2021年八年级数学上册 7.. 定义与命题教学案(无答案)(新版)北师大版

合集下载

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

八年级数学上册 7.2 定义与命题教案 (新版)北师大版

第七章平行线的证明7.2 定义与命题(一)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x

北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。

教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。

二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。

但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。

因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。

2.学会如何书写和阅读命题。

3.学会从命题中提取信息。

四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。

2.难点:如何从命题中提取信息。

五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。

六. 教学准备2.PPT。

3.教学案例。

七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。

例如,定义一个三角形:由三条线段首尾相连围成的图形。

然后,给出一个命题:所有的三角形都有三个顶点。

让学生思考这个命题是否正确。

2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。

让学生理解定义与命题的关系。

3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。

教师通过提问,引导学生理解命题的构成要素。

4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。

教师通过提问,检查学生对定义与命题的理解。

5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。

例如,给出一个命题,让学生判断其是否正确,并说明理由。

6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。

7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。

北师大版八年级数学上册7.2定义与命题优秀教学案例

北师大版八年级数学上册7.2定义与命题优秀教学案例
2.通过设置分层问题,满足不同学生的学习需求,促进他们的思维发展。
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。

北师版八年级上册 第七章 7.2.2 定义与命题 教案

北师版八年级上册 第七章 7.2.2 定义与命题 教案

北师版八年级上册第七章7.2.2 定义与命题教案7.2.2定义与命题(教案)教学目标知识与技能:1.理解公理、证明、定理的概念.2.掌握公理、证明、定理的联系与区别.过程与方法:1.通过对公理的认识,明确证明需要公理和定理.2.经历实际情境,初步体会公理化的思想和方法.情感态度与价值观:1.通过从具体例子中提炼数学概念,培养学生思维的严密性和逻辑性.2.结合实例让学生意识到证明的必要性,培养学生做到有理有据,有条理地表达自己的想法的良好意识,培养学生的语言表达能力.教学重难点【重点】理解公理、证明和定理的概念.【难点】准确找出命题的条件和结论,公理与定理的区别,写出步步有理有据的证明过程.教学准备【教师准备】教材第168页情景图和第169页例题的投影图片.【学生准备】复习命题等相关概念.教学过程生1:李老师不是峄城人,所以李老师可能是市中人或薛城人;李老师不教数学,所以李老师可能教语文或英语;因为峄城人教语文,所以李老师只能教英语;而薛城人不教英语,所以李老师是市中人.生2:(补充)因为王老师不是薛城人,所以王老师可能是市中人或峄城人;李老师已经判断是市中人了,所以王老师只能是峄城人,范老师就是薛城人了.生3:(接着说)王老师是峄城人,所以王老师教语文,而范老师教的课程是数学.师:三位同学推理非常合理,我们为他们鼓掌.(学生鼓掌)解决这样的逻辑推理题目的关键是:根据条件,进行依次判断,进而得出正确结论.那么,如何证实一个命题是真命题呢?我们今天继续来探究.(板书课题)[设计意图]加深学生对逻辑推理的理解,可激发学生学习本课时的兴趣,从而引出本课时的问题.二、新知构建[过渡语]怎样判断一个命题是真命题还是假命题?你判断的依据是什么?(1)、公理、证明、定理的有关概念思路一(多媒体出示)公理、证明、定理的有关概念.问题1【课件1】公理的概念是什么?证明、定理的概念是什么?完成下列填空:(1)叫做公理.除了公理外,其他命题的真假都需要通过的方法进行判断.(2)的过程称为证明.经过证明的称为定理.每个定理都只能用、和已经证明为的命题来证明.问题2【课件2】本套教科书选用的公理有哪些?本套教科书选用九条基本事实(公理)作为证明的出发点和依据,我们已经认识了其中的八条:(1);(2);(3);(4);(5);(6);(7);(8).思路二师: (投影出示)公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他真命题的正确性都需要通过演绎推理的方法证实.演绎推理的过程称为证明.经过证明的真命题称为定理,而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.欧几里得生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师:(投影出示)我们这套教材中已经认识了有如下命题作为基本事实:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.[设计意图]让学生明确有哪些公理,给学生留出一定的思维空间,让他们思考如何证实真命题的问题,在此基础上,引出数学家欧几里得《原本》的编写思路.另外一条基本事实我们将在后面的学习中认识它.等式的有关性质和不等式的有关性质都可以看作公理,在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.问题3【课件3】还有哪些有关性质可以作为证明的依据?[处理方式](1)让学生自学3分钟(要求根据多媒体出示的问题逐一回答),并独立思考.(2)对于未完成的问题,小组内交流自己的想法并完善,教师巡视,检查完成情况.(3)完成多媒体出示的内容,借助多媒体展示正确答案,学生完成后及时点评,让学生对出现的问题进行矫正.(教师可以根据学生回答问题的情况给予适时点拨)(2)、公理、定理、定义及它们之间的关系(多媒体出示)问题1【课件1】公理的来源是什么?问题2【课件2】定理是怎么得到的?证明定理的依据是什么?问题3【课件3】最初的定理是怎么得到的?问题4【课件4】你能否通过图表把这个关系画出来?[处理方式]首先学生自主思考,挨个回答上面的问题,然后学生交流合作试画图表,此时教师给予必要的指导.巡视同时注意看有没有同学能够画出较为合理的图表,有的话就给予全班展示.最后再多媒体展示,出示答案.[设计意图]通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.(3)、定理的证明[过渡语]从这些基本事实出发,我们就可以证明已经探索过的结论了,我们已经知道:同角的补角相等.怎么利用你刚才整理的公理进行证明呢?问题1【课件1】你能书写证明下面这个定理的规范步骤吗?(多媒体出示)证明:同角的补角相等.已知:∠1+∠2=180°,∠1+∠3=180°.求证:∠2=∠3.证明:∵∠1+∠2=180°,∠1+∠3=180°(已知),∴∠2=180°-∠1,∠3=180°-∠1(等式的性质),∴∠2=∠3(等量代换).注意:符号“∵”读作“因为”,“∴”读作“所以”.[处理方式]先让学生独立思考,然后学生试着写出证明过程,最后老师在黑板上板书.说明符号“∵”读作“因为”,“∴”读作“所以”.强调“刚开始学习证明,最好在每一步的后面注明依据”.[设计意图]证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.巩固训练1:证明等角的补角相等.[处理方式]教师先让学生独立完成,并请学生板演,其他学生在练习本上完成.做完后小组之间开展互评.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示正确答案,让学生对出现的问题进行矫正.(多媒体出示下面答案)参考答案:已知:∠1=∠2,∠1+∠3=180°,∠2+∠4=180°.求证:∠3=∠4.证明:∵∠1+∠3=180°,∠2+∠4=180°(已知),∴∠3=180°-∠1,∠4=180°-∠2(等式的性质).又∠1=∠2(已知),∴∠3=∠4(等量代换).[设计意图]在解决这个问题的过程中,帮助学生进一步理解和巩固证明的含义,引导学生利用公理、定义、已经证明的真命题解决实际问题,训练思维的严谨性、逻辑性,强化证明步骤的规范性.为了使我们的解答更为规范和有条理,请同学们根据此题总结一下证明一个命题的一般步骤.证明一个命题的一般步骤:1.已知:写出命题的条件(必要时结合图形).2.求证:写出命题的结论.3.证明:写出演绎推理的过程.[处理方式]在小组交流的基础上,在教师的引导下,首先归纳总结出证明一个命题的一般步骤,然后让学生对照步骤,完善各自的解题过程.[设计意图]出示“证明一个命题的一般步骤”,使学生进一步验证并熟悉“证明一个命题的一般步骤”,然后通过自己观察、思考、争辩,发现规律、归纳总结,加深对“证明一个命题的一般步骤”的认识与理解,培养学生的分析和归纳概括的能力.证明:对顶角相等.已知:如图所示,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.证明:∵∠AOC+∠AOD=180°,∠BOD+∠AOD=180°(平角的定义),∴∠AOC和∠BOD都是∠AOD的补角(补角的定义),∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.[处理方式]先找一名学生到黑板板演做题步骤,其余同学在练习本上完成,此时教师在下边巡视、指导.然后师生一起规范做题步骤,并在课件上展示例题的规范步骤.[设计意图]教师先引导学生回想命题的一般证明步骤,再由教师示范,写出例题的过程,理由依据要强调.再找一个同学,到黑板上板演,其余同学在练习本上完成,教师巡视,适时点拨,再次向学生强调证明步骤“三步走”:已知、求证和证明,并强调证明的“三依据”:公理、定义和已经证明的真命题.你还能证明下面定理吗?定理:同角(等角)的余角相等.定理:三角形的任意两边之和大于第三边.[知识拓展] 1.对于公理:①公理是不需要推理证实的真命题,②公理可以作为判断其他命题真假的根据.2.对于定理:①定理都是真命题,但真命题不一定都是定理;②定理可以作为推证其他命题的依据.3.证明的一般步骤:①根据题意,画出图形;②根据条件和结论,结合图形写出已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程.4.假命题的判断:判断一个命题是假命题,只要举出反例来说明即可.三、课堂总结 证明的依据—||—定义、公理—定理—运算和运算法则—反映大小关系的有关性质四、课堂练习1. 称为公理;真命题称为定理;称为证明.答案:公认的真命题经过证明的演绎推理的过程2.写出两个公理:;.答案:两点确定一条直线两点之间线段最短(答案不唯一)3.“平行于同一条直线的两条直线平行”可以写成:如果,那么.答案:两条直线平行于同一条直线这两条直线平行4.判断“对应角相等的三角形是全等三角形”这一命题的真假性,并给出证明.解析:先判断出这一命题的真假,再举例证明即可.解:对应角相等的三角形是全等三角形,是假命题.举例证明:如图所示,DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但ΔADE与ΔABC不全等.五、板书设计第2课时1.公理、证明和定理2.证明的基本依据3.定理的证明六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.3第2题.(2)、课后作业【基础巩固】1.下列叙述错误的是()A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题2.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半3.已知命题:等底等高的两个三角形面积相等,则这个命题的结论是()A.两个三角形B.两个三角形的面积C.两个三角形的面积相等D.两个三角形等底等高4.命题“对顶角相等”的“条件”是.【能力提升】5.如图所示,AB=AE,∠1=∠2,∠C=∠D.求证ΔABC≌ΔAED.【思维拓展】6.如图所示,已知∠AOC与∠BOD都是直角,∠BOC=65°.(1)求∠AOD的度数;(2)求证∠AOB=∠DOC;(3)若不知道∠BOC的具体度数,其他条件不变,(2)的关系仍成立吗?若成立,说明理由.【答案与解析】1.B2.C(解析:直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题.)3.C4.两个角是对顶角(解析:改写成“如果两个角是对顶角,那么这两个角相等”就容易找到命题的条件和结论了.)5.证明:因为∠1=∠2,所以∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠EAD ,在ΔABC 和ΔAED 中,{∠C =∠D ,∠BAC =∠EAD ,AB =AE ,所以ΔABC ≌ΔAED (AAS).6.解析:(1)先求出∠DOC ,继而得出∠AOD.(2)分别求出∠AOB 和∠DOC 的度数,可得∠AOB =∠DOC.(3)(2)的关系依然成立,根据同角的余角相等可得.(1)解:因为∠DOC =∠DOB-∠BOC =90°-65°=25°,所以∠AOD =∠AOC +∠DOC =90°+25°=115°. (2)证明:因为∠DOC =25°,∠AOB =∠AOC-∠BOC =90°-65°=25°,所以∠AOB =∠DOC. (3)解:成立.因为∠AOB =∠AOC-∠BOC =90°-∠BOC ,∠COD =∠BOD-∠BOC =90°-∠BOC ,所以∠AOB =∠COD.。

八年级数学上册7.2 定义与命题导学案1(新版)北师大版

八年级数学上册7.2 定义与命题导学案1(新版)北师大版

八年级数学上册7.2 定义与命题导学案1(新版)北师大版第1课时【学习目标】1、了解定义与命题的含义,会区分某些语句是不是命题。

2、能将命题改写成“如果……那么……”的形式。

【学习重点】判断某些语句是不是命题。

【学习过程】模块一预习反馈一、知识回顾1、概念:人类在认识过程中,把所感觉到的事物的一般的、本质的特征加以概括,就形成了概念。

2、判断有的判断和的判断。

二、自主学习1、阅读教材:第2节定义与命题(P165-P166)2、定义就是对和的含义加以描述,作出明确的规定。

3、如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染、(1)如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果D处受到污染,那么__________处便受到污染。

(2)请你自编自练:如果____处水流受到污染,那么____处水流便受到污染、(3)如果环保人员在H处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流、4、判断下列语句是否是命题:①动物都需要水;②猴子是动物的一种;③玫瑰花是动物;④美丽的天空;⑤对应角都相等的两个三角形一定全等;⑥负数都小于零;⑦你的作业做完了吗?⑧所有的质数都是奇数;⑨作线段AB;⑩如果a>b,a>c,那么b=c。

命题有:。

方法归纳:判断一个语句是否为命题应抓住两点:①命题是叙述某件事情的句子;②必须对该件事情作出判断。

通常不完整的句子、祈使句、疑问句、感叹句、陈述句都不是命题。

【我的疑惑】模块二合作探究探究1:将下列命题写成“如果……,那么……”的形式。

(1)相等的两个角是对顶角;(2)不相交的两条直线是平行线;(3)经过一点有且只有一条直线垂直于已知直线;(4)直角都相等。

探究2:判断下列语句是否是命题:①熊猫没有翅膀;②对顶角相等;③两直线平行,内错角相等;④无论n 为任意的自然数,式子n2-n+11的值都是质数;⑤任意一个三角形都有一个直角;⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平行;⑦画线段AB=3 cm;⑧两条直线相交,有几个交点?⑨等于同一个角的两个角相等吗?⑩在射线OA上,任取两点B、C。

北师大版八年级上册《7.2 定义与命题》教学设计

北师大版八年级上册《7.2 定义与命题》教学设计

北师大版八年级上册《7.2 定义与命题》教学设计一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解它们在数学论证中的重要性。

北师大版八年级上册的教材通过生动的例子和丰富的练习,帮助学生理解和掌握定义与命题的基本知识。

二. 学情分析学生在七年级时已经初步接触过定义与命题的概念,但对其本质和应用可能还不是很清楚。

因此,在教学过程中,教师需要从学生的实际出发,通过生动的例子和实际操作,让学生理解和掌握定义与命题。

三. 教学目标1.知识与技能:使学生理解定义与命题的概念,能够正确判断一个命题是真命题还是假命题。

2.过程与方法:通过观察、分析和推理,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索的精神。

四. 教学重难点1.重点:定义与命题的概念及其应用。

2.难点:如何判断一个命题是真命题还是假命题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考;通过分析案例,让学生理解定义与命题;通过小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的例题和练习题。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的数学问题引入定义与命题的概念。

例如:“什么是一个角?”让学生思考并回答,然后给出正确的定义。

2.呈现(15分钟)呈现教材中的案例,让学生观察和分析。

例如:等腰三角形的性质。

引导学生发现这是一个命题,并尝试给出证明。

3.操练(15分钟)让学生分组,每组选一个命题进行分析和证明。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验他们对定义与命题的理解。

教师选取部分学生的作业进行点评。

5.拓展(10分钟)让学生尝试自己编写一个命题,并给出证明。

教师选取部分学生的命题进行点评。

6.小结(5分钟)总结本节课的主要内容,强调定义与命题在数学论证中的重要性。

八年级数学上册 7.2 定义与命题导学案(无答案)北师大版(2021年整理)

八年级数学上册 7.2 定义与命题导学案(无答案)北师大版(2021年整理)

广东省河源市和平县合水镇八年级数学上册7.2 定义与命题导学案(无答案)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省河源市和平县合水镇八年级数学上册7.2 定义与命题导学案(无答案)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省河源市和平县合水镇八年级数学上册7.2 定义与命题导学案(无答案)(新版)北师大版的全部内容。

7。

2。

1 定义与命题班级:姓名:【学习目标】1.了解定义、命题、真命题、假命题的含义;2.会区分命题的条件和结论,了解判断命题真假的方法。

学习重点:命题的条件和结论,判断命题真假的方法.学习难点:命题的条件和结论,判断命题真假的方法。

【复习引入】1.无理数的定义是:________________________________。

2.等腰三角形的定义是:________________________________________。

【自主学习】1.定义是对名称和术语的含义___________________________________________。

2.列举一些学过的定义。

【探究学习】1.下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流(1)任何一个三角形都有一个直角;(2)对顶角相等;(3)无论n为任意的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD。

2.判断一件事情的句子,叫做________。

例如上面的句子中有__________是命题。

8年级数学北师大版 上册教案 第7章《定义与命题》

8年级数学北师大版 上册教案 第7章《定义与命题》

教学设计定义与命题
(教材例题)已知:如图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.
求证:∠AOC=∠BOD.
证明:∵直线AB与直线CD相交于点O,
∴∠AOB和∠COD都是平角(平角的定义).
∴∠AOC和∠BOD都是∠AOD的补角(补角的定义).
∴∠AOC=∠BOD(同角的补角相等).
通过上面的例题,我们可以得到定理:对顶角相等.教师小结归纳证明的格式:
(1)根据条件,画出图形,并在图形上标出有关字母与符号;
(2)结合图形,写出已知、求证;
(3)分析因果关系,找出由已知推出结论的途径;
(4)有条理地写出证明过程(每一步推理要有依据).
三、运用新知,深化理解
练习:请你完成定理“三角形的任意两边之和大于第三边”的证明.。

北师大版八年级数学上册:7-2定义与命题(教案)

北师大版八年级数学上册:7-2定义与命题(教案)
1.培养学生的逻辑推理能力:通过命题的学习,让学生掌握命题的构成、分类和证明方法,提高他们运用逻辑思维分析问题、解决问题的能力。
2.增强学生的数学抽象素养:引导学生从具体实例中提炼出数学命题,培养他们对数学概念、定理的抽象理解和运用。
3.提升学生的数学建模素养:通过命题在实际问题中的应用,使学生学会运用数学语言和符号来描述现实问题,建立数学模型,提高解决实际问题的能力。
3.命题的分类:根据命题之间的关系,将命题分为真命题、假命题和不确定命题,并通过实例进行分析。
4.命题的证明:引导学生学会运用已知定理、公理和定义来证明命题的正确性,培养他们的逻辑推理能力。
5.命题的应用:通过实际例题,让学生学会运用命题来解决问题,提高他们运用数学知识解决实际问题的能力。
二、核心素养目标
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个陈述是否正确的情况?”比如,有人说“所有的鸟都有翅膀”,这是不是一个正确的陈述呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
-举例:命题“如果一个整数既是4的倍数也是6的倍数,那么它一定是12的倍数”,需要通过分析4、6和12的公倍数来理解。
-理解命题否定的逻辑:对于简单命题的否定,学生可能会混淆概念,需要通过具体的例子和逻辑解释来帮助学生理解。
-举例:解释“不是所有的猫都怕水”这个否定命题的逻辑结构,与原命题“所有的猫都怕水”的区别。
4.培养学生的数学运算素养:在命题的证明过程中,加强学生对数学运算规则和方法的理解,提高他们的运算速度和准确性。

北师大版八年级上册数学教案:7.2定义与命题

北师大版八年级上册数学教案:7.2定义与命题
(3)了解命题的证明方法:了解平面几何证明的基本方法,如直接证明、反证法等,并能应用于具体的命题证明。
2.教学难点
(1)定义的抽象:学生对从具体实例中抽象出定义感到困难,需要教师通过生动形象的例子和引导性的问题,帮助学生理解定义的形成过程。
举例:在讲解“平行线”的定义时,学生可能难以理解“不相交的两条直线为何要在同一平面内”,教师可以通过实际操作或动画演示,让学生直观感受平行线的特点。
举例:在证明“如果一个三角形的两边相等,那么这两边的对角也相等”时,教师可以引导学生尝试直接证明和反证法,并分析两种方法的优缺点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.2定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个说法是否正确的情况?”比如,有人说“只要是正方形,其对角线就相等”,这个说法是否正确呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索定义与命题的奥秘。
2.增强学生的几何直观感知:通过观察、操作、探究等教学活动,培养学生的空间观念和几何直观,提高学生对几何图形的认识和理解。
3.提升学生的数学交流能力:在教学过程中,鼓励学生用准确、简洁的语言表达几何定义和命题,提高学生之间的合作交流能力。
4.培养学生的数学抽象能力:引导学生从具体实例中抽象出几何定义和命题,培养学生从具体到抽象的思维方式,提高数学抽象能力。
五、教学反思
今天我们在课堂上一起探讨了7.2定义与命题这一章节的内容,回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于定义的教学,我尝试通过生动的实例引入,让学生从具体情境中抽象出几何定义。我发现这种方法对于大多数学生来说是比较容易接受的,他们能够更好地理解定义的内涵与外延。但在实际操作中,仍有一部分学生对于定义的抽象过程感到困惑,我需要思考如何针对这部分学生进行更有针对性的指导。

八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)

八年级数学上册7.2定义与命题第1课时定义与命题教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题,主要介绍定义与命题的概念及其相互关系。

通过本节课的学习,使学生理解定义与命题的含义,掌握定义与命题的书写格式,能够正确书写定义与命题,并能够分析、判断命题的正确性。

二. 学情分析学生在七年级时已经学习了命题与定理的内容,对命题的概念有一定的了解。

但学生在定义与命题的书写格式、分析判断命题的正确性方面存在困难。

因此,在教学过程中,要注重引导学生理解定义与命题的关系,通过例题讲解,让学生掌握定义与命题的书写格式,提高学生分析判断命题正确性的能力。

三. 教学目标1.理解定义与命题的概念及其相互关系。

2.掌握定义与命题的书写格式。

3.能够正确书写定义与命题。

4.能够分析、判断命题的正确性。

四. 教学重难点1.教学重点:定义与命题的概念及其相互关系,定义与命题的书写格式。

2.教学难点:定义与命题的书写格式,分析判断命题的正确性。

五. 教学方法采用讲授法、例题解析法、小组合作法、问答法等教学方法,引导学生通过自主学习、合作交流,掌握定义与命题的概念及其相互关系,提高分析判断命题正确性的能力。

六. 教学准备1.准备相关定义与命题的例题。

2.准备投影仪、黑板等教学设备。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的命题与定理内容,为新课的学习做好铺垫。

2.呈现(10分钟)介绍定义与命题的概念,讲解定义与命题的相互关系。

让学生明确定义与命题的区别与联系。

3.操练(10分钟)让学生根据定义与命题的概念,尝试书写几个简单的定义与命题。

教师选取部分学生的作品进行点评,指出书写格式上的优点与不足。

4.巩固(10分钟)讲解定义与命题的书写格式,强调书写要求。

让学生再次尝试书写定义与命题,并相互检查,纠正错误。

5.拓展(10分钟)分析判断一些给定的命题是否正确。

教师引导学生运用定义与命题的知识,通过逻辑推理分析命题的正确性。

北师大版八年级上册数学7.2定义与命题教案

北师大版八年级上册数学7.2定义与命题教案
3.重点难点解析:在讲授过程中,我会特别强调角的平分线定义和性质这两个重点。对于难点部分,比如角的平分线性质的应用,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用尺规作图画出一个角的平分线。
3.证明方法:指导学生运用角的平分线定义及基本图形性质进行简单命题的证明。
4.实践应用:结合实际情境,设计相关问题,让学生运用角的平分线知识解决实际问题。
本节课旨在帮助学生掌握角的平分线的定义和性质,培养他们的逻辑思维能力和解题技巧。
二、核心素养目标
1.理解与运用:通过学习角的平分线定义,使学生能够理解并运用角的平分线性质解决相关问题,培养他们的几何直观和空间观念。
5.情感态度:激发学生对几何学的兴趣,培养他们勇于探索、克服困难的意志,形成积极向上的学习态度。
三、教学难点与重点
1.教学重点
-角的平分线的定义:重点讲解角的平分线的概念,使学生理解并掌握角的平分线的表示方法。
-举例:如讲解角的平分线时,可以通过具体图形说明什么是角的平分线,如何用符号表示等。
-角的平分线性质:强调角的平分线上的点到角的两边的距离相等这一核心性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的平分线的基本概念。角的平分线是从一个角的顶点出发,将这个角平分成两个相等角的射线。它是解决几何问题中非常重要的一部分,可以帮助我们更好地理解和处理角的关系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角的平分线性质解决实际问题,以及它如何帮助我们找到等边三角形。

2021年八年级数学上册 7. 定义与命题(第课时)教学案(无答案)(新版)北师大版

2021年八年级数学上册 7. 定义与命题(第课时)教学案(无答案)(新版)北师大版
(1)如果两个三2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(4)如果一个四边的对角线相等,那么这个四边形是矩形。
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。
巩固训练
归纳小结
探究真假命题的验证:
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
正确的命题称为真命题,不正确的命题称为假命题。
读一读
介绍《几何原本》、公理、定理等知识:
教师讲解与学生习读相结合。培养学生公理化思想和方法,养成科学、严谨思维习惯。
培养学生逻辑思维能力,推理能力。
归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论。




7.2定义与命题(2)
回顾引入:……公理、定理:……
命题的结构:……证明:……
命题的类型:……归纳小结:……
2019-2020年八年级数学上册 7.2 定义与命题(第2课时)教学案(无答案)(新版)北师大版
课题
7.2 定义与命题(第2课时)
第3课时
时间
课型
新知探究课
教具
教材、课件
学习
目标
知识与能力
了解真、假命题,定理的含义;区分命题中的条件和结论。
过程与方法
经历实际情境,初步体会公理化思想和方法。
情感态度价值观
了解本教材所采用的公理,培养学生的语言表达能力。

八年级数学上册 7.2 定义与命题(第1课时)学案(新版)北师大版

八年级数学上册 7.2 定义与命题(第1课时)学案(新版)北师大版

八年级数学上册 7.2 定义与命题(第1课时)学案(新版)北师大版2、定义与命题(第1课时)【学习目标】课标要求1、了解定义与命题的含义,会区分某些语句是不是命题、2、用比较数学化的观点来审视生活中或数学学习中遇到的语句特征、3、通过对某些语句特征的判断学会严谨的思考习惯、学习流程:【课前展示】小亮和小刚正在津津有味地阅读《我们爱科学》、小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了、”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼、”……一人说:“那因特网肯定是一张很大的网、”另一人说:“估计可能是英国造的特殊的网、”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行、为此,我们需要给出它们的定义、)① 关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;② 对定义含义的解释;③ 举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);【创境激趣】① 师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染、【自学导航】1、如果B处工厂排放污水,那么A、B、C、D处便会受到污染、2、如果B处工厂排放污水,那么E、F、G处也会受到污染的、3、如果C处受到污染,那么A、B、C处便受到污染、4、如果C处受到污染,那么D处也会受到污染的、5、如果E处受到污染,那么A、B处便会受到污染、【合作探究】对事情作出判断的句子,就叫做命题、即:命题是判断一件事情的句子、如:1、熊猫没有翅膀、对顶角相等、大家能举出这样的例子吗?[生甲]两直线平行,内错角相等、2、无论n为任意的自然数,式子n2-n+11的值都是质数、3、内错角相等、4、任意一个三角形都有一个直角、5、如果两条直线都和第三条直线平行,那么这两条直线也互相平行、6、全等三角形的对应角相等、……【展示提升】典例分析知识迁移[师]很好、大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a、平行用符号“∥”表示、【强化训练】XXXXX:1、你能列举出一些命题吗?答案:能、举例略、2、举出一些不是命题的语句、答案:如:①画线段AB=3 cm、②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA 上,任取两点B、C、等等、【归纳总结】① 定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;② 命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题、教学反思。

7.2定义与命题-2021-2022学年八年级上册数学同步名师教案(北师大版)

7.2定义与命题-2021-2022学年八年级上册数学同步名师教案(北师大版)
五教学反思
在今天的课程中,我们探讨了《7.2定义与命题》这一章节。我发现在教学过程中,学生们对于定义的理解和命题的真假判断存在一定的困难。这让我思考如何能更有效地帮助他们掌握这些核心概念。
首先,我意识到在引入定义时,需要更直观、生动的方式让学生感受到定义的实际意义。例如,在讲解平行线定义时,我可以借助教具或多媒体演示,让学生直观地看到平行线的特点,从而加深他们对定义的理解。
其次,关于命题的真假判断,我尝试通过案例分析和小组讨论的方式让学生参与进来。这样,他们能够在实际操作中学会如何分析命题,判断其真假。不过,我也注意到有些学生在这一过程中仍然感到困惑,可能需要在后续教学中加强对这部分内容的讲解和练习。
在实践活动中,学生们分组讨论并展示了他们的成果。我发现这种形式有助于培养学生的合作交流和表达能力。但同时,我也注意到有些小组在讨论时可能会偏离主题,因此,在未来的教学中,我需要更加关注学生的讨论过程,适时给予指导和提示,确保讨论的有效性。
此外,我在教学过程中也尝试引导学生运用逻辑推理方法解决问题。从学生的反馈来看,他们对于演绎推理和类比推理较为熟悉,但在归纳推理方面还有待提高。因此,我计划在接下来的课程中,设计更多具有挑战性的问题,帮助学生巩固和拓展逻辑推理能力。
在小组讨论环节,学生们对于定义与命题在实际生活中的应用提出了很多有趣的观点。这让我深感欣慰,因为他们能够将所学知识与社会生活联系起来。但同时,我也意识到需要在讨论环节加强对学生的引导,帮助他们更好地发现问题、分析问题和解决问题。
-逻辑推理的运用:在实际问题中,学生可能难以识别何时使用何种逻辑推理方法。例如,在解决几何问题时,学生需要判断何时使用演绎推理,何时使用归纳推理。
-创新思维的培养:鼓励学生在解决问题时尝试新方法是一个难点,因为学生往往习惯于使用熟悉的解题方式,对于探索新的解题途径感到不适应。

北师大版数学八年级上册7

北师大版数学八年级上册7
北师大版数学八年级上册7.2认识定义与命题教学设计
一、教学目标
(一)知识与技能
1.理解定义与命题的概念,掌握定义与命题的基本构成要素,能够正确识别并表述定义与命题。
2.学会运用定义与命题进行问题分析,能够运用已知的定义与命题解决实际问题,提高解决问题的能力。
3.掌握反例、证明等基本方法,能够运用这些方法对定义与命题进行验证,培养逻辑思维和推理能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:理解定义与命题的概念,掌握定义与命题的基本构成要素,能够正确识别并运用定义与命题。
难点:运用定义与命题进行逻辑推理,解决实际问题,并能够运用反证法等证明方法。
2.重点:培养学生运用定义与命题分析问题、解决问题的能力。
难点:提高学生的逻辑思维能力和创新意识,使学生能够灵活运用定义与命题。
(二)教学设想
1.创设情境,激发兴趣:以生活中的实例为导入,让学生感受到定义与命题在实际生活中的应用,从而激发学习兴趣。
2.分层教学,因材施教:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
3.突破重难点,循序渐进:
a.通过讲解、举例、讨论等方式,帮助学生理解定义与命题的概念,掌握基本构成要素。
四、教学内容与过程
(一)导入新课,500字
1.教学内容:通过复习已学的数学概念、性质、定理等,为新课的学习做好铺垫。
教学过程:
a.引导学生回顾已学的数学知识,如平面几何中的点、线、面的性质和判定方法。
b.提问学生:“我们学过哪些数学概念和性质?它们有什么作用?”让学生意识到数学概念和性质在解决问题中的重要性。
为了巩固学生对定义与命题的理解,提高学生的应用能力和逻辑思维能力,特布置以下作业:

八年级数学上册 7.2 第1课时 定义与命题学案(无答案)北师大版(2021学年)

八年级数学上册 7.2 第1课时 定义与命题学案(无答案)北师大版(2021学年)

八年级数学上册7.2第1课时定义与命题学案(无答案)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册7.2 第1课时定义与命题学案(无答案)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册7.2 第1课时定义与命题学案(无答案)(新版)北师大版的全部内容。

7。

2 定义与命题第1课时定义与命题学习目标:1.了解定义、命题、真命题、假命题、定理的含义2.会区分命题的条件和结论一、学习过程:情景引入自学指导:独立完成下列问题,小组内完成统一(5分钟)2.如图表示某地的一个灌溉系统图中A、B、C、D、E、F、G、H、I、J、K处均有一化工厂,如果他们向河中处理污水,下游河水便会受到污染。

如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;二、新知学习:自学指导:阅读165页内容,完成下列问题(10分钟)1。

上面“如果……那么……”都是对事情进行判断的句子_________________________,叫做命题例如:熊猫没有翅膀。

对顶角相等.你还须能举出这样的例子吗?2。

举出一些不是命题的句子3。

观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。

(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

结论:每个命题都由________和_________两部分组成. ________是已知的事项,________是由已知事项推断出的事项。

北师大版八年级上册 第七章 721 定义与命题 教案

北师大版八年级上册 第七章 721 定义与命题 教案

7.2.1定义与命题(教案)教学目标知识与技能:1.理解定义与命题的概念.2.分清命题的条件和结论,并能判断命题的真假.过程与方法:在实例中体会定义、命题的含义,通过举反例判断一个命题是假命题.情感态度与价值观:通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.教学重难点【重点】理解命题的概念,找出命题的条件和结论.【难点】正确找出命题的条件和结论.教学准备【教师准备】预想学生在学习本课时中会遇到的困难.【学生准备】复习最近学过的几个重要概念.教学过程一、导入新课上节课我们研究了命题,那么什么叫命题呢?下面大家来想一想:(出示投影片)观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(4)如果一个四边形的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.今天我们就来学习“定义与命题”.二、新知构建(1)定义与命题[过渡语]任何学科知识的构建,都离不开用概念表述相关的内容.本课时我们就要从数学的角度认识定义、命题等相关的概念.大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.师:很好,同学们能举出学过的一些定义吗?生1:“含有未知数的等式叫做方程”是“方程”的定义.生2:“有两边相等的三角形叫做等腰三角形”是“等腰三角形”的定义.生3:“在一个方程中,只含有一个未知数,并且未知数的次数是1,这样的整式方程叫做一元一次方程”是“一元一次方程”的定义.生4:“具有中华人民共和国国籍的人叫做中华人民共和国公民”是“中华人民共和国公民”的定义.师:看来同学们对定义已经有了认识,你能发现“定义”的基本形式是怎样的吗?生:定义的基本形式都是:“……叫做……”.[设计意图]通过学生对定义的举例,加强学生对“什么是定义”的理解.让学生从句子特点与形式上观察,认识定义.2.认识命题思路一[处理方式]独立思考,仔细品味教材议一议的内容,理解什么是命题.下面的语句中,哪些语句对事情作出了判断?哪些没有?(多媒体出示)(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.生:(1)(2)(3)(4)四个句子作出了判断,(5)(6)两个句子没有作出判断.师:是的,前四个句子作出了判断.像这样的句子,叫做命题.你能否给“命题”下个定义呢?生:判断一件事情的句子,叫做命题.(教师板书:判断一件事情的句子,叫做命题)[设计意图]让学生初步认识命题,再引导学生以回答问题的形式对命题的定义进行总结,从感性思维上升到理性思维,培养学生自我学习的能力.思路二:师:给出命题的定义:命题是判断一件事情的句子.你能举出几个命题的例子吗?出示问题:(1)三条边对应相等的两个三角形一定全等;(2)锐角都小于直角;(3)美丽的天空;(4)所有的质数都是奇数;(5)过直线l外一点P作l的平行线;(6)如果明天是星期五,那么后天是星期六;(7)若a2=4,求a的值;(8)熊猫有翅膀.【学生活动】小组交流,对提出的问题作出判断,哪些是命题?哪些不是命题?展示交流:生1:(1)(2)(4)(6)都是命题,其余不是.生2:不对,(8)“熊猫有翅膀”也是命题.师:(质疑)你能说一说为什么吗?生:虽然这句话错了,但它作出了判断.只要是判断一件事情的句子就是命题,不论判断得对错.师:(给出肯定)说得好,谁还能列举出一些命题吗?生1:如果两条平行线被第三条直线所截,那么同位角相等.生2:我是一名学生.师:(作出判断)很好!想一想,定义是命题吗?任何一个命题都是定义吗?(学生思考一会儿,交流后回答)生:定义一定是命题,但命题不一定是定义.[设计意图]通过对命题与非命题的辨析,让学生理解命题的特点,进一步培养学生的能力.教师强化对命题特点的掌握,也为真、假命题的判断打下基础.最后老师提出的问题让学生将本课时所学的两个知识点进行联系与拓广.(2)条件与结论[过渡语]观察下列命题,这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一角分别相等,那么这两个三角形全等.【学生活动】先独立思考,再结合教材第166页想一想的内容,小组内开展交流讨论“命题有什么结构特征”.展示交流成果:生1:都是用“如果……那么……”的形式叙述的.生2:每个命题都是由条件和结论两部分组成的.生3:条件是已知的事项,结论是由已知事项推断出的事项.生4:“如果”引出的部分是条件,“那么”引出的部分是结论.(教师板书:条件和结论)师:上题的条件、结论分别是什么?生1:(1)题的条件是一个三角形是等腰三角形,结论是这个三角形的两个底角相等.生2:(2)题的条件是a=b,结论是a2=b2.生3:(3)题的条件是两个三角形中有两边和一角分别相等,结论是这两个三角形全等.一般地,命题都可以写成“如果……那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.有些命题没有写成“如果……那么……”的形式,条件和结论不明显,如“同角的余角相等”.对于这样的命题,要经过分析才能找出条件和结论,也可以将它们改写成“如果……那么……”的形式.[设计意图]对命题的结构进行分析,让学生会区分一个命题的条件和结论.引导学生,当一个命题不好区分条件和结论时,可以先改写成“如果……那么……”的形式;但改写时不要机械地添上“如果”和“那么”,应适当地调整顺序或补充修饰词语,使改写后的语句通顺、完整.(3)、真命题与假命题[过渡语]命题的结论都是正确的吗?教师给出以下四个命题,并提问:(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)三角形三个内角的和等于180°.【学生活动】(1)指出命题的条件和结论;(2)命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?在学生回答的基础上进行总结,给出真命题、假命题的概念,以及如何判断一个命题是假命题的方法——举出反例.总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.(教师板书:真命题、假命题、反例)[设计意图]学生在判断命题的正误时主要依据过去的经验,教师可进一步追问,对于一个不正确的命题,还能怎样判断其错误呢?教师应让学生充分表达自己的判断方法,进而引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.[知识拓展]1.在定义中,要提示该事物与其他事物的本质属性的区别.2.根据命题的定义可知只要是对一件事情作出判断的句子都是命题,而不论这个判断正确与否.3.很多情况下,命题的形式并不是“如果……那么……”的形式,在把命题改写成“如果……那么……”的形式时,为保证语句的通畅和不改变原意,应对原句进行适当的修改或调整.三、课堂总结—四、课堂练习1.下列命题中,属于定义的是 ()A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度解析:A,B,C分别是一个命题,但不是定义;D是一个定义.故选D.2.下列语句中,是命题的是()A.高高的山B.你好吗C.同位角相等D.在直线AB上取一点C解析:A,B,D只是对一件事情的叙述或询问,不是命题.故选C.3.下列语句中,不是命题的是 ()A.直角都相等B.如果ab=0,那么a=0C.不是对顶角的两个角相等D.连接两点A,B解析:A,B,C分别是命题;D不是命题,是描述性语言.故选D.4.下列命题是假命题的是 ()A.锐角小于90°B.平角等于两直角C.若a>b,则a2>b2D.若a2≠b2,则a≠b解析:A.根据锐角的定义,锐角小于90°,正确;B.平角等于180°,直角等于90°,因此平角等于两直角,正确;C.例如a=1,b=-3,1>-3,但12=1<(-3)2=9,错误;D.两个数的平方相等,则两个数相等或互为相反数,因此两个数的平方不相等,则这两个数既不相等也不互为相反数,正确.故选C.5.下列选项中,可以用来说明命题“若a2>1,则a>1”是假命题的反例是()A.a=-2B.a=-1C.a=1D.a=2解析:选项A,a=-2满足a2>1,而a=-2不满足a>1的要求,是原命题的反例;选项B和选项C,a=±1不满足a2>1,即不满足题设的条件,不是特例,故不是反例;选项D既满足a2>1,也满足a>1,不是反例.故选A.五、板书设计第1课时1.定义与命题2.条件和结论3.真命题、假命题、反例六、布置作业(1)、教材作业【必做题】教材随堂练习第2题.【选做题】教材习题7.2第3题.(2)、课后作业【基础巩固】1.下列语句中,是命题的为 ()A.延长线段CDB.相等的角是对顶角C.作平行线D.取线段AB的中点M2.命题“等角的补角相等”中的“等角的补角”是()A.条件部分B.是条件,也是结论C.结论部分D.不是条件,也不是结论3.下列说法不正确的是 ()A.“不等式2x>4的解集是x>2”的条件是“不等式2x>4”B.“如果x2=y2,那么x=y”的结论是“x=y”C.“平行四边形的对角线互相平分”的条件是“平行四边形”D.“对顶角相等”的条件是“对顶角相等”4.下列语句中:①平角都相等;②等于同一个角的两个角相等吗?③画两条相等的线段;④邻补角的平分线互相垂直;⑤两直线平行,同位角相等;⑥等腰三角形的两底角相等.其中是命题的有()A.3个B.4个C.5个D.6个5.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短6.要说明命题“绝对值相等的两个实数相等”是假命题,你举的反例是.【能力提升】7.指出下列命题的条件和结论.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行;(3)等角的补角相等;(4)平行四边形的对边相等.【拓展探究】8.如图所示,下面有四个条件:(1)AE=AD,(2)AB=AC,(3)OB=OC,(4)∠B=∠C.请你写出一个由其中两个作为已知条件,另外两个中的一个作为结论的命题,并判断其真假.【答案与解析】1.B(解析:A.延长线段CD,是描述性语言,它不是命题,错误;B.相等的角是对顶角是命题,正确;C.作平行线,是描述性语言,它不是命题,错误;D.取线段AB的中点M,是描述性语言,它不是命题,错误.故选B.)2.A(解析:把命题“等角的补角相等”改写成“如果两个角是等角的补角,那么这两个角相等”.“等角的补角”是条件部分.故选A.)3.D(解析:“对顶角相等”的条件是“两个角是对顶角”,而不是“对顶角相等”,故D选项错误.故选D.)4.B(解析:①④⑤⑥是命题;②③不是命题.所以命题有4个.故选B.)5.C6.|-3|=|3|,但-3≠3(答案不唯一)7.解析:对于条件和结论不十分分明的命题,我们可以先把其改写成“如果……那么……”的形式,再找出条件和结论.由于命题的改法不唯一,所以它的条件和结论也不唯一,如命题(3),还可以改写成“如果两个角相等,那么这两个角的补角相等”.解:(1)条件:两条直线相交;结论:它们只有一个交点. (2)条件:两条直线被第三条直线所截,同旁内角互补;结论:两直线平行. (3)这个命题可以改写成“如果两个角是等角的补角,那么这两个角相等”.条件:两个角是等角的补角;结论:这两个角相等. (4)这个命题可以改写成“如果一个四边形是平行四边形,那么它的对边相等”.条件:一个四边形是平行四边形;结论:它的对边相等.8.解析:如果AE=AD,AB=AC,那么∠B=∠C.根据SAS得ΔABE≌ΔACD,推出∠B=∠C即可.解:如果AE=AD,AB=AC,那么∠B=∠C.在ΔABE和ΔACD中,所以ΔABE≌ΔACD,所以∠B=∠C.所以这是真命题.(答案不唯一)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中或数学学习中遇到的语句特征
教学过程
课堂笔记
一、自主学习
(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)
①生活中交流时必须对某些名称和术语有共同的认识才能进行;
② 对定义含义的解释;
③ 举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);
励志名言成功=自信+方法+勤奋22335 573F 圿K31627 7B8B 箋,`30287 764F 癏F25376 6320 挠35645 8B3D 謽34668 876C 蝬24567 5FF7 忷24121 5E39 帹325738 648A 撊
一般情况下:疑问句不是命题.图形的作法不是命题.
三 当堂检测
1.判断是命题吗?
如:①画线段AB=3 cm.
②两条直线相交,有几个交点?
③等于同一个角的两个角相等吗?
④在射线OA上,任取两点B、C.等等.
3.巩固提高
指出下列命题的条件和结论.
(1)若a>0,b>0,则ab>0.
(2)如果a∥b,b∥c,那么a∥c.
(3)同角的补角相等.
(4)内错角相等,两直线平行.
五 拓展提升
举出反例说明下列命题是假命题.
(1)大于90°的角是钝角;
(2)如果一个角的两条边分别平行于另一个角的两条边,那么这两个角相等.
六、反思与纠错
① 定义的含义:
② 命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.
2019-2020年八年级数学上册 7.2.1 定义与命题教学案(无答案)(新版)北师大版
学 科
数学
课题
7.2.1定义与命题
授课教师
教学
目标
了解定义与命题的含义,会区分某些语句是不是命题
重点
用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.
德育
目标
通过对某些语句特征的判断学会严谨的思考习惯.
二、互动导学
对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.
即:命题是判断一件事情的句子.如:
熊猫没有翅膀.
对顶角相等.
大家能举出这样的例子吗?
说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:
你喜欢数学吗?
作线段AB=a.
平行用符号“∥”表示.
这些句子没有对某一件事情作出任何判断,那么它们就不是命题.
相关文档
最新文档