高分子聚合物改性概述

合集下载

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。

1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。

IPN已成为共混与复合领域一个独立的重要分支。

1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

高分子化学改性

高分子化学改性

高分子材料改性(Modification of Polymeric Materials)(讲稿)第一讲第一章聚合物的化学改性什么是聚合物化学改性?聚合物化学反应的基本类型:聚合物与低分子化合物的反应、聚合物的相似转变、聚合物的降解与交联、聚合物大分子间的反应。

聚合物化学反应的作用:改变结构、提高性能,合成新的聚合物,扩大应用范围,在理论上研究和验证高分子的结构研究影响老化的因素和性能变化之间的关系,研究高分子的降解,有利于废聚合物的处理第一节聚合物的熔融态化学1.1 聚合物熔融态化学的研究目的与任务1.1.1 研究目的聚合物熔融态化学的研究目的是促进高分子材料行品种的开发、优化高分子材料的性能、提高材料的质量、推动新的成型加工技术的发展。

1.1.2 研究任务(1)为高分子材料的化学改性和通用聚合物的高性能化提供理论基础;(2)其次为多相复合材料界面相容性问题的解决提供思路;(3)为功能性高分子的开发提供理论基础;(4)创新高分子材料成型加工技术1.2 熔融态化学反应1.2.1 高分子化学反应的分类聚合度基本不变的反应:侧基和端基变化(相似转变)(聚合度相似转变:聚合物与低分子化合物作用,仅限于基团转变,聚合度基本不变的反应,称相似转变)聚合度变大的反应:交联、接枝、嵌段、扩链聚合度变小的反应:降解,解聚1.2.2 高分子化学反应的特点高分子官能团可以起各种化学反应,由于高分子存在链结构、聚集态结构,官能团反应具有特殊性。

1. 反应产物的不均匀性高分子链上的官能团很难全部起反应一个高分子链上就含有未反应和反应后的多种不同基团,类似共聚产物 例如聚丙烯腈水解:1.3 熔融态化学反应的应用 1.3.1 聚合度相似的化学转变 (1)聚酯酸乙烯酯的醇解 聚乙烯醇只能从聚酯酸乙烯酯的水解得到 聚乙烯醇缩醛化反应可得到重要的高分子产品(2) 以苯乙烯-二乙烯苯共聚物为母体的离子交换树脂,是芳环取代反应的典型例子CH 2 CH3CH 3OH CHSOC-SNa RCH OCH 2CH 2 CH CHOH CH CH 2 CH O 22NR 3Cl+23OH31.3.2聚合度变大的反应以交联反应为例。

高分子材料的表面改性.详解

高分子材料的表面改性.详解

XPS (X-ray photoelectron spectroscopy)
通过用X射线辐照样 品,激发样品表面除 H、He以外所有元素
中至少一个内能级的
光电子发射,并对产 生的光电子能量进行
分析,以研究样品表
面的元素和含量。
Ek为光电子动能;hν为激发光能量;
EB为固体中电子结合能;Φ为逸出功
电晕放电处理方式
1. 在薄膜的生产线上进行,即通常所说的热膜处理。 优点:处理效果好; 限制性:适用于处理完就使用的场合,比如马上用于印刷、涂布或复合; 2. 在薄膜的再加工线上进行,及通常所说的冷膜处理。 限制性:处理效果与薄膜存放时间有关。处理完后就应用。
3. 进行两次处理。
既在生产线上处理,又在再加工线上处理,为了保证使用前的表面质量
以等离子体存在的星系和星云
人造等离子体示例
地球上,等离子体的自然现象:如闪电、极光等; 人造等离子体,如霓虹灯、电弧等。
PbPb N Ca Na Cl
Pb
500
400
300
200
100
0
Binding Energy (eV)
XPS analysis showed that the red pigment used on the mummy wrapping was Pb3O4 rather than Fe2O3
Analysis of Carbon Fiber- Polymer Composite Material by XPS
C/O比与电流强度的关系与上述表面张力和剥离力类似,可见 LDPE表
面张力的增大和剥离力的提高与表面含氧量的增加有密切的关系。
7.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行瞬间高

高分子材料改性技术

高分子材料改性技术

高分子材料的几种常用改性技术,如化学改性、共混改性、填充改性、纤维增强改性、表面改性技术。

化学改性是通过化学反应改变聚合物的物理、化学性质的方法。

如聚苯乙烯的硬链段刚性太强,可引进聚乙烯软链段,增加韧性;尼龙、聚酯等聚合物的端基(氨基、羧基、羟基等),可用一元酸(苯甲酸或乙酸酐)、一元醇(环己醇、丁醇或苯甲醇等)进行端基封闭;由多元醇与多元酸缩聚而成的醇酸聚酯耐水性及韧性差,加入脂肪酸进行改性后可以显著提高它的耐湿性和耐水性,弹性也相应提高。

共混是指共同混合,是一种物理方法,使几种材料均匀混合,以提高材料性能的方法,工业上用炼胶机将不同橡胶或橡胶与塑料,均匀地混炼成胶料是典型的例子,也可以在聚合物中加入某些特殊性能的成分以改变聚合物的性能如导电性能等。

在塑料成型加工过程中加入无机或有机填料的过程称为填充改性。

是在塑料基体(母体)中加入模量高得多的非纤维类的材料(一般为微粒状)。

通常认为填充改性是为了降低成本而进行的,实际上很多塑料制品如果没有填充助剂的加入,很难得到符合满意的应用效果。

PP共混改性综述

PP共混改性综述

北京化工大学高分子材料改性原理及技术论文论文题目:PP共混改性的概述提交论文时间:2018年 12月5日目录第二章PP的共混改性 (4)1.改进PP耐低温冲击性 (4)1.1 PP/EPR、PP/EPDM (5)1.2 PP/SBS (5)1.3 PP/POE (6)1.4 PP/POE/PE (7)2.改进PP透明性 (9)2.1基体树脂的选用 (9)2.2成核剂的选用 (10)2.3成核剂用量的确定 (10)2.4其他助剂对透明性的影响 (11)2.5挤出工艺温度的影响 (11)2.6聚丙烯透明改性后的典型性能分析 (12)3. 改进PP着色性 (12)3.1工艺路线确定 (12)3.2结果与讨论 (13)4. 改进PP亲水性 (13)4.1 亲水助剂 (14)4.2 共混体系相容性 (14)4.3 其它工艺条件 (15)4.4 共混对聚丙烯其它性能的影响 (15)5. 改进PP抗静电性 (15)5.1实验试剂 (16)5.2核一壳结构聚苯胺粉末的制备 (16)5.3聚丙烯/聚苯胺复合材料的制备 (16)5.4测试 (16)5.5 结果与讨论 (16)参考文献 (17)第二章PP的共混改性聚丙烯 ( PP)是由丙烯聚合而得到的高分子化合物。

由于其原料丰富, 合成工艺比较简单, 与其他通用热塑性塑料相比, PP 具有相对密度小、价格低, 并有突出的耐应力、开裂性和耐磨性, 近年来发展迅速。

它是通用热塑性塑料中增长最快的品种, 在经济建设和人民生活中的地位日益重要, 成为塑料中产量增长最快的品种, 但聚丙烯也存在低温脆性、机械强度和硬度较低、成型收缩率大、易老化、耐温性差等缺点。

为了长期使用并扩大应用范围, 需对聚丙烯塑料进行改性。

PP改性的主要方法有化学法(共聚、交联、接枝)和物理法(填充和共混)。

国外对接枝等化学改性法研究较多,而且总的来说,化学改性法难度大,对经济技术等要求较高,所生产的树脂牌号较少,满足不了工业上对材料的高抗冲需求,而共混法工艺简单,经济实用,有很好的发展前景。

高分子聚合物的改性方法多种多样

高分子聚合物的改性方法多种多样

1 高分子聚合物‎的改性方法多‎种多样,总体上可划分‎为共混改性、填充改性、复合材料、化学改性、表面改性几大‎类。

2 广义的共混包‎括物理共混、化学共混和物‎理/化学共混。

3 第一个实现工‎业化生产的共‎混物是 1942 年投产的聚氯‎乙烯与丁腈橡‎胶的共混物。

4 1964 年,四氧化锇染色‎法问世,应用于电镜观‎测,使人们能够从‎微观上研究聚合物两相形‎态,成为聚合物改‎性研究中的重‎要里程碑。

5 共混改性的方‎法又可按共混‎时物料的状态‎,分为熔融共混‎、溶液共混、乳液共混等。

6 通常所说的机‎械共混,主要就是指熔‎融共混。

7 共混物的形态‎是多种多样的‎,但可分为三种‎基本类型:均相体系、“海-岛结构”两相体系和“海-海结构”两相体系。

8 在共混过程中‎,同时存在着“破碎”与“集聚”这两个互逆的‎过程。

当集聚过程与破碎过程达‎到动态平衡时‎,分散相粒子的‎粒径达到一个‎平衡值,这一平衡值称为“平衡粒径”9 塑料大形变的‎形变机理,包含两种可能‎的过程,其一是剪切形‎变过程,其二是银纹化过程‎。

10 塑料基体可分‎为两大类:一类是脆性基‎体,以 PS、PMMA 为代表;另一类是准韧性基体‎,以 PC、PA 为代表。

11 对于脆性基体‎,橡胶颗粒主要‎是在塑料基体‎中诱发银纹;而对于有一定‎韧性的基体,橡胶颗粒主要‎是诱发剪切带‎。

12 两阶共混历程‎的关键是制备‎具有海-海结构的中间‎产物,这也是两阶共‎混不同于一般的“母粒共混”的特征所在。

13 相容剂的类型‎有非反应性共‎聚物、反应性共聚物‎等,也可以采用原‎位聚合的方法制备。

14 聚合物共混物‎,从总体上来说‎,可以分为以塑‎料为主体的共‎混物和以橡胶‎为主体的共混物‎两大类。

15 在 PVC 硬制品中添加‎C PE,主要是起增韧‎改性的作用;而在 PVC 软制品中添加 CPE 是用作增塑剂‎,以提高 PVC 软制品的耐久‎性。

16 为改善共混体‎系的透光性,通常有两种可‎供选择的途径‎,其一是使共混‎物组成间具有相近‎的折射率;其二是使分散‎相粒子的粒径‎小于可见光的‎波长。

聚 合 物 改 性

聚 合 物 改 性

聚合物改性聚合物定义:聚合物即高分子化合物,所谓的高分子化合物,就是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

聚合物改性通过物理与机械的方法在聚合物中加入无机或有机物质,或将不同种类聚合物共混,或用化学方法实现聚合物的共聚、接枝、交联,或将上述方法联用、并用,以达到使材料的成本下降、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面被赋予独特功能等效果,统称为聚合物改性。

聚合物改性的方法总体上分为: 物理方法化学方法表面细分:共混改性、填充改性、纤维增强复合材料化学改性、表面改性、共混改性:两种或者两种以上聚合物经混合制备宏观均匀材料的过程。

可分为物理、化学共混。

填充改性:向聚合物中加入适量的填充材料(如无机粉体或者纤维),以使制品的某些性能得到改善,或降低原材料成本的改性技术。

纤维增强复合材料又称聚合物基复合材料,就就是以有机聚合物为基体,纤维类增强材料为增强剂的复合材料。

化学改性:在改性过程中聚合物大分子链的主链、支链、侧链以及大分子链之间发生化学反应的一种改性方法。

原理:主要靠大分子主链或支链或侧基的变化实现改性。

改性手段有:嵌段、接枝、交联、互穿网络等特点:改性效果耐久,但难度大,成本高,可操作性小,其一般在树脂合成厂完成,在高分子材料加工工厂应用不多。

表面改性:就是指其改性只发生在聚合物材料制品的表层而未深入到内部的一类改性。

特点:性能变化不均匀种类:表面化学氧化处理,表面电晕处理,表面热处理,表面接枝聚合,等离子体表面改性等适应于只要求外观性能而内部性能不重要或不需要的应用场合,常见的有:表面光泽,硬度,耐磨、防静电等的改性。

接枝反应:以含极性基团的取代基,按自由基反应的规律与聚合物作用,生成接枝链,从而改变高聚物的极性,或引入可反应的官能团。

官能团反应:可以发生在聚合物与低分子化合物之间,也可发生在聚合物与聚合物之间。

可以就是聚合物侧基官能团的反应,也可以就是聚合物端基的反应接枝共聚改性对聚合物进行接枝,在大分子链上引入适当的支链或功能性侧基,所形成的产物称作接枝共聚物。

聚合物改性(完整版)

聚合物改性(完整版)

聚合物改性的目的、意义;聚合物改性的定义、改性的方法(大分类和小分类)答:改性目的及意义:①改善材料的某些物理机械性能②改善材料的加工性能③降低成本④赋予材料某些特殊性能、获得新材料的低成本方法⑤提高产品技术含量,增加其附加值的最适宜的途径⑥调整塑料行业产品结构、增加企业经济效益最常采用的途径聚合物改性的定义:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程改性的方法:①化学改性:a、改变聚合物的分子链结构b、接枝、嵌段共聚、互穿聚合物网络、交联、氯化、氯磺化等②物理改性:a、改变聚合物的高次结构b、共混改性、填充改性、复合材料、表面改性等1.化学改性(改变分子链结构)和物理改性(高次结构)的本质区别答:化学改性—改变聚合物分子的链结构物理改性—改变聚合物分子的聚集状态2.共混物和合金的区别答:共混(指物理共混)的产物称聚合物共混物。

高分子合金:不能简单等同于聚合物共混物,高分子合金---指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。

工业上称:塑料合金。

3.共混改性的分类(熔融、溶液、乳液、釜内)答:分类一:化学方法:如接枝、嵌段等;--化学改性物理方法:机械混合、溶液混合、胶乳混合、粉末混合---混合物理-化学方法---反应共混分类二:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点;溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备;乳液共混:共混产品以乳液的形式应用;釜内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其;聚合过程,在聚合的同时也完成了共混。

4.共混物形态研究的重要性5.共混物形态的三种基本类型(均相、海-岛、海-海)答:均相体系:一般本体聚合、溶液聚合才形成均相体系非均相体系:①海-岛结构:连续相+分散相(基体)②海-海结构:两相均连续,相互贯穿6.相容性对共混物形态结构的影响答:①在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力;良好的相容性是聚合物共混物获得良好性能的重要前提。

请列举一种改性方法

请列举一种改性方法

请列举一种改性方法改性是指通过对物质进行化学、物理和生物性质的改变,从而改变其原有性质和用途的技术过程。

改性方法在现代科技中广泛应用于材料、化工、生物等领域,以满足不同的性能和应用需求。

下面将列举一种改性方法——聚合物改性,并详细介绍其原理、应用和影响。

聚合物改性是指通过对聚合物进行改变,以改善其性能、调整其特性或增加新功能的方法。

聚合物是由重复单体基元组成的大分子化合物,其特点是具有高分子量、可塑性、可加工性、化学稳定性等。

在实际应用中,常常需要对聚合物进行改性以满足特定性能的要求。

聚合物改性的方法多种多样,主要包括物理改性、化学改性和生物改性等。

物理改性是将一些物理方法应用于聚合物材料中,从而改变聚合物的性能。

物理改性的方法有增塑、填料增强、纤维增强、自由基辐照、电子束辐照等。

通过这些方法,可以改变聚合物的硬度、韧性、刚度、耐热性、耐腐蚀性等。

化学改性是通过引入一些化学改性剂或在聚合物中引入新的官能团,从而改变聚合物的化学性质和结构。

常用的化学改性方法包括接枝共聚、交联改性、接枝共混、对接枝等。

通过这些方法,可以改变聚合物的熔点、玻璃化转变温度、抗氧化性能、降解性能、电子输运性能等。

生物改性是利用生物材料对聚合物进行改性,从而改变聚合物的特性和用途。

常见的生物改性方法包括生物降解性改性、生物医用改性、抗菌改性等。

生物改性能够赋予聚合物生物相容性、药物缓释性、组织工程性和抗菌性等新功能,扩展了聚合物的应用领域和用途。

聚合物改性的应用范围广泛,涉及到材料、化工、生物、医药、电子等领域。

在材料领域中,通过对聚合物的改性,可以制备出具有特定性能和用途的材料,如聚酰胺纤维、聚醚酮薄膜、聚二甲基硅氧烷弹性体等。

在化工领域中,聚合物改性可以用于生产高效的催化剂、吸附剂、离子交换树脂等。

在生物和医药领域中,聚合物改性可以制备出生物可降解的骨科材料、缓释药物载体、人工器官等。

在电子领域中,聚合物改性可以制备出具有导电性、光学性、磁性等特殊功能的聚合物材料。

聚合物材料的合成与性能改性

聚合物材料的合成与性能改性

聚合物材料的合成与性能改性聚合物是化学合成中不可或缺的材料之一,它们以其独特的性质在各个领域得到广泛应用。

聚合物材料的性能不仅受材料自身的化学结构所控制,而且还受到多种因素的影响。

为了提高聚合物材料的性能,很多科学家和工程师们都在努力创造新的聚合物并对其进行改性。

本文将从聚合物材料的合成与性能改性两个方面来探讨聚合物材料的发展。

聚合物材料的合成聚合物材料是由单体分子序列化为长链分子而制成的材料。

在聚合物材料的合成过程中,通常会有三种合成方法。

1.溶液聚合法溶液聚合法是指单体在溶剂中形成高聚物的过程。

在反应过程中,催化剂会促进单体的开环反应以形成高分子聚合物。

2.网状聚合法网状聚合法是指由单体分子交联形成大分子结构的合成方法。

在网状聚合反应中,交联剂会将合成的单体相互交联结合成为一个完整的分子构造。

3.悬浊聚合法悬浊聚合法是指单体在水中和催化剂的作用下缓慢地聚合成为高聚物的过程。

这种合成方法会生成高分子量的均一颗粒。

聚合物材料的性能改性随着科技的不断发展,聚合物材料的性能也得到了极大的提升。

为了改善聚合物材料的性能,人们不断地实验新的改性方法。

1.添加剂材料添加剂材料是指向聚合物中添加小分子化合物的一种方法。

这种方法可以在聚合物中改变一些特定的性能,如增强力、抗紫外线等。

2.共聚物合成共聚物合成是指将两种或多种单体同时聚合成为一种混合的高分子物质。

共聚物可以通过选择正确的单体组合来改善聚合物材料的性质与功能。

3.化学交联化学交联是针对聚合物材料中的分子进行交联处理改性并增加聚合物力学性能的一种方法。

这种方法可以通过通过化学交联使聚合物的强度和耐用性得到提升。

总结随着人们对聚合物材料的理解和应用的不断深入,科学家们正在尝试不断创新来发掘聚合物材料的潜力,以满足各种不同领域的需求。

聚合物材料的合成和改性方法不断推陈出新,这也为聚合物材料的性能提升提供了坚实的基础。

我们相信,在未来的日子里,聚合物材料的应用领域将会越来越广泛。

高分子材料的结构设计与功能化改性研究与应用

高分子材料的结构设计与功能化改性研究与应用

高分子材料的结构设计与功能化改性研究与应用高分子材料是一类具有特殊结构和性质的材料,它们在各个领域中得到广泛应用。

为了满足不同需求,研究人员致力于对高分子材料的结构进行设计与功能化改性。

本文将探讨高分子材料结构设计的基本原理和功能化改性的方法,并举例说明其在实际应用中的价值与意义。

一、高分子材料结构设计原理高分子材料的结构设计是指通过合理选择和设计分子结构,以控制材料的物理、化学性质来满足特定应用需求的一种方法。

其中,分子量、分布、空间构型和化学结构等参数对于高分子材料具有重要影响。

例如,在聚合物材料中,线性链和交联网络是常见的结构形式。

通过调整这些结构参数,可以改变材料的力学性能、热稳定性和电气性能等。

在高分子材料的结构设计中,还应考虑分子内和分子间的相互作用。

分子内相互作用包括键键相互作用和键外相互作用,而分子间相互作用则涉及范德华力、静电作用和氢键等力。

调节这些相互作用能够有效改变高分子的结构和性能。

例如,通过引入交联剂,可以形成高分子材料的交联网络结构,从而提高其力学性能和热稳定性。

二、高分子材料功能化改性方法功能化改性是指通过引入功能性官能团或添加剂,改变高分子材料的特性和性能的方法。

下面介绍几种常见的功能化改性方法:1. 共聚改性:共聚改性是指通过共聚反应将多种单体引入到聚合物分子中,从而改变其性质。

通过合理选择共聚单体,可以使高分子材料具有不同的机械性能、热稳定性和光学性能等。

2. 接枝改性:接枝改性是将一个聚合物(被接枝物)接枝到另一个聚合物(基底物)上,形成接枝共聚物。

接枝共聚物不仅具有基底物的性质,还具有被接枝物的性质,从而实现对高分子材料性能的调控。

3. 添加剂改性:添加剂改性是通过向高分子材料中添加功能性添加剂,改变其性质和性能。

添加剂可以是光稳定剂、抗氧剂、增塑剂等,通过控制添加剂的种类和用量,可以调整高分子材料的耐候性、抗氧化性和柔性等。

三、高分子材料结构设计与功能化改性的应用高分子材料的结构设计与功能化改性在各个领域中具有重要应用价值。

高分子的合成和改性方法

高分子的合成和改性方法

高分子的合成和改性方法高分子是一种大分子化合物,由许多相同或不同的单体分子经过化学反应聚合而成。

它们主要是由碳、氢、氧、氮等元素组成的。

高分子材料具有多种性能,如可塑性,强度,耐热性,耐腐蚀性和十字链耐早期断裂等特性。

高分子合成和改性方法的发展是化学工业中的重要部分。

本文将介绍一些高分子的合成和改性方法。

一、高分子的合成方法1.自由基聚合法这是一种重要的合成方法,也是制备高分子的最常用的方法之一。

自由基聚合法有很多变化,但基本原理都是通过引发剂使单体产生自由基或离子,然后它们逐渐聚合起来,形成高分子链。

该方法可以用来制备具有不同性能和结构的聚合物,如聚乙烯、聚苯乙烯、聚丙烯等。

2.阴离子聚合法这种方法需要一种强碱性或强酸性催化剂,它们可以将单体分子中的阴离子引发出来,让它们逐步聚合。

该方法常用于制备聚氯乙烯、聚丙烯等。

3.阳离子聚合法这种方法也需要催化剂,但它们能够将单体中的阳离子引发出来,然后逐步聚合。

阳离子聚合法主要用于制备一些具有特殊性能的高分子。

4.环氧化合物开环聚合法这种方法要求单体具有环氧基团,环氧基团可以通过许多方法引发开环反应,然后两端的碳原子被连接起来形成高分子链。

环氧化合物开环聚合法主要用于制备聚醚和聚脲等。

二、高分子的改性方法高分子的改性方法可以改变它们的性质和用途。

以下是常见的高分子改性方法。

1.复合复合是一种将两种或两种以上材料组合在一起的方法,实现高分子材料的改性。

例如,复合聚合物可以通过混合两种不同种类的高聚物来制备,这样可以改变聚合物的特性,如耐磨性、耐火性等。

2.交联交联是将高分子链之间的架桥分子引入高分子中的化学方法,使高分子链相互交联,形成一种更加稳定的三维网络结构,从而改善其性能和性质。

交联改性法主要应用于改变高分子的强度、协调性等。

3.共混共混是指将两种或更多的高分子混合在一起,并通过一些物理或化学性质的变化来改善或改变物质的性质,例如分散性,热稳定性,防火性等。

第三章 高分子化学改性

第三章 高分子化学改性

(2)嵌段共聚物的热性能
无规共聚物的模量与温度的关系 两相嵌段共聚物的模量与温度的关 系 从单体A和单体B得到的无规共聚物模量温度关系介于均聚物A和均聚物B之间。 同时只有一个Tg处于两均聚物的Tg之间。无规共聚物的Tg位置与单体的质量分数有 关。 两相嵌段共聚物保持了两种嵌段固有的性质,所以明显有两个Tg。在两个Tg之间有 一个模量平台。这平台的平坦程度取决于相分离的程度。相分离越完善则模量对温 度的敏感性越低。但是,高度分离的嵌段共聚物的两个Tg与含量没有关系,平台位 置却与嵌段含量有关。
(3) 力学性质
可以把嵌段共聚物分为两类,刚性嵌段共聚物和弹性嵌段共聚物。刚性嵌段共 聚物由两个硬嵌段和一个短的软嵌段组成。弹性嵌段共聚物一般含有两个软嵌段与一 个短的硬嵌段。 只有两种硬嵌段组成的刚性嵌段共聚物的抗蠕变等力学性能好,由于高度的相 分离和相间的黏着力好,使得硬-硬嵌段共聚物固有的延展性得以保留。共聚物常常 是脆性的,通过与小部分的软嵌段组成嵌段共聚物,体系中的两相特性和软嵌段的低 玻璃化转变温度,使其韧性具有很大改善。例如环氧-聚己内酯热固性嵌段共聚物。 热塑性弹性体是由大量的软嵌段和少量的硬嵌段组成的两相嵌段共聚物。软嵌 段提供弹性,硬嵌段形成微区,形成链间有利的缔合,形成物理交联,提高强度。
2.5 离子聚合反应法 利用离子聚合反应可合成接枝聚合物。 如:在含有对氯甲基聚苯乙烯的二硫化碳溶液中,用溴化 铝作引发剂,可使异丁烯发生碳阳离子的聚合反应,形成聚苯 乙烯-g-异丁烯接枝共聚物
2.6 大分子单体法 大分子单体指在分子链上带有可聚合基团的齐聚物,分子 量一般为数千至数万。 通过大分子单体的聚合可直接获得结构明确的接枝共聚物, 可以综合完全相反的性能,如软/硬、结晶/非结晶等。 大分子单体的合成主要通过在齐聚物分子链末端引入可聚 合的基团来实现的。

高分子改性要点

高分子改性要点

高分子材料改性的发展史;高分子材料的主要发展方向之一是对高分子材料进行改性,以期获得性能优异的材料。

已经开发的改性技术包括共混改性、化学改性、填充改性、纤维增强与表面改性等。

高分子材料改性的目的概括起来说即是:改善材料固有缺陷、赋予材料新的功能、降低材料使用成本高分子材料的改性是继聚合方法之外获得新性能材料的简捷而有效的重要方法。

自1909年德国人贝克莱特合成第一个树脂品种——酚醛树脂以来,高分子材料的开发十分迅速。

据不完全统计,到目前为止,合成树脂的品种已超过万余种,已实现工业化生产并投入实际应用的树脂也不下三百种。

但是,近年来,树脂新品种的开发速度已越来越慢,为此人们已将开发新树脂的目光转移到原有树脂的改性上来,从而扩大原有树脂的应用范围。

天然橡胶是弹性体的代表。

其分子也是线形的,但结构较聚乙烯复杂。

天然橡胶的原料是橡胶树中流出的白色浆汁,其中除含聚异戊二烯大分子以外,还有少量液体、蛋白质和无机盐。

但这种浆汁干燥后还不是弹性体。

1879年Goodycar发明了硫化方法,将天然橡胶与硫磺共同加热,能够造成橡胶大分子的交联。

交联后的天然橡胶才具有弹性,成为名副其实的弹性体[2]。

二、高分子化合物的特点1. 分子量大分子量大是高分子化合物的根本性质2. 分子量具有多分散性分子量分布是影响聚合物性能的因素之一,大多数高分子都是由一种或几种单体聚合而成。

3. 分子结构复杂多样包括嵌段聚合物,梳状聚合物,星形聚合物,支化或超支化聚合物4. 结构的多层次性高分子结构的特点造成高分子的结构可分成许多层次,包括链结构单元的近程关系、远程关系、链之间的聚集状态、织态结构等多层次。

它们表现出多模式的运动,赋予聚合物的多重转变和各种物理性质。

三、天然高分子的分类及与合成高分子的区别;见课件四、合成高分子材料的改性方法及各方法的优缺点物理改性是指在整个改性过程中不发生化学反应或只发生极小程度化学反应的一类改性方法。

共混改性通常采用溶液共混的方法,通过在铸膜液中引入适当的功能性聚合物,所制备的共混膜一方面具有传统膜材料的物理、化学及机械性能,又具备了第二组分的功能性化学改性是指在改性过程中聚合物大分子链的主链、支链、侧链及大分子链之间发生化学反应的一种接枝方法。

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。

1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。

IPN已成为共混与复合领域一个独立的重要分支。

1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

高分子凝聚态结构及聚合物性能概述

高分子凝聚态结构及聚合物性能概述

THANKS FOR WATCHING
感谢您的观看
动态热机械分析
利用动态热机械分析仪测定聚合物在 交变应力作用下的动பைடு நூலகம்力学性能和阻 尼特性。
光学性能评估手段
透光率测试
通过透光率测试仪测定 聚合物的透光率,评估 其透明度和光学质量。
折射率测定
利用折射仪测定聚合物 的折射率,研究其光学
性质和光传播行为。
光泽度评估
通过光泽度计测定聚合 物的光泽度,评估其表 面光洁度和反射性能。
其他相互作用
如离子键、金属配位键等, 也可在特定高分子体系中 存在。
结晶、非晶与取向结构
结晶结构
高分子链在三维空间中有序排列形成 的结构,具有明确的晶胞和晶格参数。
非晶结构
取向结构
高分子链在一定方向上优先排列形成的结构 ,如纤维状和片状结构等。这种结构对高分 子材料的力学性能和光学性能等具有重要影 响。
纤维材料具有优良的力学性能、化学稳定性和耐磨性,部分 纤维还具有较好的耐热性和电绝缘性。
应用领域
纤维材料广泛应用于纺织、造纸、复合材料等领域,如聚酯 纤维(PET)用于制作衣物、床上用品等,碳纤维(CF)用于制作 高性能复合材料、体育器材等。
05 聚合物加工过程中结构与 性能关系
加工工艺对聚合物结构影响
多尺度研究方法的融合
将宏观、介观和微观尺度的研究方 法相结合,揭示高分子凝聚态结构 和性能关系的多尺度特征。
跨学科的交叉融合
高分子科学与物理学、化学、生物 学等学科的交叉融合将推动高分子 凝聚态结构及聚合物性能研究向更 深层次发展。
功能导向的高分子材料设计
根据特定应用场景的需求,设计具 有特定功能的高分子材料,如自修 复、形状记忆、智能响应等。

高分子聚合物改性概述

高分子聚合物改性概述

高分子聚合物改性概述1概述高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。

然而.高分子材料又有诸多需要克服的缺点。

以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。

还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。

再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。

用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。

可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。

聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。

聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。

聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。

2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。

3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。

而成为特种高分子材料。

4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。

5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。

高分子材料改性综述

高分子材料改性综述

高分子材料改性综述在当今的社会中, 材料是人类赖以生存和发展的重要物质, 是现代工业和高科技发展的基础和关键。

由于材料单体的种类有限, 而且材料单体的单一的某的些性能比较差, 不符合人们所求, 所以要对其材料经行改性。

所谓的改性是通过物理, 机械和化学等作用使搞分子材料原有的性能得到改善。

高分子材料的改性即可能是物理变化也可能是化学变化在终多的改性方法中, 共混改性是最简单的也是最直接的方法。

他可以在各种加工设备中完成, 通过共混改性可以使高分子材料得到比较好的性能上的提升。

并且是现在应用最广的改性方法之一。

化学改性可以赋予高分子材料更好的物理化学和力学性能, 现在常用的有无轨共聚, 交替共聚, 嵌段共聚, 接枝共聚, 交联和互穿聚合物网络等技术, 化学改性能得更高的性能比物理改性, 但化学改性比物理改性的成本一般会更高, 而且工艺过程更复杂, 设备的要求更高。

还有填充与纤维增强改性, 表面改性, 共挤出复合改性, 对于公挤出复合改性一般用于管材等应用会比较多一高分子的共混改性高分子共混改性的目的和作用有: 1可以从各高分子组分的性能中取长补短, 获得更优越的性能的材料, 2还可以改善其高分子的加工性能。

3或者还可以制备新型的高分子材料, 聚烯烃与壳聚糖共混可以获得抗菌功能的材料。

4还可以使一些材料原本比较贵, 通过改性在不降低其原有的材料性能上可以使材料的成本更低。

在高分子的改性中遇到的一个难题就是两种或者多种不同的材料共混时他们的相容性, , 两种高分子能否相容就取决他们共混工程的自由能的变化, △Gm=△Hm-T△Sm≤0由于高分子的相对分子质量很大, 共混的过程熵变化很小, 如果高分子之间不存在特殊的相互作用, 共混过程通常是吸热过程, 也就是△Hm>0,因此绝大多的高分子共混时不能达到分子水平的共混,因此要他们自由相容是很困难的,这样我们就要借助其他方法来使他们相容,如增容剂.增溶剂是能使不相容的两种高分子结合在一起,从而形成稳定的共混物.增容剂大体可以分为反应型和非反应型的.反应型指共混时伴随化学反应与共混组分生成化学键,而非反应型只是起到乳化剂的分散作用,可以降低其相界面的张力,从而达到增容的目的.非反应型的有A-X-B,A-C.D-B.C-D等其中A-X-B具有A,B两种链段的嵌物, A-X-B型可以对多种共聚物增容.对于非反应型的增容剂: 1嵌段共聚物比接枝共聚物更有效2,二嵌段共聚物优于三段的.3接枝共聚物增容效果优于星型和三嵌段.4当共聚物的链段的相对分子质量大于或等于其均聚物的相对分子质量,效果比较好,反应型增容剂,有高分子和低分子两种,对于所有的低分子都是反应型,而高分子有反应型和非反应型增容剂.反应型增容剂主要是有一些可以与共混组分反应的官能团的共聚物,他们适合相容性差的又带有反应官能团的高分子之间的增容.反应增容剂对于他们参加反应的类型不同可以分为, 1反应性曾容剂与共混高分子组分反应而增容, 2使共混高分子先有官能团在凭借他们相互反应而增容。

高分子材料改性

高分子材料改性

高分子材料改性高分子材料改性是指在高分子材料的基础上,通过添加、改变成分或结构,以及进行物理、化学等处理的手段,来改善高分子材料的性能和特性的过程。

高分子材料广泛应用于塑料、橡胶、纤维等领域,但是其性能和特性常常无法满足特殊需求。

因此,对高分子材料进行改性是提高其综合性能的重要途径之一。

高分子材料改性的主要方法有以下几种:1.添加剂改性:通过添加具有特定性能的化学物质,如增塑剂、抗氧化剂、光稳定剂等,来改变高分子材料的性能和特性。

例如,添加增塑剂可以提高塑料的柔韧性和耐冲击性,添加抗氧化剂可以提高材料的耐候性和耐老化性。

2.共混改性:将两种或多种高分子材料按照一定的比例混合,并通过物理或化学交联的方式,以获得更好的性能和特性。

例如,将刚性高分子与柔韧高分子混合,可以获得同时具有刚性和柔韧性的材料。

3.表面改性:通过物理或化学方法对高分子材料的表面进行处理,改变其表面性质。

例如,通过增加表面粗糙度、引入功能基团或进行涂层等,可以增强高分子材料的润湿性、抗粘性、防腐蚀性等特性。

4.交联改性:通过加热、辐射或化学交联等方法,使高分子材料分子之间发生交联反应,从而改善材料的强度、硬度、尺寸稳定性等性能。

例如,通过辐射交联可以提高高密度聚乙烯的热稳定性和抗老化性。

5.成分改性:通过改变高分子材料的成分,如改变聚合物的组成、分子量分布等,来调控材料的结构和性能。

例如,通过引入共聚单体或插入均聚物等方法,可以改善聚合物的热稳定性、机械性能等。

高分子材料改性的目的是提高材料的性能和特性,使其能够满足特定的应用需求。

通过合理选用改性方法和改性剂,可以使高分子材料具有更好的强度、韧性、耐热性、耐腐蚀性、阻燃性等,从而广泛应用于汽车、电子、建筑、医疗等领域,并推动了现代工业的发展。

同时,高分子材料改性也带来了一些新的问题,如环境污染、资源浪费等,因此需要在改性过程中充分考虑环境和可持续发展的因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子聚合物改性概述
1概述
高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。

然而.高分子材料又有诸多需要克服的缺点。

以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。

还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。

再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。

用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。

可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。

聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。

聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。

聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。

2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。

3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。

而成为特种高分子材料。

4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。

5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。

2共混改性
聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。

尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有
几十种。

因此,人们发现在聚合物领域也应该借鉴冶金领_域的发展舍金的概念,除了继续研制开发新型聚合物外,还应该开发聚合物共混物。

例如.橡胶与塑料通过动态反应共混可生产热塑性弹性体;通用塑料经共混改性可成为优异的工程塑料;高分子与含特种官能团材料进行反应共混或复合可生产出具有导电、缓释、导热、光导、信息显示等特殊性能的功能材料。

聚合物共混的本意是指两种或两种以上聚合物经混合制成宏观均匀的材料的过程。

在聚合物共混发展的过程中,其内容又被不断拓宽。

广义的共混包括物理共混、化学共混和物理化学共混。

其中,物理共混就是通常意义上的混合.也可以说就是聚合物共混的本意。

化学共混如聚合物互穿网络(IPN),则应属于化学改性研究的范畴。

物理,化学共混则是在物理共混的过程中会发生某些化学反应,一般也在共混改性领域中加以研究。

很明显。

共混改性是聚合物改性最为简便的方法,工艺过程简单,容易实施与操作.可供配对共混的聚合物有多种多样,为共混改性的科学研究和工业应用提供了广阔的空间。

如果将聚合物共混的含义限定在物理共混的范畴之内.则可对聚合物共棍作出如下定义:聚合物共幌,是指两种或两种以上均聚物或共聚物经混合制成宏观均匀物质的过程。

共混的产物称为聚合物共混物。

高分子合金也是聚合物共混改性中常用的一个术语.有人认为高分子合金的概念等同于聚合物共混物的定义,尤其是在工程界比较常
见,但也有人认为高分子台金的概念不等同于聚合物共混物。

在科学研究领域中,高分子合金是指含有多种组分的聚合物均相体系。

包括聚合物共混物和嵌段、接枝共象物。

按照这种概念,那些相挚眭不好、形态结构呈亚微观非均相或宏观相分离的聚合物就不属于高分子合
金之列。

相关文档
最新文档