向量易错题带规范标准答案

合集下载

(易错题精选)初中数学向量的线性运算易错题汇编含答案

(易错题精选)初中数学向量的线性运算易错题汇编含答案

(易错题精选)初中数学向量的线性运算易错题汇编含答案一、选择题1.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r ,如果12120x x y y ⋅+⋅=,那么OA u r与OB u r互相垂直.在下列四组向量中,互相垂直的是( )A .()()013,2019,3,1OC OD -==-u r u r B.))1,1,1,1OE OF =u r u rC.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u rD.,OM+⎭u r【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.2.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n-r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r . 故选A .3.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r,那么向量AO uuu r用向量a br r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r,∴11BD BC b 22==u u u r u u u r r.∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心, ∴23AO AD =, ∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.4.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误 【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键5.已知1,3a b ==r r ,而且b r 和a r 的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r . 【答案】D 【解析】 【分析】根据平面向量的性质即可解决问题. 【详解】∵1,3a b ==v v,而且b v 和a v 的方向相反 ∴3b a v v =-.故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.6.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r ,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.7.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.8.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【答案】B 【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r ,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.9.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12, ∴12a e =-rr . 故选C .10.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B .【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.11.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.12.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量 B .AD u u u r 与BD u u u r是平行向量 C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r ,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误;D 、∵AC=BD , ∴AD=BC ,∴AD BC =-u u u r u u u r,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.13.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u rC .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u rAE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.14.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C 【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 . A. AB CD =-u u u r u u u r,故该选项错误;B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C . 【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.15.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.16.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u rB .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u r u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.17.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.18.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( )A .a r ∥b r ,并且a r 和b r方向一致B .a r ∥b r ,并且a r 和b r方向相反C .a r 和b r方向互相垂直D .a r 和b r之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r,∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.19.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r ,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v ()222OA OB +=u u u v u u u v 故选B.20.下列关于向量的运算中,正确的是A .a b b a -=-r r r r ;B .2()22a b a b --=-+r r r r ;C .()0a a +-=r r;D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A. (),a b b a A ---v v v v=所以错误;B. ()222a b a b B ---v vv v =+,所以正确;C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误.故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.。

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( )A .1233AB AD -+C .15AB AD -A .43a +23b C .23a 43-b1.在梯形ABCD 中,//AB CD ,2AB CD =,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M ,设AB a =,,则下列结论正确的是()A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥A .1AC BD ⊥ C .185BD =10.(多选)下列说法中正确的是(参考答案易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( ) A .1233AB AD -+C .15AB AD -A.43a+23bC.23a43 -b故选:B.y= 10.已知抛物线C:24∵3FA FB = ,由ABH 与△AFM ∵||2MF =,∴2||23BH =⨯=由抛物线定义得||||BF BH =,∴即4AF = ,3AF BH =,故故选:BC .易错点二:忽略基底选取原则(平面向量的基本定理及坐标表示)【答案详解】由题意可得,12AC AD DC b a=+=+,故A112对于A ,12||||||OF OF OA ==,因此对于B ,直线2:1AF y x =-,由⎧⎨⎩A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥7.已知向量()()2,11,,,1a b c ==-=A .a 与b的夹角为钝角B .向量a 在b 方向上的投影为C .24m n +=对于C ,由PA PB PB PC ⋅=⋅ ,得(PA - 所以点P 是ABC 的垂心,故C 正确;A .1AC BD ⊥ C .185BD =【答案】AB由题意得,2216AB AD == ,1AA cos 4AB AD AB AD BAD ⋅=⋅∠=⨯111cos 4AB AA AB AA BAA ⋅=⋅∠=,其中四边形ABDC 为平行四边形,因为又|OA |=|CA|=|OC |,所以所以∠ACB=60°,且BC。

(易错题精选)初中数学向量的线性运算易错题汇编及答案(1)

(易错题精选)初中数学向量的线性运算易错题汇编及答案(1)

(易错题精选)初中数学向量的线性运算易错题汇编及答案(1)一、选择题1.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r ,∴AC u u u r =AB BC m n +=+u u ur u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r , ∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.2.下列各式中错误的是( )A .()0a a r r+-=B .|AB BA |0+=u u u r u u u rC .()-=+-r r r ra b a bD .()()++=++r r r r r ra b c a b c【答案】A 【解析】 【分析】根据向量的运算法则和运算律判断即可. 【详解】解:A. ()0a a vv v +-=,故本选项错误,B ,C ,D ,均正确,故选:A. 【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.3.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键4.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r,∴11BD BC b 22==u u u r u u u r r.∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.5.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键6.若0a r、0b r 都是单位向量,则有( ).A .00a b =r rB .00a b =-r rC .00a b =r rD .00a b =±r r【答案】C 【解析】【分析】由0a r 、0b r 都是单位向量,可得00a b =r r.注意排除法在解选择题中的应用.【详解】解:∵0a r 、0b r 都是单位向量 ∴00a b =r r故选C. 【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.7.下列说法正确的是( ). A .一个向量与零相乘,乘积为零 B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 【答案】D 【解析】 【分析】根据平面向量的定义和性质进行判断. 【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误; B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确. 故答案是:D. 【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.8.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r,∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.9.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得, A. 方向不同,错误, B. 方向不同,错误, C. 方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.10.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r,故本选项,符合题意. 故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v =,2b c -v v =,故a b v v ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r,如果12120x x y y ⋅+⋅=,那么OA u r 与OB u r互相垂直.在下列四组向量中,互相垂直的是( ) A .()()013,2019,3,1OC OD -==-u r u r B.))1,1,1,1OE OF =u r u r C.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u rD.,OM +⎭u r【答案】A【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.13.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0 【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.14.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确. 故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.15.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.16.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误, 故选C.17.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.18.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a cbc ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.19.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.20.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u rr,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r rD .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.。

向量的线性运算易错题汇编含答案解析

向量的线性运算易错题汇编含答案解析

向量的线性运算易错题汇编含答案解析一、选择题1.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠r r 时,ma r 与a r 的方向一定相反;②0m ≠,0a ≠r r 时,ma r 与a r 是平行向量; ③0mn >,0a ≠r r 时,ma r 与na r 的方向一定相同; ④0mn <,0a ≠r r 时,ma r 与na r 的方向一定相反.A .1个B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠rr,所以m 和n 同号,所以ma r 与na r的方向一定相同,故③正确; ④因为0mn <,0a ≠rr,所以m 和n 异号,所以ma r 与na r的方向一定相反,故④正确. 故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.2.在中,已知是边上一点,,则( )A .B .C .D .【答案】A 【解析】 【分析】根据A ,B ,D 三点共线得出入的值,即可完成解答. 【详解】解:在∆ABC 中,已知D 是AB 边上一点,若=2,,则,∴,故选A.【点睛】本题考查了平面向量的基本定理,识记定理内容并灵活应用是解答本题的关键.3.在矩形ABCD 中,如果AB u u u rBC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( ) A .2 B .4C1D1【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】|||1||22|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴===+∴++=++==⨯=∴u u u r u u u rQ u u u ru u u r Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.4.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12,∴12a e =-rr .故选C .5.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r; B .AB BA u u u v u u u v =; C .0AB BA +=u u u r u u u r ; D .0AB BA +=u u u r u u u r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大6.下列判断正确的是( )A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.7.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.8.若0a r 、0b r 都是单位向量,则有( ).A .00a b =r rB .00a b =-r rC .00a b =r rD .00a b =±r r【答案】C 【解析】 【分析】由0a r 、0b r 都是单位向量,可得00a b =r r.注意排除法在解选择题中的应用.【详解】解:∵0a r、0b r都是单位向量∴00a b =r r故选C. 【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.9.已知平行四边形ABCD ,O 为平面上任意一点.设=,=,=,=,则( ) A .+++= B .-+-= C .+--= D .--+=【答案】B 【解析】 【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项. 【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;;而 ;∴B 正确. 故选B. 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r 【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.11.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同D .a r与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r③若ma mb =rr(m 是实数)时,则有a b =rr④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n = A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立; ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C.本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.13.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意. B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.14.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.15.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r r ;C .DC a b =-+u u u r r rD .DC a b =--u u u r r r .【答案】C 【解析】 【分析】由平行四边形性质,得DC AB =u u u r u u u r ,由三角形法则,得到OA AB OB +=u u u r u u u r u u u r,代入计算即可得到答案. 【详解】解:∵四边形ABCD 是平行四边形,∴DC AB =u u u r u u u r , ∵OA a =u u u r r ,OB b =u u u r r ,在△OAB 中,有OA AB OB +=u u u r u u u r u u u r, ∴AB OB OA b a a b =-=-=-+u u u r u u u r u u u r r r r r , ∴DC a b =-+u u u r r r ;故选择:C. 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.16.已知非零向量a r 、b r 和c r ,下列条件中,不能判定a b r rP 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rrD .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误;B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r,3a c -=r r ,则a r ∥b r ∥c r ,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.17.设,m n 为实数,那么下列结论中错误的是( ) A .m na mn a r r()=()B . m n a ma na ++r r r()= C .m a b ma mb +r r r r(+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a v =0v ,则m=0或a v =0v.∴错误.故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.18.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论. 【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.19.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v=,2b c -vv=,故a b vv ,是长度相同,方向相反的相反向量, 故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.20.下列说法正确的是( ).A.一个向量与零相乘,乘积为零B.向量不能与无理数相乘C.非零向量乘以一个负数所得向量比原向量短D.非零向量乘以一个负数所得向量与原向量方向相反【答案】D【解析】【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.。

向量的线性运算易错题汇编含答案

向量的线性运算易错题汇编含答案

B.2 个
C.3 个
D.0 个
【答案】D
【解析】
【分析】
根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可.
【详解】
解:①单位向量的方向不一定相同,故①错误;
②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误;
③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误.
故 A,B,D 正确,
向量之和是向量,C 错误,
故选 C.
【点睛】
本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正
确运用相等向量与相反向量的定义判断 A、B、D 三项结论正确.
12.下列关于向量的运算中,正确的是
A. a b b a ;
B. 2(a b) 2a 2b ;
【详解】
解:∵向量 a 与 b 均为单位向量, ∴向量 a 与 b 的模相等,
∴a b.
故答案是:D. 【点睛】 此题考查了单位向量的定义.注意单位向量的模等于 1,但方向不确定.
6.给出下列 3 个命题,其中真命题的个数是( ).
①单位向量都相等;②单位向量都平行;③平行的单位向量必相等.
A.1 个
知识,可确定 C 正确;又由 AB BA 0 可判断 D 错误
【详解】
A、如果 AB CD ,那么 AB CD ,故此选项正确;
B、 a b b a ,故本选项正确;
C、如果非零向量 a k b(k 0) ,那么 a 与 b 平行或共线,故此选项正确; D、 AB BA 0 ,故此选项错误;
②对于实数 m 、 n 和向量 a ,恒有 m n a ma na ,正确;
③若 ma mb ( m 是实数)时,则有 a b ,错误,当 m=0 时不成立; ④若 ma na ( m 、 n 是实数, a 0 ),则有 m n ,正确;

(易错题精选)初中数学向量的线性运算专项训练答案

(易错题精选)初中数学向量的线性运算专项训练答案

(易错题精选)初中数学向量的线性运算专项训练答案一、选择题1.下列各式不正确的是( ).A .0a a -=r r rB .a b b a +=+r r r rC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r ,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r方向不同,则a b ≠r r,所以D 选项错误.故选D. 【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.2.在矩形ABCD 中,如果AB u u u r BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( )A .2B .4C 1D 1【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为 【详解】|||1||22|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴===+∴++=++==⨯=∴u u u r u u u r Q u u u ru u u r Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.3.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大4.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键5.下列判断正确的是( ) A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.6.下列命题:①若a b r r=,b c =rr,则c a =r r; ②若a r ∥b r ,b r∥c r ,则a r ∥c r;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r; ④若a r与b r是互为相反向量,则a r +b r=0. 其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解. 【详解】①若a b =r r ,b c =r r ,则c a =r r ,正确; ②若a r ∥b r ,b r ∥c r ,则a r ∥c r,正确;③若|a r |=2|b r |,则2a b =r r 或a r =﹣2b r ,错误,因为两个向量的方向不一定相同或相反;④若a r与b r是互为相反向量,则a r +b r=0,正确. 综上所述,真命题的个数是3个. 故选C .7.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.8.已知1,3a b ==r r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r . 【答案】D 【解析】 【分析】根据平面向量的性质即可解决问题. 【详解】∵1,3a b ==v v,而且b v 和a v 的方向相反 ∴3b a v v =-.故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.9.下列各式中错误的是( )A .()0a a r r+-= B .|AB BA |0+=u u u r u u u rC .()-=+-rrrra b a bD .()()++=++r r r r r r a b c a b c【答案】A 【解析】 【分析】根据向量的运算法则和运算律判断即可. 【详解】解:A. ()0a a vv v +-=,故本选项错误,B ,C ,D ,均正确,故选:A. 【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.10.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立; ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.11.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP uuu r可以用点P 的坐标表示为:OP uuu r =(m ,n ).已知OA u u u r =(x 1,y 1),OB uuu r=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r互相垂直,在下列四组向量中,互相垂直的是( ) A .OC u u u r =(3,20190),OD uuu r=(﹣3﹣1,1)B .OE uuu r ﹣1,1),OF uuu r,1)C .OG u u u r 12),OH u u u r )2,8)D .OM u u u u r ),ON u u u r2,2) 【答案】A 【解析】 【分析】根据向量互相垂直的定义作答. 【详解】A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC u u u r 与OD uuu r互相垂直,故本选项符合题意.B ﹣1+1)+1×1=2﹣1+1=2≠0,则OE uuu r 与OF uuu r不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG u u u r 与OH u u u r 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM u u u u r 与ON u u u r 不垂直,故本选项不符合题意. 故选:A . 【点睛】本题考查了平面向量,解题的关键是掌握向量垂直的定义.12.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =r rC .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r,故本选项,符合题意. 故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.13.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.14.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v()222OA OB +=u u u v u u u v 故选B.15.已知5a b =r r,下列说法中,不正确的是( ) A .50a b -=rrB .a r与b r方向相同C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.16.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r 表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.17.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r r ;C .DC a b =-+u u u r r rD .DC a b =--u u u r r r .【答案】C 【解析】 【分析】由平行四边形性质,得DC AB =u u u r u u u r ,由三角形法则,得到OA AB OB +=u u u r u u u r u u u r,代入计算即可得到答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴DC AB =u u u r u u u r,∵OA a =u u u r r ,OB b =u u u r r,在△OAB 中,有OA AB OB +=u u u r u u u ru u u r , ∴AB OB OA b a a b =-=-=-+u u u r u u u r u u u r rr rr, ∴DC a b =-+u u u rr r; 故选择:C. 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.18.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv -= 故错误.故选B.19.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =u u u r u u u rB .12CB AB =u u u r u u u rC .0AC BC u u u r u u u r+=D .0AC CB +=u u u r u u u r r【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.解:A 、12CA BA =u u u r u u u r,故本选项错误;B 、12CB AB =u u u r u u u r,故本选项正确;C 、0AC BC +=u u u r u u u r r,故本选项错误;D 、AC CB AB +=u u u r u u u r u u u r,故本选项错误.故选B .20.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.。

人教版初中数学向量的线性运算易错题汇编及解析

人教版初中数学向量的线性运算易错题汇编及解析

人教版初中数学向量的线性运算易错题汇编及解析一、选择题1.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r表示向量a r 为( ) A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A 【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义, 故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴. 故选A. 【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.3.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、C C .B 、C 、D D .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.4.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④方向相同 A .0 B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.5.如图,已知向量a r ,b r ,c r,那么下列结论正确的是( )A .a b c +=r r rB .b c a +=r r rC .a c b +=r r rD .a c b +=-r r r【答案】D 【解析】【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r, 即a c b +=-r r r 故选D .6.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u r r ,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r rr ; C .()12BO b a =-+u u u r r r; D .()12BO b a =-u u u r r r . 【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选7.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.8.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r r D .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, +=,++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r,∴AC u u u r =AB BC m n +=+u u u r u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r,∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.11.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.12.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r |=|a r |,那么b r =a r 或b r =﹣a r,错误.模相等的向量,不一定平行.D 、已知非零向量a r ,如果向量b r =﹣5a r ,那么a r ∥b r,正确.故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.13.下列说法正确的是( ) A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.14.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u r B .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u r u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.15.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.16.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v ,4b e =v v ,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误, 故选C.17.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B .【点睛】本题考查了向量的性质.18.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r rD .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.19.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.20.下列式子中错误的是( ).A .2a a a +=r r rB .()0a a +-=r r rC .()a b a b -+=--r r r rD .a b b a -=-r r r r【答案】D 【解析】 【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D. 【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.。

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析一、选择题1.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r|=|a r|,那么b r=a r或b r=﹣a r,错误.模相等的向量,不一定平行. D 、已知非零向量a r,如果向量b r=﹣5a r,那么a r∥b r,正确. 故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.2.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.3.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大4.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u rr,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r r r ;C .()12BO b a =-+u u u r r r ; D .()12BO b a =-u u u r r r .【答案】D 【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选5.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r =2|e r|=2,故D 选项不符合题意. 故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.6.若0a r、0b r 都是单位向量,则有( ).A .00a b =r rB .00a b =-r rC .00a b =r rD .00a b =±r r【答案】C 【解析】 【分析】由0a r 、0b r 都是单位向量,可得00a b =r r.注意排除法在解选择题中的应用.【详解】解:∵0a r 、0b r 都是单位向量 ∴00a b =r r故选C. 【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.7.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【答案】B 【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.8.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-rrrrrr【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可. 【详解】A 、()222a b c a b c ++=++r r r r rr ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r rr r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确;故选D. 【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.对于非零向量a r 、b r ,如果2|a r |=3|b r |,且它们的方向相同,那么用向量a r表示向量b r正确的是( )A .b r =32a rB .b r =23a rC .b r =﹣32a rD .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.11.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】 根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论.【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.13.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C 【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 .A. AB CD =-u u u r u u u r,故该选项错误; B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C . 【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.14.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意. B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意. D 、由|a v|=2|b v |只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.15.如图,在平行四边形ABCD 中,设AB a =r r ,AD b =rr ,那么向量OC r 可以表示为. ( )A .1122a b +r rB .1122rr a b -C .1122a b -+rr D .1122a b --rr【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可. 【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r r r r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.16.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r;D .11a b a b=r rr r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质.17.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.18.设,m n 为实数,那么下列结论中错误的是( ) A .m na mn a r r()=()B . m n a ma na ++r r r()= C .m a b ma mb +r r r r(+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a v =0v ,则m=0或a v =0v.∴错误.故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.19.若a v =2e v ,向量b v 和向量a v 方向相反,且|b v |=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v =12b v - 【答案】C 【解析】 【分析】根据已知条件可以得到:b v =﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v=-12b v,故本选项不符合题意. 故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.下列式子中错误的是( ). A .2a a a +=r r rB .()0a a +-=rr rC .()a b a b -+=--r r r rD .a b b a -=-r rrr【答案】D 【解析】 【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D. 【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.。

中考数学向量专题知识易错题50题含参考答案

中考数学向量专题知识易错题50题含参考答案

中考数学向量专题知识易错题50题含答案一、单选题1.以下说法错误的是( ) A .零向量与任一非零向量平行 B .零向量与单位向量的模不相等 C .平行向量方向相同D .平行向量一定是共线向量2.已知点C 是线段AB 的中点,下列结论中正确的是( ) A .AC BC +=0B .0AC CB +=C .12CA AB =D .12CB AB =3.已知a 、b 为非零向量,下列判断错误的是( ) A .如果a =3b ,那么a ∥b B .||a =||b ,那么a =b 或a =-b C .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =24.已知 1e 和 2e 都是单位向量, 下列结论中,正确的是( )A .12e e =B .120e e -=C .122e e +=D .122e e +=5.如图,平行四边形ABCD 的对角线AC 和BD 交于点O ,下列选项中错误的是( )A .AD BC =B .0OA OC += C .OB OD = D .AB CD6.下列判断错误的是( ).A .若0k =或0a =,则0ka =B .若m 为实数,则()m a b ma mb +=+ C .若a e ∥,则a a e =D .在平行四边形ABCD 中,D AB AD B -=7.已知四边形ABCD 是矩形,点O 是对角线AC 与BD 的交点.下列四种说法:∥向量AO 与向量OC 是相等的向量;∥向量OA 与向量OC 是互为相反的向量;∥向量AB 与向量CD 是相等的向量;∥向量BO 与向量BD 是平行向量.其中正确的个数为( )8.已知a 、b 、c 都是非零向量,下列条件中,不能判断//a b 的是( ) A .a b = B .3a b = C .//a c ,//b cD .2,2a c b c ==-9.若点O 为平行四边形的中心,14AB m =,26BC m =,则2132m m -等于( ). A .AOB .BOC .COD .DO10.下列关于向量的运算,正确的是( ) A .-2)2a b a b -=-+( B .0a a += C .()0a a +-=D .a e a ⋅= (e 是一个单位向量)11.下列关于向量的运算中,错误的是( ) A .a b b a +=+ B .()a b a b -=+- C .()0a a +-=D .()()a b c a b c ++=++12.如果2a b =-(a 、b 均为非零向量),那么下列结论错误..的是( )A .2a b =B .a b ∥C .20a b +=D .a 与b 方向相同13.对于非零向量a 、b ,如果2|a |=3|b |,且它们的方向相同,那么用向量a 表示向量b 正确的是( ) A .b =32a B .b =23a C .b =﹣32a D .b =-23a 14.已知5ab =,下列说法中,不正确的是( ) A .50a b -= B .a 与b 方向相同 C .//a bD .||5||a b =15.下列说法中正确的是( ) A .如果0k =或0a =,那么0a = B .如果a 与b 均是单位向量,那么a b = C .如果e 是单位向量,a 的长度为5,那么5a e =D .如果m 、n 为非零实数,a 为非零向量,那么()a m n m n a a +=+. 16.下列命题:∥若a b =,b c =,则c a =; ∥若a ∥b ,b ∥c ,则a ∥c ; ∥若|a |=2|b |,则2a b =或a =﹣2b ; ∥若a 与b 是互为相反向量,则a +b =0. 其中真命题的个数是( ) A .1个B .2个C .3个D .4个17.下列说法正确的是( ). A .一个向量与零相乘,乘积为零 B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 18.下列说法不正确的是 ( ) A .零向量是没有方向的向量 B .零向量的方向是任意的 C .零向量与任一向量平行D .零向量只能与零向量相等二、填空题19.平行四边形ABCD 中,对角线AC 、BD 相交于点O ,设向量AD a =,AB b =,则向量AO =______.20.化简:112()3()22a b a b --+=______.21.如果23a x b -=,那么x 用a 、b 表示为:x =___________.22.ABC 中,点D 在边AB 上,点E 在边AC 上,联结DE ,DE 是ABC 的一条中位线,点G 是ABC 的重心,设AG a =,AB b =,则DE =________(用含a ,b 的式子表示)23.计算:()()32523a b a b -++=________. 24.计算:()()3232a b a b --+=______. 25.化简:CD AB BC ++=__.26.如图,在梯形ABCD 中,//,2AD BC BC AD =,过点A 作//AE CD 交BC 于点E ,写出一个与EC 相等的向量___________.27.如图,BD 是ABC 中线, BA a =,BC b =,那么BD 用向量a 、b 表示为______.28.计算:(2)(2)m n m n --+-=__.29.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a =,BC b =,那么等于____________________(结果用a 、b 表示); 30.化简:12(3)33a b b -++=__________.31.如图,已知点G 是等边ABC 的中心,记向量AB a =,AC b =,则向量AG =______.(用向量xa xb +的形式表示,其中x 、y 为实数)32.计算:()()32m n m n +--=_________________.33.已知梯形ABCD ,AD ∥BC ,BC =2AD ,如果AB a =,AC b =,那么DA =( ).(用a ,b 表示)34.如图,在平行四边形ABCD 中,AE ∥CD ,垂足为E ,AF ∥BC ,垂足为F ,AD =4,BF =3,∥EAF =60°,设AB a ,如果向量CEa(0)k k ,那么k 的值是_____.35.点G 是三角形ABC 的重心,AB a =,AC b =,那么BG =_____. 36.化简:OM -ON +MN _____________. 37.计算:2(a +3b )﹣5b =______.38.如图1,AM 是∥ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).三、解答题 39.化简:(1)()()AB CD BC DE +++; (2)()()AB CD BD AC -+-. 40.如图,已知 AB∥CD∥EF ,AB :CD :EF=2:3:5,BF =a , (1)BD = (用a 来表示)(2)求作向量AE 在AB 、BF 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)41.如图,已知平面内两个不平行的向量a 、b ,求作:2(a ﹣b )+3b ;(不要求写作法,但要指出所作图中表示结论的向量)42.已知向量a 、b 、c ,求作向量x ,使x a b c =-+43.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,3AC CE =,2AD BD =,已知BA a =,BC b =.(1)用向量a 、b 分别表示向量BE 、AE ;(2)作出向量DC 分别在DA 、BC 方向上的分向量(写出结论,不要求写作法). 44.已知四边形OBCA 是平行四边形,点D 在OB 上. (1)填空:OA AC += ;AD OB -= ; (2)求作:OA CD AD +-.45.如图,在ABC 中,D 是AB 边的中点,E 是BC 延长线上一点,且2BE BC =.(1)试用向量BA 、BC 表示向量DE ; (2)试用向量CA 、CB 表示向量DB ;(3)设BA a =,DE b =,求作:12a b -.(不要求写作法,但要指出所作图中表示结论的向量)46.在△ABC 中,D 是AB 边的中点,E 是BC 延长线上的点,且BE=2BC ,试用BA →、BC →表示DE →.47.如图,在正方形ABCD 中,AB=2,记AB a ,AC b .(1)画向量OM a b ;(2)求||OM = .(直接填空)48.如图,已知正方形网格中每个小正方形的边长为1,点O 、M 、N 、A 、B 、C 都是小正方形的顶点.(1)记向量OM a =,ON b =,试在该网格中作向量22BD a b =-.计算:BD =______;(2)联结AD ,求证:ABC ∥DAB ;(3)填空:ABD ∠=______度;联结CD ,比较BDC ∠与ACB ∠的大小,并证明你的结论.参考答案:1.C【分析】A 根据平行向量定义解题;B 根据单位向量定义解题;C 根据平行向量定义解题;D 根据平行向量定义解题.【详解】A.零向量与任一非零向量平行,故A.正确; B. 零向量与单位向量的模不相等, 故B.正确;C. 平行向量方向相同,平行向量方向可能相同也可能相反,故C 错误.;D. 平行向量一定是共线向量,满足向量共线与平行的定义,故D.正确, 故选C .【点睛】本题考查单位向量、平行向量与共线向量等知识,是基础考点,掌握相关知识是解题关键. 2.D【分析】根据题意画出图形,结合线段的中点含义,向量的方向与运算法则,逐一分析各选项,从而可得答案.【详解】解:如图,点C 是线段AB 的中点,0,AC BC ∴+= 故A 不符合题意;,AC CB AB +=故B 不符合题意; 1,2CA BA =故C 不符合题意; 12CB AB =,故D 符合题意; 故选:D【点睛】本题考查的是线段的中点的定义,解题的关键是注意向量的方向及运算法则. 3.B【分析】根据平面向量的性质解答即可.【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意.故选B .【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键. 4.C【分析】根据单位向量的定义:模为1的向量为单位向量即可得到121e e ==,又由题意并没有指明1e 与2e 的方向即可求解. 【详解】解:∥1e 与2e 都是单位向量, ∥121e e ==,∥122e e +=,故C 选项符合题意; ∥题目并没有指明1e 与2e 的方向,∥并不能得到A 、B 、D 选项中的结论,故A 、B 、D 选项不符合题意; 故选C .【点睛】本题主要考查了单位向量的定义,熟知单位向量的定义是解题的关键. 5.B【分析】利用平行四边形的性质和三角形法则进行判断.【详解】解:A .在▱ABCD 中,在▱ABCD 中,AD =BC ,且AD ∥BC ,则AD BC =,选项正确,不符合题意;B .在▱ABCD 中,OA =OC ,则0OA OC +=,选项错误,符合题意; C .在▱ABCD 中,OB =OD ,则OB OD =,选项正确,不符合题意; D .在▱ABCD 中,在▱ABCD 中,AB =DC ,且AB ∥DC ,则AB CD ,选项正确,不符合题意; 故选:B .【点睛】本题主要考查了平面向量和平行四边形的性质,注意:平面向量既有大小又有方向. 6.C【分析】根据向量的定义,性质和运算法则计算判断即可. 【详解】因为0k =或0a =,则0ka =, 故A 正确,不符合题意;因为m 为实数,则()m a b ma mb +=+, 故B 正确,不符合题意; 因为a e ∥,则a e =或+=0a e , 故C 错误,符合题意;在平行四边形ABCD 中,则+BA AD BD =, 所以D AB AD B -=, 故D 正确,不符合题意; 故选C .【点睛】本题考查了向量的定义,性质和运算法则,熟练掌握运算法则和性质是解题的关键. 7.C【分析】利用矩形的性质,相等向量,平行向量的定义一一判断即可. 【详解】解:如图:∥四边形ABCD 是矩形,∥AB=CD ,AB∥CD ,OA=OC ,OB=OD , ∥∥向量AO 与向量OC 是相等的向量,正确. ∥向量OA 与向量OC 是互为相反的向量,正确. ∥向量AB 与向量CD 是相等的向量;错误. ∥向量BO 与向量BD 是平行向量.正确. 故选:C .【点睛】本题考查平面向量,矩形的性质等知识,长度相等且方向相同的两个向量叫做相等向量,平行向量也叫共线向量,是方向相同或相反的非零向量. 8.A【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案.【详解】解:A 、||||a b =只能说明a 与b 的模相等,不能判定a ∥b ,故本选项符合题意;B 、3a b =说明a 与b 的方向相同,能判定a ∥b ,故本选项不符合题意;C 、a ∥c ,b ∥c ,能判定a ∥b ,故本选项不符合题意;D 、2a c =,2b c =-说明a 与b 的方向相反,能判定a ∥b ,故本选项不符合题意. 故选A .【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.9.B【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可.【详解】解:∥在平行四边形ABCD 中, 14AB m =,26BC m =,∥1246B m C AC AB m =+=+,1246BD BA BC AC m m =+==-+,M 分别为AC 、BD 的中点, ∥122312AO AC m m =+=,故A 不符合题意; 211322BO BD m m ==-,故B 符合题意; 122312CO AC m m ==---,故C 不符合题意; 121232DO BD m m =-=-,故D 不符合题意. 故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.10.B【详解】A 选项2)22a b a b (--=-+,所以A 错误, B 选项0a a +=,所以B 正确,C 选项()0a a +-=,所以C 错误,D 选项e 单位向量的方向不确定,所以a e a ⋅≠.故选B.11.C【分析】根据平面向量的加法的交换律与结合律判断即可.【详解】解:A 、a b b a +=+,正确,本选项不符合题意.B 、()-=+-a b a b ,正确,本选项不符合题意.C 、()0a a +-=,错误应该等于0,本选项符合题意.D 、()()++=++a b c a b c ,本选项不符合题意.故选:C .【点睛】本题考查平面向量,平面向量的加法法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.D【分析】根据平行向量的定义与性质,逐一对选项判断即可.【详解】解:A 、∥2a b =-,∥2a b =,故该结论正确,不符合题意;B 、∥2a b =-(a 、b 均为非零向量),∥a 与b 是方向相反的向量,即a b ∥,故该结论正确,不符合题意;C 、∥2a b =-,∥20a b +=,故该结论正确,不符合题意;D 、∥2a b =-(a 、b 均为非零向量),∥a 与b 是方向相反的向量,故该结论错误,符合题意.故选:D【点睛】本题考查了平面向量的定义与性质,熟练掌握平面向量的定义与性质是解本题的关键.平面向量的定义:平面内既有大小,又有方向的量;平行向量,也叫共线向量,是指方向相同或相反的非零向量;零向量和任何向量平行.13.B【分析】根据已知条件得到非零向量a 、b 的模间的数量关系,再结合它们的方向相同解题.【详解】∥2|a |=3|b |,∥|b |23=|a |. 又∥非零向量a 与b 的方向相同,∥23b a =. 故选B .【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定14.A【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确,故选A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.15.C【分析】根据向量的性质一一判断即可得到答案.【详解】解:A 、如果0k =或0a =,那么0ka =,原说法错误,不符合题意,选项错误; B 、如果a 与b 均是单位向量,那么a b =,原说法错误,模相等,方向不一定相同,不符合题意,选项错误;,C 、如果e 是单位向量,a 的长度为5,那么5a e =,原说法正确,符合题意,选项正确;D 、如果m 、n 为非零实数,a 为非零向量,那么()m n m na a a +=+,原说法错误,不符合题意,选项错误,故选C .【点睛】本题考查了向量,熟练掌握向量的性质是解题关键.16.C【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解.【详解】∥若a b =,b c =,则c a =,正确;∥若a ∥b ,b ∥c ,则a ∥c ,正确;∥若|a |=2|b |,则2a b =或a =﹣2b ,错误,因为两个向量的方向不一定相同或相反; ∥若a 与b 是互为相反向量,则a +b =0,正确.综上所述,真命题的个数是3个.故选C .【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.18.A【分析】根据题意,依次分析选项:对于A 、零向量有方向,即可判断A ;对于B 、符合零向量的定义,即可判断B ;对于C 、符合零向量的性质,即可判断C ;对于D 、符合零向量的定义,即可判断D ;综合可得答案.【详解】根据题意,依次分析选项:对于A. 零向量有方向,且其方向是任意的,故A 符合题意;对于B. 零向量的方向是任意的,符合零向量的定义,B 不符合;对于C. 零向量与任一向量平行,C 不符合;对于D. 零向量是模为0的向量,故零向量只能与零向量相等,D 不符合;故选A.【点睛】此题考查零向量,解题关键在于掌握其性质定义.19.1122a b + 【分析】根据向量加法的平行四边形法则可得: AC AD AB a b =+=+,然后根据平行四边形的性质可求出:AO .【详解】解:∥平行四边形ABCD 中, 向量AD a =,AB b =,∥AC AD AB a b =+=+,12AO AC =∥()111222a AO b a b ++== 故答案为: 1122a b +.【点睛】此题考查的是平行四边形的性质及向量的加法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.20.14 2a b-.【详解】试题解析:原式31 234.22a b a b a b =---=-故答案为14. 2a b-21.13 22a b --【分析】根据向量方程的求解方法,可以先移项,再系数化一,即可求得答案.【详解】解:∥23a x b-=,∥23x a b-=+∥1322x a b =--,故答案为:1322a b --.【点睛】此题考查了平面向量的知识,解题的关键是掌握向量方程的求解方法.22.32a b -【分析】延长AG交BC于点F,根据重心的性质可得出32AF a=,由DE为ABC的中位线可得出12DE BC BF==,根据AB b=,结合BF AF AB=-,即可用含,a b的式子表示出DE.【详解】解:延长AG交BC于点F,如图所示.∥点G是ABC的重心,∥ 2AG GF a==,∥ 32AF AG GF a =+=. ∥DE 是ABC 的一条中位线, ∥1322DE BC BF AF AB a b ===-=-. 故答案为:32a b -. 【点睛】本题考查了三角形的重心、三角形中位线定理以及平面向量,根据三角形重心的性质找出 32AF a =是解题的关键. 23.1612a b +【分析】去括号,按照向量的加减法法则计算即可.【详解】原式=6310151612a b a b a b -++=+故答案为:1612a b +.【点睛】本题考查了向量的线性运算,熟练掌握向量的线性运算法则是解答本题的关键.数乘向量满足下列运算律:设λ,μ为实数,则∥()a a a λμλμ+=+,∥()a a λμλμ=,∥()a b a b λλλ+=+.24.35a b -##53b a -+【分析】根据向量的运算法则可直接进行解答.【详解】解:()()3232a b a b --+ 6332a b a b =---35a b =-,故答案为:35a b -.【点睛】本题考查的是平面向量的知识,熟悉向量的相关性质是解题的关键. 25.AD【详解】直接利用三角形法则求解,即可求得答案.解:CD AB BC ++=CD +AC =AD .故答案为AD .26.AD 或BE【分析】根据相等向量的定义即可解决问题.【详解】解:∥AD ∥BC ,AE ∥CD ,∥四边形AECD 是平行四边形.∥AD =EC .又∥BC =2AD ,∥BE =EC .∥AD EC BE ==,故答案为:AD 或BE .【点睛】本题考查平面向量和梯形,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.1122a b + 【分析】根据题意先求得()1122A a D AC b +==-,根据BD BA AD =+,即可求解. 【详解】解:∥BD 是ABC 中线,∥12AD DC AC == ∥BA a =,BC b =,AC AB BC a b =+=-+∥()1122A a D AC b +==- ∥()111222a a a b BD BA AD b =+=-=+++, 故答案为:1122a b + 【点睛】本题考查了三角形中线的性质,向量的线性运算,掌握以上知识是解题的关键.28.0【分析】先去括号,再计算向量的加减运算即可得.【详解】解:原式22m n m n =-++- ()()22m m n n =-++- 00=+0=,故答案为:0.【点睛】本题考查了向量的线性运算,熟练掌握运算法则是解题关键.29.23a b +;【分析】首先根据题意画出图形,由BD=2DC,可求得BD,再利用三角形法则求解即可求得答案【详解】解:如图,BD b=,BD=2DC,∥2233BD BC b==,∥23AD AB BC a b=+=+,故答案为23 a b +【点睛】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.30.a b-+【分析】根据向量的计算方法即可求解.【详解】12(3)33a b b-++=1233a b b a b-++=+-故答案为:a b-+.【点睛】此题主要考查向量的计算,解题的关键是熟知其运算法则.31.13a+13b【分析】首先根据题意画出图形,由点G是等边∥ABC的中心,即可得BD=CD=12 BC,AG=23AD,然后利用三角形法则求得BD的值,继而求得AD与AG的值.【详解】解:∥点G是等边∥ABC的中心,∥BD=CD=12BC,AG=23AD,∥BC =AC -AB =b -a ,∥BD =12BC =12(b -a ), ∥AD =AB +BD =a +12(b -a )=1 2(a +b ), ∥AG =23AD =23×12(a +b )=13a +13b . 故答案为:13a +13b . 【点睛】本题考查了平面向量的知识.注意掌握三角形法则的应用,注意数形结合思想的应用.32.5m n +【分析】直接根据向量的线性运算法则计算即可.【详解】解:原式=3322m n m n +-+=5m n +.故答案为:5m n +.【点睛】本题考查了向量的线性运算,熟练掌握向量的线性运算法则是解答本题的关键.数乘向量满足下列运算律:设λ,μ为实数,则∥()a a a λμλμ+=+,∥()a a λμλμ=,∥()a b a b λλλ+=+.33.1122a b - 【分析】根据向量的三角形法则表示出CB ,再根据BC 、AD 的关系解答. 【详解】解:如图:∥AB a =,AC b =,∥CB AB AC a b =-=-,∥AD ∥BC ,BC =2AD ,∥1122DA CB a b ==-()=1122a b -;故答案为:1122a b-;【点睛】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.34.2 3 -【分析】本题考查的是平行四边形的性质、解直角三角形与平面向量,根据平行四边形的性质求出∥B=∥D=60°,再利用正余弦定理,解出DE、AB的值,再利用平面向量平行向量两个方向相反的非零向量的知识解答即可【详解】∥AE∥CD、AF∥BC,∥∥AEC=∥AFC=90°,∥∥EAF=60°,∥∥C=360°﹣∥AEC﹣∥AFC=120°,∥四边形ABCD是平行四边形,∥∥B=∥D=60°,∥1cos422DE AD D,BF 361cos B2AB,则CE=CD﹣DE=AB﹣DE=6﹣2=4,∥AB∥CD,且AB=CD,∥2222CE CD DC AB a 3333,故答案为23 -.【点睛】本题的关键是利用平行四边形的性质求出∥C=∥D=60°35.1233b a-.【分析】根据题意画出图形,由AB a=,AC b=,根据三角形法则,即可求得BD的长,又由点G是△ABC 的重心,根据重心的性质,即可求得.【详解】如图:BD是△ABC的中线,∥AC b=,∥AD =12b,∥AB a=,∥BD=12b﹣a,∥点G是△ABC的重心,∥BG=23BD=13b﹣23a,故答案为13b﹣23a.【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.36.0【分析】首先根据向量的减法法则可得OM-ON=NM,原式化为NM MN+;接下来依据向量的加法法则进一步计算即可.【详解】OM-ON+MN=NM MN+=0故答案为0.【点睛】此题考查平面向量,熟记向量加法和减法法则是解题的关键.37.2a+b【详解】试题分析:可根据向量的加法法则进行计算,可得2(a+3b)﹣5b=2a+6b﹣5 b=2a+b,考点:平面向量38.a+12b.【分析】首先由AM是∥ABC的中线,即可求得BM的长,又由AM=AB+BM,即可求得答案.【详解】解:∥AM是∥ABC的中线,BC b=,∥BM=12BC=12b∥AB a=,∥AM =AB +BM =a +12b . 故答案为a +12b .39.(1)AE ;(2)0【分析】(1)先去括号,再根据向量的加法法则计算即可;(2)先去括号,再根据向量的加减法法则计算即可.【详解】解:(1)原式=AB CD BC DE +++=AB BC CD DE +++=AE ;(2)原式=AB CD BD AC -+-=()()AB BD AC CD +-+=AD AD -=0.【点睛】本题主要考查向量的加减法的法则,以及其几何意义,属于基础题.40.(1)1a 3;(2)作图见解析. 【分析】(1)首先过点B 作BG∥AE ,交EF 于点G ,易得四边形ABGE 是平行四边形,又由AB :CD :EF=2:3:5,即可得BD :BF=DH :FG=1:3,继而求得答案; (2)由四边形ABGE 是平行四边形,可得AE =BD ,继而求得答案.【详解】解:(1)过点B 作BG∥AE ,交EF 于点G ,∥AB∥CD∥EF ,∥四边形ABGE 是平行四边形,∥AB=CH=EG ,∥AB :CD :EF=2:3:5,∥DH :FG=1:3,∥BD :BF=DH :FG , ∥13BD BF = =1a 3; 故答案为:1a 3. (2)∥四边形ABGE 是平行四边形,∥AE =BG ,∥向量AE 在AB 、BF 方向上的分向量分别为:BI ,BF .【点睛】此题考查了平面向量的知识.注意掌握平行四边形法则的应用,注意准确作出辅助线是解此题的关键.41.见解析【分析】首先利用平面向量的加减运算法则化简原式,再利用三角形法则画出图形.【详解】2()32232a b b a b b a b -+=-+=+,如图,2AB a =,BC b =,则2AC a b =+,即AC 即为所求.【点睛】此题考查了平面向量的运算法则以及作法,注意作图时准确利用三角形法则是关键.42.详见解析【分析】根据向量的性质求解即可.【详解】如图所示,x 即为所求.【点睛】本题考查了向量的问题,掌握向量的性质是解题的关键.43.(1)2233AE a b =-+,1233BE a b =+ (2)见解析【分析】(1)利用三角形法则求解即可;(2)证明//DE BC ,利用平行四边形法则解决问题即可.【详解】(1)AC AB BC =+,AC a b ∴=-+,3AC CE =,23AE AC ∴=, 2233AE a b ∴=-+, BE BA AE =+, 22123333BE a a b a b ∴=-+=+; (2)3AC CE =,2AD BD =, AD AE AB AC∴=,//DE BC ∴,过点C 作//CT AB 交DE 的延长线于点T ,DB ,DT 即为所求.【点睛】本题考查作图-复杂作图,平面向量,三角形法则,平行四边形法则等知识,解题的关键是掌握三角形法则,平行四边形法则,属于中考常考题型.44.(1)OC ;CD ;(2)见解析.【分析】(1)利用三角形法则求解即可.(2)利用三角形法则求解即可.【详解】解:(1)∥四边形ABCD 是平行四边形,∥AC =OB ,AC//OB ,由题意,()(),OA AC OC AD OB DA OB DA AC DC CD +=-=-+=-+=-=故答案为,OC CD .(2)连接AB .∥()OA CD AD OA AD DC OA AC OA OB BO OA BA +-=-+=-=-=+=∥BA 即为所求.【点睛】本题考查了向量,熟练掌握运用三角形法则是解题的关键.45.(1)122DE BA BC =-+;(2)()12DB CB CA =-;(3)见解析 【分析】在ABC 中,D 是AB 边的中点,E 是BC 延长线上一点,根据三角形知识,以及向量运算知识,我们可以完成多项式的运算.【详解】(1)∥BD DE BE +=∥DE BE BD =-因为D 是AB 边的中点,2BE BC = ∥12BD BA =,2BE BC = ∥122DE BA BC =-+ (2)∥ED DB EB +=∥DB EB ED =-2CB ED =-2()CA BA ED =--122(2)2CA BA BA BC =--- 12222CA BA BA BC =--+ 5222CA BA BC =-+ 522BA BA =- 12BA =- 12AB = 1()2CB CA =- (3)其中12BF b =,向量12FA a b =-.【点睛】本题考查在ABC 中,D 是AB 边的中点,E 是BC 延长线上一点,根据三角形知识,以及向量运算知识,我们可以完成多项式的运算.46.122DE BA BC →→→=-+ 【分析】根据平面向量几何运算的三角形法则表示.【详解】DE DB BE →→→=+∥D 是AB 边的中点,BE=2BC∥1,22DB BA BE BC →→→→=-= ∥122DE BA BC →→→=-+【点睛】本题考查了平面向量的线性运算,解题的关键是掌握平面向量几何运算的三角形法则.47.(1)作图见解析;(2)【分析】(1)根据平行四边形法则求解;(2)根据勾股定理即可得出答案.【详解】解:(1)如图,所画向量OM a b .(2)延长OP ,过点M 作MA OP 与点A ,如下所示:在正方形ABCD 中,2AB =,则有2AP =,45APM ∠=︒,45AM ,由勾股定理可知:OM = 即||25OM .故答案为:【点评】本题考查了平面向量的知识,注意平面向量定义及平行四边形法则的熟练掌握. 48.(1)作图见解析,22BD =(2)证明见解析;(3)135;∥BDC=∥ACB.理由见解析.【分析】(1)根据平行四边形法则作向量22BD a b =-,小正方形的两条对角线的长度即为所求;(2)根据三角形三边对应成比例证明相似;(3)由图可知ABD ∠=9045135+=;由AC=CD 可得∥CAD=∥CDA ,再通过∥ABD∥∥CBA 得到∥ADB=∥CAB ,即可得到结果.【详解】解:(1)如图,作向量22BD a b =-,∥2||2BD ==(2)∥2BC AB =AB BD =AC AD = ∥BC AB AC AB BD AD==. ∥ABC ∥DAB .(3)由图可知ABD ∠=9045135+=,∥BDC=∥ACB.理由如下:经计算得,∥∥CAD=∥CDA ,又∥ABD∥∥CBA ,∥∥ADB=∥CAB ,∥∥CAD-∥CAB=∥CDA-∥ADB ,即∥BAD=∥BDC ,∥∥BAD=∥BCA ,∥∥BDC=∥ACB.【点睛】本题主要考查了平面向量、相似三角形的判定与性质.本题的综合性比较强,掌握向量的运算法则和相似三角形的判定与性质是关键.。

(易错题精选)初中数学向量的线性运算真题汇编及解析

(易错题精选)初中数学向量的线性运算真题汇编及解析

(易错题精选)初中数学向量的线性运算真题汇编及解析一、选择题1.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.2.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与 是一对相反向量.3.如图,已知△ABC 中,两条中线AE 、CF 交于点G ,设,,则向量关于、的分解式表示正确的为( )A .B .C .D .【答案】B 【解析】 【分析】由△ABC 中,两条中线AE 、CF 交于点G 可知,,求出的值即可解答.【详解】 ∵ ∴ ∵∴故本题答案选B. 【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.4.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r与b r均为单位向量,可得向量a r与b r的模相等,但方向不确定. 【详解】解:∵向量a r 与b r均为单位向量,∴向量a r 与b r的模相等,∴a b =r r.故答案是:D. 【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.5.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确; ∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.6.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠r r 时,ma r 与a r 的方向一定相反;②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠r r ,所以ma r 与a r 的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠r r ,所以ma r 与a r 是平行向量,故②正确;③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.7.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r ,∴AC u u u r =AB BC m n +=+u u ur u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r , ∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.8.对于非零向量a r 、b r ,如果2|a r |=3|b r |,且它们的方向相同,那么用向量a r表示向量b r正确的是( ) A .b r=32a r B .b r=23a r C .b r=﹣32a r D .b r=-23a r 【答案】B 【解析】 【分析】根据已知条件得到非零向量a r、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r |23=|a r |.又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.9.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得, A. 方向不同,错误, B. 方向不同,错误, C.方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.10.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量 B .AD u u u r 与BD u u u r是平行向量 C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r ,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD ,∴AD=BC ,∴AD BC =-u u u r u u u r ,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.11.已知向量a r和b r都是单位向量,那么下列等式成立的是( )A .a b =r rB .2a b +=r rC .0a b -=r rD .a b =rr【答案】D 【解析】 【分析】根据向量a r 和b r 都是单位向量,,可知|a r|=|b r |=1,由此即可判断.【详解】解:A 、向量a r和b r都是单位向量,但方向不一定相同,则a b =rr不一定成立,故本选项错误.B 、向量a r和b r都是单位向量,但方向不一定相同,则2a b +=rr不一定成立,故本选项错误.C 、向量a r和b r都是单位向量,但方向不一定相同,则0a b -=rr不一定成立,故本选项错误.D 、向量a r和b r都是单位向量,则|a r|=|b r|=1,故本选项正确. 故选:D . 【点睛】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键12.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r , ∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.13.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.14.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.15.已知e r是单位向量,且2,4a e b e =-=vvv v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误,故选C.16.已知5a b =r r,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r,故该选项说法正确, D 、因为5a b =rr,所以||5||a b =r r;故该选项说法正确, 故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.17.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误.故选B.18.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.19.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.下列说法正确的是( ) A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r 为非零向量),那么//a b r r【答案】D【解析】【分析】 根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案.【详解】解:A 、()a a +-r r 等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r 都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r ,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r 为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D 选项正确.故选:D.【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.。

中考数学向量专题知识易错题50题含答案

中考数学向量专题知识易错题50题含答案

中考数学向量专题知识易错题50题含答案一、单选题1.已知a 和b 都是单位向量,那么下列结论中正确的是( )A .a b =B .2a b +=C .0a b +=D .2a b += 【分析】根据单位向量的定义进行选择.∵a 和b 是两个单位向量,它们的长度相等,但是方向不一定相同;2a b +=正确;故选:D .【点睛】本题考查单位向量的含义;属于基础题.2.如果AB 是非零向量,那么下列等式中正确的是( ). A .AB BA =B .AB BA =C .0AB BA +=D .0AB BA += 【分析】根据向量的线性运算法则逐项判断即可.【详解】∵AB 为非零向量,AB BA =,故A 正确;AB 与BA 为相反向量,故0AB BA +=,故C 错误;∵AB 为非零向量,∵0AB BA +≠,故故选A .【点睛】本题考查向量的线性运算.掌握向量的线性运算法则是解题关键.3.若a 与b 的方向相反,且3a =,2b =,则下列用b 表示a 的式子中,正确的是( ) A .23a b =- B .32a b =- C .23a b = D .32a b = 【详解】由a 与b 的方向相反,且3a =,2b =,即可求得b 与a 的关系,继而可求∵a 与b 的方向相反,且3a =,2b =,用b 表示a 为:a =32b -. B .4.在下列说法中正确的有( )∵在物理学中,作用力与反作用力是一对共线向量;∵温度有零上温度和零下温度,因此温度也是向量;∵方向为南偏西60的向量与北偏东60的向量是共线向量 ;∵平面上的数轴都是向量.A .1个B .2个C .3个D .4个 【答案】B【详解】利用向量的定义可判断∵∵的正误,利用共线向量的定义可判断∵∵的正误. 解:既有大小,又有方向的量统称为向量,结合向量的定义可知仅有∵∵错误, 结合向量的概念以及共线向量的定义可知∵∵正确,故选:B.5.如果AB 是非零向量,那么下列等式正确的是( )A .||AB =||BAB .||0BA =C .AB BA +=0D .AB =BA 【答案】A【分析】根据向量的性质判断即可;【详解】∵AB 是非零向量,∵||AB =||BA ;故选A .【点睛】本题主要考查了平面向量的应用,准确分析判断是解题的关键.6.已知4a b a +=,那么b →的值为( )A .a →B .2a →C .3aD .4a【答案】C【分析】直接移项,然后计算,即可得到答案.【详解】解:∵4a b a +=,∵43b a a a →→→→=-=;【点睛】本题考查了向量的加减的运算和向量的几何意义,属于基础题.解题的关键是熟练掌握向量的运算法则.7.已知a 、b 和c 都是非零向量,下列结论中不能确定a b ∥的是( )A .a =bB .a c ,c bC .23a b =D .1,32a c b c == 【分析】根据向量平行的条件:a b λ=,以及平行的传递性进行判断即可.a =b 不能证明a b ∥,选项错误,符合题意;、a c ,c b ,可以证明a b ∥,选项正确,不符合题意;23a b =,可以证明a b ∥,选项正确,不符合题意;、1,32a c b c ==,可以证明a b ∥,选项正确,不符合题意;故选:A . 【点睛】本题考查平行向量.熟练掌握两向量平行,a b λ=,是解题的关键.8.在ABCD 中,下列关于向量的等式正确的是( )A .0AB CD +=B .AB AD BD -=C .AB AD BD += D .AB BD DA += 【答案】A【分析】根据平面向量的平行四边形法则和三角形法则对各选项分析判断即可得解.【详解】解:先作出ABCD ,A .AB 与CD 的模相等,但是方向相反,则0AB CD +=,故本选项正确,符合题意; B .AD AB BD -=,故本选项错误,不符合题意;C .AD AB BD -=,故本选项错误,不符合题意;D .AB DA BD +=,故本选项错误,不符合题意;故选:A .【点睛】本题考查了平面向量,此类题目主要利用了平行四边形法则和三角形法则,要注意0与0的不同.9.下列说法正确的个数是( )∵//AB DC ,则直线//AB 直线;CD∵两个向量当且仅当它们的起点相同,终点也相同时才相等;∵AB即是有向线段AB;∵在平行四边形ABCD中,一定有AB DC=.A.0个B.1个C.2个D.3个【答案】C【分析】∵利用向量平行的定义判断;∵根据向量相等的定义判断;∵利用向量的定义判断;∵利用向量相等的定义判断.【详解】∵当A,B,C,D四点共线时,//AB DC,但直线AB与直线CD可能共线,所以∵错∵两个向量起点相同、终点相同,则两个向量相等,但两个向量相等,却不一定有起点相同,终点相同,所以∵错;∵向量就是有方向和大小的有向线段,所以∵正确,∵在平行四边形ABCD中,对边AB和DC平行且相等,所以一定有AB DC=,所以∵正确;故选:C.【点睛】本题考查向量的定义,向量相等的定义,向量平行的定义,解题关键是熟练掌握向量的相关概念.10.已知四边形ABCD是矩形,点O是对角线AC与BD的交点.下列四种说法:∵向量AO与向量OC是相等的向量;∵向量OA与向量OC是互为相反的向量;∵向量AB与向量CD是相等的向量;∵向量BO与向量BD是平行向量.其中正确的个数为()A.1B.2C.3D.4【答案】C【分析】利用矩形的性质,相等向量,平行向量的定义一一判断即可.【详解】解:如图:∵四边形ABCD是矩形,∵AB=CD,AB∵CD,OA=OC,OB=OD,∵∵向量AO与向量OC是相等的向量,正确.∵向量OA与向量OC是互为相反的向量,正确.∵向量AB 与向量CD 是相等的向量;错误.∵向量BO 与向量BD 是平行向量.正确.故选:C .【点睛】本题考查平面向量,矩形的性质等知识,长度相等且方向相同的两个向量叫做相等向量,平行向量也叫共线向量,是方向相同或相反的非零向量.11.已知a 、b 和c 都是非零向量,在下列选项中,不能判定a ∵b 的是( ) A .a ∵c ,b ∵cB .|a |=|b |C .a =2bD .12a c =,2bc = ∵a c ∥,b c ∥,∵a b ,故本选项不符合题意;∵|a |=|b ,∵a 与b 的模相等,但不一定平行,故本选项符合题意;∵2a b =,∵ab ,故本选项不符合题意;∵12a c =,2b c =,∵14a b =,∵a b ,故本选项不符合题意.故选:B . 【点睛】本题主要考查了平面向量,熟知向量平行的条件是解题的关键.12.如图,点G 是△ABC 的重心,联结AG 并延长交BC 边于点D .设AB a =,GD b =,那么向量BC 用向量a 、b 表示为( )A .32BC b a =-B .32BC b a =+ C .62BC b a =-D .62BC b a =+【答案】C 【分析】G 是△ABC 的重心,推出AG =2DG ,推出AD =3DG ,利用三角形法则求出BD 即可解决问题.【详解】解:∵G 是△ABC 的重心,∵AG =2DG ,∵AD =3DG ,∵AD =3GD =3b ,∵BD =BA +AD =﹣a +3b ,DB =BD ,∵BC =2BD =6b ﹣2a , 故选:C .【点睛】此题考查三角形的重心,平面向量,三角形法则,解题的关键是熟练掌握基本知识,属于中考常考题型.13.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( ) A .a ∵bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b ∵e 是单位向量,且2a e =-,4b e =,∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C.14.若0a 、0b 都是单位向量,则有( ). A .00a b = B .00a b =- C .00a b = D .00a b =±【分析】由0a 、0b 都是单位向量,可得00a b =.注意排除法在解选择题中的应用.【详解】解:∵0a 、0b 都是单位向量00a b =故选C.【点睛】本题考查了平面向量的知识.注意掌握单位向量的定义.15.已知7a b =,下列说法中不正确的是( )A .70a b -=B .a 与b 方向相同C .a b ∥D .7a b = 【答案】A【分析】根据平面向量的定理逐一判断即可.【详解】解:A .∵7a b =∵70a b -=,故选项A 不正确,符合题意;B . a 与b 方向相同,正确,不符合题意;C . a b ∥,正确,不符合题意;=,正确,不符合题意;a b7【点睛】本题考查了平面向量的定理,熟练掌握平面向量的基本定理是解题的关键.16.点O是平行四边形ABCD的两条对角线的交点,AO OC CB++等于()A.AB B.BC C.CD D.0【答案】A【详解】根据几何图形,结合向量线性运算的几何含义,即可知AO OC CB++所表示的向量.由题意,如上图示AO OC AC+=,+=,又AC CB AB∵AO OC CB++AB=.故选:A17.如图ABCD是平行四边形,则在向量CB AB+=()A.AC B.CA C.BD D.DB【答案】D【详解】因为CB DA=,进而根据向量加法的三角形法则求解即可.解:因为在平行四边形ABCD中,CB DA=,所以CB AB+=DA AB DB+=故选:D二、填空题18.单位向量有______个,不同单位向量是指它们的______不同.【答案】无数方向【分析】根据单位向量定义解答即可.【详解】单位向量是单位为1 的向量,所以单位向量有无数个,不同的单位向量是指它们的方向不同. 【点睛】本题考查单位向量的定义,明确定义是解题的关键.19.化简:()()3224a b a b +-+=______【答案】2a b -##2b a -+ 【分析】直接利用平面向量的加减运算法则求解即可求得答案,注意去括号法则.【详解】解:()()322436282a b a b a b a b a b +-+=+--=-,故答案为:2a b -.【点睛】本题考查平面向量的加减运算,熟练掌握向量的加减运算法则是解题的关键.20.设D ,E 分别是ABC 的边,AB BC 上的点,12,23AD AB BE BC ==.若12DE AB AC λλ=+(12,λλ为实数),则12λλ+的值为________.【分析】根据题意将DE 表示出来,从而得出12AB =,∴DE BE BD =-2132BC BA - ()2132AC AB BA -- 2136AC AB - ∵12DE AB AC λλ=+116λ=-,223λ= 12121632λλ+=-+=21.如果向量a 、b 、x 之间满足关系式()30a b x --=,那么x =_________(用向量a 、b 表示) 【答案】3b a -【分析】根据向量加减法则求解即可【详解】()330,3a b x a b x x b a --=-+=∴=-【点睛】本题主要考查了向量加减中去括号的相关问题,熟练掌握如何去括号是解题关键22.如图,已知等腰梯形ABCD 中,//,3AD BC BC AD =,如果,BC a BD b ==,那么AB =________.13a b - ∵13AD a =, ∵13AB AD DB a b =+=-. 故答案为:13a b -. 【点睛】本题考查平面向量,梯形的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如果向量a 、b 、x 满足()340a b x +-=,用a 、b 表示x =______.【答案】34x a b =+ 【分析】利用向量的线性运算进行计算即可.()340a b x +-=,即:3440a b x +-=,∵344a b x +=,∵34x a b =+; 故答案为:34x a b =+. 【点睛】本题考查向量的线性运算.熟练掌握向量的运算法则,是解题的关键.24.化简:()()322a b a b +-+=__.【答案】4a b +##4b a +【分析】直接利用平面向量的加减运算法则求解即可求得答案,注意去括号法则.【详解】解:()()322a b a b +-+=3a +6b ﹣2a ﹣2b =a +4b . 故答案为a +4b .【点睛】本题考查了平面向量的加减运算,熟练掌握法则是解题的关键25.如图,已知点D 、E 分别在∵ABC 的边CA 、BA 的延长线上,DE ∵BC .DE :BC =2:3,设=CD a ,试用向量a 表示向量DA ,DA =_____.a ; ,即可表示DA ,继而5∵CD =a ,∵AD =25a , ∵DA =25-a ; 故答案为:25-a .26.化简:()()3222a b a b -++= ____________.【答案】8a b +【分析】去括号,按照向量的加减法法则计算即可.【详解】原式=63248a b a b a b -++=+.故答案为8a b +.【点睛】本题考查了向量的线性运算,熟练掌握向量的线性运算法则是解答本题的关键.数乘向量满足下列运算律:设λ,μ为实数,则∵()a a a λμλμ+=+,∵()a a λμλμ=,∵()a b a b λλλ+=+.27.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_________(结果用a 、b 表示).23a b - 【分析】由题意,可求得AE ,又在平行四边形中,BC b =,求得AD ,再利用三角形法则求解即可求得答案.,AB a=,∵2233AE AB a==,∵平行四边形ABCD中,BC b=,∵AD BC b==,∵23DE AE AD a b=-=-,故答案为:23a b-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.28.已知△ABC,点D、E分别在边AB、AC上,DE//BC ,13DE BC=.如果设AB a=,DE b=,那么AC=____.(用向量a、b的式子表示)【答案】3a b+【分析】根据平行向量的性质求出BC,再根据AC AB BC=+,求出AC即可.// DE BC 1,DE b=,∴3BC b=,AC AB BC=+,∴3AC a b=+,故答案为3a b.【点睛】本题考查平面向量,平行向量的性质,三角形法则等知识,解题的关键是熟练掌握基本知识.29.如图,在∵ABC中,中线AD、CE交于点O,设AB a=,BC b=,那么向量AO用向量、a b表示为___.2133a b + BC b =,∵1122BD BC b ==. ∵1+2AD AB BD a b =+=. 又∵点O 是∵ABC 的重心, ∵AO=23 AD , ∵221=333AO AD a b =+ 故答案为2133a b + 【点睛】此题考查三角形的重心,平面向量,解题关键在于掌握运算法则30.计算:(a +b -3c )-2(a -32b -c )=_________. 【答案】-a +4b -c .【详解】试题分析:展开正常计算,相同向量进行加减即可.原式=a +b -3c -2a +3b +2c =-a +4b -c .考点:向量运算.31.计算:2(a +3b )﹣5b =______.【答案】2a +b【详解】试题分析:可根据向量的加法法则进行计算,可得2(a +3b )﹣5b =2a +6b ﹣5b =2a +b ,考点:平面向量32.如图,在□ABCD 中,E 是AD 上一点,且3AD AE =,设AB a =,BC b =, BE =______________.(结果用a 、b 表示)13a b -+ ,AB a =,BC b =,所以111333AE AD BC b === ,即可得13BE BA AE a b =+=-+ . 33.在四边形ABCD 中,AC =AB +AD ,则ABCD 是______形.【答案】平行四边形【分析】据向量的加法的平行四边形法则可得,以AB ,AC 为邻边做平行四边形ABCD ,则可得AC =AB +AD ,从而可判断. 【详解】根据向量的加法的平行四边形法则可得,以AB,AC 为邻边做平行四边形ABCD,则可得AC =AB +AD ,所以四边形ABCD 为平行四边形.故答案为平行四边形.【点睛】此题考查向量的线性运算性质及几何意义,解题关键在于掌握其运算法则. 34.a 的长度是单位向量e 长度的2倍,方向相反,用e 表示a ,a =_________. 【答案】-2e【详解】根据相反向量的定义进行解答,因为向量a 与向量e 方向相反,且a 的长度是单位向量e 长度的2倍,所以2a e =-,故答案为2.a e =-35.设12,e e 是两个不共线向量,则向量()12b e e R λλ=+∈与向量122a e e =-共线的充要条件是_______________.1221(2)e e k e e λ+=-- ,整理出关于的方程,解方程组即可.【详解】解:设1221(2)e e k e e λ+=--,则⎧⎨故设12,e e 是两个不共线的向量,则向量12()a e e R λλ=+∈与向量212b e e =-共线的充三、解答题36.如图,在梯形ABCD 中,//AD BC ,已知,,AB a BC b AD c ===.(1)试用向量a 、b 、c 表示下列向量:AC =_______,DC =________; (2)求作:AB AD -、AB AD +.(不要求写作法,要写明结论) 【答案】(1)a b +,c a b -++;(2)见解析【分析】(1)利用三角形法则求解即可.(2)如图,AB AD DB -=,在BC 上取一点T ,使得BT AD =,连接AT ,AT 即为所求.【详解】解:(1)AC AB BC a b =+=+,DC DA AC c a b =+=-++,故答案为:a b +,c a b -++.(2)如图,AB AD DB -=,在BC 上取一点T ,使得BT AD =,连接AT ,则AB AD AB BT AT +=+=,故DB ,AT 即为所求.【点睛】本题考查作图-复杂作图,梯形的性质,平行线的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.37.如图,已知在ABC 中,点D E 、分别在边AB AC 、上,且DE ∥BC ,过点D 作DF ∥BE 交AC 于点F .(1)求证:2AE AF AC =⋅;(2)若:2:1AD BD =,AB a =,AC b =,请用a 、b 表示AE 、BE (直接写出答案). b ;23b a - 【分析】(1)根据平行线分线段成比例得出)根据:2:1AD BD =AB ,求得23AE b =,然后根据三角形法则即可得出BE .DE ∥BC AC AB 3∵AC b =,∵23AE b =, ∵AB a =,AC b =,∵BE 2233BA a AE b b a =+-==+-. 【点睛】本题考查了平行线分线段成比例,线性向量的计算,掌握以上知识是解题的关键.38.如图,在梯形ABCD 中,AD //BC ,∵A =90°,AD =2,AB =4,CD =5,如果,AB a BC b ,那么向量BD 是_____(用向量,a b 表示).25b a【分析】过点D 作DE .想办法求出BE ,DE ,可得结论.【详解】解:过点DAD //BC A ABC ∴∠+∠90A ∠=︒ABE ∴∠=DE BC ⊥90DEB∴四边形是矩形,AD BE ∴=4AB DE ==,5CD =,90=︒,2222543CE CD DE ,∴2255BE BC b ==, //AB DE ,AB DE =,∴DEa , 25BD BE EDb a ,故答案为:25b a .【点睛】本题考查梯形的性质,矩形的性质,解直角三角形和向量的运算等知识,熟练掌握相关知识是解题的关键.39.如图,已知点D 是∵ABC 的边BC 上一点,且BD=12CD ,设AB=a ,BC=b . (1)求向量AD (用向量a 、b 表示);(2)求作AC向量在a、b方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【答案】略【分析】(1)在∵ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量AC向量在a、b方向上的分向量.【详解】(1)∵,∵∵,∵∵,且∵;(2)解:如图,所以,向量、即为所求的分向量.【考点】*平面向量.40.已知平行四边形的对角线AC与BD相交于点O,设OA a=,则向量BC=,OB b关于a、b的分解式为______.【答案】a b--【分析】由四边形ABCD是平行四边形,可得OAC==,然后由三角形法则,可O a求得向量BC关于a、b的分解式.【详解】解:如图∵四边形ABCD 是平行四边形,∴OA O a C ==∵OB b =OB a b BC CO =-∴=--故答案为a b --.【点睛】本题考查了平面向量的知识.注意掌握平行四边形的性质以及三角形法则的应用.41.如图,已知点E 在行四边形ABCD 的边CD 上,设AB a =,AD b =,DE c =.图中的线段都成有向线段.(1)用a 、b 、c 的式子表示:AE = ,BE = .(2)在图中求作BC CE AB +-(不写作法,保留作图痕迹).【答案】(1)b c +,a b c -++;(2)见解析【分析】(1)利用三角形法则求解即可.(2)在射线CE 上截取EF=BA ,由BC CE AB BE AB BE BA BE EF BF +-=-=+=+=,推出BF 即为所求.【详解】解:(1)AE AD DE b c =+=+,BE BA AE a b c =+=-++,故答案为:b c +,a b c -++.(2)在射线CE 上截取EF=BA ,BC CE AB BE AB BE BA BE EF BF +-=-=+=+=,∴BF 即为所求.【点睛】本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握三角形法则解决问题,属于中考常考题型.42.如图,在 Rt ABC 中, 90ACB ∠=︒,10AC =,3sin 5A =, CD ∵AB ,垂足为 D .(1)求 BD 的长;(2)设AC a =,BC b =,用a ,b 表示AD . 2(2)16162525AD a b =- 【分析】(1)根据解直角三角形,先求出数值相等,有tan tan DCB ∠=的长度;2)由(1)可求AB 的长度,根据三角形法则,求出AB ,然后求出AD .25AB∵AB AC BC a b=-=-,∵161616252525AD AB a b ==-.【点睛】本题考查了解直角三角形,向量的运算,勾股定理,解题的关键是熟练掌握解直角三角形求三角形的各边长度.43.如图,已知向量a、b,先化简,再求作向量322b a b(不要求写作法,但要指出图中表示结论的向量)a b+;见解析32()2b a b322b a b32a b.如图,OC即为所求.44.在ABC∆中,边BC、AC上的中线AE、BD相交于点G,过点G作MN BC,已知BD a=,AC b=,试用a和b标示BC、MN.【答案】12BC a b =+,2133MN a b =+ 的中点,可知12DC b =,根据向量加法的三角形法则可以求出12BC a b =+,根据点的重心,可得AG AE =23MN BC =,即可求得MN . 【详解】解:12DC AC =,12DC b ∴=,12BC BD DC a b ∴=+=+,中线BD 相交于点G ,即点G 为ABC ∆的重心,23AG AE ∴=,MN BC ,23AG AE ==,23MN BC ∴=,2212133233MN BC a b a b ⎛⎫∴==+=+ ⎪⎝⎭. 【点睛】此题考查三角形的重心和平面向量,根据点G 为ABC ∆的重心,可得,即可求得MN .。

向量的线性运算易错题汇编含解析

向量的线性运算易错题汇编含解析

向量的线性运算易错题汇编含解析一、选择题1.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r表示向量a r 为( ) A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义, 故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴. 故选A. 【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.4.下列判断正确的是( )A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.5.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.6.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r与b r均为单位向量,可得向量a r与b r的模相等,但方向不确定. 【详解】解:∵向量a r与b r均为单位向量, ∴向量a r与b r的模相等,∴a b =r r.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.7.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠r r ,所以ma r 与a r 的方向一定相反,故①正确;②因为0m ≠,1≠0,0a ≠r r ,所以ma r 与a r 是平行向量,故②正确;③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.8.给出下列3个命题,其中真命题的个数是( ).①单位向量都相等;②单位向量都平行;③平行的单位向量必相等. A .1个 B .2个C .3个D .0个【答案】D 【解析】 【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可. 【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误; ③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误. 故选D. 【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C. 【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r,∴AC u u u r =AB BC m n +=+u u u r u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r,∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.11.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =rrC .//a c r r,//b c r rD .2,2a c b c ==-rrr r【答案】A 【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r|=|a r|,那么b r=a r或b r=﹣a r,错误.模相等的向量,不一定平行. D 、已知非零向量a r,如果向量b r=﹣5a r,那么a r∥b r,正确. 故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.13.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u rAE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.14.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意.B 、由a v +b v =2c v ,a v -b v =3c v 得到:a v =52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v |只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.15.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( ) A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.16.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP uuu r可以用点P 的坐标表示为:OP uuu r =(m ,n ).已知OA u u u r =(x 1,y 1),OB uuu r=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r互相垂直,在下列四组向量中,互相垂直的是( ) A .OC u u u r =(3,20190),OD uuu r=(﹣3﹣1,1)B .OE uuu r ﹣1,1),OF uuu r,1)C .OG u u u r 12),OH u u u r )2,8)D .OM u u u u r ),ON u u u r 2,2)【答案】A 【解析】 【分析】根据向量互相垂直的定义作答. 【详解】A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC u u u r 与OD uuu r互相垂直,故本选项符合题意.B ﹣1+1)+1×1=2﹣1+1=2≠0,则OE uuu r 与OF uuu r不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG u u u r 与OH u u u r 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM u u u u r 与ON u u u r 不垂直,故本选项不符合题意. 故选:A . 【点睛】本题考查了平面向量,解题的关键是掌握向量垂直的定义.17.已知a r 、b r 和c r 都是非零向量,在下列选项中,不能判定a r ∥b r的是( )A .=a b r rB .a r ∥c r ,b r ∥c rC .a r +b r =0D .a r +b r =2c r ,a r ﹣b r =3c r【答案】A 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A 、该等式只能表示两a r 、b r的模相等,但不一定平行,故本选项符合题意;B 、由a r ∥c r ,b r ∥c r 可以判定a r ∥b r,故本选项不符合题意;C 、由a r +b r =0可以判定a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;D 、由a r +b r =2c r ,a r ﹣b r =3c r ,得到a r =52c r ,b r =﹣12c r,则a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;故选:A . 【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.18.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.19.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v -【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v =-12b v,故本选项不符合题意.故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.20.下列各式不正确的是( ).A .0a a -=r r rB .a b b a +=+r r r rC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r方向不同,则a b r r,所以D 选项错误.故选D.【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.。

(易错题精选)初中数学向量的线性运算全集汇编附答案解析(1)

(易错题精选)初中数学向量的线性运算全集汇编附答案解析(1)

(易错题精选)初中数学向量的线性运算全集汇编附答案解析(1)一、选择题1.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.2.在矩形ABCD 中,如果AB u u u r BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r ) 的长度为( )A .2B .4C 1D 1【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴u u u r u u u r Q u u u ru u u r u u u r u u u rQ u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.3.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键4.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误 【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误; 故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键5.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.6.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r与b r均为单位向量,可得向量a r与b r的模相等,但方向不确定. 【详解】解:∵向量a r与b r均为单位向量, ∴向量a r与b r的模相等,∴a b =r r.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.7.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可. 【详解】A 、()222a b c a b c ++=++r r r r rr ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r rr r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确;故选D. 【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.8.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量B .AD u u u r 与BD u u u r是平行向量C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuur 是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r 是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD ,∴AD=BC ,∴AD BC =-u u u r u u u r ,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.9.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u r u u u r u u u r u u u r r ,故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.10.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C 【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 . A. AB CD =-u u u r u u u r,故该选项错误;B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C .【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v=,2b c -vv=,故a b vv ,是长度相同,方向相反的相反向量, 故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r,∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.13.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确.故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.14.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】 【分析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.15.已知5a b =r r,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r,故该选项说法正确, D 、因为5a b =rr,所以||5||a b =r r;故该选项说法正确, 故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.16.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r与b r方向相同 D .a r与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r代入3a b c -=r r r , 计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.17.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B .【点睛】本题考查了向量的性质.18.已知非零向量a r 、b r 和c r,下列条件中,不能判定a b r r P 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rr D .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r 不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =u u u r u u u rB .12CB AB =u u u r u u u rC .0AC BC u u u r u u u r +=D .0AC CB +=u u u r u u u r r【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.解:A 、12CA BA =u u u r u u u r,故本选项错误;B 、12CB AB =u u u r u u u r,故本选项正确;C 、0AC BC +=u u u r u u u r r,故本选项错误;D 、AC CB AB +=u u u r u u u r u u u r,故本选项错误.故选B .20.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u r AE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.。

向量的线性运算易错题汇编附答案

向量的线性运算易错题汇编附答案

向量的线性运算易错题汇编附答案一、选择题1.下列条件中,不能判定a ∥b 的是( ).A . //a c ,//b cB .||3||a b =C . 5a b =-D .2a b =【答案】B【解析】【分析】根据平面向量的性质进行逐一判定即可.【详解】解:A 、由//a c ,//b c 推知非零向量a 、b 、c 的方向相同,则//a b ,故本选项不符合题意.B 、由||3||a b =只能判定向量a 、b 的模之间的关系,不能判定向量a 、b 的方向是否相同,故本选项符合题意.C 、由5a b =-可以判定向量a 、b 的方向相反,则//a b ,故本选项不符合题意.D 、由2a b =可以判定向量a 、b 的方向相同,则//a b ,故本选项不符合题意. 故选:B .【点睛】本题考查的是向量中平行向量的定义,即方向相同或相反的非零向量a 、b 叫做平行向量.2.在矩形ABCD 中,如果ABBC 模长为1,则向量(AB +BC +AC ) 的长度为( )A .2B .4 C1 D1【答案】B【解析】【分析】先求出AC AB BC =+,然后2AB BC AC AC ++=,利用勾股定理即可计算出向量(AB +BC +AC )的长度为【详解】 22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC ACAB BC AC AC ==∴=+==+∴++=++==⨯=∴故选:B.考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.3.计算45a a -+的结果是( )A .aB .aC .a -D .a -【答案】B【解析】【分析】按照向量之间的加减运算法则解题即可【详解】 -4a+5a=a ,所以答案为B 选项【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键4.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12a bB .12a b -C .12a b -+D .12a b -- 【答案】A【解析】【分析】 根据AE AB BE =+,只要求出BE 即可解决问题. 【详解】解:四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=,BC AD b ∴==,BE CE =,1BE b 2∴=, AE AB BE,AB a =+=,1AE a b 2∴=+,【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.5.已知a 、b 和c 都是非零向量,在下列选项中,不能判定//a b 的是( ) A .2a b =B .//a c ,//b cC .||||a b =D .12a c =,2bc = 【答案】C【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断.【详解】 A 选项:由2a b =,可以推出//a b .本选项不符合题意;B 选项:由//a c ,//b c ,可以推出//a b .本选项不符合题意;C 选项:由||||a b =,不可以推出//a b .本选项符合题意;D 选项:由12a c =,2bc =,可以推出//a b .本选项不符合题意;故选:C .【点睛】考查了平面向量,解题关键是熟记平行向量的定义.6.已知矩形的对角线AC 、BD 相交于点O ,若BC a =,DC b =,则( ) A .()12BO a b =+; B .()12BO a b =-; C .()12BO b a =-+; D .()12BO b a =-. 【答案】D【解析】 1,.21(b-a)2BCD BO BD BD DC CB CB BC BO D ∆==+=-=在中,所以故选7.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ).A .()12a b - B .()12b a - C .()12a b + D .()12a b -+ 【答案】C【解析】根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b =∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==- ∴()()1122AM AC CM b b b a a -=+=+=+故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.8.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a 、b ,恒有()m a b ma mb -=-②对于实数m 、n 和向量a ,恒有()m n a ma na -=-③若ma mb =(m 是实数)时,则有a b =④若ma na =(m 、n 是实数,0a ≠),则有m n =A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据平面向量的性质依次判断即可.【详解】①对于实数m 和向量a 、b ,恒有()m a b ma mb -=-,正确;②对于实数m 、n 和向量a ,恒有()m n a ma na -=-,正确;③若ma mb =(m 是实数)时,则有a b =,错误,当m=0时不成立;④若ma na =(m 、n 是实数,0a ≠),则有m n =,正确;故选C.本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.9.下列等式正确的是( )A .AB +BC =CB +BAB .AB ﹣BC =ACC .AB +BC +CD =DAD .AB +BC ﹣AC =0【答案】D【解析】【分析】根据三角形法则即可判断.【详解】∵AB BC AC +=,∴0AB BC AC AC AC +-=-= ,故选D .【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.10.如果向量a 与单位向量e 的方向相反,且长度为3,那么用向量e 表示向量a 为( )A .3a e =B .3a e =-C .3e a =D .3e a =-【答案】B【解析】【分析】根据平面向量的定义解答即可.【详解】解:∵向量e 为单位向量,向量a 与向量e 方向相反,∴3a e =-.故选:B .【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.11.已知e →为单位向量,a =-3e →,那么下列结论中错误..的是( ) A .a ∥e →B .3a =C .a 与e →方向相同D .a 与e →方向相反 【答案】C【解析】【分析】由向量的方向直接判断即可.【详解】解:e 为单位向量,a =3e -,所以a 与e 方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.12.下列有关向量的等式中,不一定成立的是( )A .AB BA =-B .AB BA =C .AB BCAC D .AB BC AB BC +=+ 【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解. 【详解】 A 选项,AB BA =-,成立; B 选项,AB BA =,成立; C 选项,AB BC AC ,成立;D 选项,AB BC AB BC +=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.13.已知5a b =,下列说法中,不正确的是( )A .50a b -=B .a 与b 方向相同C .//a bD .||5||a b =【答案】A【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=,故该选项说法错误B 、因为5a b =,所以a 与b 的方向相同,故该选项说法正确,C 、因为5a b =,所以//a b ,故该选项说法正确,D 、因为5a b =,所以||5||a b =;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.14.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,下列式子中正确的是( )A .DC a b =+B .DC a b =-; C .DC a b =-+D .DC a b =--.【答案】C【解析】【分析】 由平行四边形性质,得DC AB =,由三角形法则,得到OA AB OB +=,代入计算即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB =,∵OA a =,OB b =,在△OAB 中,有OA AB OB +=,∴AB OB OA b a a b =-=-=-+,∴DC a b =-+;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.15.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a ()=()B . m n a ma na ++()=C .m a b ma mb +(+)=D .若0ma =,那么0a =【答案】D【解析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的;∵D 、如果a =0,则m=0或a =0.∴错误.故选D .【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.16.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a = B .e b b = C .1a e a = D .11a b a b= 【答案】B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B.【点睛】 本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.17.若a =2e ,向量b 和向量a 方向相反,且|b |=2|a |,则下列结论中不正确的是( ) A .|a |=2B .|b |=4C .b =4eD .a =12b - 【答案】C【解析】根据已知条件可以得到:b =﹣4e ,由此对选项进行判断.【详解】A 、由a =2e 推知|a |=2,故本选项不符合题意.B 、由b =-4e 推知|b |=4,故本选项不符合题意.C 、依题意得:b =﹣4e ,故本选项符合题意.D 、依题意得:a =-12b ,故本选项不符合题意. 故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.18.如图,在ABC 中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .a b +B .2233a b +C .23a b -D .23a b + 【答案】D【解析】【分析】 根据2BD CD =,即可求出BD ,然后根据平面向量的三角形法则即可求出结论. 【详解】解:∵2BD CD =∴2233BD BC b == ∴23AD AB BD a b =+=+故选D .【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.19.已知a 、b 、c 都是非零向量,如果2a c =,2b c =-,那么下列说法中,错误的是( )A .//a bB .a b =C .72BD = D .a 与b 方向相反【答案】C【解析】【分析】 利用相等向量与相反向量的定义逐项判断即可完成解答.【详解】 解:已知2a c =,2b c -=,故a b ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误,故选C.【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.20.下列式子中错误的是( ).A .2a a a +=B .()0a a +-=C .()a b a b -+=--D .a b b a -=- 【答案】D【解析】【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a 与a 大小、方向都相同,∴2a a a +=,故本选项正确;B. a 与a -大小相同,方向相反,∴()0a a +-=,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--,故本选项正确;D.根据向量的交换律,可知a b b a -=-+,故本选项错误.故选D.【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.。

(易错题精选)初中数学向量的线性运算易错题汇编及答案

(易错题精选)初中数学向量的线性运算易错题汇编及答案

(易错题精选)初中数学向量的线性运算易错题汇编及答案一、选择题1.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r r D .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.2.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A 【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义, 故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴. 故选A.本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.3.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④方向相同 A .0 B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.4.下列各式中错误的是( )A .()0a a r r+-=B .|AB BA |0+=u u u r u u u rC .()-=+-r r r ra b a bD .()()++=++r r r r r ra b c a b c【答案】A 【解析】 【分析】根据向量的运算法则和运算律判断即可. 【详解】解:A. ()0a a vv v+-=,故本选项错误,B ,C ,D ,均正确, 故选:A. 【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.5.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大6.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键7.下列命题:①若a b r r=,b c =rr,则c a =r r; ②若a r ∥b r ,b r∥c r ,则a r ∥c r;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r; ④若a r与b r是互为相反向量,则a r +b r=0. 其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解. 【详解】①若a b =r r,b c =rr,则c a =r r,正确; ②若a r∥b r ,b r∥c r ,则a r ∥c r,正确;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r,错误,因为两个向量的方向不一定相同或相反;④若a r与b r是互为相反向量,则a r +b r=0,正确. 综上所述,真命题的个数是3个. 故选C .8.已知3a →=,2b =r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反∴32a b =-v v故选D. 【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.9.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.10.已知m 、n 是实数,则在下列命题中正确命题的个数是( ).①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠r r ,所以ma r 与a r 的方向一定相反,故①正确;②因为0m ≠,1≠0,0a ≠r r ,所以ma r 与a r 是平行向量,故②正确;③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v=,2b c -vv=,故a b vv ,是长度相同,方向相反的相反向量, 故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r ,故选B. 【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.13.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r③若ma mb =rr(m 是实数)时,则有a b =rr④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n = A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立; ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.14.下列式子中错误的是( ).A .2a a a +=r r rB .()0a a +-=r r rC .()a b a b -+=--r r r rD .a b b a -=-r r r r【答案】D 【解析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D. 【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.15.下列关于向量的运算中,正确的是A .a b b a -=-r r r r ;B .2()22a b a b --=-+r r r r ;C .()0a a +-=r r;D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A. (),a b b a A ---vv v v =所以错误;B. ()222a b a b B ---v vv v =+,所以正确; C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误. 故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.16.对于非零向量a r 、b r ,如果2|a r |=3|b r |,且它们的方向相同,那么用向量a r表示向量b r正确的是( )A .b r =32a rB .b r =23a rC .b r =﹣32a rD .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r、b r的模间的数量关系,再结合它们的方向相同解题.∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.17.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.18.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v ,4b e =v v ,∴//a b v v ,2a =v ,4b =v , 12a b =-v v , 故C 选项错误,故选C.19.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =u u u r u u u rB .12CB AB =u u u r u u u rC .0AC BC u u u r u u u r+=D .0AC CB +=u u u r u u u r r【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.解:A 、12CA BA =u u u r u u u r,故本选项错误;B 、12CB AB =u u u r u u u r,故本选项正确;C 、0AC BC +=u u u r u u u r r,故本选项错误;D 、AC CB AB +=u u u r u u u r u u u r,故本选项错误.故选B .20.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r ,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.。

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析(1)

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析(1)

(易错题精选)初中数学向量的线性运算易错题汇编及答案解析(1)一、选择题1.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB u u u r 是单位向量,则BA u u u r不是单位向量 C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA u u u r 、OB uuu r是单位向量D .计算向量的模与单位长度无关 【答案】C 【解析】 【分析】根据单位向量的定义及意义判断即可. 【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB u u u r是单位向量时,1AB =uu u r ,而此时1AB BA ==u u u r u u u r ,即BA u u u r 也是单位向量,故选项B不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA u u u r 、OB u u u r都等于这个单位长度,这时OA u u u r 、OB uuu r都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C. 【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.2.如图,已知△ABC 中,两条中线AE 、CF 交于点G ,设,,则向量关于、的分解式表示正确的为( )A .B .C .D .【答案】B 【解析】 【分析】由△ABC 中,两条中线AE 、CF 交于点G 可知,,求出的值即可解答.【详解】 ∵ ∴ ∵∴故本题答案选B. 【点睛】本题考查向量的减法运算及其几何意义,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.3.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键4.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线;D 、如果a 2b =,那么a 2b =或a 2b =-r,正确; 故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.5.已知3a →=,2b =r,而且b r和a r的方向相反,那么下列结论中正确的是( ) A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反 ∴32a b =-v v故选D. 【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.6.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r ,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.7.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确; ∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.8.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【答案】B 【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C 【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C. 【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可. 【详解】A 、()222a b c a b c ++=++r r r r rr ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r rr r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确;故选D. 【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.11.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v v C .23a b -v vD .23a b +v v【答案】D 【解析】 【分析】 根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论.【详解】 解:∵2BD CD =∴2233BD BC b ==u u u v u u u v v∴23AD AB BD a b =+=+u u u v u u u v u u u v v v故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误.D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.13.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量B .AD u u u r 与BD u u u r是平行向量 C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r 是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误; B 、∵点C 、D 是线段AB 上的两个点,∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC ,∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD , ∴AD=BC ,∴AD BC =-u u u r u u u r,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.14.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.15.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v , 12a b =-v v ,故C 选项错误, 故选C.16.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r r;C .DC a b =-+u u u r r rD .DC a b =--u u u r r r.【答案】C 【解析】 【分析】由平行四边形性质,得DC AB =u u u r u u u r ,由三角形法则,得到OA AB OB +=u u u r u u u r u u u r,代入计算即可得到答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴DC AB =u u u r u u u r,∵OA a =u u u r r ,OB b =u u u r r,在△OAB 中,有OA AB OB +=u u u r u u u ru u u r , ∴AB OB OA b a a b =-=-=-+u u u r u u u r u u u r rr rr, ∴DC a b =-+u u u rr r; 故选择:C. 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.17.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】 试题解析:向量最后的差应该还是向量.20.a b v v v -= 故错误.故选B.18.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.19.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)=D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】【分析】根据平面向量的性质依次判断即可.【详解】 ①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立;④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确; 故选C.【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.。

(专题精选)初中数学向量的线性运算易错题汇编含答案

(专题精选)初中数学向量的线性运算易错题汇编含答案

(专题精选)初中数学向量的线性运算易错题汇编含答案一、选择题1.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r表示向量a r 为( ) A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.已知向量,若与共线,则( )A .B .C .D .或【答案】D 【解析】 【分析】 要使与,则有=,即可得知要么为0,要么,即可完成解答. 【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D. 【点睛】本题考查了向量的共线,即=是解答本题的关键.3.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r,∴0AB BC AC AC AC +-=-=u u u u r u u u ru u u r u u u r u u u r r, 故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.4.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r ,BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.5.已知矩形的对角线AC 、BD 相交于点O ,若BC a =u u u r r ,DC b =u u u r r,则( )A .()12BO a b =+u u u r r r ; B .()12BO a b =-u u u r rr ; C .()12BO b a =-+u u u r r r; D .()12BO b a =-u u u r r r . 【答案】D【解析】1,.21(b-a)2BCD BO BD BD DC CB CB BCBO D∆==+=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u ru u u r r r在中,所以故选6.已知a r 、b r为非零向量,下列判断错误的是( ) A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.7.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.8.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C 【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C. 【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.下列关于向量的运算中,正确的是A .a b b a -=-r r r r ;B .2()22a b a b --=-+r r r r ;C .()0a a +-=r r;D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A.(),a b b a A ---vv v v =所以错误; B. ()222a b a b B ---v vv v =+,所以正确; C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误. 故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.11.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.12.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r,如果12120x x y y ⋅+⋅=,那么OA u r 与OB u r互相垂直.在下列四组向量中,互相垂直的是( ) A .()()013,2019,3,1OC OD -==-u r u r B.))1,1,1,1OE OF =u r u r C.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u r D.,OM +⎭u r【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A .【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.13.下列说法正确的是( ) A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.14.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意.B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.15.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致 B .a r ∥b r ,并且a r 和b r方向相反 C .a r 和b r方向互相垂直 D .a r 和b r之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r, ∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.16.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( )A .||2||a b =r r ;B .a r ∥b r ;C .a r 与b r 方向相反;D .20a b +=r r .【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与br 方向相反,但还是相互平行,∴a r ∥b r ,该选项不符合题意错误; C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.17.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r;D .11a b a b=r rr r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质.18.已知非零向量a r 、b r 和c r,下列条件中,不能判定a b r r P 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rr D .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.已知a r 、b r 和c r 都是非零向量,在下列选项中,不能判定a r ∥b r的是( )A .=a b r rB .a r ∥c r ,b r ∥c rC .a r +b r =0D .a r +b r =2c r ,a r ﹣b r =3c r【答案】A 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A 、该等式只能表示两a r 、b r的模相等,但不一定平行,故本选项符合题意; B 、由a r ∥c r ,b r ∥c r 可以判定a r ∥b r,故本选项不符合题意;C 、由a r +b r =0可以判定a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意; D 、由a r +b r =2c r ,a r ﹣b r =3c r ,得到a r=52c r ,b r =﹣12c r,则a r 、b r 的方向相反,可以判定a r∥b r,故本选项不符合题意; 故选:A . 【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.20.已知m 、n 是实数,则在下列命题中正确命题的个数是( ). ①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠r r ,所以ma r 与a r 的方向一定相反,故①正确;②因为0m ≠,1≠0,0a ≠r r ,所以ma r 与a r 是平行向量,故②正确; ③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确. 故选D.【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.。

(易错题精选)初中数学向量的线性运算难题汇编

(易错题精选)初中数学向量的线性运算难题汇编

(易错题精选)初中数学向量的线性运算难题汇编一、选择题1.下列命题正确的是( )A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确;D .如果m =0或a r =0r ,那么m a r =0r,不正确.故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.2.若非零向量、满足|-|=||,则( ) A .|2|>|-2| B .|2|<|-2| C .|2|>|2-| D .|2|<|2-|【答案】A 【解析】 【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题. 【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义, 故可以构造三角形,使其满足OB=AB=BC ; 令,,则,∴且;又BA+BC>AC ∴∴.故选A. 【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.3.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④方向相同 A .0 B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.4.如图,已知向量a r ,b r ,c r,那么下列结论正确的是( )A .a b c +=r r rB .b c a +=r r rC .a c b +=r r rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得:解:∵CA AB CB +=u u u r u u u r u u u r ,即a c b +=-r r r故选D .5.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12,∴12a e =-rr .故选C .6.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .7.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r; B .AB BA u u u v u u u v =; C .0AB BA +=u u u r u u u r ; D .0AB BA +=u u u r u u u r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大8.若向量a r 与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r与b r均为单位向量,可得向量a r与b r的模相等,但方向不确定. 【详解】解:∵向量a r 与b r均为单位向量,∴向量a r 与b r的模相等,∴a b =r r.故答案是:D. 【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( ) A .++ B .-+C .+-D .--【答案】B 【解析】 【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论. 【详解】 如图,,则-+故选B . 【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.11.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同D .a r与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.13.下列说法不正确的是( ) A .设e r为单位向量,那么||1e =rB .已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rrC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解 【答案】C 【解析】 【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可. 【详解】解:A. 设e r为单位向量,那么||1e =r,此选项说法正确;B. 已知a r、b r、c r 都是非零向量,如果2a c =r r,4b c =-rr ,那么//a b rr,此选项说法正确;C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确. 故选:C . 【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.14.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v()222OA OB +=u u u v u u u v 故选B.15.已知a r,b r和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.16.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( )A .||2||a b =r r ;B .a r ∥b r ;C .a r 与b r 方向相反;D .20a b +=r r .【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与br 方向相反,但还是相互平行,∴a r ∥b r ,该选项不符合题意错误; C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.17.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D.本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.18.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.19.已知a r 、b r 和c r 都是非零向量,在下列选项中,不能判定a r ∥b r的是( )A .=a b r rB .a r ∥c r ,b r ∥c rC .a r +b r =0D .a r +b r =2c r ,a r ﹣b r =3c r【答案】A 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A 、该等式只能表示两a r 、b r的模相等,但不一定平行,故本选项符合题意;B 、由a r ∥c r ,b r ∥c r 可以判定a r ∥b r,故本选项不符合题意;C 、由a r +b r =0可以判定a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;D 、由a r +b r =2c r ,a r ﹣b r =3c r ,得到a r =52c r ,b r =﹣12c r,则a r 、b r 的方向相反,可以判定a r ∥b r,故本选项不符合题意;【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.20.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r r D .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足学2AP PM =u u u r u u u u r,则()PA PB PC ⋅+u u u r u u u r u u u r等于A 、49-B 、43-C 、43D 、492.已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A 、77(,)93 B 、77(,)39-- C 、77(,)39D 、77(,)93--3.已知||8AB =u u u u r ,||5AC =u u u r ,则||BC uuu r的取值范围是( )A 、]8,3[B 、(3,8)C 、]13,3[D 、(3,13)4.设向量),(),,(2211y x b y x a ==,则2121y yx x =是b a //的( )条件。

A 、充要 B 、必要不充分C 、充分不必要D 、既不充分也不必要 5.下列命题:①422||)()(=⋅ ②⋅⋅=⋅⋅)()( ③ |a ·b |=|a |·|b | ④若a ∥,∥,则∥ ⑤∥,则存在唯一实数λ,使λ= ⑥若⋅=⋅,且≠,则= ⑦设21,e e 是平面内两向量,则对于平面内任何一向量,都存在唯一一组实数x 、y ,使21e y e x a +=成立。

⑧若|+|=|-|则·=0。

⑨·=0,则=或=真命题个数为( ) A 、1 B 、2C 、3D 、3个以上6.和a r= (3,-4)平行的单位向量是_________;7.已知向量||||a bp a b =+r ru r r r ,其中a r 、b r 均为非零向量,则||p u r 的取值范围是 .8.若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值范围是______.9.在四边形ABCD 中,AB u u u r =DC u u ur =(1,1),BA BC BA BC BD+=u u u r u u u r u u ru u u r u u u r u u u r ,则四边形ABCD10.△ABC 中,已知0AC AB >⋅,0AB BC <⋅,0CA CB >⋅,判断△ABC 的形状为_______.11.向量a 、b 都是非零向量,且向量3a +b 与7-5a b 垂直,4-a b 与7-2a b 垂直,求a 与b 的夹角.12.)2,(),,0(),0,1(),sin ,cos 1(),sin ,cos 1(ππβπαββαα∈∈=-=+=c b a ρρρ,a ρ与c ρ的夹角为θ1, b ρ与c ρ的夹角为θ2,且2sin,321βαπθθ-=-求的值. 13.设两个向量e 1,e 2,满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为3π.若向量2te 1+7e 2与e 1+te 2的夹角为钝角,求实数t 的范围.14.四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?15.如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值.16.已知常数a>0,向量c=(0,a ),i=(1,0),经过原点O 以c+λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R.试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.17.已知a 是以点A(3,-1)为起点,且与向量b= (-3,4)平行的单位向量,则向量a 的终点坐标是多少?18.已知P 1(3,2),P 2(8,3),若点P 在直线P 1P 2上,且满足|P 1P|=2|PP 2|,求点P 的坐标。

19.在边长为1的正三角形ABC 中,求AB BC BC CA CA AB ++u u u r u u u r u u u r u u u r u u u r u u u rg gg 的值. 20.已知同一平面上的向量、、两两所成的角相等,并且1||=,2||=,3||=,求向量++的长度。

参考答案1.A 【解析】【错解分析】不能正确处理向量的方向导致错选为D由2AP PM =u u u r u u u u r知, p 为ABC ∆的重心,根据向量的加法, 2PB PC PM +=u u u r u u u r u u u u r ,则()AP PB PC ⋅+u u u r u u u r u u u r =2142=2cos021339AP PM AP PM ︒⋅=⨯⨯⨯=uuu r uuu u r uuu r uuu u r 。

【正解】()AP PB PC ⋅+u u u r u u u r u u u r =2142=2cos021339AP PM AP PM ︒⋅=⨯⨯⨯=uuu r uuu u r uuu r uuu u r ,()PA PB PC ∴⋅+=-u u u r u u u r u u u r ()AP PB PC ⋅+u u u r u u u r u u u r 49=-,故选A 。

2.D 【解析】【错解分析】由于混淆向量平行与垂直的条件,即非0向量 1221//0a b x y x y ⇔-=rr,12120a b x x y y ⊥⇔+=rr ,而不能求得答案。

【正解】不妨设(,)C m n =u r,则()1,2,(3,1)a c m n a b +=+++=-r r r r ,对于()//c a b +r r r ,则有3(1)2(2)m n -+=+;又()c a b ⊥+r r r ,则有30m n -=,则有77,93m n =-=-,故选D 。

【点评】此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用. 3.C 【解析】【错解分析】对题意的理解有误,题设条件并没有给出A 、B 、C 三点不能共线,因此它们可以共线。

当A 、B 、C 共线时,△ABC 不存在,错选D 。

【正解】因为向量减法满足三角形法则,作出8||=,5||=,-=。

(1)当△ABC 存在,即A 、B 、C 三点不共线时,13|BC |3<<;(2)当与AB 同向共线时,3|BC |=;当与AB 反向共线时,13|BC |=。

∴]13,3[||∈,故选C 。

4.C 【解析】【错解分析】//⇒01221=-y x y x ⇒2121y yx x =,此式是否成立,未考虑,选A 。

【正解】若2121y yx x =则b a y x y x //,01221∴=-,若//,有可能2x 或2y 为0,故选C 。

5.B【解析】【错解分析】共线向量、向量的数乘、向量的数量积的定义及性质和运算法则等是向量一章中正确应用向量知识解决有关问题的前提,在这里学生极易将向量的运算与实数的运算等同起来,如果认为向量的数量积的运算和实数一样满足交换律就会产生一些错误的结论。

【正解】①正确。

根据向量模的计算2a a a •=r r r 判断。

②错误,向量的数量积的运算不满足交换律,这是因为根据数量积和数乘的定义()a c b ⋅⋅r r r 表示和向量b r 共线的向量,同理()a b c ⋅⋅r r r表示和向量c r 共线的向量,显然向量b r 和向量c r 不一定是共线向量,故()()a b c a c b ⋅⋅≠⋅⋅r r r r r r不一定成立。

③错误。

应为a b a b •≤r r r r④错误。

注意零向量和任意向量平行。

非零向量的平行性才具有传递性。

⑤错误。

应加条件“非零向量a r”⑥错误。

向量不满足消去律。

根据数量的几何意义,只需向量b r 和向量b r 在向量c r方向的投影相等即可,作图易知满足条件的向量有无数多个。

⑦错误。

注意平面向量的基本定理的前提有向量21,e e 是不共线的向量即一组基底。

⑧正确。

条件表示以两向量为邻边的平行四边形的对角线相等,即四边形为矩形。

故a ·b =0。

⑨错误。

只需两向量垂直即可。

综上真命题个数为2,故选B 【点评】在利用向量的有关概念及运算律判断或解题时,一定要明确概念或定理成立的前提条件和依据向量的运算律解答,要明确向量的运算和实数的运算的相同和不同之处。

一般地已知a,b,с和实数λ,则向量的数量积满足下列运算律:①a·b=b·a (交换律)②(λa)·b=λ(a·b)=a·(λb) (数乘结合律)③(a+b)·с=a·с+b·с (分配律) 6.(-35,45) 【解析】【错解分析】因为a r 的模等于5,所以与a r 平行的单位向量就是51a r ,即 (35,-45)【正解】因为a r 的模等于5,所以与a r 平行的单位向量是±51a r ,即(35,-45)或(-35,45)【点评】平行的情况有方向相同和方向相反两种。

读者可以自己再求解“和a r= (3,-4)垂直的单位向量”,结果也应该是两个。

7.[0,2]【解析】【错解分析】本题常见错误五花八门,错误原因是没有理解向量的模的不等式的性质。

【正解】bbaaρρρρ,分别表示与a r 、b r 同向的单位向量,bb a a b b a a b b a a ρρρρρρρρρρρρ+≤+≤- 8.Y ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31Y 【解析】【错解分析】只由b a ϖρ,的夹角为钝角得到,0<⋅b a ρρ而忽视了0<⋅b a ρρ不是b a ρρ,夹角为钝角的充要条件,因为b a ϖρ,的夹角为ο180时也有,0<⋅b a ρρ从而扩大x 的范围,导致错误. 【正解】Θ ,的夹角为钝角, ()⋅+-⋅=⋅∴x x x b a 23ρρ04322<+-=x x解得0<x 或 34>x (1) 又由b a ρρ,共线且反向可得31-=x (2)由(1),(2)得x 的范围是Y ⎝⎛⎪⎭⎫-∞-31,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-,340,31Y 9【解析】【错解分析】不清楚BA BC BA BC+u u u r u u u ru u u r u u u r 与∠ABC 的角平分线有关,从而不能迅速找到解题的突破口,不能正确求解。

相关文档
最新文档