3第二型曲线与第二型曲面积分习题课(0425)
曲面积分习题课(供参考)
第二十二章曲面积分习题课一 疑难问题与注意事项1.第一型曲面积分的计算方法:答 1)先把S 的方程代入,再利用SdS ⎰⎰为S 的表面积;例如,22⎰⎰+S yx dS其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分; 解22221122SSdS H dS RH x y R R Rππ===+⎰⎰⎰⎰. 2)利用公式(1)设有光滑曲面:(,),(,)S z z x y x y D =∈,(,,)f x y z 为S 上的连续函数,则(,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰.注 一投------将曲面S 向xOy 面投影得D ;二代------将(,)z z x y =代入到(,,)f x y z 中; 三变换------dS.(2)类似地,如果光滑曲面S 由方程(,),(,)x x y z y z D =∈,则(,,)d ((,),,d SDf x y z S f x y z y z y z =⎰⎰⎰⎰,其中D 表示曲面S 在yOz 面上的投影.(3)如果光滑曲面S 由方程(,),(,)y y x z x z D =∈,则(,,)d (,(,),d SDf x y z S f x y x z z x z =⎰⎰⎰⎰.其中D 表示曲面S 在xOz 面上的投影.3)利用对称性(1)若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上部的曲面,则()()()()10,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(2)若曲面∑关于yoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0x ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z x f x y z S f x y z S f x y z x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(3)若曲面∑关于xoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0y ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z y f x y z S f x y z S f x y z y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(4)若积分曲面∑关于,,x y z 具有轮换对称性,则有[]1(,,)(,,)(,,)3f x y z f y z x f z x y ds ∑=++⎰⎰. 2.第二型曲面积分的方法:答 1)公式:(1)设R 是定义在光滑曲面上的连续函数, 以S 的上侧为正侧,则有注一投-----曲面:(,)S z z x y =向xOy 面投影得D ;二代----将(,)z z x y =代入到(,,)R x y z 中;三定向—看S 的法线方向与z 轴的夹角,若夹角为锐角,则为正,否则为负. (2)类似地,当P 在光滑曲面 上连续时,有这里S 是以S 的法线方向与x 轴的正向成锐角的那一侧为正侧,(3)当Q 在光滑曲面 上连续时,有这里S 是以S 的法线方向与y 轴的正向成锐角的那一侧为正侧. 2)若(,)z z x y =,则 3)高斯公式注 高斯公式(),VSP Q R dxdydz Pdydz Qdzdx Rdxdy x y z∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰的适用条件是:1)函数(,,)P x y z ,(,,)Q x y z ,(,,)R x y z 在V 上具有一阶连续的偏导数. 2)S 封闭,若S 不封闭需要补面,让它封闭,假如补面S *后封闭,则有 3)S 取外侧;如果S 取内侧,则S -取外侧,则有 3.各种积分间的联系τ格林公式 n二 1.计算第一型曲面积分()Sx y z dS ++⎰⎰,其中S 是上半球面2222x y z a ++=(0)a >,0z ≥.解 把:S z=xoy 面投影得222:D x y a +≤(()SDx y z dS x y ++=+⎰⎰⎰⎰3a π=.注(0Dx y +=⎰⎰,因为222:D x y a +≤关于,x y 轴对称,且(x y +2.计算曲面积分2Sz dS ⎰⎰,其中S 是球面2222xy z a ++=.解: ∵球面2222x y z a ++=关于x ,y ,z 具有对称性, ∴222SSSx dS y dS z dS ==⎰⎰⎰⎰⎰⎰ ∴2Sz dS ⎰⎰=2221()3Sx y z dS ++⎰⎰ =22133S Sa a ds ds =⎰⎰⎰⎰22214.433a a a ππ==. 3.计算曲面积分⎰⎰∑-+zdxdy dydz x z )(2,其中∑是旋转抛物面)(2122y x z +=介于平面0=z 及2=z 之间部分的下侧.解 补平面2:1=∑z 的上侧,则1∑+∑为封闭曲面,在其上应用高斯公式:π82)11(=+-=⎰⎰⎰⎰⎰ΩxyD dxdy dxdydz .4.计算第二型曲面积分Sxdydz ydzdx zdxdy -+⎰⎰,其中曲面S为椭球面2222221x y z a b c ++=的上半部分,其方向为下侧. 解:为求1SI xdydz ydzdx zdxdy =-+⎰⎰ (S 取下侧),只须求2SI xdydz ydzdx zdxdy =-+⎰⎰(S 取上侧),那么12I I =-.为求2I ,将S 与底面'S (其中'S 是S 在xoy 坐标面上的投影)组成的封闭曲面记为total S ,即'total S SS =,其中S 方向取上侧,'S 方向取下侧.设total S 围成的区域为()222222,,|1,0x y z V x y z z a b c ⎧⎫=++≤≥⎨⎬⎩⎭,由高斯公式:213Vabcdxdydz π==⎰⎰⎰. 又由于'0S xdydz ydzdx zdxdy -+=⎰⎰,那么223I abc π=,从而 123SabcI xdydz ydzdx zdxdy π=-+=-⎰⎰. 5.计算Sxdydz ydzdx zdxdy ++⎰⎰,其中S是上半球面z =解:曲面S 不封闭,补上曲面2221:0()S z x y a =+≤,取下侧6.⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 是单位球面1222=++z y x 的外侧. 解333222()SVx dydz y dzdx z dxdy x y z dxdydz ++=++⎰⎰⎰⎰⎰2140123sin 5d d r dr ππϕθϕπ==⎰⎰⎰.7.求222222()()()CI y z dx z x dy x y dz =-+-+-⎰,其中C 是立方体{0,0,0,}x a y a z a ≤≤≤≤≤≤的表面与平面32x y z a ++=的交线,取向从z 轴正向看去是逆时针方向. 解:可见交线若分为六段积分的计算量很大,且C 也不便于表示为一个统一的参数式,因C 为闭曲线,且22P y z =-,22Q z x =-,22R x y =-连续可微,故考虑用斯托克斯公式,令∑为32x y z a ++=被C 所围的一块,取上侧,则C 的取向与∑的取侧相容,应用斯托克斯公式得23394()242a x y z dS dS a a ∑∑=-++==-⋅=-⎰⎰⎰⎰. 8.计算()d ()d ()d I z y x x z y x y z Γ=-+-+-⎰,其中221:2x y x y z ⎧+=Γ⎨-+=⎩,从z 轴正向看为顺时针方向(图10-23).解 用斯托克斯公式取:2x y z ∑-+=以Γ为边界所围有限部分的下侧,它在xOy 面上的投影区域为22{(,)1}xy D x y x y =+≤,则d d d d d d y z z x x yI x y z z yx zx y∑∂∂∂=∂∂∂---⎰⎰2d d 2d d 2xyD x y x y π∑==-=-⎰⎰⎰⎰.。
第二型曲线曲面积分
一.选择题:
.设L : 4x2 y2 1,正向,
则L
ydx 4x2
xdy y2
( A) 2 (B) 2
(C )
(D) 0
二. 计算:
1
x2 y2 z2 5
1.L
x2
y2
z 2 ds,
L:
z 1
2.L(2xy 3x2
4 y2 )ds,
L:
x2 4
y2 3
1,
L的周长为a。
(1)没有分片计算 (2)忽视了曲面的侧,将对坐标的曲面积分
化为二重积分时,忘记考虑二重积分 前面的正负号
(3)不了解若曲面积分在坐标面的投影不 形成区域时(是曲线或算 xdy dz时
只能向yoz面投影,而不能向其它
坐标面投影
3. L( x y cos x)dx ( xy sin x)dy,
L : ( x 1)2 y2 1,正向.
4. 设L是xy平面上顺时针方向的光滑闭曲线,且
L( x2 4 y)dx (2x y2 )dy 18 .求L围成的
区域D的面积
5. I L (e y 12 xy)dx ( xe y cos y)dy,
8.
计算曲线积分L-4yxdx2
xdy y2
,
其中L是
由点A(1,0)经半圆周y= 1-x2到
点B(-1,0)在沿直线x+y=-1到
点E(1,-2)的路径。
第二型曲面积分
1. 计算 xy d y d z yz d z d x zx d x d y
S
其中 S 是由平面 x = y = z = 0 和 x + y + z = 1 所围的四面
L : y x2上从A(1,1)到B(1,1)一段.
高等数学 曲线积分和曲面积分 (10.2.2)--第二类曲线积分和第二类曲面积分
习题10.21. 把下列第二类曲线积分化为第一类曲线积分.(1) 2d d Cx y x x y -⎰, 其中C 为曲线3y x =上从点(1,1)--到点(1,1)的弧段; (2) d d d LP x Q y R z ++⎰, 其中L 为曲线32===t z t y t x ,,上相应于参数t 从0变到1的弧段.2. 计算曲线积分22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段x y =; (2) OA 为抛物线段2=x y ; (3) OA 为0=y ,1=x 的折线段. 3. 计算下列第二类曲线积分:(1)d d ||||C x yx y ++⎰,其中C 为1||y x =-上从点(1,0)经点(0,1)到点(1,0)-的折线段;(2) d d C y x x y +⎰, 其中C 为⎩⎨⎧==t a y t a x sin ,cos π:04t ⎛⎫→ ⎪⎝⎭; (3) 222()d 2d d Ly z x yz y x z -+-⎰, 其中L 为⎪⎩⎪⎨⎧===32t z t y t x ,,(:01)t →.(4) ()d ()d ()d L z y x x z y y x z -+-+-⎰, 其中L 为椭圆221,2,x y x y z ⎧+=⎨-+=⎩且从z 轴正向看去, L 取顺时针方向.4. 计算下列变力F 在质点沿指定曲线移动过程中所作的功.(1) ),(2xy y x -=F , 沿平面曲线34()(,)t t t =r 从参数0t =到1t =的点. (2) ),,(22z xy x =F , 沿空间曲线2()(sin ,cos ,)t t t t =r 从参数0t =到π2t =的点. 5. 设变力F 在点(,)M x y 处的大小||||||||k =F r ,方向与r 成2π的角, 其中OM =r (图10-38),试求当质点沿下列曲线从点)0,(a A 移到点),(a B 0时F 所作的功:(1) 圆周222=+a y x 在第一象限内的弧段; (2) 星形线323232=+a y x 在第一象限内的弧段.6. 在过点(0,0)O 和(π,0)A 的曲线族sin (0)y a x a =>中,求一条曲线C ,使沿该曲线从O 到A 的积分3(1)d (2)d Cy x x y y +++⎰的值最小.7. 把第二类曲面积分(,,)d d (,,)d d (,,)d d P x y z y z Q x y z z x R x y z x y ∑++⎰⎰化为第一类曲面积分:(1) ∑为平面x z a +=被柱面222x y a +=所截下的部分, 并取上侧;图 10-38xyOM (x , y )Fr(2) ∑为抛物面222y x z =+被平面2y =所截下的部分, 并取左侧. 8. 计算下列第二类曲面积分:(1) 2d d z x y ∑⎰⎰, 其中∑为平面1x y z ++=位于第一卦限部分, 并取上侧;(2) 22d d xy z x y ∑⎰⎰, 其中∑为球面2222=++R z y x 的下半部分, 并取外侧;(3)2e d d e d d d d yxy z y z x xy x y ∑++⎰⎰, 其中∑为抛物面22z x y =+ (01x ≤≤,1≤≤0y ), 并取上侧;(4)222d d d d d d x y z y z x z x y ∑++⎰⎰, 其中∑为球面2221xy z ++=位于第二卦限部分,并取外侧; (5)d d d d d d xy y z yz z x zx x y ∑++⎰⎰, 其中∑为平面0x =, 0y =, 0z =和1x y z ++=所围立体的表面, 并取外侧;(6) 2222d d d d x y z z x y x y z ∑+++⎰⎰, 其中∑为圆柱面222x y R +=与平面z R =和z R =- (0)R >所围立体的表面, 并取外侧;(7)d d (1)d d y z x z x y ∑-++⎰⎰, 其中∑为圆柱面4=+22y x被平面2=+z x 和0=z 所截下的部分, 并取外侧; (8)2d d d d d d y y z x z x z x y ∑++⎰⎰, 其中∑为螺旋面cos x u v =,sin y u v =,z v =,(01u ≤≤, 0πv ≤≤), 并取上侧.9. 计算下列流场在单位时间内通过曲面∑流向指定侧的流量:(1) ),(),,(222z y x z y x =v , ∑为球面1=++222z y x 第一卦限部分, 流向上侧; (2) ),,(),,(22y xy x z y x =v , ∑为曲面22+=y x z 和平面1=z 所围立体的表面, 流向外侧.。
第二类曲线积分与第二类曲面积分
∫ P(x, y)dx + Q(x, y)dy ≤ MC ,
L
其中 C 是曲线 L 的弧长, M = max{ P 2 (x, y) + Q 2 (x, y) |(x, y) ∈ L}。记圆周
2
x2 + y2 = R2 为 LR ,利用以上不等式估计
∫ ( ) IR
=
LR
ydx − xdy x2 + xy + y 2
−x
,则
x2 + xy + y2 2
P2 (x, y) + Q2 (x, y) =
x2 + y2
≤
16
,
(x 2 + xy + y 2 )4 (x 2 + y 2 )3
于是
IR
≤
4 R3
C
=
8π R2
,所以
lim
R→+∞
I
R
=
0。
3. 方向依纵轴的负方向,且大小等于作用点的横坐标的平方的力构
成一个力场。求质量为 m 的质点沿抛物线 y2 = 1 − x 从点 (1,0) 移到 (0,1)
∂( y, ∂(θ ,
z) z)
+
cosθ
∂(z, x) ∂(θ , z)
+
sinθ
∂(x, ∂(θ ,
y) ⎤ z) ⎥⎦
dθ
dz
∫ ∫ ∫ ∫ =
2π cosθ dθ
4
zdz +
2π sinθ cosθ dθ
4 dz = 0 。
0
0
0
0
解法二
由于曲面Σ的单位法向量为 ( x , y , 0) ,可知
数学分析 第二型曲线积分 课件(完整资料).doc
【最新整理,下载后即可编辑】§2 第二型曲线积分 教学目的与要求:掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别.教学重点,难点:重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容:第二型曲线积分一 第二型曲线积分的意义在物理学中还碰到另一种类型的曲线积分问题。
例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。
为此在曲线B A内插入1-n 个分点121,,,-n M M M ,与n M B M A ==,0一起把有向曲线B A分成n 个有向小曲线段),,2,1(1n i M M i i =-,若记小曲线段i i M M 1-的弧长为i s ∆,则分割T 的细度为i ni s T ∆=≤≤1max 。
设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么)),(),,((),(y x Q y x P y x F =。
又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=∆i i i x x x 与1--=∆i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记),(1i i M M y x L i i∆∆=-,于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W ii ∆+∆=⋅≈-),(),(),(1ηξηξηξ,其中),(i i ηξ为小曲线段i i M M 1-上任一点。
因而力),(y x F 沿曲线B A所作的功近似的等于∑∑∑===∆+∆≈=ni i i i ni i i i ni i y Q x p W W 111),(),(ηξηξ当细度0→T 时,上式右边和式的极限就应该是所求的功。
课件:第二型曲面积分
将 任意分成n 小块Si (i 1,2,,n) ,其面积亦记为Si ,
设 d max{Si的直径} 。M i (i , i , i )Si , 在点M i
1in
处的单位法向量
为
ni
,作和式
n
A(i , i , i ) ni Si
,如果
i1
当 d 0时 , 对 的任意分法及点 M i的任意选取 ,上述和
Dxy
a3
dxdy Dxy
a3
dxdy
2
3 a Dxy
a2
x2
y2 dxdy
2 a3
2 a3 4 。
3
3
xdy dz
4
类似地
I
3 [ ( x2 y2 z2 )2 前
]=
后
3
ydz dx
4
I
3 [ ( x2 y2 z2 )2 右
]=
左
3
I
xdy dz
R( x, y, z)d x d y Dxy R(x, y, z( x, y))d x d y
•若
则有
P(
x,
y,
z)d
y
dz
Dyz
P(
x(
y,
z)
,
y, z) d y d z
(前正后负)
•若
则有
Q( x, y, z)d z d x Dzx Q (x, y(z, x) , z ) d z d x
4 a
6
:
z
0
(0
x
a,
0
y
a)
x
的下侧;
2 3
ay
6
I y(x z)dydz x2dzdx( y2 xz)dxdy
数学分析20.2第二型曲线积分(含习题及参考答案)
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
第二型曲面积分【高等数学PPT课件】
Σ
其中 是以原点为中心, 边长为 a 的正立方
z
体的整个表面的外侧.
解: 利用对称性.
y
原式 3 (z x)d x d y
x
Σ
的顶部
1 : z
a 2
(
x
a 2
,
y
a 2
)
取上侧
的底部
2
:
z
a 2
(
x
a 2
,
y
a 2
)
取下侧
(z x)d xdy]
2
意分割和在局部面元上任意取点, 下列极限都存在
n
i1 Q(i ,i , i )(Si )zx
则称此极限为向量场 A 在有向曲面上第二型曲面积分。
记作
dx
Pd y d z Qd z d x Rd x d y
Σ
dy dz
P, Q, R 叫做被积函数; 叫做积分曲面.
P d y d z 称为P 在有向曲面上对 y, z 的曲面积分;
n
{( x, y) x2 y2 R2 }
o y Dxy R
z d x d y R2 x2 y2dxdy
x
D
2
d
R
R2 r 2 rdr
0
0
2
[
1 3
(
R2
r
2
3
)
2
]0R
2 R3
3
例2. 计算 ( x d x d y
令 d S n d S (d yd z, d zd x, d x d y)
数学分析22.2第二型曲面积分(含习题及参考答案)
第二十二章曲面积分2 第二型曲面积分一、曲面的侧概念:设连通曲面S上到处都有连续变动的切平面(或法线),M为曲面S上的一点,曲面在M处的法线有两个方向:当取定其中一个指向为正方向时,则另一个指向是负方向。
设M0为S上任一点,L为S上任一经过点M0,且不超出S边界的闭曲线。
动点M在M0处与M0有相同的法线方向,且有:当M从M0出发沿L连续移动时,它的法线方向连续地变动,最后当M沿L回到M0时,若这时M的法线方向仍与M0的法线方向相一致,则称曲面S是双侧曲面;若与M0的法线方向相反,则称S是单侧曲面.默比乌斯带:这是一个典型的单侧曲面例子。
取一矩形长纸带ABCD,将其一端扭转180°后与另一端黏合在一起(即让A与C重合,B与D 重合(如图).注:通常由z=z(x,y)所表示的曲面都是双侧曲面,当以其法线正方向与z轴的正向的夹角成锐角的一侧为正侧(也称为上侧)时,另一侧为负侧(也称为下侧). 当S为封闭曲面时,通常规定曲面的外侧为正侧,内侧为负侧.二、第二型曲面积分的概念引例:设流体以一定的流速v=(P(x,y,z),Q(x,y,z),R(x,y,z))从给定的曲面S 的负侧流向正侧,其中P ,Q,R 为所讨论范围上的连续函数,求单位时间内流经曲面S 的总流量E.分析:设在曲面S 的正侧上任一点(x,y,z)处的单位法向量为 n=(cos α,cos β,cos γ). 这里α,β,γ是x,y,z 的函数,则 单位时间内流经小曲面S i 的流量近似地等于v(ξi ,ηi ,ζi )·n(ξi ,ηi ,ζi )△S i =[P(ξi ,ηi ,ζi )cos αi ,Q(ξi ,ηi ,ζi )cos βi ,R(ξi ,ηi ,ζi )cos γi ]△S i , 其中(ξi ,ηi ,ζi )是S i 上任意取定的一点,cos αi ,cos βi ,cos γi 分别是S i 正侧上法线的方向余弦, 又△S i cos αi ,△S i cos βi ,△S i cos γi 分别是S i 正侧在坐标面yz, zx 和xy 上 投影区域的面积的近似值, 并分别记作△S iyz ,△S izx ,△S ixy , 于是 单位时间内由小曲面S i 的负侧流向正侧的流量也近似地等于 P(ξi ,ηi ,ζi )△S iyz +Q(ξi ,ηi ,ζi )△S izx +R(ξi ,ηi ,ζi )△S ixy ,∴单位时间内由曲面S 的负侧流向正侧的总流量为: E=}),,(),,(),,({lim 10ixy i i i ni izx i i i iyz i i i T S R S Q S P ∆+∆+∆∑=→ζηξζηξζηξ.定义1:设P , Q, R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面S 1,S 2,…,S n 组,分割T 的细度T =ni ≤≤1max {S i 的直径}, 以△S iyz ,△S izx ,△S ixy 分别表示S i 在三个坐标面上的投影区域的面积, 它们的符号由S i 的方向来确定.若S i 的法线正向与z 轴正向成锐角时, S i 在xy 平面的投影区域的面积 △S ixy 为正. 反之,若S i 的法线正向与z 轴正向成钝角时, △S ixy 为负. 在各小曲面S i 上任取一点(ξi ,ηi ,ζi ). 若存在以下极限∑∑∑=→=→=→∆+∆+∆ni ixy iiiT ni izx iiiT ni iyz iiiT S R S Q S P 111),,(lim),,(lim),,(limζηξζηξζηξ,且与曲面S 的分割T 和(ξi ,ηi ,ζi )在S i 上的取法无关,则称此极限为 函数P , Q, R 在曲面S 所指定的一侧上的第二型曲面积分,记作:⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(, 或⎰⎰⎰⎰⎰⎰++SSSdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.注:1、流体以v=(P ,Q,R)在单位时间内从曲面S 的负侧流向正侧的总流量E=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.2、若空间磁场强度为(P(x,y,z),Q(x,y,z),R(x,y,z),), 则通过曲面S 的磁通量(磁力线总数) H=⎰⎰++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(.性质:1、若⎰⎰++S i i i dxdy R dzdx Q dydz P(i=1,2,…,k)存在,则有dxdy R c dzdx Q c dydz P c k i i i k i i i S k i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=dxdy R dzdx Q dydz P c i i S i ki i ++⎰⎰∑=1,其中c i(i=1,2,…,k)是常数.2、若曲面S 是由两两无公共内点的曲面块S 1,S 2,…,S k 所组成,且⎰⎰++iS RdxdyQdzdx Pdydz(i=1,2,…,k)存在,则有⎰⎰++SRdxdy Qdzdx Pdydz =∑⎰⎰=++ki S Rdxdy Qdzdx Pdydz i1.三、第二型曲面积分的计算定理22.2:设连续函数R 定义在光滑曲面S :z=z(x,y), (x,y)∈D xy 上, 以S 的上侧为正侧(即S 的法线方向与z 轴正向成锐角),则有⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.证:由第二型曲面积分定义得⎰⎰Sdxdy z y x R ),,(=ixy ni iiiT S R ∆∑=→1),,(lim ζηξ=ixy ni i i i i d S z R ∆∑=→1)),(,,(lim ηξηξ,其中d=max{S ixy 的直径}. ∴由T =ni ≤≤1max {S i 的直径}→0, 可推得d →0, 又R 在S 上连续,z 在D xy 上连续(即曲面光滑),根据复合函数的连续性, R(x,y,z(x,y))在D xy 上也连续. 由二重积分的定义,有⎰⎰xyD dxdy y x z y x R )),(,,(=ixyni iiiid Sz R ∆∑=→1)),(,,(lim ηξηξ,∴⎰⎰Sdxdy z y x R ),,(=⎰⎰xyD dxdy y x z y x R )),(,,(.注:同理可得,当P 在光滑曲面S :x=x(y,z), (y,z)∈D yz 上连续时, 有 则有⎰⎰Sdydz z y x P ),,(=⎰⎰yzD dydz z y z y x P ),),,((.这里S 是以S 的法线方向与x 轴正向成锐角的那一侧为正侧. 当Q 在光滑曲面S :y=y(z,x), (z,x)∈D zx 上连续时, 有 则有⎰⎰Sdzdx z y x Q ),,(=⎰⎰zxD dzdx z x z y x Q )),,(,(.这里S 是以S 的法线方向与y 轴正向成锐角的那一侧为正侧.例1:计算⎰⎰Sxyzdxdy ,其中S 是球面x 2+y 2+z 2=1在x ≥0, y ≥0部分并取球面外侧.解:S 在第一、五卦限部分分别为:S 1:z 1=221y x --; S 2:z 2=-221y x --; D xy ={(x,y)|x 2+y 2≤1, x ≥0, y ≥0}, 依题意积分沿S 1上侧和S 2下侧进行, ∴⎰⎰Sxyzdxdy =⎰⎰1S xyzdxdy +⎰⎰2S xyzdxdy=⎰⎰--xyD dxdy y x xy 221-⎰⎰---xyD dxdy y x xy 221=2⎰⎰-201023cos sin 1πθθθdr r r d =⎰2022sin 151πθθd =152.注:如果光滑曲面S 由参量方程给出:S: ⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D.若在D 上各点的函数行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂不同时为0,则有 ⎰⎰SPdydz =⎰⎰∂∂±Ddudv v u z y v u z v u y v u x P ),(),()),(),,(),,((, ⎰⎰SQdzdx =⎰⎰∂∂±Ddudv v u x z v u z v u y v u x Q ),(),()),(),,(),,((, ⎰⎰SRdxdy =⎰⎰∂∂±Ddudv v u y x v u z v u y v u x R ),(),()),(),,(),,((, 其中正负号分别对应S 的两个侧,特别当uv 平面的正方向对应于曲面S 的所选定的正向一侧时,取正号,否则取负号.例2:计算⎰⎰Sdydz x 3,其中S 为椭球面222222cz b y a x ++=1的上半部并选取外侧.解:把曲面表示为参数方程:x=asin φcos θ, y=bsin φsin θ, z=ccos φ, 0≤φ≤2π, 0≤θ≤2π. 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕc b b -=bcsin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 3=⎰⎰⋅20202333cos sin cos sin ππθθϕθϕϕd bc a d=⎰⎰2020453cos sin ππθθϕϕd d bc a =52πa 3bc.四、两类曲面积分的联系定理22.3:设S 为光滑曲面,正侧法向量为(cos α,cos β,cos γ), P(x,y,z), Q(x,y,z), R(x,y,z)在S 上连续,则⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.证:⎰⎰Sdxdy z y x R ),,(=ixy ni i i i T S R ∆∑=→1),,(lim ζηξ, 又△S i =dxdy ixyS ⎰⎰γcos 1. 由S 光滑知cos γ在区域S ixy 上连续. 应用中值定理,在S ixy 内必存在一点,使这点的法线方向与z 轴正向的夹角γi °满足 △S i =ixy i S ∆°cos 1γ,即△S ixy =cos γi °△S i .∴R(ξi ,ηi ,ζi )△S ixy =R(ξi ,ηi ,ζi )cos γi °△S i . 于是ixy ni i i i S R ∆∑=1),,(ζηξ=i ni i i i i S R ∆∑=1°cos ),,(γζηξ. 以cos γi 表示曲面S i 在点(x i ,y i ,z i )的法线方向与z 轴正向夹角的余弦,由cos γ的连续性,知当T →0时,i ni i i i i S R ∆∑=1°cos ),,(γζηξ的极限存在, ∴⎰⎰Sdxdy z y x R ),,(=⎰⎰SdS z y x R γcos ),,(. 同理可证:⎰⎰Sdydz z y x P ),,(=⎰⎰SdS z y x P αcos ),,(; ⎰⎰S dzdx z y x Q ),,(=⎰⎰SdS z y x Q βcos ),,(.∴⎰⎰++SRdxdy Qdzdx Pdydz =⎰⎰++SdS R Q P )cos cos cos (γβα.注:当改变曲面的侧时,左边积分改变符号,右边积分中的角要加减π以改变余弦的符号.定理22.4:设P , Q, R 是定义在光滑曲面S: z=z(x,y), (x,y)∈D 上的连续函数,以S 的上侧为正侧,则⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.证:cos α=221yx x z z z ++-, cos β=221yx y z z z ++-, cos γ=1, dS=221y x z z ++dxdy.∴⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ),,(),,(),,(=⎰⎰++SdS z y x R z y x Q z y x P )cos ),,(cos ),,(cos ),,((γβα=⎰⎰+-+-Dy x dxdy y x z y x R z y x z y x Q z y x z y x P ))),(,,()))(,(,,()))(,(,,(.例3:计算⎰⎰++Szdxdy dydz z x )2(,其中S={(x,y,z)|z=x 2+y 2, z ∈[0,1]},取上侧.解:∵z x =2x, z y =2y,∴⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y x x x )]()2(2[2222=⎰⎰++-+-Ddxdy y x x x )])(12(4[222=⎰⎰+-+-πθθθ2010323])1cos 2(cos 4[drr r r d=⎰+--πθθθ202)41cos 52cos (d =2π-.注:由于x(x 2+y 2)是奇函数,∴⎰⎰+Ddxdy y x x )(22=0,又由对称性有⎰⎰Ddxdy x 2=⎰⎰Ddxdy y 2,∴例3中也可化简⎰⎰++Szdxdy dydz z x )2(=⎰⎰++++-Ddxdyy x y xx x )]()2(2[2222=⎰⎰-Ddxdy x y )3(22=-⎰⎰Ddxdy x 22=-⎰⎰πθθ20123cos 2dr r d =-⎰πθθ202cos 21d =2π-. 习题1、计算下列第二型曲面积分:(1)⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 为由x=y=z=0, x=y=z=a 六个平面围成的立方体表面并取外侧为正向; (2)⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(,其中S 为以原点为中心,边长为2的立方体表面并取外侧为正向; (3)⎰⎰++Szxdxdy yzdzdx xydydz ,其中S 为由x=y=z=0, x+y+z=1所围的四面体表面并取外侧为正向; (4)⎰⎰Syzdzdx ,其中S 为球面x 2+y 2+z 2=1的上半部分并取外侧为正向;(5)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 为球面(x-a)2+(y-b)2+(z-c)2=R 2并取外侧为正向. 解:(1)∵⎰⎰-Sdydz z x y )(=⎰⎰⎰⎰+-aaaazdz ydy dz z a ydy 0000)(=24a ;⎰⎰Sdzdx x 2=⎰⎰⎰⎰-a aa a dx x dz dx x dz 002002=0;⎰⎰+Sdxdy xz y)(2=⎰⎰⎰⎰-+a aa a dy y dx dy ax y dx 022)(=24a .∴⎰⎰+++-S dxdy xz y dzdx x dydz z x y )()(22=24a +24a =a 4.(2)∵⎰⎰+Sdydz y x )(=⎰⎰⎰⎰----+--+11111111)1()1(dz dy y dz dy y =8,⎰⎰+Sdzdx z y )(=⎰⎰+Sdxdy x z )(=8,∴⎰⎰+++++Sdxdy x z dzdx z y dydz y x )()()(=24.(3)∵⎰⎰Sxydydz =⎰⎰---yydz z y dy 1010)1(=241,⎰⎰S yzdzdx =⎰⎰Szxdxdy =241. ∴⎰⎰++Szxdxdy yzdzdx xydydz =81.(4)令x=sin φcos θ, y=sin φsin θ, z=cos φ, 0≤φ≤2π, 0≤θ≤2π, 则),(),(θϕ∂∂x z =θϕθϕϕsin sin cos cos 0sin -=sin 2φsin θ, 又积分在S 的正侧,∴⎰⎰Syzdzdx =⎰⎰ππθθϕϕϕ202320sin sin cos d d =4π.(5)令x=Rsin φcos θ+a, y=Rsin φsin θ+b, z=Rcos φ+c, 0≤φ≤π, 0≤θ≤2π, 则),(),(θϕ∂∂z y =sin cos sin sin cos ϕθϕθϕR R R -=R 2sin 2φcos θ, 又积分在S 的正侧,∴⎰⎰Sdydz x 2=⎰⎰+ππθθϕθϕϕ202220cos sin )cos sin (d R a R d=⎰⎰++ππθθϕθϕθϕϕ202222333440)cos sin cos sin 2cos sin (d R a aR R d=⎰πϕϕπ033sin 2d aR=338aR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π. 解法二:令x=rcos θ+a, y=rsin θ+b, 则⎰⎰Sdxdy z 2=rdr r R c d R ⎰⎰-+022220)(πθ-rdr r R c d R⎰⎰--022220)(πθ=4c dr r R r d R⎰⎰-02220πθ=338cR π. 根据变换的对称性,可得:⎰⎰++Sdxdy z dzdx y dydz x 222=)(383c b a R ++π.2、设某流体的流速为v=(k,y,0), 求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量.解:E=⎰⎰+Sydzdx kdydz , 又⎰⎰S kdydz =⎰⎰S dydz k -⎰⎰Sdydz k =0(注:球前+球后).∴E=⎰⎰Sydzdx =⎰⎰ππθθϕϕ20230sin sin 8d d =π332.3、计算第二型曲面积分I=⎰⎰++Sdxdy z h dzdx y g dydz x f )()()(, 其中S 是平行六面体0≤x ≤a, 0≤y ≤b, 0≤z ≤c 的表面并取外侧为正向, f(x),g(y),h(z)为S 上的连续函数.解:⎰⎰Sdydz x f )(=⎰⎰-cbdz f a f dy 00)]0()([=bc[f(a)-f(0)],同理有:⎰⎰Sdzdx y g )(=ac[g(b)-g(0)],⎰⎰Sdxdy z h )(=ab[h(c)-h(0)],∴I=bc[f(a)-f(0)]+ac[g(b)-g(0)]+ab[h(c)-h(0)].4、设磁场强度为E(x,y,z)=(x 2,y 2,z 2), 求从球内出发通过上半球面x 2+y 2+z 2=a 2, z ≥0的磁通量.解:设磁通量为φ, 则φ=⎰⎰++Szdxdy ydzdx xdydz .利用球坐标变换有⎰⎰Szdxdy =⎰⎰ππθϕϕϕ202320sin cos d a d =323a π.又由变换后的对称性,有φ=3zdxdy=2πa3.S。
习题课(四)
二、计算
5.
∫∫
Σ
1 + 4 z dA, Σ : z = x + y , z ≤ 1
2 2
6.
∫∫ ( x + y + z )
Σ
dA, Σ : y + z = 5, x + y ≤ 25
2 2
三、应用题: 1.设一半圆环薄板 : a ≤ x + y ≤ b (0 < a < b, y ≥ 0)
四、综合 1. 设 D : x + y ≤ y, f ∈ C D ,
2 2
f ( x, y ) = 求 f ( x , y ).
1− x − y −
2 2
8
π
∫∫
D
f ( x , y ) dxdy,
2 . f (t ) =
∫∫
D
1 f( 2
x + y ) dxdy + e
2 2
4πt 2
,
其中 f 是连续函数 求 f ( t ).
习题课( 习题课(四) 主要内容
第一型曲线( 第一型曲线(面)积分
第二型曲线( 第二型曲线(面)积分
数量函数积分学的综合应用
一、选择与填空题 : 2 1.设 L 为上半圆 y = 1 − x , 则 ∫ x ds =
L
( A) (B) (C )
∫ ∫
0
−1
(−
x 1− x
2
) dx + ∫
1
x 1− x
2
0
dx
π
0 1
cos t ( − sin t ) 2 + (cos t ) 2 dt
1 dy dy + ∫ x (− ) x 0 x x
第二类曲面积分例题
第二类曲面积分例题摘要:一、引言二、第二类曲面积分的概念和基本方法1.概念2.基本方法三、例题解析1.例题12.例题2四、总结正文:一、引言在数学中,曲面积分是一种常见的积分形式。
第二类曲面积分是曲面积分的一种,主要研究空间曲线或曲面与某个曲面的相对位置关系。
本文将介绍第二类曲面积分的概念和基本方法,并通过两个例题进行解析。
二、第二类曲面积分的概念和基本方法1.概念第二类曲面积分指的是空间中一个曲线或曲面在某个曲面上的投影面积与该曲面的有向法线长度的乘积的积分。
具体而言,设曲面S 由参数方程x = x(u, v), y = y(u, v), z = z(u, v) 表示,曲面S 上的曲线C 由参数方程x = x(u), y = y(u), z = z(u) 表示,曲面S 的单位法向量场为N(u, v),则曲线C在曲面S 上的第二类曲面积分为:∫(C) = ∫∫(N·r) dμ其中,r 为曲线C 上的一个有向微元,dμ为曲面S 上的一个有向微元。
2.基本方法求解第二类曲面积分的基本方法有以下两种:(1) 直接积分法:通过在曲面上选取一个适当的坐标系,将曲线和曲面的参数方程转化为直角坐标方程,然后直接对直角坐标方程进行积分。
(2) 切平面法:在曲线或曲面上任取一点,在该点处作一个切平面,将切平面与曲面相交得到一个曲边三角形。
通过求解曲边三角形的面积,再乘以该点处的法向量长度,最后进行积分。
三、例题解析1.例题1设曲面S 由参数方程x = 2cosθ, y = 2sinθ, z = θ表示,曲线C 由参数方程x = 3cosφ, y = 3sinφ表示。
求曲线C 在曲面S 上的第二类曲面积分。
解:首先,计算曲面S 的单位法向量场N,有N = (x/θ, y/θ, z/θ) = (2sinθ, 2cosθ, 1)。
然后,计算曲线C 在曲面S 上的单位法向量场r,有r = (x/φ, y/φ, 0) = (3sinφ, 3cosφ, 0)。
第二型曲面积分3课件
f
2 x
+
f
2 y
dxdy
D
+Qx, y, f x, y fy + Rx, y, f x, y dxdy.
y y(z, x)
Pdydz + Qdzdx + Rdxdy
S
P x, y(z, x), zyx
解
把分成1和
两部分
2
1 : z1 1 x2 y2 ;
2 : z2 1 x2 y2 ,
xyzdxdy xyzdxdy + xyzdxdy
2
1
xy 1 x2 y2dxdy xy( 1 x2 y2 )dxd y2dxdy
Dxy
2 r 2 sin cos Dxy
1 r 2rdrd 2 .
15
例 计算 zdxdy ,其中Σ是旋转抛物面
z 1 ( x2 + y2 )介于平面z 0及 2
z 2之间的部分的下侧.
解: zdxdy zdxdy
Dxy
1 ( x2 + y2 )dxdy 2 Dxy
1
2
d
2 r 2rdr
20
0
例2 求 xdydz 3 y3z2dxdy
解 z2dxdy 0
x2dydz 2 x2dydz
z
前
00
y
x
例3 求 x2dydz + y2dzdx + z2dxdy
: x2 + y2 4 介于z 0与z 1之间的外侧
x 4 y2
z
解 z2dxdy 0
0
y
x2dydz x2dydz + x2dydz z
前
后
第二型曲面积分
显 然 有 m a x S 的 直 径 . 这里 d ix ( y )
| || T |m a x S 的 直 径 0 d 0 . i
由于 R 在 S 上连续, z 在 D( xy) 上连续(曲面光滑), 据
( x ,y , zx ( ,y ) ) 在 D ( x y ) 上也连续. 复合函数的连续性, R
[ P ( , , ) c o s Q ( , , ) c o s i i i i i i i i
R ( ,, ) c o s ] S , i i i i i
其中 M (, , ) S 是任意取定的一点; i i i i i
S D z x
这里 S 是取法线方向与 y 轴的正向成锐角的那一 一侧为正侧.
例1 计算 xyzd xd y ,
S
z
2 2 2 y z 1 其中 S 是球面 x
S
O
1
部分并取球面 在x 0 ,y 0 的外侧(图22-6). 解 曲面 S 在第一、五卦限部 分的方程分别为
x
y
S
2
图22 6
S1 : z1 1 x y ,
2 2
S2 : z2 1 x2 y2 .
它们在 x y 平面上的投影区域都是单位圆在第一象限
的 上 侧 和 S 部分. 因积分是沿 S 的下侧进行, 故 1 2
x y z d x d y x y z d x d y x y z d x d y
定义1返回返回返回返回返回返回返回返回在曲面所指定一侧上的第二型曲面积分记作的选取无关则称此极限中的三个极限都存在且与分割返回返回返回返回据此定义某流体以速度从曲面又如若空间中的磁场强度为则按指定方向穿过曲面的磁通量磁力线总数为返回返回返回返回的另一侧由定义易知则有返回返回返回返回所组成则有返回返回返回返回三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.计算曲线积分
C
ydx 4x2
xdy y2
,其中
C
是
圆周 x2 y2 1,取逆时针方向.
注:1)如果 C 是10x2 3 y2 1,取逆时针方向. 2)如果 C 是 x y 1,取逆时针方向.
结论是否相同?
Southeast University
曲面 2x2 2 y2 z2 4的外侧(09)
(4)
Southeast University
解: 取1:x2+y2+z2=1的外侧, 为与1之间的部分。
I
xdy dz dz dx zdx dy
3
(x2 y2 z2)2
=(
-
)xdy
dz
ydz
dx
zdx
3
dy
(+ ( -1)-1
8.设 x0 , f ( x) 为连续可微函数,且 f (1)2 ,对 x0
的任一闭曲线 C,有 4x3 ydx xf ( x)dy0 ,求 f ( x) C
和积分
4x3 ydx xf ( x)dy 的值,其中 AB 是由 A(2,0)
C( AB)
至 B(3,3) 的一段弧。
解:(1)由 4x3 ydx xf ( x)dy0 P Q 。
第二型曲线积分与 第二型曲面积分习题课
Southeast University
第二型曲线积分的内容: 1.背景:质点沿曲线形路径做功问题 2.第二型(对坐标)曲线积分的计算,格林公式, 曲线积分与路劲无关问题 3.第一型曲线积分与第二型曲线积分的关系
Southeast University
典型练习:
其中f ( x, y, z)为连续函数,为平面 x y z 1在第四卦限部分的上侧
=(4) =-1 3 dxdydz x2 y2 z2 1
Southeast University
12.设密度为
1
的流体的流速为
v
xz 2 i
sinxk ,曲面
是由曲线
y
1 z2 (1z2) 绕 z 轴旋转而成的旋转面,
x0
其法向量与 z 轴正向的夹角为锐角,求单位时间内流体
流向曲面指定侧的流量 Q. 解: v xz2isinxk{xz2, 0, sinx}, 旋转曲面的方程为 x2 y2 z2 1(1z2) ,取内侧。
xtsint , y1cost ,从 t 0 到 t 的一段.
解:Q x
P y
y2 x2 2xy ( x2 y )2C 2 .
y
故在不含原点的任一单连通区域内, 曲线积分与路径无关.
ox
Southeast University
7.求 I C
x x2
y y2
dx
x x2
y y2
dy
,其中
C
从点
3.第二型(对坐标)曲面积分 与第一型曲面积分的关系
4.向量值函数的散度与旋度的计算
Southeast University
9.计算第二型曲面积分
I 8xydydz2(1 y2 )dzdx4 yzdxdy
其中 为 x2 z2 y1 位于1 y3 间的一片,
正向的夹角成锐角。
z
(32 )
1
o
y
x
Southeast University
Ñ 1. 求 ( x2 y)dx ( x2 y2 )dy ( x y z)dz, L
其中L
:
x2 z
y2 x2
z2 y2
11的交线,其方向 1
与z轴正向成右手系
(-π)
Southeast University
( x 3 y e y )dx ( xy3 xe y 2 y)dy
A(a,
0) 经
上半椭圆
解:
x2 a2
y2 b2
1(
y
0)
到达点
B(a,
0) 的弧段,且 0ba 。
x y
x y
, P x2 y2 ,Q x2 y2 ,
y
x2 y2 a2
当( x, y)(0,0)时
且
P y
y2 x22xy ( x2 y2 )2
Q x
,.
A(a, 0) oo
C
B(a, 0)
x
Southeast University
C
y x
P 4x3 y ,Q xf ( x) , P 4x3 , Q f ( x) xf ( x) ,
y
x
从而 f ( x) 1 f ( x)4x2 , x
Southeast University
第二型曲面积分内容: 1.背景:流经指定的有向曲面侧的流量问题
2.第二型(对坐标)曲面积分的计算, 高斯公式及其应用;
流量Q xz2dy dz sin xdx dy
Southeast University
不能用高斯公式计算的第二型曲面 积分
Southeast University
1. 求
[ f ( x, y, z) x]dy dz [2 f ( x, y, z) y]dz dx
( f ( x, y, z) z)dx dy,
5.设
f
(u)
具有连续导数,且
4
0
f
(u)du4 ,C
为半圆
周 y 2x x2 ,起点为 A(0,0) ,终点为 B(2,0) ,
求C f ( x2 y2 )( xdx ydy)
(C 2)
Southeast University
6.计算
(
C
x
y)dx( x x2 y2
y)dy
,
其中 C 为摆线
(x2 y2 z2)2
Southeast University
根据高斯公式
xdy
dz
ydz
dx
zdx
3
dy=0dxdydz=0
(+ ( -1)
(x2 y2 z2)2
根据高斯公式
xdy dz ydz dx zdx dy
3
-1
(x2 y2 z2)2
=- xdy dz ydz dx zdx dy
2. Ñ L
9x2 4 y2
,
L : x2 y2 1,顺时针。 49
(0)
Southeast University
3.计算曲线积分 I C (12xy e y )dx ( xe y cos y )dy , 其中 C 为从 A(1, 1) 沿曲线 yx2 到 O( 0, 0 )再沿 直线 y 0到 B( 2, 0 )的路径。
10. 计 算 I (z2 4)dy dz yzdz dx , 其
x2 y2 z2
中为半球面 z 9 x2 y2 的上侧.
z
3
(27 )
4
o
3
x
3y
Southeast University
11.计算
I
xdy dz ydz dx zdx dy ,其中 为
3
(x2 y2 z2)2