实验一 低碳钢及铸铁的拉伸试验
工程力学实验报告
实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。
2、测定低碳钢的弹性模量E。
3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率4、测定铸铁的强度极限。
5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。
6、了解CMT微机控制电子万能实验机的构造原理和使用方法。
二、实验设备和仪器1.CMT微机控制电子万能实验机2.电子式引伸计仪3.游标卡尺4.钢尺3.实验原理试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。
试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。
试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。
低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。
铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。
抗拉强度σb较低,无明显塑性变形。
与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs、最大载荷Fb和铸铁试件的最大载荷Fb。
取下试件测量试件断后最小直径d1和断后标距l1,由下述公式σs=FsA0σb=F bA0δ=l1-l0l0⨯100%ψ=A0-A1A0⨯100%可计算低碳钢的拉伸屈服点σs。
、抗拉强度σb、伸长率δ,和断面收缩率ψ;铸铁的抗拉强度σb。
低碳钢的弹性模量E由以下公式计算:E=∆Fl0A0∆l式中ΔF为相等的加载等级,Δl为与ΔF相对应的变形增量。
4、实验步骤(1)低碳钢拉伸试验步骤按照式样、设备的准备及测试工作,大致可以将低碳钢拉伸试验步骤归纳如下:首先,将式样标记标距点,测量式样直径do及标距lo。
低碳钢和铸铁的拉伸实验
实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。
低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
用准确的拉σ-曲线。
首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。
在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。
在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。
力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。
金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。
低碳钢和铸铁拉伸和压缩试验
低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
实验一 低碳钢拉伸试验
低碳钢拉伸试验姓名:班级:日期:指导老师:一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2、测定低碳钢的应变硬化指数和应变硬化系数。
二、试验要求按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成实验测量工作。
三、试验材料与试样本次试验的三个试样分别为经过退火、正火和淬火三种不同热处理的低碳钢试样。
退火是指将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其组织晶粒细小均匀,碳化物呈颗粒状,分布均匀。
正火是指将钢件加热到上临界点(AC3或Acm)以上30—50℃或更高的温度,保温达到完全奥氏体化后,在空气中冷却的热处理工艺。
其组织可能是珠光体、贝氏体、马氏体或它们的混合组织,它的晶粒和碳化物细小(比退火的晶粒更细小),分布均匀。
退火可消除过共析钢的网状二次碳化物。
淬火是指将钢件加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、下贝氏体的热处理工艺。
其组织可能为片状马氏体、板状马氏体、片状下贝氏体或它们的混合组织。
其组织是细小的马氏体及少量残余奥氏体,不存在先共析铁素体。
试样要进行机加工。
平行长度和夹持头部之间应以过渡弧连接,试样头部形状应适合于试验机夹头的夹持。
夹持端和平行长度之间的过渡弧的半径应为:≥0.75d即7.5mm。
本次试验采用的试样编号为R4,直径是10 mm,原始标距为50mm,平行长度Le≥55mm。
试样的精度要求包括①直径的尺寸公差为±0.07mm②形状公差即沿试样的平行长度的最大直径与最小直径之差不应超过0.04mm。
四、实验测量工具、仪器与设备根据国标要求,对于比例试样,应将原始标距的计算值修月之最接近5mm 的倍数,中间数值向较大一方修约,原始标距的标记应准确到±1%,即±0.5mm。
测量原始直径的分辨率不大于0.05mm。
实验一 低碳钢、铸铁的拉伸实验
实验一 低碳钢、铸铁的拉伸实验拉压实验是材料的力学性能实验中最基本最重要的实验,是工程上广泛使用的测定材料力学性能的方法之一。
一、实验目的:1、了解万能材料试验机的结构及工作原理,熟悉其操作规程及正确使用方法。
2、通过实验,观察低碳钢和铸铁在拉伸时的变形规律和破坏现象,并进行比较。
3、测定低碳钢拉伸时的屈服极限σs 、强度极限σb 、延伸率δ和截面收缩率ψ,铸铁拉伸时的强度极限σb 。
二、实验设备及试样1、万能材料试验机2、游标卡尺3、钢直尺4、拉伸试样:图2.7 拉伸试样由于试样的形状和尺寸对实验结果有一定影响,为便于互相比较,应按统一规定加工成标准试样。
图2.7分别表示横截面为圆形和矩形的拉伸试样。
L 0是测量试样伸长的长度,称为原始标距。
按现行国家GB6397-86的规定,拉伸试样分为比例试样和非比例试样两种。
比例试样的标距L 0与原始横截面A 0的关系规定为00A k L = (2.2)式中系数k 的值取为 5.65时称为短试样,取为11.3时称为长试样。
对直径d 0的圆截面短试样,0065.5A L ==5d 0;对长试样, 000103.11d A L ==。
本实验室采用的是长试样。
非比例试样的L 0和A 0不受上列关系的限制。
试样的表面粗糙度应符合国标规定。
在图2.7中,尺寸L称为试样的平行长度,圆截面试样L不小于L0+d 0;矩形截面试样L不小于L0+b 0/2。
为保证由平行长度到试样头部的缓和过渡,要有足够大的过渡圆弧半径R。
试样头部的形状和尺寸,与试验机的夹具结构有关,图2.7所示适用于楔形夹具。
这时,试样头部长度不小于楔形夹具长度的三分之二。
三、实验原理及方法常温下的拉伸实验是测定材料力学性能的基本实验。
可用以测定弹性E和μ,比例极限σp ,屈服极限σs (或规定非比例伸长应力),抗拉强度σb ,断后伸长率δ和截面收缩率ψ等。
这些力学性能指标都是工程设计的重要依据。
1、低碳钢拉伸实验1)、屈服极限σs 及抗拉强度σb 的测定对低碳钢拉伸试样加载,当到达屈服阶段时,低碳钢的P-△L曲线呈锯齿形(图2.8)。
材料力学低碳钢铸铁拉伸实验报告
材料力学低碳钢铸铁拉伸实验报告材料力学实验报告实验目的:1.了解和掌握材料拉伸试验的基本原理和操作方法;2.通过拉伸试验获取低碳钢和铸铁的力学性能参数,如抗拉强度、屈服强度、延伸率等;3.分析和对比低碳钢和铸铁的力学性能,并探讨其差异。
实验器材:1.拉伸试验机2.低碳钢和铸铁试样3.卡尺4.万能试验机5.整定尺实验步骤:1.试样制备利用卡尺测量低碳钢和铸铁试样的尺寸。
根据实验要求,制备符合标准的试样。
2.实验装置搭建将试样夹持于拉伸试验机上,确保试样夹持牢固。
3.实验参数设定启动拉伸试验机,设置拉伸速度为固定值。
根据试验标准,设置合适的拉伸速度。
4.开始拉伸试验启动拉伸试验机,进行拉伸实验。
记录试样在拉伸过程中所产生的变形、力值等数据。
5.绘制力与变形曲线利用万能试验机绘制力与变形曲线。
在拉伸试验过程中,通过力传感器和位移传感器实时记录和绘制曲线。
6.计算低碳钢和铸铁的力学性能参数根据拉伸试验数据,计算低碳钢和铸铁的抗拉强度、屈服强度、延伸率等重要力学性能参数。
实验数据:实验结果及分析:1.低碳钢的力学性能参数:通过拉伸试验数据计算得出低碳钢的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。
2.铸铁的力学性能参数:通过拉伸试验数据计算得出铸铁的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。
3.力学性能参数对比及分析:比较低碳钢和铸铁的力学性能参数,并分析其差异。
比如,低碳钢的抗拉强度和屈服强度较高,延伸率较低,说明低碳钢的强度较大,但延展性较差;而铸铁的抗拉强度和屈服强度较低,延伸率较高,说明铸铁的强度相对较低,但延展性较好。
结论:通过本次拉伸实验,我们获取并分析了低碳钢和铸铁的力学性能参数。
通过对比两种材料的实验结果,我们发现它们在抗拉强度、屈服强度和延伸率等方面存在明显差异。
这些数据和结论为进一步研究材料力学性能提供了重要依据。
实验中的不确定因素和改进措施:1.实验设备和试样不同批次或品质的差异可能会对实验结果产生一定影响。
试验一拉伸试验
实验一:拉伸试验一、内容和目的:1、测定低碳钢的屈服极限、强度极限、延伸率和截面收缩率;测定铸铁的强度极限。
2、观察上述两种材料的拉伸破坏现象,并分析原因绘制曲线。
二、设备和器材1、万能试验机。
2、游标卡尺。
3、低碳钢和铸铁试件:圆形截面试件长度与直径的关系:和矩形截面试件长度与截面积的关系:或—初始长度,—初始直径,—初始截面面积。
试件形状如图5:三、实验原理塑性材料和脆性材料在拉伸试验中,显示出来的力学性能有显著的不同。
塑性材料如低碳钢在拉伸试验的位伸图中,明显地会出现四个阶段:第一阶段,图中为一斜直线——称为弹性阶段,与P成正比例关系。
通常说弹性范围内指的就是这一阶段。
第二阶段,图中出现平台或波动——屈服阶段。
规定这一段首次下降的最小荷载与初始截面积之比:称为屈服强度。
第三阶段,钢材内部组织发生变化,抵抗变形能力又重新提高,称为强化阶段。
第四阶段,图中,表现从最高点下降,同时试件在某一处出现相对明显缩小部分——颈缩阶段,最后,出现断裂。
其它塑性材料在进行拉伸试验时,大体上也经历这四阶段。
但只是有些材料四个阶段不明显。
(如图6)脆性材料则变形很小,没有四个阶段,是一条较短曲线。
自试验开始,在很小变形下就出现断裂(如图7)。
故只有最大荷载,也就是说只有强度极限:衡量材料塑性大小的两个指标为延伸率和收缩率:式中:、——试验前的标距和截面面积;、——试验后的标距和截面面积;其中的取法:a)若断口在初标距长度中部三分之一区段内时,则量取试验段变形后总长度为。
b)若断口不在初标距长度中部三分之一区段内时,采用断口移中的办法,以计算试件拉断后的标距长度。
采用此方法时,试验前将原标距长度分为10个等分格。
断裂后在试件较长的右段上,从邻近断口的一个刻度线d起,向右取格,标记为a,作为的起点,再看a点到最右点有几格,然后由a向左取相同格数得标记b。
令为c到b之长,为b到a之长。
于是c)当断口接近试件两端,而与其头部的距离等于或小于直径的两倍时,需重作试验。
实验项目1: 低碳钢、铸铁的拉伸实验
邵 阳 学 院 实 验 报 告实验项目1: 低碳钢、铸铁的拉伸实验实验日期 实验地点 成 绩 院 系 班 级 指导老师 同组成员 学生姓名 学生学号一、实验内容和目的1. 测定拉伸时低碳钢的屈服极限s σ、强度极限b σ、延伸率δ、截面收缩率ψ。
2. 测定拉伸时铸铁的强度极限b σ。
3. 观察低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
4. 比较低碳钢和铸铁两种材料的拉伸性能和断口情况5. 掌握电子万能试验机的原理及操作方法。
二、实验设备及仪器(规格、型号)1. WD-P6105微机控制电子万能材料试验机2. 游标卡尺三、实验原理 1、低碳钢拉伸实验低碳钢的拉伸图如图所示低碳钢拉伸图工程上均以下屈服点 (图C 点对应的载荷)作为材料屈服时的载荷F S ,以试样的初始横截面积A 0除F S ,即得屈服极限: 0s s /A F =σ载荷到达最大值F b 时,以试样的初始横截面面积A 0除F b 得强度极限: 0b b /A F =σ试样的标距原长为l 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为l 1延伸率应为: %10001⨯-=l l l δ 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: %10010⨯-=AA A ψ 2. 铸铁的拉伸试验铸铁拉伸曲线,如图所示。
铸铁拉伸图铸铁为脆性材料在变形很小的情况下就会断裂,没有屈服和颈缩现象,铸铁的延伸率和截面收缩率很小,很难测出。
铸铁的强度极限为: 0b b /A F =σ。
四、实验步骤1. 检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;2. 启动试验机的动力电源及计算机的电源;3. 调出试验机的操作软件,按提示逐步进行操作,设置好参数;4. 安装试件,进行调零,回到试验初始状态;5. 根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;6. 实验完成,保存记录数据;7. 关闭试验机的动力系统及计算机系统。
低碳钢和铸铁的拉伸实验
实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。
低碳钢拉伸铸铁拉伸图1-2 拉伸试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
用准确的拉σ-曲线。
首先将试件安装于试验机的夹头内,之后匀速缓伸曲线可直接换算出应力应变ε慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
图1-3 低碳钢拉伸曲线OA段,没有任何残留变形。
在弹性阶段,载荷与变形(1) 弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。
在弹性阶段,存在一比例极限点A,对应的应σ,此部分载荷与变形是成比例的。
力为比例极限p(2) 屈服阶段对应拉伸图上的BC段。
金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。
实验一低碳钢和铸铁的拉伸实验
第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
低碳钢 铸铁的拉伸实验
提
1、试验目的
纲
√
2、仪器设备 3、原理 4、试验方法及步骤
5、成果整理
6、思考题目
2、仪器设备
一) 硬件
德国DOLI控制器
试件
主机
拉伸装置 1、电子万能材料试验机
2、仪器设备
1、主机采用高 刚度负荷框架、 双试验空间、全 行程导向结构。 2、用试件的 变形、应力及 应力应变综合
控制试件变形;
3、低碳钢和铸铁在压缩时,要测得那些数据? 观察那些现象? 4、材料相同,直径相等的长试样为L=5d 和 L=10d 两种试样,其断后伸长率是否相同?
试验步骤
1.测量试样尺寸 在试件两端及中部位置,沿两个 相互垂直的方向,测量试样直径,以其平均值计算个横 截面面积,量其长度为100mm作好记号。 2.打开油源电源开关,开启计算机开关,计算机启 动后,开启EDC220 测控单元开关,预热20 分钟(注意 此开机顺序及后述的关机顺序); 3.打开EDC220 系统的菜单,进入计算机控制状态 (PC-Control); 4.用鼠标双击试验程序图标,启动试验程序,设 置试验条件,输入试验参数;
2、方法定义 界面
这个界面是方法 定义界面的设备 与通道界面,主 要用于通道的修 改和是否增加引 申计测量方法。
4、试验操作及步骤
2、方法定义 界面
这个界面是方法 定义界面的控制 与采集界面,主 要用于定义加载 方式加载大小的 界面。
4、试验操作及步骤
3、数据处理 界面
数据查询及 处理界面。
4、试验操作及步骤
4、试验操作及步骤
5. 装夹试样,调整好上下钳口之间距离,按动夹 具夹紧按钮夹紧试样,在装夹试样前,应根据试样尺 寸选择适用的夹块以正确装夹试样; 6.选择好加荷速率及控制方式进行试验,在试验 过程中计算机屏幕上可直接显示试验曲线和试验力、 变形及位移等测量值,并可进行数据处理、存储,做 完试验可打印试验报告。根据试验要求还可自行设置 打印格式及试验参量。 7.打印:可打印试验报告、试验力—伸长、应力 —应变、试验力—时间等曲线。 8.关机顺序为:退出试验程序,关闭主机油源电 源,关闭EDC测控系统电源,关闭计算机。
低碳钢和铸铁拉伸实验报告
实验一低碳钢拉伸实验
一、实验目的
1、测定低碳钢的上屈服强度R eH,下屈服强度R eL,抗拉强度R m,断后伸长率A 和断面收缩率Z。
2、观察低碳钢在拉伸过程中的各种现象,绘制拉伸曲线图。
二、实验设备、仪器和工具
1、万能材料试验机
2、游标卡尺
3、低碳钢试件
三、实验成果计算与分析
2、按比例绘制低碳钢的F-L
曲线。
四、思考题
1、试述低碳钢拉伸过程四个阶段的力学特性。
2、材料的拉压性能指标包括哪些?
五、对实验的建议和感想
实验二铸铁拉伸实验
一、实验目的
1、测定铸铁的抗拉强度R m。
2、观察铸铁在拉伸过程中的各种现象,绘制拉伸曲线图。
3、通过实测数据综合分析比较低碳钢和铸铁在拉伸时的力学性能。
二、实验设备、仪器和工具
1、万能材料试验机
2、游标卡尺
3、铸铁试件
三、实验成果计算与分析
2、按比例绘制低碳钢的F-L
曲线。
四、思考题
1、比较低碳钢和铸铁的拉伸力学性能。
五、对实验的建议和感想。
实验一--低碳钢和铸铁拉伸时力学性能的测定讲解学习
实验一 低碳钢和铸铁拉伸时力学性能的测定一、实验目的1.观察分析低碳钢的拉伸过程,了解其力学性能;绘制拉伸曲线F-△L ,由此了解试样在拉伸过程中变形随载荷的变化规律以及有关物理现象;2.测定低碳钢材料在拉伸过程中的几个力学性能指标:s σ、b σ、δ、ψ;3.了解万能材料试验机的结构原理,能正确独立操作使用。
二、实验设备1.SHT5305拉伸试验机。
2.x —Y 记录仪。
3.游标卡尺。
三、拉伸试样四、实验原理和方法首先将试件安装于试验机的夹头内,之后匀速缓慢加载,试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
1.弹性阶段 是指拉伸图上的OA ´段,没有任何残留变形。
在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例,εσE =。
2.屈服阶段 对应拉伸图上的BC 段。
金属材料的屈服是宏观塑性变形开始的一种标志,是位错增值和运动的结果,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
屈服阶段中一个重要的力学性能就是屈服点,对应的屈服应力为0/A F SL S =σ3.强化阶段 对应于拉伸图中的CD 段。
变形强化标志着材料抵抗继续变形的能力在增强。
这也表明材料要继续变形,就要不断增加载荷。
D 点是拉伸曲线的最高点,载荷为F b ,对应的应力是材料的强度极限或抗拉极限,记为b σ0/A F b b =σ4.颈缩阶段 对应于拉伸图的DE 段。
载荷达到最大值后,塑性变形开始局部进行。
这是因为在最大载荷点以后,形变强化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。
材料的塑性性能通常用试样断后残留的变形来衡量。
轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/001⨯-=l l l )(δ%100/010⨯-=A A A )(ψ式中,l 0、A 0分别表示试样的原始标距和原始面积;l 1、A 1分别表示试样标距的断后长度和断口面积。
低碳钢和铸铁在拉伸试验中的力学性能
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的.工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能.1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ—ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E .线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近.(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(ζs )。
当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。
卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化.因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
低碳钢拉伸试验报告
低碳钢拉伸试验报告篇一:实验一低碳钢拉伸试验报告实验一低碳钢拉伸试验报告实验一低碳钢和铸铁的拉伸实验一、实验目的1、测定低碳钢拉伸时的屈服极限σs 、强度极限σb、伸长率和断面的收缩率;测定铸铁的抗拉强度。
2、观察低碳钢拉伸时的屈服和颈缩现象,对低碳钢和铸铁试件拉伸的断口进行分析。
二、实验设备万能试验机、试件、游标卡尺。
(点击图标看大图片或视频)万能试验机低碳钢和铸铁拉伸视频低碳钢和铸铁游标卡尺低碳钢拉断三、实验原理(一)低碳钢和铸铁拉伸时力学性能的测定。
实验时,试验机可自动绘出低碳钢和铸铁的拉伸图。
从图中可以看出低碳钢拉伸过程中材料经历的四个阶段:1、正比例阶段,拉伸图是一条直线。
2、屈服阶段,拉伸图成锯齿状。
读数盘上原来匀速转动的指针来回摆动,记录这时候的荷载即为屈服荷载PS。
进而可以计算出屈服极限。
3、强化阶段,屈服后,曲线又缓慢上升,这段曲线的最高点,拉力达到最大值——最大荷载Pb,即可计算出强度极限。
4、颈缩阶段,拉伸图上荷载迅速减小,曲线下滑,试件开始产生局部伸长和颈缩,直至试件在颈缩处断裂。
测量断裂后试件标距的长度和断口处的直径,可计算材料的伸长率和断面的收缩率。
四、实验步骤(一)低碳钢的拉伸试验1、准备试件,通过试件落地的声音来判定是低碳钢还是铸铁。
声音清脆的是钢,沉闷的是铸铁。
2、测量试件的直径,并量出试件的标距,打上明显的标记。
在标距中间和两端相互垂直的方向各量一次直径,取最小处的平均值来计算截面面积。
3、估算最大载荷,配置相应的摆锤,选择合适的测力度盘。
开动试验机使工作台上升一点。
调主动指针到零点,从动指针与主动指针靠拢,调整好绘图装置。
4、安装试件。
5、开动试验机并缓慢均匀加载。
注意观察指针的转动和自动绘图情况。
注意捕捉屈服荷载的值并记录下来。
注意观察颈缩现象。
试件断裂后立即停车,记录最大荷载Pb。
6、取下试件,用油标卡尺测量断后标距、最小直径。
(二)铸铁拉伸实验1、准备试件(除不确定标距外其余同低碳钢)。
低碳钢和铸铁拉伸实验报告
竭诚为您提供优质文档/双击可除低碳钢和铸铁拉伸实验报告篇一:低碳钢、铸铁的拉伸试验工程力学实验报告实验名称:试验班级:实验组号:试验成员:实验日期:一、试验目的1、测定低碳钢的屈服点?s,强度极限?b,延伸率?,断面收缩率?。
2、测定铸铁的强度极限?b。
3、观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。
4、熟悉试验机和其它有关仪器的使用。
二、实验设备1.液压式万能实验机;2.游标卡尺三、设备简介万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1、加载部分:利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。
2、测控部分:指示试件所受载荷大小及变形情况。
四、实验原理低碳钢和铸铁是工程上最广泛使用的材料,同时,低碳钢试样在拉伸试验中所表现出的变形与抗力间的关系也比较典型。
低碳钢的整个试验过程中工作段的伸长量与荷载的关系由拉伸图表示。
做实验时,可利用万能材料试验机的自动绘图装置绘出低碳钢试样的拉伸图即下图中拉力F与伸长量△L的关系曲线。
需要说明的是途中起始阶段呈曲线是由于试样头部在试验机夹具内有轻微滑动及试验机各部分存在间隙造成的。
大致可分为四个阶段:(1)弹性阶段(ob段)在拉伸的初始阶段,ζ-ε曲线(oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp),线性段的直线斜率即为材料的弹性摸量e。
线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe),一般对于钢等许多材料,其(:低碳钢和铸铁拉伸实验报告)弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
拉伸实验
实验一、拉伸实验一、实验目的1.测定低碳钢的机械性质:屈服极限σs、强度极限σb、延伸率δ及断面收缩率Ψ;2.测定铸铁的机械性质:强度极限σb。
二、试件按GB228—76规定,本实验试件采用圆棒长试件。
取d0=10,L=100,如图所示:三、实验设备及仪器1、液压式万能材料实验机;2、游标卡尺;3、划线机(铸铁试件不能使用)。
一、低碳钢的拉伸实验实验原理及方法1.屈服极限σs的测定P—ΔL曲线实验时,在向试件连续均匀地加载过程中。
当测力的指针出现摆动,自动绘图仪绘出的P—ΔL 曲线有锯齿台阶时,说明材料屈服。
记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为σs=P s/A02、屈服极限σs的测定实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。
试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为:σb=P b/A03、延伸率δ和断面收缩率Ψ的测定计算公式分别为:δ=(L1-L)/L x 100%Ψ=(A0-A1)/A0 x 100%L:标距(本实验L=100)L1:拉断后的试件标距。
将断口密合在一起,用卡尺直接量出。
A0:试件原横截面积。
A1:断裂后颈缩处的横截面积,用卡尺直接量出。
(三)实验步骤1.试件准备:量出试件直径d0,用划线机划出标距L和量出L;2.按液压万能实验机操作规程1——8条进行;3.加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象;4.按操作规程10——14进行;5.将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。
二、铸铁的拉伸实验实验原理及方法1、强度极限σb的测定铸铁没有屈服阶段,其断裂时的载荷读数对应的应力就是强度极限,其计算公式为:σb=Pb/A02、铸铁拉伸实验步骤(1)试件准备:量出试件的直径d0;(2)按操作规程进行,记录Pb.实验二、压缩实验一、实验目的1、测定铸铁的抗压强度极限σb,低碳钢压缩时的屈服极限σs。
低碳钢、铸铁的拉伸和压缩实验
实验一:低碳钢、铸铁的拉伸和压缩实验一、实验目的1.测定低碳钢的屈服强度、抗拉强度、延伸率和断面收缩率。
2.测定铸铁的抗拉强度。
3.测定铸铁压缩时的抗压强度。
4.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图。
5.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
二、实验内容1.铸铁拉伸实验;2.铸铁压缩实验;3.低碳钢拉伸实验。
三、实验原理、方法和手段常温、静载下的轴向拉伸实验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。
但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。
为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。
因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。
依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸实验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1-1所示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原l图1-1点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力P)除以试样原始横截面面积A,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线,它与拉伸图曲线相似,也同样表征了材料力学性能。
低碳钢、铸铁的拉伸试验
实验一:低碳钢、铸铁拉伸试验一、实验目的本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。
它是力学性能试验中最基本最常用的一个。
一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。
试验提供的E,ReL,Rm,A和Z等指标,是评定材质和进行强度、刚度计算的重要依据。
本试验具体要求为:1.了解材料拉伸时力与变形的关系,观察试件破坏现象。
2.测定强度数据,如屈服点ReL,抗拉强度Rm。
3.测定塑性材料的塑性指标:拉伸时的伸长率A,截面收缩率Z。
4.比较塑性材料与脆性材料在拉伸时的机械性质。
二、实验仪器与设备:①微机控制电液伺服万能试验机型号SHT5305 最大负荷300kN 1台②全数字闭环测控系统型号DCS-300 1台③电子引伸计 1个④游标卡尺0-150mm 最小刻度0.02mm⑤刻度尺 0-30cm 最小刻度0.5mm⑥橡皮筋 2条三、实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。
一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。
但是F-ΔL曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。
因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示:R=F/S0——试样的名义应力ε=∆ L/ L0——试样的名义应变S0和L0分别代表初始条件下的面积和标距。
R-ε曲线与F-ΔL曲线相似,但消除了几何尺寸的影响。
因此,能代表材料的属性。
单向拉伸条件下的一些材料的机械性能指标就是在R-ε曲线上定义的。
如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性能指标就可精确地测定。
不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。
低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 低碳钢及铸铁的拉伸试验一、实验目的1、通过拉伸破坏试验观察、分析低碳钢和铸铁的拉伸过程,比较其机械性能。
2、测定材料的强度指标和塑性指标。
二、实验设备1、WEW-600屏显万能材料试验机或WE-B600液压万能材料试验机2、千分尺、游标卡尺、直钢尺三、试样的制备一般拉伸试样由三部分组成,即工作部分、过渡部分和夹持部分。
工作部分必须保持光滑均匀以确保材料表面的单向应力状态。
均匀部分的有效工作长度L 0称做标距,d 0、A 0分别代表工作部分的直径和面积,它们的 关系规定为L 0= k 0A 。
为了使各种材料试件的尺寸和形状按国家统一规定,取试件直径d 0=10mm 标距L 0=10d 0或L 0=5d 0。
四、实验原理及方法常温下的拉伸实验可以测定材料的弹性模量E 、屈服极限σs 、强度极限σb 、延伸率δ和断面收缩率Ψ等力学性能指标,这些参数都是工程设计的重要依据。
1、低碳钢弹性模量E 的测定由材料力学可知,弹性模量是材料在弹性变形范围内应力与应变的比值,即 E=εσ因为σ=P /A, ε=ΔL/L 0,所以弹性模量E 又可表示为 E=L A PL 0∆ 式中:E —材料的弹性模量,σ —应力,ε —应变,P —实验时所施加的载荷A —以试件直径的平均值计算的横截面面积,L 0—引伸仪标距ΔL —试件在载荷P 作用下,标距L 0段的伸长量。
可见在弹性变形范围内,对试件作用拉力P ,并量出拉力P 引起的标距内伸长ΔL ,即可求得弹性模量E 。
实验时,如使用WEW-600屏显万能材料试验机,它采用电子测量技术,由计算机对数据进行处理,屏幕显示试验力和变形。
如使用WE-B600液压万能材料试验机,拉力P 值由试验机读数盘示出,标距L 0=50mm (不同引伸仪标距不同),试件横截面面积A 可算出,只要测出标距段的伸长量ΔL ,就可得到弹性模量E 。
在弹性变形阶段内试件的变形很小,标距段的变形(伸长量ΔL )需用放大倍数为200倍的球铰式引伸仪来测量。
为检验载荷与变形之间的关系是否符合胡克定律,并减少测量误差,实验时一般用等增量法加载,即把载荷分成若干个等级,每次增加相同的载荷ΔP ,逐级加载。
为保证应力不超出弹性范围,以屈服载荷的70%-80%作为测定弹性模量的最高载荷n P 。
此外,为使试验机夹紧试件,消除试验机构的间隙等因素的影响,对试件应施加一个初始载荷P 0(本实验中P 0=2.0KN )。
实验过程中,从P 0到n P 逐级加载,载荷的每级增量均为ΔP 。
对应着每级载荷P i ,记录相应的伸长i L ∆,1+∆i L 与i L ∆之差即为变形增量()i L ∆∆,它是p ∆引起的变形(伸长)增量。
在逐级加载中,如果得到的()i L ∆∆基本相等,则表明ΔL 与P 为线性关系,符合虎克定理。
完成一次加载过程,将得到P i 和i L ∆的一组数据,按平均法计算弹性模量,即()L A L P E ∆∆⋅⋅∆⨯=0200其中[]()i ni L n L ∑=∆∆=∆∆11为变形增量的平均值;200为测量变形的放大倍数。
2、 屈服极限σs 、强度极限σb 的测定测定弹模后继续加载使材料到屈服阶段,进入屈服阶段时,载荷常有上下波动,其中较大的载荷称为上屈服点,较小的称为下屈服点。
一般用第一个波峰的下屈服点表示材料的屈服载荷P S ,它所对应的应力为屈服极限σs 。
屈服阶段过后,材料进入强化阶段,试件又恢复了承载能力。
载荷达到最大值P b 时,试件某一局部的截面明显缩小,出现“颈缩”现象。
这时载荷迅速下降,试件即将被拉断,这时所示的载荷即为破坏载荷P b ,它所对应的应力叫强度极限σb 。
即 0A P s s =σ, 0A P s s =σ 其中20041d A π=,0d 为最小直径。
3、 延伸率δ和断面收缩率Ψ的测定试件的原始标距L 0断后将两段试件紧密地对接在一起,量出拉断后的标距长为L 1,延伸率应为001L L L -=δ×100%式中L 0—试件原始标距,为50mm ;L 1—试件拉断后标距长度。
对于塑性材料,断裂前变形集中在颈缩处,该部分变形最大,距离断口位置越远,变形越小,即断裂位置对延伸率是有影响的。
为了便于比较,规定断口在标距中央三分之一范围内测出的延伸率为测量标准。
若断口不在此范围内,则需进行折算,也称断口移中。
具体方法如下:以断口O 为起点,在长度上取基本等于短段格数得到B 点,当长段所剩格数为偶数时(如图b )则由所剩格数的一半得到C 点,取BC 段长度将其移至短段边,则得到断口移中的标距长,其计算式为L 1=AB +2BC如果长段所剩格数为奇数时(如图C )则由所剩格数加一格之半得C 1点和减一格之半得到C 点,移中后的标距长为, L 1=AB +1BC +BC将计算所得的L 1代入式中,可求得折算后延伸率。
为了测定低碳钢的断面收缩率,试件拉断后,在断口处两端沿两个互相垂直的方向各测量一次直径,取其平均值计算断口处横截面积,再按下式计算面积收缩 率Ψ=010A A A -×100%式中A0—试件原始横截面积A1——试件拉断后断口处最小面积五、试验步骤Ⅰ使用WEW-600屏显万能材料试验机的实验步骤1、试验系统的开机顺序为:计算机→放大器箱→试验机本软件的启动有多种方法:a、按“开始”→“程序”→“WinPWS”,程序启动。
b、也可以双击屏幕上的WinPWS快捷方式直接启动软件。
c、找到PWS工作目录,选择WinPWS.exe可执行文件,双击启动。
试验系统的关机顺序为:试验机→放大器箱→计算机本软件的退出操作:a、退出所有操作面板,返回软件主菜单。
b、鼠标点击“试验操作”中的“退出”,或点击软件关闭按扭退出软件。
2、试验之前,先测量试件的直径,在标距两端及中部三个位置,沿相互垂直的方向,测量试件直径,求其平均值,将试件的原始尺寸,即平均直径、标距输入计算机。
3、估计试件的最大载荷选择试验力档位,一般为五档。
选择变形力档位,一般选择一档或二档。
注意:计算机的档位与放大器的档位要一致。
4、按试验机的“电源”按钮,指示灯亮;开动油泵,拧开送油阀使试验台上升10毫米,然后关闭送油阀;打开主机开关。
5、按动夹紧按钮,使液压卡头电磁阀处于有电状态,将试件一端夹于上钳口,调整试验力零点,再调整下钳口,夹持试件下端,夹持试件时,应按钳口所刻的尺寸范围夹持试样,试件应该夹在钳口的全长上,一定保证试样夹持部分在钳口体内三分之二以上。
6、缓慢的拧开送油阀进行加荷,给试样一个较小的预载力(消除诸如间隙、非线性等因素),再按下“试验开始”按扭,继续加荷,在试验力达到5KN时,关闭主机。
计算机开始绘制曲线。
7、试件断裂后,关闭送油阀,再打开主机工作,取下断裂的试件。
8、打开回油阀,使试验台回到初始位置。
低碳钢的拉伸试验须补充的步骤引伸计的安装与摘除,引伸计是用于测量规定试样标距内变形的测量传感器,本实验用于测量低碳钢的弹性模量。
具体操作如下:1、在试件装夹到试验机的钳口之前先进行引伸计的安装,引伸计装夹的初始位置应在引伸计的初始标距位置上,装夹到试样上后,用手指轻敲刀口处,应感觉引伸计夹持牢固。
若有滑移现象,表示引伸计装夹失败,必须重装。
装入引伸计后在实验开始前,必须进行变形量调零,引伸计状态处于有的状态。
2、按照国家标准GB-228-87规定:断后伸长率应采用手测法进行测量,为防止引伸计损坏,不应使用引伸计测量断后伸长率,即不要带着引伸计拉断试样。
在试验力超过屈服点后摘除引伸计具体操作如下,首先将计算机屏幕“试验面板”上的“引伸计状态”置为“无引伸计”状态,切记!其次将变形通道置为“第一档”(软件可自动执行),最后快速摘除引伸计,并妥善放置。
实验中的注意事项1、不要动放大器的标定扭。
2、不要修改软件系统的参数。
3、计算机的档位与放大器的档位要一致。
4、开关机的顺序必须按要求执行。
5、试验到5KN 时,要把主机关掉。
6、不能带引伸计拉断,摘取引伸计时,需把计算机的引伸计处于“无引伸计状态”。
Ⅱ 使用WE-B600液压万能材料试验机的实验步骤1、测量试件的直径。
在标距两端及中部三个位置,沿相互垂直的方向,测量试件直径,求其平均值计算弹性模量,以其最小值计算强度和断面收缩率。
2、试验机准备。
使总开关接电,根据试验需要,选用测量范围,更换摆杆上悬挂的摆锤并调整缓冲阀,在记录筒上卷上记录纸。
3、将试样的一端夹于上钳口。
(装夹试样时,开动油泵,关闭送油阀,分别按动夹头的开、合按键,使夹头进行松开和夹紧,这一动作过程不允许把其中一个铵键处在“停”的中间位置上,否则动作失灵。
当试样夹紧后进行拉伸或压缩等试验时,上、下夹头的铵键必须处在“停”的中间位置上,方能进行试验,但当试样拉断后必须先按上“上紧”或“下紧”键,再分别按“上松”或“下松”键才能使试样松开。
)4、调整指针对正零位。
5、将移动横梁降至适当高度,将试样另一端夹在下钳口(必须注意使试样垂直),试样必须置入足够的夹持长度。
6、将推杆的记录笔放下,使笔尖压在记录纸上,同时选配好记录放大比例。
7、安装引伸仪(只用于低碳钢拉伸试验)。
8、 进行预拉(只用于低碳钢拉伸试验)。
为检查机器和仪表是否处于正常状态,先把载荷预加到略小于n P (测量弹模E 时的最大载荷),然后卸载到0~P 0之间。
9、加载。
在测定低碳钢的弹性模量E 时,先加载至P 0,调整引伸仪读数为零或记录初始读数。
加载按等增量法进行,记录每级载荷下的引伸仪读数,载荷最大加至n P ,然后取下引伸仪。
加载时应保持匀速、缓慢。
测出屈服载荷s P 后,可稍增加实验速率,最后直到将试件拉断,记录最大载荷b P 。
对铸铁试件,应缓慢匀速加载,直至试件被拉断。
10、试验结束,关闭送油阀,开启回油阀,卸荷后将从动针拨回零位。
取下试样 注意事项1、试验机每级测量范围都不应超负荷使用,以免发生意外损坏。
2、在试验过程中,因意外原因使油泵突然停止工作,应将所加负荷卸除,使油压降低,检查后再重新开动油泵进行试验,不应在高压下开动油泵,以免发生意外损坏。
3、如发现电器控制失灵,各按钮不起作用,应马上关闭总开关,切断电源,使试验机停止运转,以免发生意外。
4、油泵起动时应先点动,正常出油后再连续运转,运转中发现泵有异常温升、泄漏、振动和噪声,应立即停车进行检查。
六、试验结果整理七、思考题1、由实验现象和结果分析比较两种材料的机械性能。
2、实验时如何观察低碳钢屈服极限?3、材料相同而标距分别为5d 0和10d 0的两种试件,其δ、Ψ、σs 、σb 是否相同?为什么?八、填写实验报告试验名称 试验日期 班次报告人 小组成员 1、试验目的2、试验设备、仪器名称、型号、精度量具名称、型号、精度3、 试验步骤简述及受力简图4、 实验记录及试验结果。