数,则实数m 的值为________;当此幂函数在()0,¥+单调递减,则实数m 的值为_________.【大招指引】由幂函数定义可知2331m m -+=,由此解得1m =或2;将1m =和2分别代入224m m +-,由单调性可确定结果.【解析】由幂函数定义知:2331m m -+=,解得:1m =或2;当1m =时,2241m m +-=-,此时幂函数在()0,¥+单调递减;当2m =时,2244m m +-=,此时幂函数在()0,¥+单调递增;\当幂函数在()0,¥+单调递减时,1m =.故答案为:1或2;1.【题后反思】对于求与幂函数有关的参数问题时,幂函数的定义是解题的关键.【温馨提醒】对于幂函数图象的掌握只要抓住第一象限内三条线分第一象限为六个区域,即1x =、1y =、y x =所分区域,根据a 的取值确定位置后,其余象限部分由奇偶性决定.【举一反三】1.已知幂函数3(N )p y x p -+=Î的图象关于y 轴对称,且在(0,)+¥上单调递减,求满足()()33132ppa a +<-的a 的取值范围.【典例2】若不等式2(1)(1)10a x a x -+--<对x R Î恒成立,则实数a 的取值范围是___________.【大招指引】先对二次项的系数1a -分类讨论,利用二次函数的性质,即可求出结果.【解析】①当1a =时,不等式化为10-<对一切x ∈R 恒成立,因此1a =满足题意;②当1a ¹时,要使不等式()()21110a x a x -+--<对一切x R Î恒成立,则必有210314(1)(1)(1)04(1)a a a a a -<ìï\-<<-×---í<ï-î. 综上①②可知:实数a 取值的集合是(3,1]-.故答案为:(]3,1-.【题后反思】分类讨论思想是高中数学一项重要的考查内容,分类讨论思想要求在不能用统一的方法解决问题的时候,将问题划分成不同的模块,通过分块来实现问题的求解,体现了对数学问题的分析处理能力和解决能力.【温馨提醒】等式恒成立求参数范围,一般有两个解题思路:一是分离参数;二是不分离参数,直接求最值.这两个思路,最后都是转化为求函数的最值问题.【举一反三】2.当()1,1x Î-时,不等式23208kx kx --<恒成立,则k 的取值范围是( )A .()3,0-B .[)3,0-C .13,8æö-ç÷èøD .13,8æù-çúèû3.已知幂函数pqy x =(,Z p q Î且,p q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且0p q>B .q 为偶数,p 为奇数,且0p q<C .q 为奇数,p 为偶数,且0p q >D .q 为奇数,p 为偶数,且0p q<4.“幂函数()()21m f x m m x =+-在()0,¥+上为增函数”是“函数()222x x g x m -=-×为奇函数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要5.已知幂函数()()2133m f x m m x +=-+为偶函数,若函数()()21y f x a x =--在区间()1,1-上为单调函数,则实数a 的取值范围为( )A .(],0-¥B .[)2,+¥C .[]0,2D .(][),02,-¥È+¥6.已知函数2()2+1,[0,2]f x x x x =-+Î,函数()1,[1,1]g x ax x =-Î-,对于任意1[0,2]x Î,总存在2[1,1]x Î-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-¥-B .[3,)+¥C .(,3][3,)-¥-+¥U D .(,3)(3,)-¥-È+¥7.已知幂函数223()m m y f x x --==(m ÎZ )在(0,)+¥是严格减函数,且为偶函数.(1)求()y f x =的解析式;(2)讨论函数5()(2)()y af x a x f x =+-×的奇偶性,并说明理由.8.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,0250,251x x W x x x xì+££ï=í<£ï+î,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?参考答案:1.2(,)3-¥【分析】利用幂函数的性质求得1p =,利用幂函数的单调性解不等式即可.【详解】因为函数3p y x -=在(0,)+¥上单调递减,所以30p -<,即3p <.又N p +Î,所以1p =或2p =.又函数3p y x -=的图象关于y 轴对称,所以3p -是偶数,所以1p =,即2y x -=.则原不等式可化为()()1133132a a +<-.因为函数13y x =在R 上是增函数,所以132a a +<-,解得23<a .故实数a 的取值范围是2(,3-¥.2.D【分析】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【详解】当()1,1x Î-时,不等式23208kx kx --<恒成立,当0k =时,满足不等式恒成立;当0k ¹时,令()2328f x kx kx =--,则()0f x <在()1,1-上恒成立,函数()f x 的图像抛物线对称轴为14x =,0k >时,()f x 在11,4æö-ç÷èø上单调递减,在1,14æöç÷èø上单调递增,则有()()3120831208f k k f k k ì-=+-£ïïíï=--£ïî,解得108k <£;0k <时,()f x 在11,4æö-ç÷èø上单调递增,在1,14æöç÷èø上单调递减,则有123041648k k f æö=--<ç÷èø,解得30k -<<.综上可知,k 的取值范围是13,8æù-çúèû.故选:D.【点睛】方法点睛:分类讨论思想是高中数学一项重要的考查内容,分类讨论思想要求在不能用统一的方法解决问题的时候,将问题划分成不同的模块,通过分块来实现问题的求解,体现了对数学问题的分析处理能力和解决能力.3.D 【分析】根据函数的单调性可判断出0p q<;根据函数的奇偶性及p ,q 互质可判断出p 为偶数,q 为奇数.【详解】因为函数p q y x =的定义域为(,0)(0,)-¥+¥U ,且在(0,)+¥上单调递减,所以p q<0,因为函数p q y x =的图象关于y 轴对称,所以函数p q y x =为偶函数,即p 为偶数,又p 、q 互质,所以q 为奇数,所以选项D 正确,故选:D.4.A【分析】要使函数()()21m f x m m x =+-是幂函数,且在()0,+¥上为增函数,求出1m =,可得函数()g x 为奇函数,即充分性成立;函数()222x x g x m -=-×为奇函数,求出1m =±,故必要性不成立,可得答案.【详解】要使函数()()21m f x m m x =+-是幂函数,且在()0,+¥上为增函数,则2110m m m ì+-=í>î,解得:1m =,当1m =时,()22x x g x -=-,x R Î,则()()()2222x x x x g x g x ---=-=--=-,所以函数()g x 为奇函数,即充分性成立;“函数()222x x g x m -=-×为奇函数”,则()()g x g x =--,即()222222222----×=--×=×-x x x x x x m m m ,解得:1m =±,故必要性不成立,故选:A .5.D【分析】幂函数()()2133m f x m m x +=-+为偶函数,解得()2f x x =,函数()()21y f x a x=--在区间()1,1-上为单调函数,利用二次函数的性质,列不等式求实数a 的取值范围.【详解】()()2133m f x m m x +=-+为幂函数,则2331m m -+=,解得2m =或1m =,2m =时,()3f x x =;1m =时,()2f x x =.()f x 为偶函数,则()2f x x =.函数()()()22121y f x a x x a x =--=--在区间()1,1-上为单调函数,则11a -£-或11a -³,解得0a £或2a ³,所以实数a 的取值范围为(][),02,-¥È+¥.故选:D.6.C【解析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+Î,所以min max ()(0)1()(2)2f x f f x f ==ìí==î,即()f x 的值域为[1,2],因为对于任意1[0,2]x Î,总存在2[1,1]x Î-,使得21()()g x f x =成立,所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -££,所以()[1,1]g x a a Î---,所以1112a a --£ìí-³î,解得3a ³,当a<0时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ££-,所以()[1,1]g x a a Î---所以1112a a -£ìí--³î,解得3a £-,综上实数a 的取值范围是(,3][3,)-¥-+¥U ,故选:C【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.7.(1)4()y f x x -==;(2)当2a =时,为偶函数;当0a =时,为奇函数;当2a ¹且0a ¹时,为非奇非偶函数.理由见解析.【解析】(1)由题意可得:2230m m --<,解不等式结合m ÎZ 即可求解;(2)由(1)可得4(2)y ax a x -=+-,分别讨论0a =、2a =、0a ¹且2a ¹时奇偶性即可求解.【详解】(1)因为幂函数223()m m y f x x --==(m Z Î)在(0,)+¥是严格减函数,所以2230m m --<,即()()310m m -+< ,解得:13x -<<,因为m Z Î,所以0,1,2m =,当0m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;当1m =时,4()y f x x -==,此时()y f x =为偶函数,符合题意;当2m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;所以4()y f x x -==,(2)4544(2)(2)y ax a x x ax a x ---=+-×=+-,令()4(2)F x ax a x-=+-当0a =时,()2F x x =-,()()()22F x x x F x -=-´-==-,此时是奇函数,当2a =时()4422F x x x -==,()()()444222F x x x x --=-==-,此时是偶函数,当0a ¹且2a ¹时,()1(2)22F a a a =+-=-,()1(2)2F a a -=--=,()()11F F ¹-,()()11F F -¹-,此时是非奇非偶函数函数.【点睛】关键点点睛:本题解题的关键点是利用幂函数的单调性求出m 可能性的取值,再利用奇偶性可确定m 的值,即可求解析式,第(2)问注意讨论a 的值.8.(1)27530225,02()75030,251x x x f x x x x xì-+££ï=í-<£ï+î(2)4千克,480元【分析】(1)根据单株产量W 与施用肥料x 满足的关系,结合利润的算法,即可求得答案;(2)结合二次函数的最值以及基本不等式求最值,分段计算水果树的单株利润,比较大小,即可求得答案.【详解】(1)由题意得()15()201015()30f x W x x x W x x =--=-()22155330,027530225,027505030,251530,2511x x x x x x x x x x x x x x ì´+-££ì-+££ïï==íí-<£´-<£ïï+î+î;(2)当02x ££时,221()7530225752225f x x x x æö=-+=-+ç÷èø,则当2x =时,()f x 取到最大值(2)465f =;当25x <£时,()75025()3078030111x f x x x x x éù=-=-++êú++ëû78030480£-´=,当且仅当2511x x=++,即4x =时取等号,由于465480<,故当施用肥料为4千克时,该水果树的单株利润最大,最大利润是480元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数与二次函数专题[最新考纲]1.了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题.知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质函数特征性质y=x y=x2y=x3y=x12y=x-1定义域R R R[0,+∞){x|x∈R,且x≠0}值域R [0,+∞)R[0,+∞){y|y∈R,且y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减,[0,+∞)增增增(-∞,0)减,(0,+∞)减定点 (0,0),(1,1) (1,1)2.二次函数 (1)二次函数的定义形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数. (2)二次函数的三种常见解析式 ①一般式:f (x )=ax 2+bx +c (a ≠0);②顶点式:f (x )=a (x -m )2+n (a ≠0),(m ,n )为顶点坐标;③两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0)其中x 1,x 2分别是f (x )=0的两实根. (3)二次函数的图象和性质函数二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)图象a >0a <0定义域 RR值域 y ∈⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ y ∈⎝⎛⎦⎥⎤-∞,4ac -b 24a 对称轴 x =-b2a顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性 b =0⇔y =ax 2+bx +c (a ≠0)是偶函数 递增 区间 ⎝ ⎛⎭⎪⎫-b 2a ,+∞ ⎝⎛⎭⎪⎫-∞,-b 2a递减 区间⎝⎛⎭⎪⎫-∞,-b 2a⎝ ⎛⎭⎪⎫-b 2a ,+∞ 最值当x =-b2a时,y 有最小值y min=4ac -b 24a当x =-b2a时,y 有最大值y max =4ac -b 24a辨 析 感 悟1.对幂函数的认识(1)函数f (x )=x 2与函数f (x )=2x 2都是幂函数.(×) (2)幂函数的图象都经过点(1,1)和(0,0).(×) (3)幂函数的图象不经过第四象限.(√) 2.对二次函数的理解(4)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.(×)(5)(教材习题改编)函数f (x )=12x 2+4x +6,x ∈[0,2]的最大值为16,最小值为-2.(×)(6)(2011·陕西卷改编)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n ≤4.(×)[三个防范 一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.三是一元二次方程有实根的充要条件为Δ≥0,但还要注意n ∈N *,如(6).考点一幂函数的图象与性质的应用【例1】 (1) 已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( ). A.14 B .-14 C .2 D .-2 (2)函数y =13x 的图象是( ).解析 (1) 设f (x )=x α,由图象过点⎝ ⎛⎭⎪⎫12,22,得⎝ ⎛⎭⎪⎫12α=22=1212⎛⎫⎪⎝⎭⇒α=12,log 4f (2)=4log122=14. (2)显然f (-x )=-f (x ),说明函数是奇函数,同时由当0<x <1时,x 31>x ;当x >1时,x 31<x ,知只有B 选项符合. 答案 (1)A (2)B规律方法 (1)幂函数解析式一定要设为y =x α(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 【训练1】 比较下列各组数的大小:⑴ 121.1,120.9,1; ⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.解⑴ 把1看作121,幂函数y =12x 在(0,+∞)上是增函数.∵0<0.9<1<1.1,∴120.9<121<121.1. 即120.9<1<121.1.⑵因为2322⎛⎫- ⎪⎝⎭=2322⎛⎫ ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭=23710⎛⎫- ⎪⎝⎭=23710⎛⎫ ⎪⎝⎭,()431.1-=()2321.1=231.21,幂函数y=23x在(0,+∞)上是增函数,且710<22<1.21.∴23107-⎛⎫- ⎪⎝⎭<2322⎛⎫- ⎪⎝⎭<(-1.1)43.考点二二次函数的图象与性质【例2】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x =-1.给出下面四个结论:① b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( ).A.②④ B.①④ C.②③ D.①③解析因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a.又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.答案 B规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】 已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),则实数a 的取值范围是________. 解析 当x 0∈[-1,2]时,由f (x )=x 2-2x 得f (x 0)∈[-1,3],又对任意的x 1∈[-1,2]都存在x 0∈[-1,2],使得g (x 1)=f (x 0),∴当x 1∈[-1,2]时,g (x 1)∈[-1,3].当a >0时,⎩⎨⎧-a +2≥-1,2a +2≤3,解得a ≤12.综上所述,实数a 的取值范围是⎝ ⎛⎦⎥⎤0,12.答案 ⎝⎛⎦⎥⎤0,12考点三 二次函数的综合运用【例3】 若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 审题路线 f (0)=1求c →f (x +1)-f (x )=2x 比较系数求a ,b →构造函数g (x )=f (x )-2x -m →求g (x )min →由g (x )min >0可求m 的范围. 解 (1)由f (0)=1,得c =1.∴f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,∴⎩⎨⎧2a =2,a +b =0,∴⎩⎨⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1).规律方法 二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.【训练3】 (2014·江西九校联考)已知二次函数f (x )=ax 2+bx +c (c >0且为常数)的导函数的图象如图所示.(1)求函数f (x )的解析式(用含c 的式子表示); (2)令g (x )=f xx,求y =g (x )在[1,2]上的最大值. 解 (1)∵f ′(x )=2ax +b ,由图可知,f ′(x )=2x +1, ∴⎩⎨⎧2a =2,b =1,得⎩⎨⎧a =1,b =1,故所求函数的解析式为f (x )=x 2+x +c .(2)g (x )=f x x =x 2+x +c x =x +cx +1,则g ′(x )=1-c x 2=x 2-c x 2=x +c x -cx 2.①若c <1,即0<c <1时,g ′(x )>0,∴g (x )在[1,2]上是增函数,故g (x )max =g (2)=c2+3.②若1≤ c ≤2,即1≤c ≤4,当1≤x <c 时,g ′(x )<0,当c <x ≤2时,g ′(x )>0,∵g (1)=c +2,g (2)=c2+3,∴当1≤c ≤2时,g (1)≤g (2),g (x )max =g (2)=c2+3;当2<c ≤4时,g (1)>g (2),g (x )max =g (1)=c +2. ③若c >2,即c >4时,g ′(x )<0,∴g (x )在[1,2]上是减函数,故g (x )max =g (1)=c +2. 综上所述,当0<c ≤2时,g (x )max =c2+3;当c >2时,g (x )max =c +2.1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】 (12分)(经典题)求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.[规范解答] 函数f (x )=-⎝⎛⎭⎪⎫x -a 22+a 24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a 2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论. (2分)(1)当a <-2时,由图(1)可知f (x )在[-1,1]上的最大值为f (-1)=-1-a ; (5分)(2)当-2≤a ≤2时,由图(2)可知f (x )在[-1,1]上的最大值为f ⎝ ⎛⎭⎪⎫a 2=a24;(8分)(3)当a >2时,由图(3)可知f (x )在[-1,1]上的最大值为f (1)=a -1. (11分)综上可知,f (x )max =⎩⎪⎨⎪⎧-a -1,a <-2,a24,-2≤a ≤2,a -1,a >2.(12分)[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论f (x )max = ⎩⎪⎨⎪⎧-a -1,a <-2,a24,-2≤a ≤2,a -1,a >2.答题模板 第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论. 第三步:求最值. 第四步:下结论. 【自主体验】已知函数f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有一个最大值-5,求a 的值.解 f (x )=-4⎝ ⎛⎭⎪⎫x -a 22-4a ,对称轴为x =a 2,顶点为⎝ ⎛⎭⎪⎫a 2,-4a .①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5, ∴a =±1<2(舍去).②当0<a2<1,即0<a <2时,y max =f ⎝ ⎛⎭⎪⎫a 2=-4a ,令-4a =-5,∴a =54∈(0,2).③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2. 令-4a -a 2=-5,即a 2+4a -5=0,∴a =-5或a =1(舍去).综上所述,a =54或a =-5.基础巩固题组(建议用时:40分钟)一、选择题1.幂函数的图象过点⎝⎛⎭⎪⎫2,14,则它的单调递增区间是( ).A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞) 解析 设幂函数y =x α,则2α=14,解得α=-2,所以y =x -2,故函数y =x -2的单调递增区间是(-∞,0). 答案 C2.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ).A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析 函数f (x )=x 2+bx +c 对任意的实数x 都有f (1+x )=f (-x ).可知函数f (x )图象的对称轴为x =12,又函数图象开口向上,自变量离对称轴越远函数值越大. 答案 D3. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( ).A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 解析 当x ≥0时,f (x )=x 2+2x 为增函数,由于f (x )是奇函数,故f (x )在R 上为增函数.由f (2-a 2)>f (a )得2-a 2>a ,解得-2<a <1.故实数a 的取值范围是(-2,1). 答案 C4.若a <0,则0.5a,5a,5-a的大小关系是( ).A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a 解析 5-a=⎝ ⎛⎭⎪⎫15a ,因为a <0时,函数y =x a单调递减,且15<0.5<5,所以5a <0.5a<5-a . 答案 B5.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( ).解析 由A ,C ,D 知,f (0)=c <0. ∵abc >0,∴ab <0,∴对称轴x =-b2a>0, 知A ,C 错误,D 符合要求.由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误. 答案 D 二、填空题6. 方程x 2-2ax +4=0的一根大于1,一根小于1,则实数a 的取值范围是________.解析 设f (x )=x 2-2ax +4,则f (1)<0,解得a >52.答案 ⎝ ⎛⎭⎪⎫52,+∞7. 已知函数y =-x 2+4ax 在区间[1,3]上单调递减,则实数a 的取值范围是________.解析 根据题意,得对称轴x =2a ≤1,所以a ≤12.答案 ⎝⎛⎦⎥⎤-∞,128.已知函数f (x )=⎩⎨⎧2x ,x ≥2,x -13,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 将方程有两个不同的实根转化为两个函数图象有两个不同的交点.作出函数f (x )的图象,如图,由图象可知,当0<k <1时,函数f (x )与y =k 的图象有两个不同的交点,所以所求实数k 的取值范围是(0,1). 答案 (0,1) 三、解答题9.已知二次函数f (x )的二次项系数为a ,且f (x )>-2x 的解集为{x |1<x <3},方程f (x )+6a =0有两相等实根,求f (x )的解析式. 解 设f (x )+2x =a (x -1)(x -3) (a <0), 则f (x )=ax 2-4ax +3a -2x ,f (x )+6a =ax 2-(4a +2)x +9a ,Δ=[-(4a +2)]2-36a 2=0,即(5a +1)(a -1)=0, 解得a =-15或a =1(舍去).因此f (x )的解析式为f (x )=-15x 2-65x -35.10.设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).解 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ; 当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎨⎧a 2-2a ,-2<a <1,-1,a ≥1.能力提升题组 (建议用时:25分钟)一、选择题1. 已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是( ). A .(0,1) B .(-∞,1) C .(0,+∞) D.(-∞,0)解析 当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知α<1时满足题意,故选B. 答案 B2.设函数f (x )=-2x 2+4x 在区间[m ,n ]上的值域是[-6,2],则m +n 的取值所组成的集合为( ).A .[0,3]B .[0,4]C .[-1,3]D .[1,4]解析 由题意得,函数f (x )=-2x 2+4x 图象的对称轴为x =1,故当x =1时,函数取得最大值2.因为函数的值域是[-6,2],令-2x 2+4x =-6,可得x =-1或x =3, 所以-1≤m ≤1,1≤n ≤3, 所以0≤m +n ≤4. 答案 B 二、填空题3.已知函数f (x )=12x ,给出下列四个命题: ①若x >1,则f (x )>1;②若0<x 1<x 2,则f (x 2)-f (x 1)>x 2-x 1; ③若0<x 1<x 2,则x 2f (x 1)<x 1f (x 2); ④若0<x 1<x 2,则f x 1+f x 22<f ⎝⎛⎭⎪⎫x 1+x 22. 其中,所有正确命题的序号是________.解析 对于①:∵y =12x 在(0,+∞)上为增函数,∴当x >1时,f (x )>f (1)=1,①正确;对于②:取x 1=14,x 2=4,此时f (x 1)=12,f (x 2)=2,但f (x 2)-f (x 1)<x 2-x 1,②错误;对于③:构造函数g (x )=f x x=xx ,则g ′(x )=x2x -xx 2=-x2x 2<0,所以g (x )在(0,+∞)上为减函数,当x 2>x 1>0时,有f x 2x 2<f x 1x 1,即x 1f (x 2)<x 2f (x 1),③错误;对于④:画出f (x )=12x 在(0,+∞)的图象,可知f x 1+f x 22<f ⎝ ⎛⎭⎪⎫x 1+x 22,④正确. 答案 ①④ 三、解答题4.已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,请根据图象:(1)写出函数f (x )(x ∈R)的增区间; (2)写出函数f (x )(x ∈R)的解析式;(3)若函数g (x )=f (x )-2ax +2(x ∈[1,2]),求函数g (x )的最小值. 解 (1)f (x )在区间(-1,0),(1,+∞)上单调递增.(2)设x >0,则-x <0,函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x ,∴f (x )=f (-x )=(-x )2+2×(-x )=x 2-2x (x >0), ∴f (x )=⎩⎨⎧x 2-2xx >0,x 2+2xx ≤0.(3)g (x )=x 2-2x -2ax +2,对称轴方程为x =a +1, 当a +1≤1,即a ≤0时,g (1)=1-2a 为最小值;当1<a +1≤2,即0<a ≤1时,g (a +1)=-a 2-2a +1为最小值;当a +1>2,即a >1时,g (2)=2-4a 为最小值.综上,g (x )min=⎩⎨⎧1-2a a ≤0,-a 2-2a +10<a ≤1,2-4a a >1.。

相关文档
最新文档