物理光学梁铨廷答案
121006-物理光学-1

息工程中的工程光学问题的能力,使具有进一步学 习和处理现代光学理论和技术的能力。
第一章 光的电磁场理论
麦 克 斯 韦 (Maxwell) 在 法 拉 第 (Faraday) 、 安 培
(Anper)等人研究电磁场工作的基础上:于1864年 总结出了一组描述电磁场变化规律的方程组,从而 建立了经典电磁理论。
顶 底 壁
壁 B1 n B2 n 0 B1n B2 n D1n D2 n
B1 n1A B2 n2A B d 0
r
切向分量
l
t
A
t1
t2
B
电矢量E和H的切向分量是连续的。 矩形面积ABCD,令其四边分别平 行和垂直分界面。
因为在静电场中任何一点(除点电荷所在处以外),只
有一个确定的场强方向,所以任何两条电场线不可能相 交。
1.1电场与磁场
散度
散度是矢量分析中的一个矢量算子,将矢量空间上的一
个矢量场(矢量场)对应到一个标量场上。散度描述的
是矢量场里一个点是汇聚点还是发源点,形象地说,就 是这包含这一点的一个微小体元中的矢量是“向外”居 多还是“向内”居多。举例来说,考虑空间中的静电场, 其空间里的电场强度是一个矢量场。正电荷附近,电场 线“向外”发射,所以正电荷处的散度为正值,电荷越 大,散度越大。负电荷附近,电场线“向内”,所以负 电荷处的散度为负值,电荷越大,散度越小。
1.2电磁感应与麦克斯韦方程组
位移电流
一个正在充电的电容器,左边的圆形金属板,被一个假想的闭圆柱表面S包 围。这圆柱表面的右边表面R处于电容器的两块圆形金属板之间,左边表面 L 处于最左边。没有任何传导电流通过表面R ,而有电流I通过表面L 。
物理光学问题详解梁铨廷

物理光学问题详解梁铨廷九阳真经------搞仫仔第⼀章光的电磁理论1.1在真空中传播的平⾯电磁波,其电场表⽰为Ex=0,Ey=0,Ez=,(各量均⽤国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=,则频率υ= ==0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.⼀个平⾯电磁波可以表⽰为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电⽮量的振动取哪个⽅向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ=υ=,原点的初相位φ0=+π/2;(2)传播沿z轴,振动⽅向沿y轴;(3)由B=,可得By=Bz=0,Bx=1.3.⼀个线偏振光在玻璃中传播时可以表⽰为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平⾯内沿与y轴成θ⾓的⽅向传播的平⾯波的复振幅;(2)发散球⾯波和汇聚球⾯波的复振幅。
解:(1)由,可得;(2)同理:发散球⾯波,,汇聚球⾯波,。
1.5⼀平⾯简谐电磁波在真空中沿正x⽅向传播。
其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动⾯与xy平⾯呈45o,试写出E,B 表达式。
解:,其中=υ=υ=,1.6⼀个沿k⽅向传播的平⾯波表⽰为E=,试求k ⽅向的单位⽮。
解:,⼜,∴=。
1.9证明当⼊射⾓=45o时,光波在任何两种介质分界⾯上的反射都有。
证明:oooo==oooo==1.10证明光束在布儒斯特⾓下⼊射到平⾏平⾯玻璃⽚的上表⾯时,下表⾯的⼊射⾓也是布儒斯特⾓。
物理光学第四章梁铨廷

➢上一章在讨论平板的干涉时,仅仅讨论了最先出射 的两光束的干涉问题,这是在特定条件下采取的一种 近似处理方法。 ➢事实上,光束在平板内经过多次的反射和透射,严 格地说,干涉是一种多光束干涉。 ➢多光束干涉与两光束干涉相比,干涉条纹更加精细, 利用多光束干涉原理制造的干涉仪是最精密的光学测 量仪器,多光束干涉原理在现代激光技术和光学薄膜 技术中也有着重要的应用。
Et2 r 2a1 exp( j )
Er1 Er2 Er3 E0
i
Et3 r 4a1 exp( 2 j )
B
n i'
d
AC
Etk r 2(k1)a1 exp[ j(k 1) ]
D
在无穷远定域面上的合振幅:
Et1 Et 2 Et 3
Et Etk
由于反射系数:
k 1
Et
1
r2
a1 exp(
j
)
4.1.2 多光束干涉图样的特点
1. 反射光、透射光的干涉条纹互补; 2. 干涉条纹的明暗和光强值由位相差决定。
对于反射光
当
2m 1 时为亮纹,其光强为
I M r
F 1 F
I
i
当 2m 时为暗纹,其光强为 Imr 0;
对于透射光
当 2m 时为亮纹,其光强为 I M t I i
当
2m 1时为暗纹,其光强为
由于F-P干涉仪产生的条纹非常细锐、明亮,所以它的分 辩能力很强。
2、激光器的谐振腔,用于选模(选频)。
4.1 平行平板的多光束干涉
若平行平板的反射率很低,则Er1、 Er2的强度接近, Er3、 Er4…的光强 与前两束相差较大。
因此考虑反射光的干涉时,只考虑 前两束光的干涉可以得到很好的近 似。 若平行平板的反射率较高,则除 Er1外,其余反射光的强度相差不 大,因此必须考虑多光束干涉。
物理光学梁铨廷问题详解

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−x c )+π2],则频率υ= ω2π=π×10142π=0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(zc −t)+π2],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=ω2π=2π×10142π=1014Hz,波长λ=cυ=3×1081014=3×10−6m,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B=1c(e k⃗⃗⃗⃗ ×E⃗),可得By=Bz=0,Bx=2c Cos[2π×1014(zc−t)+π2]1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=102Cos[π×1015(z0.65c−t)],试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ=ω2π=π×10152π=5×1014Hz;(2)λ=2πk =2ππ×1015/0.65c=2×0.65×3×1081015m=3.9×10−7m=390nm;(3)相速度v=0.65c,所以折射率n=cv =c0.65c≈1.541.4写出:(1)在yoz平面沿与y轴成θ角的k⃗方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
物理光学简明教程梁铨廷第二版笔记

物理光学简明教程梁铨廷第二版笔记
摘要:
1.物理光学简介
2.梁铨廷及其《物理光学简明教程》
3.第二版笔记的主要内容
4.物理光学在生活中的应用
正文:
一、物理光学简介
物理光学是光学的一个分支,它主要研究光的物理性质和光现象的产生原因。
物理光学涉及的领域广泛,包括几何光学、物理光学、量子光学等,是现代光学科学的重要组成部分。
二、梁铨廷及其《物理光学简明教程》
梁铨廷是我国著名的光学专家,他在光学领域有着深厚的造诣。
他所著的《物理光学简明教程》是一本非常适合初学者学习的物理光学教材,书中详细地介绍了物理光学的基本概念、基本原理和基本方法,深受广大读者的欢迎。
三、第二版笔记的主要内容
第二版笔记是在《物理光学简明教程》的基础上编写的,它主要包括以下几个方面的内容:
1.光的性质:包括光的波动性、光的粒子性、光的相干性等。
2.光的传播:包括光的反射、光的折射、光的干涉等。
3.光的成像:包括几何光学成像、物理光学成像等。
4.光的变换:包括傅里叶变换、拉普拉斯变换等。
5.光的应用:包括光学通信、光学测量、光学材料等。
四、物理光学在生活中的应用
物理光学在生活中的应用非常广泛,几乎无处不在。
例如,我们可以通过光的反射来观察自己的倒影,通过光的折射来看清水中的鱼,通过光的干涉来制造光学薄膜等。
此外,物理光学还广泛应用于光学通信、光学测量、光学材料等领域,对人们的生活产生了深远的影响。
总的来说,梁铨廷的《物理光学简明教程》是一本非常重要的光学教材,它为我们深入学习物理光学提供了重要的参考。
物理光学第三章 梁铨廷

I
4I0
cos2 ( )
2
4I0
2 cos2 (
2
)
4I0
c os2
r2
r1
对于整个屏幕,当一些点满足 m 时,I 4I0 为光强最大值。
当一些点满足 m 1 时,I 0 为光强最小值。
2
其余点的光强在0和4I0之间。
3.4.1 光源大小的影响
第三章 光的干涉和干涉仪
当光源为理想的点光源时,产生的干涉条纹中暗条纹的强度 为零,所以K=1,条纹对比度最好。 但实际光源不可能是一个单一发光点,它是很多发光点的集 合体,每一个点光源都会形成一对相干光源,产生一组干涉条 纹。
由于各点光源位置不同,形成的干涉条纹位置也不同,干涉 场中总的干涉条纹是所有干涉条纹的非相干叠加。
IM、Im分别是条纹光强的极大值和极小值。
从定义式来看,条纹的对比度与亮暗条纹的相对光强有关。 当Im=0时,K=1,对比度最好,称为完全相干; 当IM= Im时,K=0,条纹完全消失,为非相干。 条纹的对比度取决于以下三个因素: 光源大小、光源的非单色性、两相干光波的振幅比。
3.4.3 两相干光波振幅比的影响
记此时的扩展光源宽度为临界宽度bc(=2a)。
3.4.1 光源大小的影响
第三章 光的干涉和干涉仪
1 光源的临界宽度
d / 2 bc / 2
l2
l1
l
l1
l2
bc 2
d 2
1
bc d
2l
S `S 2
S `S1
物理光学梁铨廷版习题答案

条纹的间距为 1.5mm,所 用透镜的焦距为 300nm, 光波波长为 632.8nm。问 细丝直径是多少?
光的波长是多少?
解:由
,所以直径
解:单缝衍射明纹公式: 即为缝宽
当
时,
,因为 与 不变, 3.8 迎面开来的汽车,其
当
时,
两车灯相距
,汽
车离人多远时,两车灯刚
能为人眼所分辨?(假定 人眼瞳孔直径
求电磁波的频率、波长、 少?(2)波的传播和电
周期和初相位。
矢量的振动取哪个方
解:由 Ex=0,Ey=0, 向?(3)与电场相联系
Ez=
的磁场 B 的表达式如何
写?
解:(1)振幅 A=2V/m,
,则频率υ=
频
率
υ
=
=0.5 × 1014Hz , =
Hz
周期 T=1/υ=2×10-14s, , 波 长 λ
由上式,得
,因此,有 12 条暗环, 11 条亮环。
2.16 一束平行白光垂直 投射到置于空气中的厚 度均匀的折射率为
的薄膜上,发现 反射光谱中出现波长为 400nm 和 600nm 的两条暗 线,求此薄膜的厚度? 解:光程差
, 所以
2.17 用等厚条纹测量玻 璃光楔的楔角时,在长 5cm 的范围内共有 15 个亮 条纹,玻璃折射率
现代光学
3.1 波长
的
单色光垂直入射到边长
为 3cm 的方孔,在光轴(它
通过方孔中心并垂直方
孔平面)附近离孔 z 处观
察衍射,试求出夫琅禾费
衍射区德大致范围。
解:要求
, 所以
,又
,所以
。
3.6 在不透明细丝的夫琅 。
物理光学(梁铨廷)chip1-5

§1-5光波的辐射
磁场的能量密度
1 1 2 3 m H B B (J / m ) 2 2 在电磁波情况下:由 E 和 B 的数量关系 : 1 c E B B B n
知到:
m 为 :
E m
§1-5光波的辐射
总电磁波能量密度为:
E m E
显然,上式为一球面波,但与标准球面波不同
的是,电偶极子辐射的球面波的振幅随角而变。
§1-5光波的辐射
E 2. ,在 P 和 r 所在平面内振动,
在与之垂直的平面内振动, 同时E 和 B又都垂直于波的传播方向, E, B, k 三者组成右旋系统, 表明了其偏振性。
§1-5光波的辐射
原子由带正电的原子核和带负电的绕核运转
得的电子组成。在外界能量的激发下,由于 原子核和电子的剧烈运动和相互作用,原子 的正电中心和负电中心常不重合,且正、负 中心的距离在不断的变化,从而形成一个振 荡的电偶极子。如图1-13所示: p ql 该系统的电偶极距为
§1-5光波的辐射
§1-5光波的辐射
每段波列,其振幅在持续时间内保持不变或
缓慢变化,前后各段波列之间没有固定的位 相关系,光矢量的振动方向也不相同。 <2> 普通光源辐射的光波,没有偏振性, 其发出的光波的振动具有一切可能的方向 (在垂直于传播方向的平面内各个方向都是 可能的),它可以看作是具有各个可能振动 方向的许多光波的和,在各个可能振动方向 上没有一个振动方向较之其它方向更占优势。 这样的光波称微自然光。即普通光源是自然 光。
B
§1-5光波的辐射
二.辐射能 : 振荡电偶极子不断地向外界辐射电磁场,
物理光学 梁铨廷 答案电子教案

大所在点被第 5 级亮纹所占据。设
nm,求玻
璃片厚度 t 以及条纹迁移的方向。
解:由题意,得
,
所以
=
。
此光源为氦氖激光器。
2.12 在杨氏干涉实验中,照明两小孔的光源是一个
直径为 2mm 的圆形光源。光源发光的波长为 500nm,
它到小孔的距离为 1.5m。问两小孔可以发生干涉的
最大距离是多少?
解:因为是圆形光源,由公式
解
Hz , ,求该
:
= =
=
=
。
1.20 求如图所示的周期性三角波的傅立叶分析表
达式。
解:由图可知,
,
1.12 证明光波在布儒斯特角下入射到两种介质的
=
,
分界面上时,
,其中
。
精品文档
精品文档
,
= = 数),
)
=
,(m 为奇 =
,
,
所以
所以
=
。
1.21 试求如图所示的周期性矩形波的傅立叶级数
的表达式。
精品文档
第一章 光的电磁理论
1.1 在真空中传播的平面电磁波,其电场表示为
Ex=0,Ey=0 ,Ez=
,
(各量均用国际单位),求电磁波的频率、波长、
周期和初相位。
解 : 由 Ex=0 , Ey=0 ,
Ez=
,则频率υ=
=
=0.5×1014Hz, 周期 T=1/υ=2×10-14s,
初相位 φ0=+π/2(z=0,t=0), 振幅 A=100V/m,
解:由图可知,
,
1.23 氪同位素 放电管发出的红光波长为
605.7nm,波列长度约为 700mm,试求该光波的
物理光学梁铨廷版习题答案

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B=,可得By=Bz=0,Bx=1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
解:(1)由,可得;(2)同理:发散球面波,汇聚球面波。
1.5一平面简谐电磁波在真空中沿正x方向传播。
其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45º,试写出E,B 表达式。
解:,其中===,同理:。
,其中=。
1.6一个沿k方向传播的平面波表示为E=,试求k 方向的单位矢。
解:,又,∴=。
1.9证明当入射角=45º时,光波在任何两种介质分界面上的反射都有。
证明:====1.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。
梁铨廷教授著《物理光学》及其配套教材评介

梁铨廷教授著《物理光学》及其配套教材评介作者:陈志峰来源:《求知导刊》2017年第06期物理光学是光学相关专业中一门重要的专业基础课程,其理论性和系统性强,素以教学难度大著称。
笔者对此深有体会。
而梁铨廷教授所著的《物理光学》教材,为提高教学质量、降低教学难度提供了很大的帮助。
梁老师的《物理光学》是一本真正的经典教材,从1987年的第二版到2012年的第四版,25年只有两次修订,可见久经考验,积淀深厚。
梁老师当年独自著述,承自波恩《光学原理》的理论脉络,以光的电磁理论和傅里叶分析方法为基础,系统地阐述了经典物理光学的基本概念、原理和应用。
梁老师长期从事一线教学,教学经验丰富,也是从事科学研究的学者。
该教材可谓博采众长,也凝聚了梁铨廷老师数十年的教学经验。
梁老师高屋建瓴,《物理光学》这一教材知识结构清晰,逻辑性强,循序渐进而又深入浅出。
该教材既便于教师有效组织教学,也便于学生自我学习提高,一直以来广受高校师生的好评,也曾获得全国高校第二届优秀教材一等奖,可谓实至名归。
梁老师是一位治学严谨的学者,从当初的独立著作,到后来几次修订也都是亲力亲为,使得全书体例如一,前后叙述、公式形式一致,脉络清晰。
更难能可贵的是,他一直力求教材中的传统内容能够与现代科学的发展相衔接。
众所周知,自20世纪中叶开始,光学无论是在理论方法还是技术应用上都已取得许多重大发展,如何在有限的篇幅中编入最适合的内容,本身就是一个难题。
正如梁老师自序所言:“光学的飞跃式发展,使它能以崭新的面貌在现代科学技术各个领域中特别引人注目……对于一本基础光学教材,引进的现代内容不是越多越好,越新越好,关键是要把现代内容和传统内容结合、融汇得好,把它们的内在联系沟通起来。
”经过仔细考虑,精挑细选,梁老师选择了在修订中编入超光学分辨率、白光信息处理、液晶电光效应等内容。
无数的教学实践也证明,这些现代内容的加入与原传统内容的衔接与融合是自然的,体系是完整的。
物理光学梁铨廷习题答案

物理光学梁铨廷习题答案物理光学梁铨廷习题答案梁铨廷是中国物理学家,他的物理光学习题集是一本经典的教材,被广泛应用于物理光学的学习和教学。
本文将为大家提供一些物理光学梁铨廷习题的答案,以帮助读者更好地理解和掌握物理光学知识。
第一题:光的折射定律题目:光从空气射入玻璃中,入射角为30°,求折射角。
解答:根据光的折射定律,入射角和折射角的正弦之比等于两种介质的折射率之比。
设空气的折射率为n1,玻璃的折射率为n2,则有sin30°/sinθ2 = n2/n1。
将已知条件代入计算,可得sinθ2 = (n2/n1) * sin30°。
假设玻璃的折射率为1.5,空气的折射率为1,则sinθ2 = (1.5/1) * sin30° = 0.75 * 0.5 = 0.375。
通过查表或使用计算器,可以得到θ2 ≈ 22.5°。
因此,光从空气射入玻璃中的折射角约为22.5°。
第二题:薄透镜成像题目:一个凸透镜的焦距为20厘米,物距为30厘米,求像距和放大率。
解答:根据薄透镜成像公式,可以得到1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
将已知条件代入计算,可得1/20 = 1/v - 1/30。
解方程可得v ≈ 60厘米。
放大率可以通过求物像高比来计算。
设物体的高度为h1,像的高度为h2,则放大率为h2/h1。
根据几何关系,可以得到h2/h1 = v/u。
将已知条件代入计算,可得h2/h1 =60/30 = 2。
因此,该凸透镜的像距约为60厘米,放大率为2。
第三题:干涉现象题目:两束光线以相同的角度入射到一块薄膜上,经膜的反射和折射后,在空气中相遇。
如果两束光线的相位差为π/2,求薄膜的厚度。
解答:根据干涉现象的条件,相位差为π/2时,光线的路径差应该是波长的一半。
设薄膜的厚度为d,折射率为n,则根据光程差的计算公式,可以得到2nd = λ/2,其中λ为波长。
物理光学(梁铨廷)chip1-3

§1-4球面波和柱面波
• 严格的点状振动源是不存在的,从而 理想的球面波或平面波是不存在的.
• 在光学上,当光源的尺寸远小于考察 点至光源的距离时,往往把该光源称为点 光源.
样电磁场的波动方程变为:
2E 1 2E 0
(1)
z
2
v2
t
2
2B z 2
1 v2
2B t 2
0
(2)
§1-3 平面电磁波
• 对第一式求解得:
E f1 (z vt) f2 (z vt)
• f1 和f2是Z和t的两个任意矢量函数,它 们分别代表以速度V沿Z正、负方向传播 的平面波。
• 若以 v 0 代表沿Z正方向传播的平面波 , v 0 ................负. ..............................
§1-3 平面电磁波
• 上两式表明等位相点的轨迹是X=常量的 直线,也是垂直于X轴的直线,如图1-6 所示。
• 显然,等相线实际就是平面波的等相面与 Z=0平面的交线。
• 由于光强度正比于场振幅的平方,则光强
度可写为
~ ~
I A2 E E*
§1-3 平面电磁波
• 上式为由复振幅分布求光强度分布的常用 公式,它适用于单色平面波,也适用于其 它形式的单色波 。
写成复数形式:E
A exp
i(k
r t)
• 可以证明,对复数表达式进行线性运算之 后,再取实数部分,与对余玄函数进行同 样运算所的结果相同。
• 故可以用复数形式表示平面简谐波。只是
对于实际存在的场,应理解为复数形式的 实数部分。
§1-3 平面电磁波
• 六、平面简谐波的复振幅
•
物理光学梁铨廷版习题答案

物理光学梁铨廷版习题答案1. 题目一问题:一束单色的平行光通过一个缝隙后射到屏上,发现屏上成等距的亮暗相间的条纹,称为夫琅禾费衍射条纹。
试证明这些条纹是由新波和直达波叠加所形成的。
解答:根据亮暗相间的条纹形态,可以推测夫琅禾费衍射条纹是由几个波源发出的波叠加产生的。
在夫琅禾费衍射中,主要涉及到两个波源:新波和直达波。
新波是由物体缝隙处的光线经过衍射后形成的波,其波前波面可以近似看做是缝隙的切线。
新波阻碍了直达波的前进,因此在屏上会出现一系列的亮暗相间的条纹。
直达波是指除了经过缝隙发生衍射的光线外,其他未经过缝隙的光线直接射到屏上。
直达波形成的波前波面是平整的,没有变化。
直达波在屏上形成均匀的衬底。
当新波和直达波在屏上相遇时,它们会发生叠加作用。
根据光的叠加原理,当两个波叠加时,亮度的增强处叠加相位基本一致,而亮度的减弱处叠加相位相差180度。
因此,在屏上就会出现一系列亮暗相间的条纹。
2. 题目二问题:证明菲涅耳双缝衍射现象仅发生在接收屏上有明显观察的区域内。
解答:菲涅耳双缝衍射现象是指当一束平行光通过两个相距较远的狭缝后,光在远离狭缝较远处的接收屏上形成明暗相间的衍射条纹。
根据菲涅耳衍射的理论,当两个狭缝之间的距离越小,衍射角的范围越宽,衍射条纹间距越大。
而当两个狭缝之间的距离越大,衍射角的范围越小,衍射条纹间距越小。
在接收屏上观察到的明暗相间的衍射条纹是由不同角度的衍射光叠加形成的。
如果接收屏较远处的区域(即远离狭缝较远处)未能观察到衍射条纹,则说明在这些位置上,衍射光的干涉叠加效应相对较弱,无法在接收屏上产生明显的衍射条纹。
因此,菲涅耳双缝衍射现象仅发生在接收屏上有明显观察的区域内,而远离狭缝较远处的区域则未能观察到衍射条纹。
3. 题目三问题:利用斯托克斯定理证明高斯定律。
解答:斯托克斯定理描述了一个连续流体通过闭合曲面流出的速度等于穿过这个曲面边界的偏转速度的通量。
而高斯定律描述了闭合曲面内电场的总通量等于该闭合曲面内的电荷量。
物理光学 第五章 梁铨廷

x 2 y 2 xx1 yy1 z1 2 z1 z1
2. 夫琅禾费衍射 这时菲涅耳衍射就过渡到了夫琅和费衍射。 此时,得到夫琅和费衍射的计算公式:
ik 2 ik exp ik z1 ~ ~ 2 E x, y exp x y E x1 , y1 exp xx1 yy1 dx1dy1 iz1 2 z1 z1
1 ~ E P iz1
~ E Q exp ik rd
图
5.3 菲涅耳衍射和夫琅和费衍射
距离近似——菲涅耳近似和夫琅和费近似 1.菲涅耳近似与菲涅耳衍射 对于具体的衍射问题,为了简化计算,还可作进一步近似: 为此取坐标系如图所示 y1 y x1
M
r
P
x
z1 ∑ Π
y1
1
Q
2
S
∑
P
5.2 基尔霍夫衍射积分公式
如果点光源离产生衍射的开孔足够远,则入射光可视为垂直
入射的平面波。对于上各点都有cosα1=1,cos α2 =cos ,因此
1 cos K 2
当=0时,K()=1,表示在波面法线方向上子波的振幅最大; 当=时,K()=0,这一结论证明菲涅耳关于= /2时K()=0的 结论是不正确的。
5.1 惠更斯-菲涅耳原理
1. 惠更斯原理: 1690年,惠更斯在其著作《论光》中提出假设:“波 前上的每一个面元都可以看作是一个次级扰动中心,它们 能产生球面子波”,并且:“后一时刻的波前的位置是所 有这些子波前的包络面。” 这里,“波前”可以理解为:光源在某一时刻发出的 光波所形成的波面(等相面)。“次级扰动中心可以看成
(x1、y0
P f 依照图中所选取的坐标系,应用夫琅和费衍射计算公式,P点子 波叠加的复振幅为:
物理光学(梁铨廷)chip1-4

§1-4球面波和柱面波
K仍为波数:
k = ± 2π
代表发散波和会聚波。 代表发散波和会聚波。 ± 由于球面波振幅随r增大而减小, 由于球面波振幅随r增大而减小, 故严格说来: 球面波波函数不成现严格的空间周期性, 球面波波函数不成现严格的空间周期性,
λ
§1-4球面波和柱面波
3。简谐球面波在平面上的近似表达式 : 在光学中,通常要求解球面波在某个平面 上的复振幅分布。例如,在直角坐标系xyz 上的复振幅分布。例如,在直角坐标系xyz 中波源s坐标为x 中波源s坐标为x0,y0,z0我们来求解它发出的 球面波在z 球面波在z=0平面上的复振幅分布。 由于s z=0平面上任意点p(x,y)的距离为 由于s到z=0平面上任意点p(x,y)的距离为
若将 rA( r , t ) 看成一体,这个方程和一维 波动微分方程有完全相同的形式。 它的解为: rA(r , t ) = B1 (r − vt ) + B2 (r + vt ) 1 [B ( r − vt ) + B ( r + vt ) ] A(r, t) = 或 r 此即为球面波波函数的一般形式。 其中 B 1 , B 2 为任意函数。
r = ( x − x0 ) + ( y − y0 ) + z0
2 2
[
1 2 2
]
§1-4球面波和柱面波
由 时复振幅的表示式知: ϕ =0 在z=o平面上的振幅分布为: z=o平面上的振幅分布为:
0
~ E=
此式较复杂不便应用,实际中往往进行近 似处理。
[
A1 2 exp ik ( x − x0 ) 2 + ( y − y 0 ) 2 + z 0 2 ( x − x0 ) 2 + ( y − y 0 ) 2 + z 0
梁铨廷教授著《物理光学》及其配套教材评介

梁铨廷教授著《物理光学》及其配套教材评介物理光学是光学相关专业中一门重要的专业基础课程,其理论性和系统性强,素以教学难度大著称。
笔者对此深有体会。
而梁铨廷教授所著的《物理光学》教材,為提高教学质量、降低教学难度提供了很大的帮助。
梁老师的《物理光学》是一本真正的经典教材,从1987年的第二版到2012年的第四版,25年只有两次修订,可见久经考验,积淀深厚。
梁老师当年独自著述,承自波恩《光学原理》的理论脉络,以光的电磁理论和傅里叶分析方法为基础,系统地阐述了经典物理光学的基本概念、原理和应用。
梁老师长期从事一线教学,教学经验丰富,也是从事科学研究的学者。
该教材可谓博采众长,也凝聚了梁铨廷老师数十年的教学经验。
梁老师高屋建瓴,《物理光学》这一教材知识结构清晰,逻辑性强,循序渐进而又深入浅出。
该教材既便于教师有效组织教学,也便于学生自我学习提高,一直以来广受高校师生的好评,也曾获得全国高校第二届优秀教材一等奖,可谓实至名归。
梁老师是一位治学严谨的学者,从当初的独立著作,到后来几次修订也都是亲力亲为,使得全书体例如一,前后叙述、公式形式一致,脉络清晰。
更难能可贵的是,他一直力求教材中的传统内容能够与现代科学的发展相衔接。
众所周知,自20世纪中叶开始,光学无论是在理论方法还是技术应用上都已取得许多重大发展,如何在有限的篇幅中编入最适合的内容,本身就是一个难题。
正如梁老师自序所言:“光学的飞跃式发展,使它能以崭新的面貌在现代科学技术各个领域中特别引人注目……对于一本基础光学教材,引进的现代内容不是越多越好,越新越好,关键是要把现代内容和传统内容结合、融汇得好,把它们的内在联系沟通起来。
”经过仔细考虑,精挑细选,梁老师选择了在修订中编入超光学分辨率、白光信息处理、液晶电光效应等内容。
无数的教学实践也证明,这些现代内容的加入与原传统内容的衔接与融合是自然的,体系是完整的。
另外,梁老师增加了约70道例题分布于各章节,以满足教学和自学需要。
(完整版)物理光学梁铨廷答案

第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−xc )+π2],(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=(102)Cos[π×1014(t−x c )+π2],则频率υ= ω2π=π×10142π=0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(zc −t)+π2],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=ω2π=2π×10142π=1014Hz,波长λ=cυ=3×1081014=3×10−6m,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B=1c(e k⃗⃗⃗⃗ ×E⃗),可得By=Bz=0,Bx=2c Cos[2π×1014(zc−t)+π2]1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=102Cos[π×1015(z0.65c−t)],试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ=ω2π=π×10152π=5×1014Hz;(2)λ=2πk =2ππ×1015/0.65c=2×0.65×3×1081015m=3.9×10−7m=390nm;(3)相速度v=0.65c,所以折射率n=cv =c0.65c≈1.541.4写出:(1)在yoz平面内沿与y轴成θ角的k⃗方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和 Hz,
V/m, 8V/m,
,
,
求该点的合振动表达式。
解
:
=
=
=
=
。
求如图所示的周期性三角波的傅立叶分析表达式。
解:由图可知,
,
证明光波在布儒斯特角下入射到两种介质的分界
=
,
面上时,
,其中
。
证明: 儒斯特角,所以
=
,因为 为布 =
, =
,又根据折射定 数),
) ,(m 为奇 ,
所以
=
。
试求如图所示的周期性矩形波的傅立叶级数的表 达式。 解:由图可知,
500nm,试计算插入玻璃片前后光束光程和相位的
变化。
解:由时间相干性的附加光程差公式
,
。
在杨氏干涉实验中,若两小孔距离为,观察屏至小 孔所在平面的距离为 100cm,在观察屏上测得的干 涉条纹间距为,求所用光波的波。
解:由公式
,得光波的波长
。 波长为的钠光照射在双缝上,在距双缝 100cm 的观 察屏上测量 20 个干涉条纹的宽度为,试计算双缝 之间的距离。 解:因为干涉条纹是等间距的,所以一个干涉条纹
。
Bx=
,其中
.一个线偏振光在玻璃中传播时可以表示为
Ey=0,Ez=0,Ex=
,
试求:(1)光的频率;( 2)波长;(3)玻璃的 折射率。
解:(1)υ= =
=5×1014Hz;
(
2
)
λ
=
。
一个沿 k 方向传播的平面波表示为
E=
k 方向的单位矢 。
解:
,
又
,
∴=
。
= ,试求
证明当入射角 =45o 时,光波在任何两种介质分
,
=
,
,
所以
。
利用复数形式的傅里叶级数对如图所示的周期性 矩形波做傅里叶分析。
解:由图可知,
,
, ,
,
=
=
,
又由公式
,所以频率宽度 。
某种激光的频宽 的波列长度是多少
解:由相干长度
Hz,问这种激光 ,所以波列长度
。
第二章 光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其
厚度
,若光波波长为
解:因为两束光相互独立传播,所以 光束第 10
级亮条纹位置
, 光束第 10 级亮条纹位
置
,所以间距
=
。
此光源为氦氖激光器。
。
在杨氏双缝干涉的双缝后面分别放置
和
,厚度同为 t 的玻璃片后,原来中央极大
所在点被第 5 级亮纹所占据。设
nm,求玻
璃片厚度 t 以及条纹迁移的方向。
解:由题意,得
,
所以
在杨氏干涉实验中,照明两小孔的光源是一个直径
,
。 ,所以干涉对比度
得证。 相干长度
(频率增大时波长减小),取绝对值
若双狭缝间距为,以单色光平行照射狭缝时,在距 双缝远的屏上,第 5 级暗条纹中心离中央极大中间 的间隔为,问所用的光源波长为多少是何种器件的 光源
界面上的反射都有
。
证明:
=
律
则
,其中
,得
,
,得证。
利用复数表示式求两个波
和
的合成。
解
:
=
=
=
证明光束在布儒斯特角下入射到平行平面玻璃片
的上表面时,下表面的入射角也是布儒斯特角。
证明:由布儒斯特角定义,θ+i=90o,
设空气和玻璃的折射率分别为 和 ,先由空气入
射到玻璃中则有
,再由玻璃出射
到空气中,有
km,月球的
直径为 3477km,若把月球看作光源,光波长取
500nm,试计算地球表面上的相干面积。
解:相干面积
。 若光波的波长宽度为 ,频率宽度为
,试证
明:
。式中, 和 分别为光波的频
率和波长。对于波长为的氦氖激光,波长宽度为 ,试计算它的频率宽度和相
干长度。
解:证明:由
,则有
解:角宽度为
所以条纹间距 由题意,得
为 2mm 的圆形光源。光源发光的波长为 500nm,它
到小孔的距离为。问两小孔可以发生干涉的最大距
离是多少
解:因为是圆形光源,由公式
,
则
,
条纹迁移方向向下。
在杨氏双缝干涉实验装置中,以一个长 30mm 的充
以空气的气室代替薄片置于小孔 前,在观察屏上 观察到一组干涉条纹。继后抽去气室中空气,注入
某种气体,发现屏上条纹比抽气前移动了 25 个。
=
Hz , 波 长 λ
=
=
,原点的初相位
φ0=+π/2;(2)传播沿 z 轴,振动方向沿 y
。
一平面简谐电磁波在真空中沿正 x 方向传播。其频
率为
Hz,电场振幅为 m,如果该电磁波的
振动面与 xy 平面呈 45o,试写出 E,B 表达式。
解:
,其中
=
=
=
,
轴 ;( 3 ) 由 B=
, 可 得 By=Bz=0 , 同理:
已知照明光波波长为,空气折射率
,
试求注入气室内的气体的折射率。
解:设注入气室内的气体的折射率为 ,则
,所以
。
杨氏干涉实验中,若波长 =600nm,在观察屏上形
成暗条纹的角宽度为
,(1)试求杨氏干涉中
二缝间的距离(2)若其中一个狭缝通过的能量是
另一个的 4 倍,试求干涉条纹的对比度
。
月球到地球表面的距离约为
的宽度为
又由公式
,得双缝间距
所以
氪同位素 放电管发出的红光波长为 ,波列 长度约为 700mm,试求该光波的波长宽度和频率宽
度。
解:由题意,得,波列长度
,
由公式
,
离
=
。
设双缝间距为 1mm,双缝离观察屏为 1m,用钠光照
明双缝。钠光包含波长为
nm 和
两种单色光,问两种ห้องสมุดไป่ตู้的第 10 级亮
条纹之间的距离是多少
初相位 φ0=+π/2(z=0,t=0), 振幅 A=100V/m, 波 长 λ =cT=3×108×2×10-14=6×10-6m。
写出:(1)在 yoz 平面内沿与 y 轴成θ角的 方
向传播的平面波的复振幅;(2)发散球面波和汇聚
球面波的复振幅。
解 :( 1 ) 由
,可得
;
(2)同理:发散球面波
第一章 光的电磁理论
在真空中传播的平面电磁波,其电场表示为 Ex=0,
; (3)相速度 v=,所以折射率 n=
Ey=0,Ez=
,(各
量均用国际单位),求电磁波的频率、波长、周期 和初相位。
解 : 由 Ex=0 , Ey=0 ,
Ez=
,则频率υ=
=
=×1014Hz, 周期 T=1/υ=2×10-14s,
,
又
,∴
,
即得证。
平行光以布儒斯特角从空气中射到玻璃
上,求:(1)能流反射率 和 ;(2)能流透射率
和。
解:由题意,得 又 为布儒斯特角,则
由①、②得,
,
= .....①
..... ②
,
。
(1)
0,
,
(2)由
,可得
,
同理, = 。
= = =
=
。
两个振动方向相同的单色波在空间某一点产生的
振动分别为 。若
,
汇
聚
球
面
波
. 一 个 平 面 电 磁 波 可 以 表 示 为 Ex=0 ,
Ey=
,Ez=0,求:
( 1)该 电 磁 波 的 振 幅 ,频 率 ,波 长 和 原 点 的 初 相 位 是 多 少( 2)波 的 传 播 和 电 矢 量 的 振 动 取 哪 个方向(3)与电场相联系的磁场 B 的表达式如 何写 解 : ( 1 ) 振 幅 A=2V/m , 频 率 υ