平面问题有限元解法公式推导讲解

合集下载

弹性力学—第六章—用有限单元法解平面问题

弹性力学—第六章—用有限单元法解平面问题
- 在整体刚度矩阵中引入边界条件
1
需求解的结点还剩:
2
I III IV II 4 5 3
因此关于这六个零分量的六个平衡方程不 用建立,须将整体刚度矩阵的第1,3,7, 8,10,12以及同序列的各列去掉。最后 得到:
6
结构整体分析(10)
- 结点载荷
j
I II IV
1N/m
i
III i
m
1
I
m
j
2
例如,设单元 ij 边上受有x方向上的均布面力q,试求等效 结点载荷
载荷向结点移臵(7)
结构整体分析(1)
对于每个单元,我们已经知道了如何计算单元的劲度矩 阵以及载荷列阵:
结构整体分析(2)
根据虚功原理,我们也推导了结点力与结点位移的关系:
对于 i 点, 一个单元上的结点力为:
i 点的力平衡要求围绕 i 点的各单元产生的结点力与各单 元分配到 i 点的结点载荷相等。
3
6
结构整体分析(15)
1. 有限元法的求解步骤: 2. 划分有限元, 3. 利用已知的结点坐标以及结构的物理特性写出单元劲度 矩阵, 4. 利用整体编码与局部编码的关系写出整体刚度矩阵以及 力列阵, 5. 在整体刚度矩阵以及力列阵中将对应于零位移的行与列 划去,得到引入边界条件后的平衡方程组。 6. 求解平衡方程组,得到结点位移,并由此分析应力分布。
有限单元法的单元划分(2)

当结构具有凹槽或孔洞时,为了正确地描述应力集中效 应,必须把该处的网格画得很密。

当计算容量不允许时,可以分两次计算。第一次计算时, 将需要细化网格的目标区域的网格画得稀疏一点,甚至 和其他区域的网格大致相同,第二次计算时,将需要细 化的部分区域(区域边界上的结点位移是第一次计算后 的已知值)取出,利用第一次计算的计算结果,就可以 计算分析网格很密的目标区域了。

平面问题的有限元法

平面问题的有限元法

图3-2 直角坐标系下平面三角形单 元的节点位移和节点力
3.1 平面三角形单元矩阵推导
1 . 选择合适的单元,建立坐标系统,进行结构离散
三角形单元的6个节点位移分量用列阵表示为
δe

δδ12


{u1, v1, u2 , v2 , u3, v3}T
δ3
(3.1)
三角形单元的节点载荷列阵表示为
dxdy ,单元刚度矩阵可以简化为
k e BT DBt
(3.28)
3.1 平面三角形单元矩阵推导
单元刚度矩阵的物理意义是,其任一列的元素分别等于该 单元的某个节点沿坐标方向发生单位位移时,在各节点上所引 起的节点力。单元的刚度取决于单元的大小、方向和弹性常数 ,而与单元的位置无关,即不随单元或坐标轴的平行移动而改 变。单元刚度矩阵一般具有如下三个特性:对称性、奇异性和 具有分块形式。对于平面三角形单元,按照每个节点两个自由 度的构成方式,可以将单元刚度矩阵列写成3×3个子块、每个 子块为2×2阶的分块矩阵的形式。
Re 2n1

1


i Ri eT

j R j eT

m Rm eT

nT
(3.31)
3.2 利用平面三角形单元进行整体分析
各单元的节点力列阵经过扩充之后就可以进行相加。把全部单元的
节点力列阵叠加在一起,便可得到整个弹性体的载荷列阵R。结构整 体载荷列阵记为
N
R2n1
Re 2 n1
利用上式就可求出未知的多项式系数 α ,即 α A1δ,e 可以求得,
1

1 2
u1 u2
x1 x2
y1 y2

有限元分析——平面问题

有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1

东南大学 有限元分析课程 第二章 平面问题有限元法

东南大学 有限元分析课程 第二章 平面问题有限元法
12
(2)单元分析 1)位移函数和形函数 由于有限元法采用位移法进行求解,因而必须事先设定位移函数。 “位移函数”也称 “位移模式”,是单元内部位移变化的数学表达式, 设为坐标的函数。 一般而论,位移函数选取会影响计算结果的精度。在弹性力学中, 恰当选取位移函数不是一件容易的事情;但在有限元中,当单元划分 得足够小时,把位移函数设定为简单的多项式就可以获得较好的精确 度。这正是有限单元法具有的重要优势之一。
u v x 2 , y 6 , xy 3 5 x y
14
位移函数u、v在三个节点处的数值应该等于这些点处的位移分量的数值。 假设节点i、j、m的坐标分别为(xi , yi )、(xj , yj )、(xm , ym ),代入 三角形位移函数得: ui xi yi ui 1 2 xi 3 yi uj xj yj v j 4 5 xi 6 yi 1 2 xi 3 yi ui D1 um xm ym u j 1 2 x j 3 y j 1 1 2 x j 3 y j u j 1 xi yi D x y u v j 4 5 x j 6 y j 1 xj yj 2 m 3 m m 1 1 xm ym um 1 2 xm 3 ym vm 4 5 xm 6 ym
1 xi ui 1 , 3 1 xj uj 2A 1 xm um 1 xi vi 1 , 6 1 xj vj 2A 1 xm vm
令:
ai =
xj xm
yj ym
, bi -
1
yj
1 ym
, ci
1 xj 1 xm
xm aj xi xi am xj

有限元分析——平面问题

有限元分析——平面问题
⑵单元分析与单元刚度矩阵求解 根据三节点三角形单元分析过程,可得各单元的相关参数如下:
1 A1121
x1 x2
y1 y2
1 11
2
0 25
0 0
62m 5 m2
1 x4 y4 1 0 50
1 25 0
同理,A2
1 2
1
25
5 0 6 25mm2
1 0 50
对①单元,有
同理,对于②单元,有
b1=-50,c1=-25 b2=50, c2=0 b3=0, c3=25
N=
N1 0
0 N1
N2 0
0 N2
N3 0 0 N3
其中
Ni=
2
1 A
(ɑi +bix
+
ciy)
,i=1、2、3。
⑵单元的应变与应力
单元应变
ε=B qe
式中应变矩阵B为
B= 21Ab01
0 c1
b2 0
0 c2
b3 0
0 c3
c1 b1 c2 b2 c3 b3
节点位移列阵qe
qe=[u1 v1 u2 v2 u3 v3]T
江西五十铃发动机有限公司
技术中心 3 /33
一、平面问题的定义
1、平面应力问题
平面应力问题满足以下两个条件。
(1)几何条件 结构是一很薄的等厚度薄板;
(2)载荷条件 作用于薄板上的载荷平行于板平面、沿厚度方向均匀分布,而在
两板面上无外力作用。
Y
结论:板面不受力,则有
σZ Z= + t/2 =0
τYZ Z= + t/2 =0
有限元模型是一组仅在节点连接、仅靠节点传力、仅受节点载荷、仅在节点处 受约束的单元组合体。只有节点是可以承受载荷与约束的。

9第2章弹性力学平面问题及空间问题有限元

9第2章弹性力学平面问题及空间问题有限元
v u v 2 , y 6 , xy 3 5 都是常量,即线性位移模式反映 x y y x
假定的位移函数是多项式,它是连续函数,可以肯定,在单元内部位移函数是单值连续的。由于单 元的位移函数 u 、 v 都是坐标 x 、 y 的线性函数,在单元边界上位移也是线性变化的,两个相邻单元在 公共节点上具有相同的节点位移,因而相邻单元在公共边界上位移连续,即协调条件得到满足。 由上面分析可以看出,三角形常应变单元的位移模式可以保证计算结果的收敛。
px
py
px
py ]
T
(2-1-7b)
(2 )若在 jm 边上受线性分布的水平方向的面力,它在 j 点的集度为 q ,在 m 点的集度为零 (如图 2-5) 。可预计由该面力求得的等效节点载荷只有 R xj 、
R xm ,其余节点载荷分量必为零。
将 jm 边上的分布面力写成 s 的函数,为
s { p} [ (1 ) q 0]T l 在 jm 边上的形函数也需用变量 s 表示,根据形函数的含义,
Ve
[k ii ] [k ij ] [ k im ] [k ji ] [k ij ] [k jm ] [k mi ] [ k mj ] [k mm ]
式中, t 为单元的厚度,当单元划分得足够小时,可以认为每个单元的厚度 t 为常值。子阵为
(2-1-5)
[k rs ] [ Br ]T [ D][B s ]tA
101
二、 单元刚度矩阵 1、单元几何矩阵 [ B ] 有了单元的位移模式,利用平面问题的几何方程求得应变分量
0 x x u e e 0 { } [ L][ N ]{} [B ]{} y y v xy y x

第五章 有限元法求解平面问题

第五章  有限元法求解平面问题

差分法
即把微分dx,dy,dz变成差分Δ x,Δ y,Δ z, 把微分方程变成代数方程组。如果是一般规则的 曲面,对方程和边界条件的表达都要增加很多困 难,差分法计算模型可给出其基本方程的逐点近 似值(差分网格上的点)。但是对于不规则的几 何形状和不规则的特殊边界条件差分法就难于应 用了。因此这种方法的适用性有限制,特别对有 不同构件组合成的结构,很难使用差分方法。
δ ( δ i δ j δ m ) ,求单元的位移函数
e T
d (u( x, y), v( x, y)) 。
T
这个插值公式称为单元的位移模式,为:
d Νδ 。
e
(2)应用几何方程,由单元的位移函数d, e 求出单元的应变,表示为 ε Bδ 。
(3)应用物理方程,由单元的应变 ε , 求出单元的应力,表示为 ζ Sδ e。 (4)应用虚功方程,由单元的应力 求出单元的结点力,表示为
导、压缩与不可压缩流体动力学分析、流-固耦合分析。 在中国,美国的ADINA R&D公司与亚得科技有限公司 进行全面的合作,由亚得科技有限公司负责在中国的 市场销售、技术培训、技术支持。据网站信息,8.0版
本已问世。
4.MSC.NASTRAN
MSC.NASTRAN是世界上首屈一指的大型通 用有限元软件,其使用者已遍布全球,并成 功地应用于我国的宇航、汽车、电子、承重 设备、自行车部件设计、半导体、消费产品、 运输、机械等工业部门。 1996年美国国家航天航空局(NASA)为了 满足当时航空业对结构分析的迫切需求,主 持开发大型应用有限元程序的招标,美国 MSC公司参与了整个ASTRAN的开发过程。
动力分析
包括质量和阻尼效应。 模态分析,用于计算固有

平面问题的有限元法

平面问题的有限元法

ym
1
在节点j、m上,
Ni x j , y j
1 2
ai bi x j ci y j
0
Ni xm
,
ym
1 2
ai
bi xm
ci
ym
0
(a)
(b) (c)
返回
类似地有
N j xi , yi 0 , N j x j , y j 1 , N j xm , ym 0 Nm xi , yi 0 , Nm x j , y j 0 , Nm xm , ym 1
由(3-19)、(3-20)式不难看出,[S]中的诸元素都
是常量,所以每个单元中的应力分量也是常量。
可见,对于常应变单元,由于所选取的位移模式是线
性的,因而其相邻单元将具有不同的应力和应变,即在单
元的公共边界上应力和应变的值将会有突变,但位移却是
连续的。
返回
第三节
形函数的性质
在上节中,提出了形函数的概念,即
x j xm
(i , j , m轮换) (3-9)
v
1 2
ai
bi x ci yvi
aj
bjx cj y
vj
am bm x cm yvm
(f)
若令
Ni
1 2
ai
bi x
ci y
(i , j , m轮换) (3-10)
这样,位移模式 (e) 和 (f) 就可以写为
返回
u Ni ui N j u j N mum v Nivi N jv j Nmvm
, v j 4 5xi 6 yi
uj 1 2xj 3yj , vj 4 5xj 6yj
um 1 2 xm 3 ym , vm 4 5 xm 6 ym

有限元分析 第二章 平面问题的有限元方法

有限元分析 第二章 平面问题的有限元方法
当采用有限元方法求解时,第一步是将平板离散成有 限个小单元。
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6

有限元法求解平面问题

有限元法求解平面问题

一般写成:
ai
业 大
xj yj 1 xj 1 y , xm ym bi 1 y j , ci 1 x (i, j, m) m m

第三节 单元位移模式 解的收敛性
用矩阵形式表示:
有 限 元 分 析
ui vi u 1 ai bi x ci y 0 a j bj x c j y 0 am bm x cm y 0 u j vj v 2A 0 ai bi x ci y 0 a j bj x c j y 0 am bm x cm y u m Ni 0 N j 0 N m 0 e N [ ]e vm [ ] 0 Ni 0 N j 0 N m 1 1 2 ai bi x ci y (i, j, m) u 1 这里: N i 形函数 2A [d ] e x y 0 0 0 3 v 4 N 形函数矩阵 则:[d ] 0 0 0 1 x y N
限 元 分 析
2A 1 y 4 m[a a j v j am vm ] ximviym 2A 1 5 [bi vi j bx v jy bm vm ] j j j 2A xi yi i 1 6 [ci vi c j v j cm vm ] x 2A
合 肥 工
1
业 大 学
D 题弹性矩阵:
平面应变问
有 限 元 分 析
第二节 结构离散化






第二节 结构离散化 将连续体变换为离散化结构:将连续体划分为有限多个、有限大小的 单元,并使这些单元仅在一些节点处连接,构成所谓“离散化结构”。

第二讲平面问题有限元课件

第二讲平面问题有限元课件

➢ 该平板的总位能表达式可写成
3
p
e p
e1
3 e1
1 aeTK eae 2
3
a eT Pfe
e1
3
a eT Pse
e1
3 1 a eT K e a e 3 a eT P e
e1 2
e1
1 a1T K 1a1 a 2T K 2a 2 a3T K 3a3 a1T P1 a 2T P 2 a3T P3 2
v
1 2
ai
bix ci yvi
aj
bj x cj y
vj
ak
bk x ck yvk
式中:
ai
xj xk
yj , yk
1
bi
1
yj , yk
1 ci 1
xj xk
ai a j ak
11 1
bi b j bk
xi x j xk
ci c j ck
yi y j yk
形函数
Ni
1 2
ai
bi
x
ci
y
(i, j,k)
u Niui N ju j Nkuk Niui v Nivi N jv j Nkvk Nivi
d
u v
Ni I
NjI
Nk I e Ne
I 二阶单位阵,[N] 形函数矩阵
形函数的性质
1. 形函数 N(i xi , yi ) 1 N(i x j , y j ) 0 j i
序号为下标,以所属单元序号为上标;
T
P1 p11x p11y p12 x p12 y p13x p13 y
T
P2
p
2 1x
p
2 1

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

平面问题有限元解法(公式推导讲解)

平面问题有限元解法(公式推导讲解)
z
4. 位移
一点的位移 —— 矢量S 量纲:m 或 mm
u —— x方向的位移 分量; 位移分量: v —— y方向的位移 分量;
2020/1/4
w—— z方向的位移 分量。
x
w
P
S
u Pv
O
y
工程力学问题建立力学模型的过程中,一般 从三方面进行简化:
结构简化 如空间问题向平面问题的简化,向轴对称 问题的简化,实体结构向板、壳结构的简化。 受力简化 如:根据圣维南原理,复杂力系简化为等效 力系等。 材料简化 根据各向同性、连续、均匀等假设进行简化。
载荷
作用在单元节点上的外力
载荷
(集中力、分布力)
约束
限制某些节点的某些自由度
弹性模量(杨式模量)E
泊松比(横向变形系数)μ 密度
约束
2020/1/4
单元 节 点
节点力
弹性力学的内容及基本假定
1. 研究内容
内容:弹性体在外力或温度作用下的应力、 变形、位移等分布规律。
任务:解决弹性体的强度、刚度、稳定性问题。
zx xz
x
zx
zy
z
yx xz
y yz x
zy
xy
zx
yz yx y
O
y z
应力正负号的规定:
正应力—— 拉为正,压为负。 切应力—— 坐标正面上,与坐标正向一致时为正;
坐标负面上,与坐标正向相反时为正。
2020/1/4
弹性力学中的几个基本概念
假定物体内一点的力学性质在所有各个方向都相同。 作用: 弹性常数(E、μ)——不随坐标方向而变化;
(5). 小变形假定

有限元平面问题

有限元平面问题

平面应力 H =
(5)单元刚度方程
K e ⋅ δ e = Pe
讨论1:平面三节点三角形单元的节点位移和 坐标变换
由于该单元的节点位移是以整体坐标系中的X方向位移(ui)和Y 方向位移(vi)来定义的,所以没有坐标变换的问题。
讨论2:平面三节点三角形单元的应变矩阵和应力矩 阵为常系数矩阵
单元的位移场为线性关系,由几何函数矩阵Be可知,由于△ 是常系数,因而Be、Se为常系数矩阵,不随X、Y的变化, 即这种单元在单元内任意一点的应变和应力都相同,因此, 三节点三角形单元称为常应变单元。在应变梯度较大的部 位,单元划分应适当密集,否则将不能真实反映应变的变化 而导致误差较大。
由节点位移条件可求得待定系数:
1 a1 = uj xj yj 2Δ um xm ym 1 a3 = 1 xj uj 2Δ 1 xm um 1 xi ui
ui xi yi
1 a2 = 1 uj yj 2Δ 1 u m ym 1 xi yi 2Δ = 1 x j y j 1 xm ym
1 ui
yi
1 a4 = vj xj yj 2Δ vm xm ym 1 a6 = 1 xj vj 2Δ 1 xm vm 1 xi vi
第四章
连续体平面问题
杆梁结构系统由于本身存在有自然的连接关系 即自然节点,所以他们的离散化均叫做自然离 散,这样的计算模型对原始结构具有很好的描 述,而连续体结构不同,它本身内部不存在有 自然的连接关系,而是以连续介质的形式进行 物质间的相互关联,所以,必须人为地在连续 体内部和边界上划分节点,以分片(单元)连 续的形式来逼近原来复杂的几何形状,这种离 散过程叫做逼近性离散。
N(x,y)为形状函数:
⎡ Ni 0 N j 0 N m 0 ⎤ N ( x, y ) = ⎢ ⎥ ⎢ ⎣ 0 Ni 0 N j 0 N m ⎥ ⎦

4平面问题有限元分析

4平面问题有限元分析
平面问题有限元分析
引 言 常应变三角形单元 矩形双线性单元 三角形类单元形函数 矩形类单元形函数 平面等参数单元 Wilson 非协调元及程序


杆系问题以结点作为分割单元的“结点”是很自然的, 杆系问题以结点作为分割单元的“结点”是很自然的, 但对于平面问题,待分析物体是连续的, 但对于平面问题,待分析物体是连续的,并不存在实际 结点。要将物体“ 成单元, 结点。要将物体“拆”成单元,必须用一些假想的线或 将物体进行分割时, 将物体进行分割时,必须保证相 面作人为地分割。 面作人为地分割。 邻单元具有公共边界。假定相邻单元仅在一些点(顶点 邻单元具有公共边界。假定相邻单元仅在一些点( 或顶点加边中点)相连接。这些点即为“结点” 或顶点加边中点)相连接。这些点即为“结点”。实际 计算时,可将连续体分成多种形状单元,为讨论简单, 计算时,可将连续体分成多种形状单元,为讨论简单, 现暂时规定只用一种单元来分割。 现暂时规定只用一种单元来分割。 以位移为未知量的有限元法, 以位移为未知量的有限元法,最关键的工作是建立单 元位移场,因此本章主要介绍各种单元位移场的建立。 元位移场,因此本章主要介绍各种单元位移场的建立。 平面问题有限元法可用的单元很多, 平面问题有限元法可用的单元很多,先介绍两种最简 单的单元:三角形和矩形。然后再介绍其它的单元。 单的单元:三角形和矩形。然后再介绍其它的单元。
常应变三角形单元
由于面积坐标有形函数性质, 3 位移模式 由于面积坐标有形函数性质,因 3 此根据试凑法可得 形函数= 形函数 Ni=Li = 面积坐标 y P 位移为u 如果结点 i 位移为 i、vi,则 2 单元位移模式(位移场) 单元位移模式(位移场)为 1 x u=Σ Niui ; v=Σ Nivi Σ Σ 1) 面积坐标和直角坐标关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将结构分成有限个小的单元体,单元与单元、单元与边界之间通过节点连接。 结构的离散化是有限元法分析地第一步,关系到计算精度和效率,包括以下 三个方面:
单元类型的选择。选定单元类型,确定单元形状、单元节点数、 节点自由度数等。
单元划分。网格划分越细,节点越多,计算结果越精确,但计算 量越大。网格加密到一定程度后计算精度提高就不明显,对应应 力变化平缓区域不必要细分网格。
平面问题的有限单元法求解
将连续体变换成为离散化结构。即将连续体划分为有限多个有限大小的单元, 这些单元仅在一些结点连接起来,构成一个所谓离散化结构。(对于平面问 题,常用的单元是三角形单元)
用结构力学方法进行求解
2020/6/16
南京农业大学工学院机械工程系
有限元单元法分析步骤(一)
结构离散化
分析单元力学性质 根据单元材料性质、形状、尺寸、节点数目、位置等,找出单元 节点力和节点位移关系式,应用几何方程和物理方程建立力和位 移的方程式,从而导出单元刚度矩阵。
计算等效节点力 作用在单元边界上的表面力、体积力或集中力都需要等效地移到 节点上去,即用等效力来替代所有作用在单元上的力。
2020/6/16
载荷
作用在单元节点上的外力 (集中力、分布力)
载荷
约束
限制某些节点的某些自由度
弹性模量(杨式模量)E
泊松比(横向变形系数)μ 密度
约束
2020/6/16
南京农业大学工学院机械工程系
单元 节 点
节点力
平面问题有限单元法基本概念
有限单元法(FEM)是20世纪50年代以来随着计算机的广泛应用而发展起 来的一种数值解法。简单地说,就是用结构力学方法求解弹性力学问题。
△F的方向,矢量f在坐标轴x,y,z上的投影fx,fy,fz称为该物体在P点
的体力分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
2020/6/16
南京农业大学工学院机械工程系
弹性力学中的几个基本概念
面力:分布在物体表面上的力,如流体压力和 接触力。
为了表明物体在某一点P所受面力的大小和方 向,在这一点取物体表面的一小部分,它包含
南京农业大学工学院机械工程系
有限元单元法分析步骤(三)
整体分析
集成整体节点载荷矢量 F 。结构离散化后,单元之间通过节点传递 力,作用在单元边界上的表面力、体积力或集中力都需要等效地移 到节点上去,形成等效节点载荷。将所有节点载荷按照整体节点编 码顺序组集成整体节点载荷矢量。
组成整体刚度矩阵K ,得到总体平衡方程:
P点,而它的面积为△S,作用于其上的面力为 △F,则面力的平均集度为△F/ △S。当△S不 断减小,假定体力为连续分布,则△F/ △S将 趋于一定的极限 f ,即:
lim S 0
F S
=f
这个极限矢量 f 就是该物体在P点所受面力在集度。 f 的方向就是 △F的方向,矢量 f 在坐标轴x,y,z上的投影 f x , f y , f z 称为该物体
在P点的面力分量,以沿坐标轴正方向为正,沿坐标轴负方向为
负。
2020/6/16
南京农业大学工学院机械工程系
弹性力学中应力的方向规定
每一个面上的应力可以分解为一个正应力和两个切应力。
正应力用σ表示,加上一个下标字母,表示作用面和作用方向。
切应力用τ表示,并加上两个下标字母,表示作用面和作用方向。前 一个字母表示作用面垂直于哪一个坐标轴,后一个字母表示作用方 向沿着哪一个坐标轴。
有限单元法的分析步骤如下:
物体离散化 单元特性分析 单元组集,整体分析 求解未知节点的位移 由节点的位移求解各单元的位移和应力
2020/6/16
南京农业大学工学院机械工程系
物体变形及受力情况的描述
基本变量
u
εσ
σ =E ε
(位移) (应变) (应力)
E 弹性模量
基本方程
力的平衡方程 几何方程 物理方程
2020/6/16
南京农业大学工学院机械工程系
弹性力学中的基本假定
连续性——假定整个物体的体积都被组成这个物体的介质 所填满,不留任何空隙。
完全弹性——假定物体在引起形变的外力被除去之后能恢 复原形,而没有任何剩余形变。
K=F
引进边界约束条件,解总体平衡方程求出节点位移。
通过上述分析可以看出有限单元法的基本思想是“一分一合”,分是 为了进行单元分析,合是为了对整体的结构进行综合分析。
2020/6/16
南京农业大学工学院机械工程系
弹性力学中的几个基本概念
作用于物体的外力可以分为体积力和表面力。 体力:分布在物体体积内的力,如重力、惯性
平面问题的有限单元解法
南京农业大学工学院机械工程系
有限元单元法基本思想
有限单元法的思想是将物体(连续的求解域)离散成有限个且按一 定方式相互联结在一起的单元组合,来模拟或逼近原来的物体,从 而将一个连续的无限自由度问题简化为离散的有限自由度问题求解 的一种数值分析法。物体被离散后,通过对其中各个单元进行单元 分析,最终得到对整个物体的分析。
即: 三大方面
三大方程
求解方法
经典解析 半解析 传统数值解法 现代数值解法(计算机硬件、规范化、标准化、规模化)
2020/6/16
南京农业大学工学院机械工程系
有限元单元模型中几个重要概念
单元
网格划分中每一个小的块体
节点
单元
确定单元形状、单元之间相互联结的 点
节点力
单元上节点处的结构内力
节点编码。
注意:有限元分析的结构已不是原有的物体或结构物,而是由同样材 料、众多单元以一定方式连接成的离散物体。所以,用有限元分析计 算所获得的结果是近似的(满足工程要求即可)。
2020/6/16
南京农业大学工学院机械工程系
有限元单元法分析步骤(二)
单元特性分析
选择未知量模式 选择节点位移作为基本未知量时,称为位移法; 选节点力作为基本未知量时,称为力法; 取一部分节点位移和一部分节点力作为未知量,称为混合法。
力。 为了表明物体在某一点P所受体力的大小和方
向,在这一点取物体的一小部分,它包含P点,
而它的体积为△V,作用于其上的体力为△F, 则体力的平均集度为△F/ △V。当△V不断减 小,假定体力为连续分布,则△F/ △V将趋于
一定的极限f,即:
lim V 点所受体力在集度。 f的方向就是
相关文档
最新文档