与勾股定理相关的旋转问题
勾股定理典型题总结(较难)
勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。
求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。
《勾股定理》专项训练练习
60 120140 60BACC A BDE 1015《勾股定理》专项训练练习基础篇1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A. 3cm2B. 32cm2C. 33cm 2D. 4cm 24. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定8、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 210、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.13、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .14、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____15、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和103㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?17、小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18、如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由19、如图,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A,CD=2cm,求AB 的长.第12题图 第13题图 第15题图A B D专题篇一、勾股定理与梯子问题1、如图1,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,如图2,测得BD长为0.5米,求梯子顶端A下落了多少米.2、比较梯子沿墙壁滑行时其在墙壁和地面上滑行距离的大小关系例2如图3,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB①等于1米;②大于1米;③小于1米.其中正确结论的序号是________.(要求写出过程)二、勾股定理中的数学思想1、面积法.已知△ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.2、构造法.如图,已知△ABC中,∠B=30°,∠C=45°,AB=4,AC=22.求△ABC的面积.3、转化思想.如图3,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.4、分类讨论思想.已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.5、方程思想.如图4,AB为一棵大树,在树上距地面10米的D处有两只猴子,它们同时发现C处有一筐苹果,一只猴子从D往上爬到树顶A又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C.已知两只猴子所经路程都是15米.试求大树AB的高度.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.6、逆向思维的方法如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.图3DABC图4DCBAABC三、勾股定理在影响范围问题中的运用1、如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。
初中数学《几何旋转》重难点模型汇编(四大题型)含解析
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
17.2 勾股定理的逆定理(2)旋转勾股
17.2 勾股定理的逆定理(二)基础版【教学目标】1.掌握勾股定理及逆定理与旋转综合的图形特征、基本思路以及问题类型,熟练解此类问题.2.掌握勾股定理及逆定理与常规问题的图形特征、基本思路以及问题类型,熟练解此类问题.3.掌握勾股定理及逆定理与夹半角综合的图形特征、基本思路和变式类型,熟练解此类问题.【重点难点】1.旋转问题(构手拉手全等&Rt△);2.常规问题(导角导线、Rt△斜边中点处的直角、逆命题);3.夹半角模型(构Rt△).【夯实基础】1.勾股定理及逆定理与旋转问题的图形特征:.2.勾股定理及逆定理与旋转问题的基本思路:.3.勾股定理及逆定理与旋转问题的问题类型:.【基本图形】1.旋转问题:2.等腰Rt△夹半角:(1)基本图已知等腰Rt△ABC,∠ACB=90°,E、F是斜边AB上两点,△ECF=45°.结论AE2+BF2=EF2.证法①旋转法(vs过A作AF′△AB且AF′=BF,连CF′、EF′);②轴对称法.△CEF′ ≌△CEF(SAS),Rt△AEF′△CFA′ ≌△CFB(SAS),Rt△A′EF(2)变式图已知等腰Rt△ABC,∠ACB=90°,E、F是直线AB上两点,△ECF=45°.结论AE2+BF2=EF2.证法①旋转法(vs过A作AF′△AB且AF′=BF,连CF′、EF′);②轴对称法.△CEF′ ≌△CEF(SAS),Rt△AEF′△CFA′ ≌△CFB(SAS),Rt△A′EF重难点1勾股定理及逆定理与旋转问题♀例一♀.(手拉手)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA、DB、PB,则BD是否有最大值和最小值,若有直接写出,若图1 图2 图3♂巩固练习♂1.如图,在△ABC中,△ACB=90°,AC=BC,P是△ABC内一点,且P A=3,PB=1,CD=CP=2,CD ⊥CP,求△BPC的度数.♀例二♀.如图,在△ABD中,AB=AD,△BAD=90°,P A=a,PB=b.(1)若P点在△ABD外,且△APB=45°,求PD的长;(2)若P点在△ABD内,且△APB=135°,求PD的长.1.正方形ABCD内一点P,连接P A、PB、PC.(1)若P A:PB:PC=1:2:3,求△APB的度数;(2)若P A2+PC2=2PB2,求证:点P在对角线AC上.♀例三♀.(1)利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,P A=1,PB3,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△P AP′中,易证∠P AP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内一点,∠ACB=90°,P A=2,PB2,PC=1.求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=4,CD=5,AB=AC=12AD,∠BAC=2∠ADC,请直接写出BD的长.图1 图2 图31.在△ACD中,AD=4,CD=3;在△ABC中,AB=AC.(1)如图1,若△CAB=60°,△ADC=30°,△在△ACD外作等边△ADD′,求证:BD=CD′;△求BD的长;(2)如图2,若△CAB=90°,△ADC=45°,求BD的长.图1 图22.请阅读下面的材料:问题:如图△,在等边△ABC内有一点P,且P A=2,PB=PC=1,求△BPC的度数和等边△ABC的边长;李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图②).连接PP′.根据李明同学的思路,进一步思考后可求得∠BPC=°,等边△ABC的边长为.(2)请你参考李明同学的思路,探究并解决下列问题:如图③,在正方形ABCD内有一点P,且P A,BP PC=1,求∠BPC的度数和正方形ABCD的边长.①②③♀例四♀.如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接P A、PB、PC,且P A=2PC,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连结DP,易证△DAP为等边三角形,则α=,β=;(2)如图2,若PB=2P A,则α=,β=;(3)如图3,试猜想α与β之间的数量关系,并给予证明.图1 图2 图3♂巩固练习♂1.如图,P是正△ABC内一点,且P A=6,PB=8,PC=10,求S△P AB+S△P AC的值.重难点2勾股定理及逆定理与常规问题♀例五♀.等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图△).(1)求证:AM=AN;(2)连接DE分别与边AB、AC交于点G、H,如图②,当∠BAD是多少度时,AD=DH?①△♂巩固练习♂1.如图,在△ABC中,△ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、CD分别交于点G、H,△ABE=△CBE.(1)线段HB与AC相等吗?若相等,请给予证明;若不相等,请说明理由;(2)求证:BG2-GE2=EA2.♀例六♀.(Rt△斜边中点处的直角)如图,在△ABC中,D是BC的中点,点M是AB上的点,点N在AC边上,并且△MDN=90°,如果BM2+CN2=DM2+DN2,求证:△BAC=90°.♂巩固练习♂1.如图△,在△ABC中,CA=CB,△ACB=90°,D为AB的中点,M、N分别为AC、BC上的点,且DM ⊥DN.(1)求证:CM+CN=2BD;(2)如图△,若M、N分别在AC、CB的延长线上,探究CM、CN、BD之间的数量关系.①△2.如图,在△ABC中,AB=6,AC=10,AD是BC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE.(1)求证:△AEC是直角三角形;(2)求BC边的长.3.如图,CD是△ABC的高,D在边AB上,且CD2=AD·DB,求证:△ABC为直角三角形.重难点3勾股定理及逆定理与夹半角模型♀例七♀.△ABC中,△BAC=90°,AB=AC,点D、E在直线BC上,如图1,若△DAE=45°,求证:BD2+CE2=DE2.【阅读理解】要证明BD2+CE2=DE2,设法将BD、CE、DE转化为某直角三角形的三边即可,故过A作AF⊥AD,且AF=AD.连接CF、EF.再通过证明△ABD≌△ACF,△AED≌△AEF.即可将BD、CE、DE 三边转化到直角△ECF中解决问题.【拓展应用】如图2,若∠DAE=135°,其他条件不变,请探究:以线段BE、CD、DE的长度为三边长的三角形是何种三角形?并说明理由.图1 图2♂巩固练习♂1.(1)如图△,在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求△EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M、N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN、ND、DH之间的数量关(3)在图①中,连接BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=32,求AG、MN的长.①△2.如图,已知在Rt△AOB中,OA=OB,△AOB=90°,E、F在AB上,且△EOF=45°.(1)求证:EF2=AE2+BF2;(2)如图,过E作EM⊥OA于M,过F作FN⊥OB于N,ME、NF交于点P,若设NF=x,ME=y,PE =a,则x2+y2与a2之间的关系式为,若△AME、△BFN、△PEF的面积分别为S1、S2、S3,则S1+S2与S3之间的数量关系为.♀例八♀.某数学兴趣小组开展了一次活动,过程如下:如图1,在等腰△ABC中,AB=AC,△BAC=90°,小敏将一块三角板中含45°角的顶点放在点A处,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE存在等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);(3)小敏继续旋转三角板,在探究中得出当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,现请你继续研究:当135°<α<180°时(如图4)等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.图1 图2 图3 图4♂巩固练习♂1.已知Rt△ABC中,△ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C 旋转,且直线CE、CF分别与直线AB交于点M、N.(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,△PMN的形状是,线段AM、BN、MN之间的数量关系是.(2)如图②,当扇形CEF绕点C在∠ACB内部旋转时,线段MN、AM、BN之间的数量关系是.试证明你的猜想;(3)当扇形CEF绕点C旋转至图③的位置时,线段MN、AM、BN之间的数量关系是.(无需证明)①△ △2.(1)如图△,在△ABC中,BA=BC,D、E是AC边上的两点,且满足△DBE=12△ABC(0°<△CBE<12△ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D、E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.(3)如图3,在△ABC中,BA=BC,∠ABC=90°,点E是AC边上的点,点D是CA边延长线上的点,且∠DBE=45°.第(2)题中的结论:DE2=AD2+EC2还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图1 图2 图3。
勾股定理与旋转问题专题
勾股定理与旋 转问题专题
单击此处添加文本具体内容,简明扼要地阐述 你的观点
C
一.在△ABC中,∠ACB=90°,
P
AC=BC,P是△ABC内一点,
A
B
PB=1,PC=2,PA=3.
求∠BPC
P' C
P
A
B
A P
B
D
二.P是正方形ABCD内一点, PA=1,PB=2,PC=3,以B为旋转 中心,将△ABP按顺时针方向旋 转,使得点A与C重合,点P旋 转到点G.
E
A
D FC
C NP
BM
练习7、如图,在△ABC中,∠B=90°, M为AB上一点,AM=BC,N为BC上一 点,CN=BM,连接AN、CM交于点P。 求∠APM的大小。
A
求证:MN2=AM2+BN2 B
练习5、在等腰
C
Rt△ABC中,
∠CAB=90°,P是三角形
内一点,且
PA=1,PB=3,PC2=7
求:∠CPA的大小?
P
A
B
B
练习6.如图所示, △ABC是等腰直角三角 形,AB=AC,D是斜边 BC的中点,E、F分别 是AB、AC边上的点, 且DE⊥DF,若BE=12, CF=5.求线段EF的长。
求∠APB
C
A
练习2.P是正三角
P
形ABC内一点,且
PA=3a,PB=4a,PC
=5a.
B
C
求∠APB
A
练习3.在四边形
ABCD中,
B ∠ABC=30°,
∠ADC=60°,
AD=CD.
求证: BD2=AB2+BC 2
与勾股定理相关的旋转问题
例3 如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC 边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F。求 证:AE2+CF2=DE2+DF2.
即学即练 已知凸四边形ABCD中,∠ABC =∠ADC = 45°,AC=AD,
求证:BD2=2AB2+BC2.
小结
1.这节课你学到了哪些解题的思想和方法? 2.本节课你还有什么困惑?
与勾股定理相关的旋转问题
学习目标
1.掌握与勾股定理相关的旋转问题模型; 2.会用旋转法做辅助线,构造直角三角形 使用勾股定理; 3.掌握与勾股定理相关的旋转问题的解题 方法和技巧。
方法指导:对于条件较分散而题中又含 公共顶点相等的边(一般是相邻的边) 时,常采用旋转法,将分散条件集中到 一个三角形中去。
例1 如图,在△ABC中,∠BAC=90°,AB=AC,点D,E在BC 上,且∠DAE=45°,求证:CD2+BE2=DE2.
即学即练 如图,等腰直角三角形ABC中,点D在斜边BC上,求证:
BD2+CD2=2AD2.
例2 如图所示,在△ABC中,∠ACB=90°,AC=BC,P是 △ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。
即学即练 如图,P是等边三角形ABC内一点。
(1)若PA=4,PC=3,PB=5,求∠APC; (2)若∠APB:∠BPC:∠CPA=5:6:7,则以PA、PB、PC 为边的三角形的三个角分别是多少?
即学即练 如图,P是正方形ABCD内一点,且 PA 1, PB 2, PC 3 ,
求∠APB的度数。
九年级数学上册第二十三章旋转经典大题例题(带答案)
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
初中数学旋转的六大模型,初中几何旋转经典例题
初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。
本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。
旋转是指一个图形绕着某一点转动一定的角度。
在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。
旋转的角度一般用角度或者弧度来表示。
中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。
绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。
旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。
旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。
旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。
旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。
例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。
求证:EF平分∠AEB。
证明:我们可以通过旋转证明。
把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。
因为CF=2AF,所以FG=2FE。
所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。
例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。
求证:EF^2=AE^2+BF^2。
证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。
专题08 旋转中的最值问题(解析版)
专题08 旋转中的最值问题考点一 费马点问题求最值【方法点拨】费马点证明都是依据旋转思想,构造三角形全等,然后将三条线段之和转化到是否在一条直线上来决定最小值。
这个思路一定要掌握,因为它会应用在实际的考试题目中。
【典例剖析】1.(经典例题)已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.【点拨】顺时针旋转△BPC 60度,可得△PBE 为等边三角形,若P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,求出AF 的值即可.【解析】解:顺时针旋转△BPC 60度,可得△PBE 为等边三角形.即得P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,即如下图:可得最小P A +PB +PC =AF .此时∠EBC +∠CBP =∠FBE +∠EBC =60°=∠FBC ,所以∠ABF =90°+60°=150°,∠MBF =30°,BM =BF •cos30°=BC •cos30°=√32,MF =12,则AM =1+√32=2+√32, 在△AMF 中,勾股定理得:AM 2+MF 2=AF 2AF =√2+√3=(√22)2+2×√22×√62+(√62)2=(√2+√62)2=√2+√62.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接P A、PB、PC,求P A+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,P A+PB+PC的最小值为√61;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于P A+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当P A+PB+PC值最小时PB的长.【点拨】(1)先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=5,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为P A+PB+PC的最小值;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD即为P A+PB+PC最小值的线段;②当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.先由旋转的性质得出△APC≌△DEC,则CP=CE,再证明△PCE是等边三角形,得到PE=CE=CP,然后根据菱形、三角形外角的性质,等腰三角形的判定得出BP=CP,同理,得出DE=CE,则BP=PE=ED=13BD.【解析】解:(1)如图2.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC,∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,∴BE=√BC2+CE2=√62+52=√61,即P A+PB+PC的最小值为√61;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD等于P A+PB+PC最小值的线段;②如图,当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=12∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=60°﹣∠30°=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt △BOC 中,∵∠BOC =90°,∠OBC =30°,BC =4,∴BO =BC •cos ∠OBC =4×√32=2√3,∴BD =2BO =4√3,∴BP =13BD =4√33.即当P A +PB +PC 值最小时PB 的长为4√33. 故答案为:4√33.3.(延庆县一模)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB =2,AC =4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ′BC ,连接A ′A ,当点A 落在A ′C 上时,此题可解(如图2).(1)请你回答:AP 的最大值是 6 .(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB =4,P 为△ABC 内部一点,请写出求AP +BP +CP 的最小值长的解题思路.提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).【点拨】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论P A+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【解析】解:(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)①旋转后的图形如图1;②如图2,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A1P1B.则A1B=AB=BC=4,P A=P1A1,PB=P1B,∴P A+PB+PC=P1A1+P1B+PC.∵当A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,∴A1C=P A+PB+PC,∴A1C长度即为所求.过A1作A1D⊥CB延长线于D.∵∠A1BA=60°(由旋转可知),∴∠A1BD=30°.∵A1B=4,∴A1D=2,BD=2√3∴CD=4+2√3;在Rt△A1DC中,A1C=√A1D2+DC2=√22+(4+2√3)2=2√2+2√6.4.(2019春•灞桥区校级期末)问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,△ABC是边长为1的等边三角形,P为△ABC内部一点,连接P A、PB、PC,求P A+PB+PC 的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将△BP A绕点B逆时针旋转60°至△BP'A',连接PP'、A'C,记A′C与AB交于点D,易知BA'=BA=BC=1,∠A'BC=∠A'BA+∠ABC=120°.由BP'=BP,∠P'BP=60°,可知△P'BP 为正三角形,有PB=P'P.故PA+PB+PC=P′A+P′P+PC≥A′C=√3.因此,当A'、P'、P、C共线时,P A+PB+PC有最小值是√3.学以致用:(1)如图3,在△ABC中,∠BAC=30°,AB=4,CA=3,P为△ABC内部一点,连接P A、PB、PC,则的最小值是5.(2)如图4,在△ABC中,∠BAC=45°,AB=2√2,CA=3,P为△ABC内部一点,连接P A、PB、PC,求√2PA+PB+PC的最小值.(3)如图5,P是边长为2的正方形ABCD内一点,Q为边BC上一点,连接P A、PD、PQ,求P A+PD+PQ 的最小值.【点拨】(1)将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(2)将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,转化为两定点之间的折线(化星为折),再利用“垂线段最短”求最小值.【解析】解:(1)如图3中,将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,在Rt△EAB中,BE=√AE2+AB2=5,∵P A+PB+PC=EF+FP+PB≥BE,∴P A+PB+PC≥5,∴P A+PB+PC的最小值为5.故答案为5.(2)如图4中,将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,∵∠H=90°,∠EAH=45°,AE=AB=2√2∴EH=AH=2,在Rt△EHC中,EC=√22+52=√29∵√2P A+PB+PC=FP+EF+PC≥CE,∴P A+PB+PC≥√29,∴P A+PB+PC的最小值为√29.(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,作EH ⊥BC 于H ,交AD 于G .∵P A +PD +PQ =EF +FP +PQ ≤EH ,易知EG =AE •sin60°=√3,GH =AB =2,∴EH =2+√3,∴P A +PD +PQ ≤√3+2,∴P A +PD +PQ 的最小值为√3+2.考点二 其它旋转中的最值问题【方法点拨】正确的作出辅助线构造全等三角形是解决此类题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线.【典例剖析】1.(无锡一模)如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可以与B 点或C 重合),分别过B ,C ,D 作射线AP 的垂线,垂足分别是B ',C ',D ',则BB '+CC '+DD '的最大值与最小值的和为 2+√2 .【点拨】连接AC ,DP ,根据正方形的性质可得出AB =CD ,S正方形ABCD =1,由三角形的面积公式即可得出12AP •(BB ′+CC ′+DD ′)=1,结合AP 的取值范围即可得出BB ′+CC ′+DD ′的范围,将其最大值与最小值相加即可得出结论.【解析】解:连接AC ,DP ,如图所示.∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB =CD ,S 正方形ABCD =1,∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,∴S △ADP +S △ABP +S △ACP =1,∴12AP •BB ′+12AP •CC ′+12AP •DD ′=12AP •(BB ′+CC ′+DD ′)=1, 则BB ′+CC ′+DD ′=2AP, ∵1≤AP ≤√2, ∴当P 与B 重合时,有最大值2;当P 与C 重合时,有最小值 √2.∴√2≤BB ′+CC ′+DD ′≤2,∴BB '+CC '+DD '的最大值与最小值的和为2+√2.故答案为:2+√2.2.(2019•金台区二模)如图,正方形ABCD 的边长为2√3,点E 为正方形外一个动点,∠AED =45°,P 为AB 中点,线段PE 的最大值是 √15+√6 .【点拨】当点E 在正方形右侧时,连接AC ,BD 交于点O ,连接PO ,EO ,根据A ,C ,E ,D 四点共圆,可得OE =OD =12BD =√6,再根据PE ≤OP +OE =√6+√3,可得当点O 在线段PE 上时,PE =OP +OE =√6+√3,则线段PE 的最大值为√6+√3;当点E 在正方形上方时,作斜边为AD 的等腰直角△AOD ,则点E 在以O 为圆心,OA 为半径的圆上,当点P ,点O ,点E 共线时,PE 的值最大,求得此时PE 最大值为√15+√6;比较两个最大值,可得最终结果.【解析】解:如图,若点E在正方形右侧,连接AC,BD交于点O,连接PO,EO,∵∠AED=45°,∠ACD=45°,∴A,C,E,D四点共圆,∵正方形ABCD的边长为2√3,∴OE=OD=12BD=√6,∵P为AB的中点,O是BD的中点,∴OP=12AD=√3,∵PE≤OP+OE=√6+√3,∴当点O在线段PE上时,PE=OP+OE=√6+√3,即线段PE的最大值为√6+√3,如图,点E在正方形ABCD上方,作斜边为AD的等腰直角△AOD,∠AOD=90°,则点E在以O为圆心,OA为半径的圆上,∴当点P,点O,点E共线时,PE的值最大,过点O作ON⊥AB,交BA延长线于点N,∵AD=2√3,AO=DO,∠AOD=90°∴AO=√6,∠OAD=45°,∵ON⊥AB,AD⊥AB∴∠NAO=∠NOA=45°∴AN=NO=√3∴PO=√PN2+ON2=√12+3=√15∴PE最大值为√15+√6>√6+√3,故答案为:√15+√63.(2018•无锡一模)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC (A,B,C为顺时针顺序),求OC的最大值【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB 的左侧作等边三角形BOE,连接AE.(1)请你找出图中与OC相等的线段,并说明理由;(2)线段OC的最大值为3.【灵活运用】(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB 外一动点,且P A=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.【迁移拓展】(4)如图③,BC=4√2,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.【点拨】(1)结论:OC=AE.只要证明△CBO≌△ABE即可;(2)利用三角形的三边关系即可解决问题;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=P A=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2√2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4√2=定值,∠BDC=90°,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;【解析】解:(1)如图①中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60°,∴∠CBO=∠ABE,∴△CBO≌△ABE,∴OC=AE.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为3,∴OC的最大值为3.故答案为3.(3)如图1,连接BM,菁优网∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)最大值=AB+AN,∵AN=√2AP=2√2,∴最大值为2√2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO﹣AB﹣AE=5﹣3−√2=2−√2,∴P(2−√2,√2).(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4√2=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2√2+2 √2,∴AC的最大值为2√2+2√6.当点A在线段BD的右侧时,同法可得AC的最小值为2√6−2√2.4.如图1正方形ABCD,边CD在等腰三角形DEF的边DE上,AB=3,DE=5,连接AE、CF,点M、N 分别是AE、CF的中点,连DM、DN、MN.(1)直接写出AE与CF的关系和△DMN的形状.(2)如图2,将等腰直角三角形DEF绕点D顺时针旋转α°(0°≤α≤45°),连接AE、CF,点M、N分别是AE、CF的中点,连DM、DF、MN.此时(1)中的两个结论是否成立?若成立,给出证明;若不成立,说明理由.(3)在(2)的条件下,△ECF的面积在旋转过程中变化吗?若没有变化,请直接写出面积;若有变化,请直接写出它的最大值和最小值.【点拨】(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.证明△ADE≌△CDF(SAS)即可解决问题.(2)如图2中,结论成立.证明△ADE≌△CDF(SAS),再证明△ADM≌△CDN(SSS)即可解决问题.(3)△DMN的面积是变化的.求出△DMN面积的最小值或最大值即可解决问题.【解析】解:(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.理由:延长FC交AE于H.∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∵△DEF是等腰直角三角形,∴DE=DF,∠DEF=90°,∵AD=DC,∠ADE=∠CDE,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠EAD+∠AED=90°,∠HCE=∠DCF,∴∠HCE+∠AED=90°,∴∠CHE=90°,∴AE⊥CF,∵AM=EM,CN=NF,∴DM=12AE=AM=ME,DN=12CF=CN=NF,∴DM=DN,∠ADM=∠MAD,∠DCN=∠NDC,∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(2)如图2中,结论成立.理由:延长FC交AE于H.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵AD=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠DCF+∠DCH=180°,∴∠DAH+∠DCH=180°,∴∠ADC+∠AHC=180°,∵∠ADC=90°,∴∠AHC=90°,∴AE⊥CF,∵△ADE≌△CDF,DM,DN是三角形的中线,∴DM=DN,AM=CN,∵AD=DC,∴△ADM≌△CDN(SSS),∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(3)如图3中,△ECF的面积在旋转过程中有变化.①当DE与DC重合时,DM的长最小,此时△DMN的值最小,DM最小值=12•√AD2+DE2=12•√32+52=√342,此时△DMN的面积=12×√342×√342=174.②当旋转角为45°时,DM 的值最大,此时△DMN 的面积最大.如图3中,DA =3,DE =5,∠ADM =45°,作 EH ⊥DA 交DA 的延长线于H ,MK ⊥AH 于K . 则HE =DH =5√22,∵MK ∥EH ,AM =ME ,∴AK =KH =12(DH ﹣AD )=12(5√22−3),MK =12EH =5√24, ∴DM 2=MK 2+DK 2=(5√24)2+[3+12(5√22−3)]2=172+15√24, ∴△DMN 的面积的最大值=12DM 2=174+15√28.。
专题勾股定理培优版(综合)
专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。
(完整版)勾股定理经典题目及答案
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理的十道压轴题
勾股定理的十道压轴题1. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长. (1)解:蚂蚁能够最快到达目的地的可能路径有如图的AC ′1和AC 1.(2)解:如图,在Rt△ACC 1中,根据勾股定理,得AC 1=212CC AC +=224)44(++=45. 所以蚂蚁爬过的最短路径的长是45.2. 在△ABC 中,△C =90°,AC =24,BC =7,△ABC 内存在一点P 到三边距离相等,这个距离是( ).知识点: 等面积法(两直角边的乘积等于斜边与斜边上高的乘积) 。
题干中的直角三角形隐藏着解题信息:斜边可通过勾股定理求出,面积可以通过两个直角边求出,所以常用三角形面积相等来列方程.思路分析:已知AC与BC,根据勾股定理,可以求出AB;S△ABC可以用AC乘以BC求出;S△ABC也可以用S△PAB+S△PBC+S△PCA来表示(这三个三角形的面积都可以用所求的距离表示);利用三角形面积相等来列方程,方程只有一个未知数,可解.3. 如图△ABC中,∠C=90°,AD平分∠A,CD=3,BD=5,AC的长是()。
知识点:角分线构造全等三角形,方程思想。
直角三角形含着勾股定理这一解题思路;△ABC有一个直角,可以结合角分线构造全等三角形(过角分线上一点作两边的垂线);勾股定理是一个等式,所以可以根据它来构建方程。
思路分析:利用角分线构造全等三角形,根据勾股定理建立方程.作DE⊥AB于E,易证△ACD≌△AED。
则AE=AC,DE=CDBE可以根据DE与BD求出,则AB可以用AC来表示.根据勾股定理可得AB2=AC2+BC2,其中只有AC一个未知数,可解.4. 《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c.(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:( );(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a +b )2的值.解:(1)图(1)中的大正方形的面积可以表示为c 2,也可表示为(b -a )2+4×21ab△(b -a )2+4×21ab =c 2化简得b 2-2ab +a 2+2ab =c 2 △当△C =90°时,a 2+b 2=c 2; (2)(x +y )(x +2y )=x 2+3xy +2y 2(3)依题意得a 2+b 2=c 2=13,(b -a )2=1,则2ab =12 △(a +b )2=a 2+b 2+2ab =13+12=25,即(a +b )2=255. 如图,线段AB 上有一个动点P ,CA 与BD 都垂直AB ,AB =8,AC =5,BD =1. 则PC +PD 的最小值是( )思路分析:根据勾股定理求最值过点C 作AB 的平行线,与BD 的延长线交于点E ,则BE =AC =5,DE =6,CE =8,∠CED =90°,则可以求出CD 长度,即是PC +PD 的最小值.6. 如图△ABC中,D是AB的中点,AC=24,BC=7,CD=12.5,AB的长是( )知识点:勾股定理逆定理,倍长中线思路分析:利用所给条件,构造直角三角形;有中点,可以延长CD到E,使DE=CD,连接AE.则AE=BC=7,AC=24,CE=25,根据勾股定理的逆定理,可得△E=90°在直角△AED中,可以计算出AD,最后求出AB.7. 如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接BP.已知BD△AC,且BO=OD,△BP=PD,则BP+EP=ED,此时最短.△AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52,△ED=BP+EP=5.8. 如图△ABC中,∠C=90°,AC=BC=6√2,∠DCE=45°,BD=8,则DE的长是( )知识点:勾股定理,半角模型,方程思想思路分析:利用半角模型的解题思路:旋转。
勾股定理题型很全面
典型例题:一、利用勾股定理解决实际问题例题:水中芦苇梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高米的学生,要走到离门多远的地方灯刚好打开2、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少3、如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我反走私A艇发现正东方向有一走私艇C以每小时海里的速度偷偷向我领海开来,便立即通知正在MN在线巡逻的我国反走私艇B密切注意,反走私A艇通知反走私艇B时,A和C两艇的距离是20海里,A、B两艇的距离是12海里,反走私艇B测得距离C是16海里,若走私艇C的速度不变,最早会在什么时间进入我国领海二、与勾股定理有关的图形问题1.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形如图,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______ ___.4.如图,△ABC中,∠C=90°,1以直角三角形的三边为边向形外作等边三角形如图①,探究S1+S2与S3的关系;2以直角三角形的三边为斜边向形外作等腰直角三角形如图②,探究S1+S2与S3的关系;3以直角三角形的三边为直径向形外作半圆如图③,探究S1+S2与S3的关系.图①图②图③5.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an=___ _____记正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n n为正整数,那么S n=____ ____.6、如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为.三、关于翻折问题1、如图,折叠矩形纸片ABCD,先折出折痕对角线BD,再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD沿对角线AC折叠,点B落在点E处,EC与AD相交于点F.1求证:△FAC是等腰三角形;2若AB=4,BC=6,求△FAC的周长和面积.3、如图,将矩形ABCD沿直线AE折叠,顶点D恰好点处,已知cmCE6=,cmAB16=,求BF的长.4、如图,一张矩形纸片ABCD的长AD=9㎝,宽AB=3㎝;;求折叠后BE的长和折痕EF的长;5、矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点着色如图,求着色部分的面积;6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,CD边上的点G处,求BE的长.7如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点’的长.五、四、关于最短性问题1:如图1,长方体的长为12cm,宽为6cm,高为5cm,一只蚂蚁沿侧面从A点向B点爬行,问:爬到B点时,蚂蚁爬过的最短路程是多少2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫3:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环,你一定会发现其中的奥妙6、有一圆柱形食品盒,它的高等于16cm,底面直径为20cm, 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的厚度和蚂蚁的大小忽略不计,结果可含πA 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的,结果可含π 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:12当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为五、关于勾股定理判定三角形形状1、已知,△ABC 中,AB=17cm,BC=16cm,BC 边上的中线AD=15cm,试说明△ABC 是等腰三角形; 2:已知△ABC 的三边a 、b 、c,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形你能说明理由吗 3、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,设AC=b,BC=a,AB=c,CD=h . 试说明:1;2a+b <c+h ;3判断以a+b 、h 、c+h 为边的三角形的形状,并说明理由.4、在等腰直角三角形ABC 的斜边AB 上取两点M,N,使∠MCN=45°,记AM=m,MN=x,BN=n;试判断以x,m,n 为边长的三角形的形状;六、关于旋转中的勾股定理的运用: 1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长;变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=求△ABC 的边长. 分析: 利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 七、关于勾股定理的相关证明1、如图,在△ABC 中,AB=AC,P 为BC 上任意一点,求证:22AB AP PB PC -=⋅ 分析:考虑构造直角三角形,能利用勾股定理.2,如图,在△ABC 中,∠BAC=90°,AB=AC,D 是BC 上的点.求证: BD 2+CD 2= 2AD 2..八、综合题1、已知Rt △ABC 中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA 的扇形CEF 绕点C旋转,且直线CE,CF 分别与直线AB 交于点M,N .Ⅰ当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图1,求证:MN2=AM2+BN2; 思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.Ⅱ当扇形CEF 绕点C 旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立若成立,请证明;若不成立,请说明理由.2、如图,已知反比例函数的图象与一次函数y=k2x+b 的图象交于A,B 两点,A1,n, B-,-2. 1求反比例函数和一次函数的解析式; 2在x 轴上是否存在点P,使△AOP 为等腰三角形若存在,请你直接写出P 点的坐标;若不存在,请说明理由.。
专题2:利用旋转作辅助线(全等构造)解决勾股定理及逆定理问题
17.17专题2:利用旋转作辅助线(全等构造)解决勾股定理及逆定理问题一.【知识要点】
1.利用旋转作辅助线(全等构造)解决勾股定理及逆定理问题
二.【经典例题】
1.如图,在△ACD中,AD=9,CD=32,△ABC中,AB=AC.
(1)如图1,若∠CAB=60°,∠ADC=30°,在△ACD外作等边△ADD′.
①求证:BD=CD′;②求BD的长.
(2)如图2,若∠CAB=90°,∠ADC=45°,求BD的长.
2.阅读下列材料:
等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP´,可得△P´PB是等边三角形(可证),而△PP´A又是直角三角形(由勾股定理的逆定理可证).所
题得到解决.
请你参考李明同学旋转的思路,探究并解决下列问题:
形ABCD的边长.
三.【题库】
【A】
【B】
【C】
边△ABC的边长.
【D】。
(完整word版)中考数学压轴题旋转问题带答案
旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。
旋转性质-—-—对应线段、对应角的大小不变,对应线段的夹角等于旋转角。
注意旋转过程中三角形与整个图形的特殊位置. 一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D 。
过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.C(第1题)解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB—∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.3、(2009年北京市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2。
勾股定理旋转解题思路
勾股定理旋转解题思路在数学的世界里,勾股定理就像一颗璀璨的明珠,闪闪发光。
想象一下,咱们在一个阳光明媚的下午,坐在公园的长椅上,阳光洒在脸上,旁边有小鸟在唱歌,心情那叫一个好啊。
突然,有个小朋友在玩球,球滚到了一个斜坡上。
他们想知道,这个斜坡有多高。
我们心中立刻浮现出勾股定理,想要用它来解这个问题。
就像小朋友的球一样,直接往上滚,这样的思路真是让人眼前一亮。
说到勾股定理,很多人可能一开始就皱起了眉头,觉得这玩意儿太复杂了。
但是,亲爱的朋友们,听我说,这其实简单得不能再简单了。
勾股定理告诉我们,直角三角形的两条直角边的平方和等于斜边的平方。
这就好比你把两个小房间拼起来,最后形成一个大房间。
简单明了,不是吗?现在想象一下,如果我们把这个直角三角形旋转一圈,那会发生什么呢?就像是给你的房间换了个新样子,真是妙趣横生。
好啦,我们回到那个小朋友和球的故事。
小朋友想知道斜坡的高度,于是我们就可以运用勾股定理,把这个高度变成一个数学问题。
假设斜坡的底边是3米,高是4米,那么斜坡的长度就是5米。
这个过程就像是做一道简单的数学题,轻轻松松就解开了。
于是小朋友高兴得手舞足蹈,像小鸟一样在草地上跳来跳去,快乐得不得了。
如果我们更深入一点,想象一下,如果把这个直角三角形旋转成一个圆锥体,那这个形状又会有什么样的变化呢?这就像是把一个普通的冰淇淋球放在了一个美丽的华丽蛋糕上。
旋转的过程中,直角三角形的各个边就像是不断在舞蹈一样,优雅而又神秘。
咱们不仅可以用勾股定理来计算直角三角形的边长,还能用它来研究这些旋转后形状的特征。
这个过程就像是揭开了一个个秘密,让人忍不住想要一探究竟。
再说说实际生活中的例子吧。
咱们去爬山,路上有很多斜坡,这时候勾股定理就派上用场了。
比如,咱们站在山脚下,想知道到达山顶的最短路径。
通过测量山脚到山顶的水平距离和高度,我们就能用勾股定理来算出这条最短的路径,简单又实用,难怪大家都说它是数学界的“万金油”呢。
勾股定理与旋转
1 如图正方形ABCD 的边长为3,E 为CD 边上的一点,DE=1,以点A 为中心,顺时针旋转90º得∆ABE ´,连接EE ´,则EE ´的长为_____2如图,P 为等边三角形内一点,PC=5,PB=12, ∠BPC=150º (1)求PA 的长(2)将⊿BAP 绕点B 顺时针旋转60º,请画出旋转后的图形,并标出相应点的字母,连接CA ',则∆BA ´P 为__三角形,∆PA ´C 为__三角形,PA ´=___(3) PC , PA ´ ,A ´C 之间有何等量关系?3 ∆ABC 中,∠BAC=90º AB=AC ∠EAD=45º (1)当点在线段上时,求证BE ²+CF ²=EF ²(2)将∆ABE 绕__点__时针旋转__度,得∆ACE ´,连接DE ´,则∠E ´CD=__∠1+∠2=___ ∠E ´AD=∠2+∠3=___ ∆ AED ≌∆__(3)当点E 在线段BC 上时,D 在BC 延长线上时,上述结论是否还成立,若成立,请证明,若不成立,请说明理由4, ∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数B CD EE A B CPA B CD E BC AP5、 P 是正方形ABCD 内一点,连接PA ,PB ,PC (1)将∆PAB 绕点B 顺时针旋转90º到∆P ´CB 的位置,若PA=2,PB=4,∠APB=135º ,求PP ´及PC 的长6 如图,Rt ∆ABC 中,AC=BC , ∠ACB=90º ,AP ²+QB ²=PQ ²,将∆ACP 绕点C 逆时针旋转90º得∆CBP ´,连QP ´(1)求证PQ=P ´Q (2)求证∆CPQ ≌CP ´Q (3)求∠PCQ7 正∆ABC 中,P 为内部一点(1)若PA=3,PB=4,PC=5,求∠APB (2)若PA ²+PB ²=PC ²,求∠APB8、如图1,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10,求∠APB 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与勾股定理相关的旋转问题
班级:姓名:
〖学习目标〗
1.掌握与勾股定理相关的旋转问题模型;
2.会用旋转法做辅助线,构造直角三角形使用勾股定理;
3.掌握与勾股定理相关的旋转问题的解题方法和技巧。
〖重点难点〗
重点:与勾股定理相关的旋转问题模型
难点:各类与勾股定理相关的旋转问题的题型,以及解题方法和技巧
〖导学流程〗
方法指导:对于条件较分散而题中又含公共顶点相等的边(一般是相邻的边)时,常采用旋转法,将分散条件集中到一个三角形中去。
例1. 如图,在△ABC中,∠BAC=90°,AB=AC,点D,E在BC上,且∠DAE=45°,求证:CD2+BE2=DE2.
例2. 如图,等腰直角三角形ABC中,点D在斜边BC上,求证:BD2+CD2=2AD2.学海拾贝总结纠错
编号:年级—20180901(年+月+序号) 编制:审核:上课时间:
例3. 如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上的中点,过点D 作 DE ⊥DF ,交AB 于点E ,交BC 于点F 。
求证:AE 2+CF 2=DE 2+DF 2.
例4. 如图所示,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数。
例5. 如图,P 是正方形ABCD 内一点,且3,2,1==
=PC PB PA ,求∠BPC 的度数。
例6. 把一幅三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7. 把三角板DCE绕点C顺时针旋转15°得到△D1CE1,如图2,此时AB与CD1交于点O。
求线段AD 1的长度。
例7. 如图,P是等边三角形ABC内一点。
(1)若PA=4,PC=3,PB=5,求∠APC;
(2)若∠APB:∠BPC:∠CPA=5:6:7,则以PA、PB、PC为边的三角形的三个角分别是多少?
例8. 已知凸四边形ABCD中,△ABC =△ADC = 45°,AC=AD,求证:BD2=2AB2+BC2.
例9. 如图,P 是正五边形ABCDE 内一点。
已知52,4,15==+=
PD PC PA ,试求:
∠APC 的度数。
例10. 已知等边三角形ABC ,试问:平面上所有满足PA 2+PB 2=PC 2的点P 组成一个什么图形?请证明你的猜想。