2013高考数学(理)热点专题专练:3-8直线与方程、圆与方程

合集下载

高考数学二轮专题复习常考问题13 直线、圆及其交汇(1)

高考数学二轮专题复习常考问题13 直线、圆及其交汇(1)

常考问题13 直线、圆及其交汇[真题感悟]1.(2013·福建卷)设点P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 当x =2且y =-1时,满足方程x +y -1=0, 但方程x +y -1=0有无数多个解,不能确定x =2且y =-1, ∴“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件. 答案 A2.(2013·安徽卷)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ).A .1B .2C .4D .4 6解析 圆的方程可化为(x -1)2+(y -2)2=5,圆心(1,2)到直线x +2y -5+5=0的距离d =1,∴截得的弦长为2r 2-d 2=25-1=4. 答案 C3.(2013·天津卷)已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =( ).A .-12B .1C .2D.12解析 圆心为T (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,TP 与P 点处的切线垂直. ∴k TP =2-02-1=2,又点P 处的切线与直线ax -y +1=0垂直.∴a =k TP =2,选C. 答案 C4.(2013·江西卷)若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.解析 ∵圆C 经过原点O (0,0)和点P (4,0), ∴线段OP 的垂直平分线x =2过圆C 的圆心, 设圆C 的方程为(x -2)2+(y -b )2=r 2, 又圆C 与直线y =1相切, ∴b 2+22=r 2,且|1-b |=r ,解之得b =-32,r =52,∴圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=2545.(2013·陕西卷改编)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是________.解析 由点M (a ,b )在圆x 2+y 2=1外,则a 2+b 2>1,则圆心O 到直线ax +by =1的距离d =1a 2+b2<1,故直线与圆O :x 2+y 2=1相交.答案 相交 [考题分析]题型 选择题、填空题难度 中档 对直线方程、圆的方程的求解. 高档 与圆有关的最值及求参数值(或范围)问题.。

2013江苏高考数学考点8-直线与圆-典型易错题会诊-命题角度-圆的方程复习资料

2013江苏高考数学考点8-直线与圆-典型易错题会诊-命题角度-圆的方程复习资料

命题角度4 圆的方程1(典型例题)从原点向圆x 2+y 2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为( )ππππ6.4.2..D C B A[考场错解]由半径为3,圆心与原点距离为6,可知两切线间的夹角为60。

,故所相应的圆心角为120,故所求劣弧为圆弧长的C 故选为.4323232ππ=⨯⨯.[专家把脉]没有理解清楚优弧,劣弧的概念,劣弧应为相对较短的一段弧。

[对症下药]所求劣弧是整个圆弧的ππ2313231=⨯⨯故所求弧长为.2.(典型例题) △ABC 的外接圆的圆心为O ,两条边上的高的交点为H.),(OC OB OA m OH ++=则实数m=______.[考场错解]选取特殊三角形,取△ABC 为等边三角形,则,0||,0||=++=OC OB OA OH 故m 可取任意实数。

[专家把脉]情况太特殊,若所取三角形为等腰三角形(非等边三角形)此时0||,0||≠++≠OC OB OA OH 此时与m 为任意实数相矛盾。

[对症下药].1,.,.90,,.1.=∴++=-===<=m OC OB OA OH OC OB OA OH A ABC m 故或利用直角三角形意义又可求由向量的加减法的几何3.(典型例题)圆心在直线2x-y-7=0上的圆C 与y 轴交于两点A(0,-4),B(0,-2),则圆C 的方程为_____.[考场错解]设圆的方程为⎪⎪⎩⎪⎪⎨⎧=---+=-∙-=----=-++∙-==-+-.072)2()4(224,24,02,0.)()(00220200220200222020y x r y x x r y x x x x y r y y x x 故分别为方程的两根令解得x 0=-3,y 0=-13,r=168.故所求圆的方程为(x+3)2+(y+13)2=168.[专家把脉]应是令x=0,而不是令y=0,故后面的结果均错。

[对症下药] 法一:∵AB 的中垂线,3-=y 必过圆心故解⎩⎨⎧=---=0723y x y 得圆心坐标为=-'|'|),3,2(0A O ∴.5所求圆的方程为.5)3()2(22=++-y x法二:设圆C 的方程:22020)()(r y y x x =-+-圆心在直线072=--y x 上07200=--∴y x ①又 圆过A (0, -4) B (0, -2)22020)4(r y x =--+∴ ②22020)2(r y x =--+ ③ 由①②③解得⎪⎩⎪⎨⎧=∴-==53200r y x 圆的方程++-y x ()2(2 2)3专家会诊1.求圆的方程应注意根据所给的条件,恰当选择方方程的形式,用待定系数法求解.2讨论点、直线、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征去考虑,其中几何特征数更为简捷实用。

2013年高考真题理科数学分类汇编:考点39 圆的方程、直线与圆、圆与圆的位置关系含解析

2013年高考真题理科数学分类汇编:考点39 圆的方程、直线与圆、圆与圆的位置关系含解析

考点39 圆的方程、直线与圆、圆与圆的位置关系一、选择题1.(2013·重庆高考文科·T4)设P是圆22-++=上的动点,(3)(1)4x yx=-上的动点,则PQ的最小值为( )Q是直线3A. 6 B。

4 C. 3 D. 2【解题指南】PQ的最小值为圆心到直线的距离减去圆的半径。

【解析】选B。

PQ的最小值为圆心到直线的距离减去圆的半径.圆心)1,3(-到直线3-=x的距离为6,半径为2,所以PQ的最小值为6=-。

242.(2013·天津高考文科·T5)已知过点P(2,2)的直线与圆(x—1)2+y2=5相切,且与直线ax-y+1=0垂直,则a= ( )A. 1- B. 1 C。

2 D。

122【解题指南】根据圆的切线的性质确定切线的斜率,再由两直线垂直求a的值.【解析】选C.因为点P(2,2)为圆(x-1)2+y2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P,所以直线ax-y+1=0的斜率为2,因此(2,2)的切线斜率为—12a=2。

A.1 B 。

2 C 。

4 D 。

【解题指南】 由圆的半径、圆心距、半弦长组成直角三角形,利用勾股定理即可求得半弦长。

【解析】选C.由22(1)(2)5x y 得圆心(1,2),半径5r,圆心到直线x+2y-5+的距离|1455|15d,在半径、圆心距、半弦长组成的直角三角形中,弦长222244lr d 。

4。

(2013·重庆高考理科·T7)已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( ) A 。

425- B.117-C.226-D.17【解题指南】根据圆的定义可知421-+=+PC PCPN PM ,然后利用对称性求解.【解析】选A.由题意知,圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=的圆心分别为)4,3(),3,2(21C C ,且421-+=+PC PCPN PM ,点)3,2(1C 关于x 轴的对称点为)3,2(-C ,所以252221=≥+=+CC PC PC PC PC ,即425421-≥-+=+PC PCPN PM .5.(2013·广东高考文科·T7)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +=B .10x y ++=C .10x y +-= D .0x y +=【解析】选A. 由题意知直线方程可设为0x y c +-=(0c >),则圆心到直线的距离等于半径1,即1=,c =所求方程为0x y +=。

2013年高考数学 学困生专用精品复习资料(07)直线与圆(教师版)

2013年高考数学 学困生专用精品复习资料(07)直线与圆(教师版)

2013年高考数学学困生专用精品复习资料(07)直线与圆(教师版)(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。

③能根据两条直线的斜率判定这两条直线平行或垂直。

④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。

⑤能用解方程组的方法求两直线的交点坐标。

⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。

②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系。

③能用直线和圆的方程解决一些简单的问题。

④初步了解用代数方法处理几何问题的思想。

本专题在高考试卷中一般是结合圆锥曲线考查,直线与圆作为解析几何初步的基础知识与解题方法,直线与圆部分知识一般会考查一道选择题或者是填空题,解答题一般是与圆锥曲线结合,难度一般较大,对于学困生或者是艺术生来说,力争把小题拿下,争取解答题部分多写一些步骤,获得步骤分,主要是考查直线方程、圆的方程、直线与圆的位置关系等问题。

【专题知识网络】1.直线方程:(1)形式(5种)(2)直线的位置关系:平行、垂直2.圆: (1)方程(标准方程、一般方程) (2)直线与圆的位置关系【剖析高考真题】考点:直线方程与位置关系考点:圆的方程与圆的性质(2012年高考某某卷)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 A .内切 B .相交 C .外切 D .相离 【答案】B【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.考点:直线与圆的位置关系(2012年高考某某卷)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于B.23C.3 D .1(2012年高考某某卷)设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB = A .1 B 2 C 3D .2 【答案】D【解析】直线y x =过圆221x y +=的圆心(0,0)C ,则AB 为圆的直径,所以||AB =2,选D.(2012年高考某某卷)直线3y 与圆x 2+y 2=4相交于A,B 两点,则弦AB 的长度等于B 23. C. 3 D.1【考点梳理归纳】1.斜率公式:2121y y k x x -=-,其中111(,)P x y 、222(,)P x y .直线的方向向量()b a v ,=,则直线的斜率为k =(0)ba a≠. 2.直线方程的五种形式:(1)点斜式:11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式:y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式:112121y y x x y y x x --=--(111(,)P x y 、222(,)P x y 12x x ≠,12y y ≠).(4)截距式:1=+bya x (其中a 、b 分别为直线在x 轴、y 轴上的截距,且0,0≠≠b a ). (5)一般式:0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的位置关系:(1)若111:l y k x b =+,222:l y k x b =+,则: ①1l ∥2l 21k k =⇔,21b b ≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,则:①0//122121=-⇔B A B A l l 且01221≠-C A C A ; ②1212120l l A A B B ⊥⇔+=. 4.两个公式:⑴点P (x 0,y 0)到直线Ax+By+C=0的距离:2200B A C By Ax d +++=;⑵两条平行线Ax+By+C 1=0与 Ax+By+C 2=0的距离2221B A C C d +-=5.圆的方程:⑴标准方程:①222)()(r b y a x =-+- ;②222r y x =+ 。

高三理科数学一轮总复习第八章 直线和圆的方程

高三理科数学一轮总复习第八章 直线和圆的方程
第八章 直线和圆的方程
高考导航
考试要求
重难点击
命题展望
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.
3.能根据两条直线的斜率判定这两条直线平行或垂直.
4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
故所求直线方程为2x-3y=0或x+y-5=0.
(2)当斜率不存在时,直线方程x-2=0合题意;
当斜率存在时,则设直线方程为y-1=k(x-2),即kx-y+1-2k=0,所以=2,解得k=-,方程为3x+4y-10=0.
故所求直线方程为x-2=0或3x+4y-10=0.
【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.
5.掌握用解方程组的方法求两条相交直线的交点坐标.
6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.
7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
9.能用直线和圆的方程解决简单的问题.
10.初步了解用代数方法处理几何问题的思想.
11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式.
本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题.
l的倾斜角为2θ,tan2θ= ==.

三年高考2013_2015高考数学试题分项版专题08直线与圆理(含解析)

三年高考2013_2015高考数学试题分项版专题08直线与圆理(含解析)

第八章 直线与圆一、选择题1. 【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x 【答案】D .【名师点睛】本题主要考查直线与圆的位置关系,利用点到直线距离求直线的方程及转化与化归思想的应用和运算求解能力,根据题意可设所求直线方程为20x y c ++=,然后可用代数方法即联立直线与圆的方程有且只有一解求得,也可以利用几何法转化为圆心与直线的距离等于半径求得,属于容易题.2. 【 2013湖南8】在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等于( ) A .2 B .1 C .83 D .43【答案】 D【解析】 使用解析法。

).34,34(32).2,2(),0,(O O ABC D BC x P ∴∆处,在中线的的重心的中点设))1(3)12(4,)1(3)2(4()),1(34,0(34)34(,++++-⇒+-=k k k k Q k R x k y k RQ 则其方程为的斜率为设直线,0)1)(12(1,0,)1(3)2(4)12(4,3)1(4=--⇒=⋅=++-++=-=k k k k k k k x k k k k k QP RP QP RP 由题知⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==⇒3421(01x k x k ,舍) 选D【考点定位】直线与方程【名师点睛】本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,解决问题的关键是根据光的反射原理正确计算对称点坐标,利用对称性得到直线斜率之间的关系解决问题即可.3. 【2013山东,理9】过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ).A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 【答案】:A【名师点睛】本题考查直线与圆的位置关系、直线方程.此类问题的基本解法有 “几何法”和 “代数法”,涉及切线问题,往往利用圆心到直线的距离等于圆的半径建方程求解. 本题是一道能力题,在考查查直线与圆的位置关系、直线方程等基础知识的同时,考查考生的计算能力、逻辑思维能力及数形结合思想.是一道常见题型,故考生易于正确解答. 4. 【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )(A )53-或35- (B )32- 或23- (C )54-或45- (D )43-或34-【答案】D【解析】由光的反射原理知,反射光线的反向延长线必过点()2,3- ,设反射光线所在直线的斜率为k ,则反身光线所在直线方程为:()32y k x +=- ,即:230kx y k ---=. 又因为光线与圆相切,()()22321x y ++-=1= ,整理:21225120k k ++= ,解得:43k =-,或34k =- ,故选D . 【考点定位】1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.【名师点睛】本题考查了圆与直线的方程的基础知识,重点考查利用对称性解决直线方程的有关问题以及直线与圆的位置关系的判断,意在考查学生对直线与直线、直线与圆的位置关系的理解与把握以及学生的运算求解能力.5.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【答案】C【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ∆是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 6. 【2013高考重庆理第7题】已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ). A.4 B1C.6-【答案】A【名师点睛】本题考查了圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,属于中档题.7. 【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B、、6 D、 【答案】C【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到圆的距离为d ,圆的半径为r ,则由点P所作切线的长l =8. 【2013,安徽理8】函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 ( )A .{}3,4B .{}2,3,4C . {}3,4,5D .{}2,3【答案】B .【易错警示】不理解代数式的几何意义,不能对问题进行等价转化是常见错误.【名师点睛】数形结合思想在高考中经常用到,常分为“以形助数”和“以数助形”,本题主要用到“以形助数”的思想,通过数与形之间的对应关系(()f x x的几何意义是曲线上点()(),x f x 与原点连线的斜率),通过把数转化为形,通过对形的研究解决数的问题、或获得解决数的问题解决思路去解决数学问题的思想.9.【2013天津,理5】已知双曲线2222=1x y a b-(a >0,b >0)的两条渐近线与抛物线y 2=2px (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 则p =( ). A .1 B .32C .2D .3 【答案】C【名师点睛】本题考查抛物线与双曲线的几何性质,重点考查双曲线的渐近线方程及抛物线的准线方程,本题属于基础题, 正确利用双曲线线的渐进线与抛物线的准线相交,求出交点的坐标,利用面积公式列方程求出P ,这样的题目在高考试题中很常见,要灵活应用圆锥曲线的几何性质解题.10. 【2014天津,理5】已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -=【答案】A . 【解析】【名师点睛】本题考查抛物线与双曲线的几何性质,重点考查待定系数法求双曲线的方程,本题属于基础题, 正确利用双曲线线的渐进线与直线l 平行,斜率相等,列出,a b 的一个关系式,直线l 与x 轴交点为双曲线的一个焦点,求出c ,借助222a b c +=,联立方程组,求出,a b ,即可.待定系数法求双曲线的标准方程时,注意利用题目的已知条件,布列关于,,a b c 的方程,还要借助22a b +2c =,正确解出,a b 的值.11. 【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(,且双曲线的一个焦点在抛物线2y= 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -= 【答案】D【名师点睛】本题主要考查双曲线的定义、标准方程及几何性质,同时也学生的考查运算能.把双曲线的几何性质与抛物线的几何性质相结合,找出双曲线中,,a b c 的关系,求出双曲线方程,体现圆锥曲线的统一性.是中档.12. 【2014福建,理6】直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) .A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分又不必要条件【答案】A【名师点睛】本题主要考查直线与圆的位置关系、三角形的面积及充分条件与必要条件等基础知识,意在考查转化划归能力及运算能力,充分条件与必要条件多以客观题形式出现.相关结论是:若p q ⇒ ,则p 是q 的充分条件,q 是p 的必要条件.13. 【2014福建,理9】设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A.25B.246+C.27+D.26 【答案】D【名师点睛】本题主要考查圆与椭圆的基础知识,及划归思想.本题解法的关键是把两点间的最大距离转化为圆心到椭圆上的点的最大距离再加上圆的半径,注意与圆锥曲线有关的试题,一般运算量比较大,要注意运算的准确性. 二、填空题1.【2014江苏,理9】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .【名师点晴】求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2.(2)代数方法:运用韦达定理及弦长公式:|AB |=1+k 2|x 1-x 2|= 1+k 2[ x 1+x 2 2-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.2. 【2015江苏高考,10】在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】22(1) 2.x y -+=【名师点晴】利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程.圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题.当半径表示为关于m 的函数后,利用基本不等式求最值,需注意一正二定三相等的条件. 3. 【2015高考陕西,理15】设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .【答案】()1,1【考点定位】1、导数的几何意义;2、两条直线的位置关系.【名师点晴】本题主要考查的是导数的几何意义和两条直线的位置关系,属于容易题.解题时一定要注意考虑直线的斜率是否存在,否则很容易出现错误.解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.4. 【2014高考陕西版文第12题】若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______. 【答案】22(1)1x y +-=【名师点晴】本题主要考查的是圆的标准方程,点关于直线的对称,,属于容易题.解题时利用对称性求出圆心坐标,就可以写出圆的标准方程.5. 【2014新课标,理16】设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________. 【答案】[1,1]-【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在R t O M ∆中,因为∠OMN=45,所以||||sin 45OA OM =o =||12OM ≤,解得||OM ≤因为点M (0x ,1),所以||OM =≤解得011x -≤≤,故0x 的取值范围是[1,1]-.【考点定位】直线与圆的位置关系【名师点睛】本题考查直线与圆的位置关系,属于中档题,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.6. 【2014四川,理14】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 .【答案】【考点定位】1、直线与圆;2、重要不等式.【名师点睛】利用基本不等式求最值时,要注意“一正,二定,三相等”.7.【2014高考重庆理第13题】已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.【答案】4【解析】试题分析:由题设圆心到直线20ax y --==解得:4a =所以答案应填:4.考点:1、直线与圆的位置关系;2、点到直线的距离公式.【名师点睛】本题考查了直线与圆的位置关系,点到直线的距离公式,等边三角形的性质,本题属于基础题,注意仔细分析题目条件,将等边三角形这一条件等价转化为圆心到直线的距离是非常关键的.8.【2014年普通高等学校招生全国统一考试湖北卷12】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .【答案】2【名师点睛】本题考查直线与圆的位置关系,夯实基础,注重基础知识的运用,充分体现了数形结合的数学思想在数学问题中的应用,能较好的考查学生动手作图能力、基本知识的识记能力和灵活运用能力,锻炼学生的严密地逻辑推理能力.9. 【2015高考湖北,理14】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =. (Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③【考点定位】圆的标准方程,直线与圆的位置关系.【名师点睛】用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略. 常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 三、解答题1. 【2015高考广东,理20】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)33,44k ⎡⎧⎫∈-⎨⎬⎢⎩⎭⎣⎦ .(3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且5,33E ⎛ ⎝⎭,5,33F ⎛- ⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆C 相切时,由32=得34k =±,又043DE DFk k ⎛- ⎝⎭=-=-=-,结合上图可知当33,44k ⎡⎧⎫∈-⎨⎬⎢⎩⎭⎣⎦ 时,直线L :()4y k x =-与曲线C 只有一个交点.【考点定位】圆的标准方程、轨迹方程、直线斜率等知识与数形结合思想等应用.【名师点睛】本题主要考查圆的普通方程化为标准方程、轨迹方程、直线斜率等知识,转化与化归,数形结合思想和运算求解能力,属于中高档题,本题(1)(2)问相对简单,但第(2)问需注意取值范围(533x <≤),对于第(3)问如果能运用数形结合把曲线C 与直线L 的图形画出求解则可轻易突破难点.2. 【2013江苏,理17】如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1) y =3或3x +4y -12=0.;(2) 120,5⎡⎤⎢⎥⎣⎦所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦.【考点定位】本小题主要考查直线与圆的方程,考查直线与直线、直线与圆、圆与圆的位置关系,等基础知识,考查运用数形结合、待定系数法等数学思想方法分析解决问题的能力. 【名师点晴】1.圆的切线问题(1)过圆x 2+y 2=r 2(r >0)上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2;(2)过圆x 2+y 2+Dx +Ey +F =0外一点M (x 0,y 0)引切线,有两条,求方程的方法是待定系数法,圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题. 2.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.3. 【2013课标全国Ⅰ,理20】(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.当k y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |2118|7x x -=.当4k =时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187. 【名师点睛】本题考查椭圆的定义、弦长公式、直线的方程,考查考生的运算能力、化简能力以及数形结合的能力.4.【2013天津,理18】设椭圆2222=1x y a b +(a >b >0)的左焦点为F ,离心率为3,过点F且与x (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC ·DB +AD ·CB=8,求k 的值.【答案】(Ⅰ)22=132x y +;(Ⅱ)(2)设点C(x1,y1),D(x2,y2),由F(-1,0)得直线CD 的方程为y =k(x +1),由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k2)x2+6k2x +3k2-6=0.求解可得x1+x2=22623k k -+,x1x2=223623k k-+. 因为A(0),0), 所以AC ·DB +AD ·CB=(x1x2,-y2)+(x2x1,-y1) =6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1) =6-(2+2k2)x1x2-2k2(x1+x2)-2k2=22212623k k+++. 由已知得22212623k k +++=8,解得k=考点定位:本题考点为直线与圆锥曲线相关知识【名师点睛】本题考查待定系数法求椭圆方程,直线与椭圆有关知识,属于中偏难题目,解决直线与圆锥曲线问题,首先要求学生要学会设而不求的解题思想,先设出直线方程,设出直线与椭圆的交点,把直线方程和椭圆方程联立方程组,消元后,借助一元二次方程的根与系数关系,通过12121212,,,x x x x y y y y ++的关系及题目的要求解题.直线与圆锥曲线问题为每年高考必考问题,也是备考重点.5. 【2014天津,理18】设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B.已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切,求直线l 的斜率.【答案】(Ⅰ)e =;(Ⅱ)直线l的斜率为4+或4-.【解析】由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043c x =-,代入①得03cy =,即点P 的坐标为4,33c c 骣÷ç-÷ç÷ç桫.设圆的圆心为()11,T x y ,则142323c x c -+==-,12323c cy c +==,进而圆的半径r ==.设直线l 的斜率为k ,依题意,直线l 的方程为y kx =.由l r ,即,整理得2810k k -+=,解得4k =?.∴直线l的斜率为4+或4-考点:1.椭圆的标准方程和几何性质;2.直线和圆的方程;3.直线和圆的位置关系. 【名师点睛】本题考查求离心率和待定系数法求椭圆方程,属于中偏难题目,解决直线与圆锥曲线问题,首先求离心率就是根据题目所给条件列出一个关于,,a b c 的等式,就能求出离心率;其次解决直线与圆锥曲线问题,要求学生要学会设而不求的解题思想,先设出直线方程,设出直线与椭圆的交点,把直线方程和椭圆方程联立方程组,消元后,简单方程直接求解,而大多借助一元二次方程的根与系数关系,通过12121212,,,x x x x y y y y ++的关系及题目的要求解题.直线与圆锥曲线问题为每年高考必考问题,也是备考重点.6. 【2015高考天津,理19】(本小题满分14分)已知椭圆2222+=1(0)x y a b a b>>的左焦点为(,0)F c -,M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,|FM|=3. (I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FPOP (O 为原点)的斜率的取值范围.【答案】(I) 3; (II) 22132x y += ;(III) ,333⎛⎛-∞- ⎝⎭⎝⎭ .(III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1y t x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得t => 312x -<<-或10x -<<, 设直线OP 的斜率为m ,得y m x =,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =m ∈⎝⎭ ②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝⎭综上,直线OP 的斜率的取值范围是,⎛-∞ ⎝⎭⎝⎭【考点定位】1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.【名师点睛】本题主要考查椭圆的定义、标准方程及几何性质,直线与圆锥曲线的位置关系.由勾股定理求圆的弦长,体现数学数形结合的重要数学思想;用数字来刻画几何图形的特征,是解析几何的精髓,联立方程组,求出椭圆中参数的关系,进一步得到椭圆方程;构造函数求斜率取值范围,体现函数在解决实际问题中的重要作用,是拨高题.。

高三数学二轮复习 1-3-8直线与方程、圆与方程课件 理 人教版

高三数学二轮复习 1-3-8直线与方程、圆与方程课件 理 人教版

(2)代数法:用“待定系数法”求圆的方程,其一般 步骤是:①根据题意选择方程的形式——标准形式或一般 形式(本例题中涉及圆心及切线,故设标准形式较简单); ②利用条件列出关于 a,b,r 或 D,E,F 的方程组;③ 解出 a,b,r 或 D,E,F,代入标准方程或一般方程.
类型四 直线与圆、圆与圆的位置关系 【例 4】 (2011·江西)若曲线 C1:x2+y2-2x=0 与 曲线 C2:y(y-mx-m)=0 有四个不同的交点,则实数 m 的取值范围是( )
第一部分 高考专题讲解
专题三 直线、圆、圆锥曲线
第八讲 直线与方程、圆与方程
考情分析
• 本讲主要包括两个方面的内容:一是直 线的基本概念,直线的方程,两直线的 位置关系及点到直线的距离等,高考对 此类问题的考查大多属中、低档题,以 选择题或填空题的形式出现,每年必 考.二是圆的两类方程及直线与圆的位 置关系等,考试大纲对该部分的要求较 高,故要予以足够的重视.新课标高考 考查圆的方程与
[解] 解法一:设所求圆的方程是
(x-a)2+(y-b)2=r2,
则圆心(a,b)到直线 x-y=0 的距离为|a-b|, 2
∴r2=|a-2b|
2+(
7)2,即 2r2=(a-b)2+14.

由于所求的圆与 x 轴相切,∴r2=b2.

又因为所求圆心在直线 3x-y=0 上,∴3a-b=0.③
联立①②③,解得 a=1,b=3,r2=9,或 a=-1,b=-3,r2=9. 故所求圆的方程是 (x-1)2+(y-3)2=9,或(x+1)2+(y+3)2=9.
时,应该根据条件选用合适的圆的方程,一般来说,求圆 的方程有两类办法:①几何法,即通过研究圆的性质进而 求出圆的基本量;②代数法,即设出圆的方程,用待定系 数法求解.

高考数学真题分类解析考点28 直线与圆学生版

高考数学真题分类解析考点28 直线与圆学生版

考点28 直线与圆【考点分类】热点一 直线的方程与位置关系1.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知点A (-1,0);B (1,0),C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) (A )(0,1) (B)(1-,12) ( C)(1-,1]3(D)[13,12)2.【2013年全国高考统一考试天津数学(文)卷】 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( )(A) 12- (B) 1 (C) 2 (D) 123.【2013年高考新课标Ⅱ数学(文)卷】 设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( )(A ) y=x-1或y=-x+1 (B )X-1)或y=x-1)(C )x-1)或y=x-1) (D )y=2(x-1)或y=2-(x-1)A .2B .1C .83 D .435.【2013年普通高等学校招生全国统一考试(山东卷)理】过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为 A.032=-+y xB.032=--y xC.034=--y xD.034=-+y x6.【2013年普通高等学校招生全国统一考试(四川卷)文科】在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是_______.7.【2013年普通高等学校统一考试江苏数学试题】在平面直角坐标系xoy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点P ,A 之间的最短距离为a 的所有值为 .8.(2012年高考辽宁卷文科7)将圆x 2+y 2 -2x-4y+1=0平分的直线是( ) (A )x+y-1=0 (B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=09.(2012年高考浙江卷理科3)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.(2012年高考湖北卷文科5)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为 ( )A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=0【方法总结】(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则:直线l 1⊥l 2的充要条件是k 1·k 2=-1.②设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.则:l 1⊥l 2⇔A 1A 2+B 1B 2=0.热点二 圆的方程和性质11.【2013年普通高等学校招生全国统一考试(江西卷)文科】若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 .12.(2012年高考山东卷文科9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )(A)内切 (B)相交 (C)外切 (D)相离13.(2012年高考新课标全国卷理科20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【方法总结】1.利用圆的几何性质求方程:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. 2.利用待定系数法求圆的方程:(1)若已知条件与圆的圆心和半径有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程 组,从而求出D ,E ,F 的值.热点三 直线与圆的位置关系14.【2013年普通高等学校招生全国统一考试(广东卷)文科】垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +=B .10x y ++=C .10x y +-=D .0x y ++=15.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是( )(A) 相切(B) 相交(C) 相离(D) 不确定16.【2013年普通高等学校招生全国统一考试(江西卷)理】过点(,0)引直线ι与曲线y =交于A,B两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线ι的斜率等于( )A. B.- C. D-17.(2012年高考广东卷文科8)在平面直角坐标系xOy 中,直线3x+4y-5=0与圆x ²+y ²=4相交于A 、B 两点,则弦AB 的长等于( )A. B. D.118. (2012年高考天津卷理科8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )(A )[1- (B)(,1[1+3,+)-∞-∞(C)[2- (D)(,2[2+22,+)-∞-∞19.(2012年高考陕西卷理科4)已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )(A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能20.(2012年高考重庆卷理科3)对任意的实数k ,直线y=kx+1与圆222=+y x 的位置关系一定是( ) A.相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心21.【2013年普通高等学校招生全国统一考试(湖北卷)文科】已知圆O :225x y +=,直线l : cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 22.【2013年普通高等学校招生全国统一考试(山东卷)文科】过点(3,1)作圆22(2)(2)4x y -+-=的弦, 其中最短的弦长为__________.23.【2013年普通高等学校招生全国统一考试(浙江卷)文科】直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.24.(2012年高考江西卷文科14)过直线x+y-=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.25. (2012年高考天津卷文科12)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 .26. (2012年高考江苏卷12)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .27.(2012年高考浙江卷理科16)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________. 28.【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.原点.直线:l y kx =与圆C 交于M 、N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数. 【方法总结】1.判断直线与圆的位置关系常见的有两种方法(1)代数法:――――――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交,=0⇔相切,<0⇔相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交,d =r ⇔相切,d >r ⇔相离.2.圆的弦长的常用求法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则(l2)2=r 2-d 2 (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=+k 2x 1+x 22-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.3.求过一点的圆的切线方程时,首先要判断此点是否在圆上.然后设出切线方程,用待定系数法求解.注意斜率不存在情形.【考点剖析】一.明确要求1.能根据两条直线的斜率判定这两条直线平行或垂直.2.会求两直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.4.掌握圆的标准方程和一般方程.5.能判断直线与圆、圆与圆的位置关系.6.能用直线和圆的方程解决一些简单的问题.二.命题方向1.两条直线的平行与垂直,点到直线的距离,两点间距离是命题的热点.对于距离问题多融入解答题中,注重考查分类讨论与数形结合思想.题型多为客观题,难度中低档.2.求圆的方程或已知圆的方程求圆心坐标,半径是高考的热点,多与直线相结合命题,着重考查待定系数法求圆的方程,同时注意方程思想和数形结合思想的运用.多以选择题、填空题的形式出现,属中、低档题.3.直线与圆的位置关系,特别是直线与圆相切一直是高考考查的重点和热点.多以选择题和填空题的形式出现,有时也出现在综合性较强的解答题中.三.规律总结一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0. 两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B2时,一定要注意将两方程中的x ,y 系数化为分别相等. 三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0). (2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l1与对称轴l相交,则交点必在与l1对称的直线l2上,然后再求出l1上任一个已知点P1关于对称轴l对称的点P2,那么经过交点及点P2的直线就是l2;②若已知直线l1与对称轴l平行,则与l1对称的直线和l1分别到直线l的距离相等,由平行直线系和两条平行线间的距离即可求出l1的对称直线.一种方法确定圆的方程主要方法是待定系数法,大致步骤为:(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F代入标准方程或一般方程.两个防范(1)求圆的方程需要三个独立条件,所以不论设哪一种圆的方程都要列出关于系数的三个独立方程.(2)过圆外一定点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.三个性质确定圆的方程时,常用到的圆的三个性质(1)圆心在过切点且与切线垂直的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线.一条规律过圆外一点M可以作两条直线与圆相切,其直线方程可用待定系数法,再利用圆心到切线的距离等于半径列出关系式求出切线的斜率即可.一个指导直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,“代数法”侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.解题时应根据具体条件选取合适的方法.两种方法计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用根与系数关系及弦长公式 |AB |=1+k 2|x A -x B | =(1+k 2)[(x A +x B )2-4x A x B ].说明:圆的弦长、弦心距的计算常用几何方法.【考点模拟】一.扎实基础1.【湖北省黄冈市黄冈中学2013届高三五月第二次模拟考试】 “错误!未找到引用源。

2013高考数学(理)热点专题专练:专题三 直线、圆、圆锥曲线测试题

2013高考数学(理)热点专题专练:专题三 直线、圆、圆锥曲线测试题

专题三 直线、圆、圆锥曲线测试题(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=0解析 x 2+y 2-8x -2y +10=0,即(x -4)2+(y -1)2=7, 圆心O (4,1),设过点M (3,0)的直线为l ,则k OM =1, 故k l =-1,∴y =-1×(x -3),即x +y -3=0. 答案 A2.过点(-1,3)且平行于直线x -2y +3=0的直线方程为( ) A .x -2y +7=0 B .2x +y -1=0 C .x -2y -5=0D .2x +y -5=0解析 因为直线x -2y +3=0的斜率是12,故所求直线的方程为y -3=12(x +1),即x -2y +7=0.答案 A3.曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析 曲线y =2x -x 3在横坐标为-1的点处的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0,由点到直线的距离公式得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. 答案 A4.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为( )A .1B .-1 C.12D .2解析 曲线方程可化为(x +1)2+(y -3)2=9,由题设知直线过圆心,即k ×(-1)+2×3-4=0,∴k =2.故选D.答案 D5.直线ax -y +2a =0(a ≥0)与圆x 2+y 2=9的位置关系是( ) A .相离 B .相交 C .相切D .不确定解析 圆x 2+y 2=9的圆心为(0,0),半径为3.由点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2得该圆圆心(0,0)到直线ax -y +2a =0的距离d =2a a 2+(-1)2=2a a 2+12,由基本不等式可以知道2a ≤a 2+12,从而d =2aa 2+12≤1<r =3,故直线ax -y +2a =0与圆x 2+y 2=9的位置关系是相交.答案 B6.设A 为圆(x +1)2+y 2=4上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5C .x 2+(y +1)2=25D .(x -1)2+y 2=5解析 设圆心为O ,则O (-1,0),在Rt △AOP 中,|OP |=|OA |2+|AP |2=4+1= 5. 答案 B7.(2011·济宁一中高三模拟)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( )A .-14B .-4C .4D.14解析 双曲线标准方程为:y 2-x 2-1m =1,由题意得-1m =4,∴m=-14.答案 A8.点P 是双曲线x 24-y 2=1的右支上一点,M 、N 分别是(x +5)2+y 2=1和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值是( )A .2B .4C .6D .8解析如图,当点P 、M 、N 在如图所示的位置时,|PM |-|PN |可取得最大值,注意到两圆圆心分别为双曲线两焦点,故|PM |-|PN |=(|PF 1|+|F 1M |)-(|PF 2|-|F 2N |)=|PF 1|-|PF 2|+|F 1M |+|F 2N |=2a +2R =6.答案 C9.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是上述椭圆和双曲线的离心率,则( )A.1e 21+1e 22=4 B .e 21+e 22=4C.1e 21+1e 22=2 D .e 21+e 22=2解析 设椭圆的长半轴长为a ,双曲线的实半轴长为m ,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a①||PF 1|-|PF 2||=2m ②).①2+②2得2(|PF 1|2+|PF 2|2)=4a 2+4m 2,又|PF 1|2+|PF 2|2=4c 2,代入上式得4c 2=2a 2+2m 2, 两边同除以2c 2,得2=1e 21+1e 22,故选C.答案 C10.已知双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则双曲线的离心率为( )A. 3B. 2C.52D.22解析 两条渐近线y =±b a x 互相垂直,则-b 2a 2=-1,则b 2=a 2,双曲线的离心率为e =c a =2a 2a =2,选B.答案 B11.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离等于实轴长,则双曲线的离心率为( )A. 2B. 3C. 5D .2解析 焦点到渐近线的距离等于实轴长,可得b =2a ,e 2=c 2a 2=1+b 2a 2=5,所以e = 5.答案 C12.(2011·济南市质量调研)已知点F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)解析 依题意得,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e <2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,选D. 答案 D二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.(2011·安徽“江南十校”联考)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析 由椭圆定义|PM |+|PF 1|=|PM |+2×5-|PF 2|,而|PM |-|PF 2|≤|MF 2|=5,所以|PM |+|PF 1|≤2×5+5=15.答案 1514.(2011·潍坊市高考适应性训练)已知双曲线的中心在坐标原点,焦点在x 轴上,且一条渐近线为直线3x +y =0,则该双曲线的离心率等于________.解析 设双曲线方程为x 2a 2-y 2b 2=1,则b a =3,b 2a 2=3,c 2-a 2a 2=3,∴e =ca =2.答案 215.(2011·潍坊2月模拟)双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 双曲线右焦点为(3,0),渐近线方程为:y =±2x ,则由点到直线的距离公式可得距离为 6.答案616.(2011·郑州市质量预测(二))设抛物线x 2=4y 的焦点为F ,经过点P (1,4)的直线l 与抛物线相交于A 、B 两点,且点P 恰为AB 的中点,则|AF →|+|BF →|=________.解析 ∵x 2=4y ,∴p =2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=8.∵|AF →|=y 1+p 2,|BF →|=y 2+p2,∴|AF →|+|BF →|=y 1+y 2+p =8+2=10. 答案 10三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2012·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为-12,求椭圆的离心率; (2)若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3. 解 (1)设点P 的坐标为(x 0,y 0),由题意,有x 20a 2+y 20b2=1.① 由A (-a,0),B (a,0),得k AP =y 0x 0+a ,k BP =y 0x 0-a .由k AP ·k BP =-12,可得x 20=a 2-2y 20,代入①并整理得(a 2-2b 2)y 20=0.由于y 0≠0,故a 2=2b 2.于是e 2=a 2-b 2a 2=12,所以椭圆的离心率e =22.(2)(方法一)依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得⎩⎨⎧y 0=kx 0,x 20a 2+y 20b2=1.消去y 0并整理得x 20=a 2b 2ka 2+b 2.②由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k,代入②,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.(方法二)依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,有x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.③由|AP |=|OA |,A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2.代入③,得(1+k 2)4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3. 18.(本小题满分12分)(2012·辽宁)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.解 (1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),① 直线A 2B 的方程为 y =-y 1x 1-a (x -a ),② 由①②相乘得y 2=-y 21x 21-a(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0).(2)设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2.从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.19.(本小题满分12分)设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解 由QM →=λMP →知Q ,M ,P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2),即y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ →=λQA →,即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.② 将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21,再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2.(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2. 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1. 20.(本小题满分12分)(2011·天津)在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1、F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形.(1)求椭圆的离心率e .(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0),由题意,可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c ,整理得2⎝ ⎛⎭⎪⎫c a 2+c a -1=0,得c a =-1(舍)或ca =12,所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2. 直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎪⎨⎪⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c , B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y ,于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝ ⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2,化简得18x 2-163xy -15=0. 将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 21.(本小题满分12分)(2011·山东)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62,其中O 为坐标原点.(1)证明x 21+x 22和y 21+y 22均为定值;(2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62?若存在,判断△DEG 的形状;若不存在,请说明理由.解 (1)证明:1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称.所以x 2=x 1,y 2=-y 1, 因为P (x 1,y 1)在椭圆上,因此x 213+y 212=1.①又因为S △OPQ =62.所以|x 1|·|y 1|=62.② 由①②得|x 1|=62,|y 1|=1,此时x 21+x 22=3,y 21+y 22=2.2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m . 由题意知m ≠0,将其代入x 23+y 22=1得 (2+3k 2)x 2+6kmx +3(m 2-2)=0. 其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0. 即3k 2+2>m 2.(*)又x 1+x 2=-6km2+3k 2,x 1x 2=3(m 2-2)2+3k 2.所以|PQ |=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·263k 2+2-m22+3k 2.因为点O 到直线l 的距离为d =|m |1+k2.所以S △OPQ =12|PQ |·d=121+k 2·263k 2+2-m 22+3k 2·|m |1+k2 =6|m |3k 2+2-m 22+3k 2又S △OPQ =62.整理得3k 2+2=2m 2,且符合(*)式.此时,x 21+x 22=(x 1+x 2)2-2x 1x 2=⎝ ⎛⎭⎪⎫-6km 2+3k 22-2×3(m 2-2)2+3k 2=3.y 21+y 22=23(3-x 21)+23(3-x 22)=4-23(x 21+x 22)=2.综上所述,x 21+x 22=3;y 21+y 22=2,结论成立.(2)解法一:1)当直线l 的斜率不存在时. 由(1)知|OM |=|x 1|=62.|PQ |=2|y 1|=2. 因此|OM |·|PQ |=62×2= 6. 2)当直线l 的斜率存在时,由(1)知: x 1+x 22=-3k 2m . y 1+y 22=k ⎝ ⎛⎭⎪⎫x 1+x 22+m =-3k 22m +m =-3k 2+2m 22m =1m .|OM |2=⎝ ⎛⎭⎪⎫x 1+x 222+⎝ ⎛⎭⎪⎫y 1+y 222=9k 24m 2+1m 2=6m 2-24m 2=12⎝ ⎛⎭⎪⎫3-1m 2. |PQ |2=(1+k 2)24(3k 2+2-m 2)(2+3k 2)2=2(2m 2+1)m 2=2⎝⎛⎭⎪⎫2+1m 2. 所以|OM |2·|PQ |2=12×⎝⎛⎭⎪⎫3-1m 2×2×⎝ ⎛⎭⎪⎫2+1m 2=⎝ ⎛⎭⎪⎫3-1m 2⎝ ⎛⎭⎪⎫2+1m 2≤⎝ ⎛⎭⎪⎫3-1m 2+2+1m 222=254. 所以|OM |·|PQ |≤52,当且仅当3-1m 2=2+1m 2,即m =±2时,等号成立.综合1)2)得|OM |·|PQ |的最大值为52. 解法二:因为4|OM |2+|PQ |2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)-(y 21+y 22)]=10.所以2|OM |·|PQ |≤4|OM |2+|PQ |22=102=5. 即|OM |·|PQ |≤52,当且仅当2|OM |=|PQ |=5时等号成立.因此|OM |·|PQ |的最大值为52.(3)椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG=62.证明:假设存在D (u ,v ),E (x 1,y 1),O (x 2,y 2)满足S △ODE =S △ODG=S △OEG =62,由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3,v 2+y 21=2,v 2+y 22=2,y 21+y 22=2,解得:u2=x 21=x 22=32,v 2=y 21=y 22=1.因此,u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取,因此D 、E 、G 只能在⎝ ⎛⎭⎪⎫±62,±1这四点中选取三个不同点, 而这三点的两两连线中必有一条过原点. 与S △ODE =S △ODG =S △OEG =62矛盾.所以椭圆C 上不存在满足条件的三点D ,E ,G . 22.(本小题满分14分)(2012·江苏)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),已知点(1,e )和⎝⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(i)若AF 1-BF 2=62,求直线AF 1的斜率; (ii)求证:PF 1+PF 2是定值.解(1)由题设知a 2=b 2+c 2,e =ca .由点(1,e )在椭圆上, 得1a 2+c 2a 2b 2=1,解得b 2=1, 于是c 2=a 2-1,又点⎝⎛⎭⎪⎫e ,32在椭圆上,所以e 2a 2+34b 2=1,即a 2-1a 4+34=1,解得a 2=2. 因此,所求椭圆的方程是x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my .设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0.由⎩⎨⎧x 212+y 21=1x 1+1=my 1得(m 2+2)y 21-2my 1-1=0,解得y 1=m +2m 2+2m 2+2,故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21=2(m 2+1)+m m 2+1m 2+2.①同理,BF 2=2(m 2+1)-m m 2+1m 2+2.②(i)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0,故m = 2.所以直线AF 1的斜率为1m =22.(ii)因为直线AF 1与BF 2平行,所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22,从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理PF 2=BF 2AF 1+BF 2(22-AF 1).因此,PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2(22-AF 1)=22-2AF 1·BF 2AF 1+BF 2.又由①②知AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2.所以PF 1+PF 2=22-22=322.因此,PF 1+PF 2是定值.。

高考数学专题《直线与方程》训练试题含答案

高考数学专题《直线与方程》训练试题含答案

高考数学专题《直线与方程》一、单选题1.已知点(3,4)A ,(1,1)B -,则线段AB 的长度是( )A .5B .25CD .292.已知直线l 经过点()1,0P ,且与直线21y x =-平行,那么直线l 的方程是( ) A .1y x =- B .22y x =- C .1y x =-+ D .21y x =-+ 3.已知直线l 倾斜角是arctan 2π-,在y 轴上截距是2,则直线l 的参数方程可以是( )A .22x t y t =+⎧⎨=-⎩B .2x t y t =+⎧⎨=-⎩C .22x t y t =⎧⎨=-⎩D .22x t y t=⎧⎨=-⎩ 4.倾斜角为45,在y 轴上的截距为1-的直线的方程是( )A .1y x =+B .1y x =-C .1y x =-+D .1y x =--5.直线3210x y +-=的一个方向向量是( )A .()2,3-B .()2,3C .()3,2-D .()3,26.下列命题错误的是( )①y =2y x =表示的是同一条抛物线②所有过原点的直线都可设为y kx =;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->④椭圆2248x y +=A .①② B .②④ C .③④ D .①②④ 7.已知两直线20x y -=和30x y +-=的交点为M ,则以点M 为圆心,半径长为1的圆的方程是( )A .22(1)(2)1x y +++=B .22(1)(2)1x y -+-=C .22(2)(1)1x y +++=D .22(2)(1)1x y -+-=8.已知直线1:3420l x y ++=,2:6810l x y +-=,则1l 与2l 之间的距离是A .12 B .35 C .1 D .3109.若直线220mx y +-=与直线(1)20x m y +-+=平行,则m 的值为( )A .1-B .1C .2或1-D .210.如图所示,直线123,,l l l 的斜率分别为123,,k k k ,则A .123k k k <<B .231k k k <<C .321k k k <<D .132k k k << 11.“2a =”是“直线20ax y +=平行于直线1x y +=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.直线1y ax a =+-()a R ∈所过定点的坐标为( )A .()1,1--B .()1,1-C .()1,1-D .()1,113.已知(1,4)A ,(3,2)B -,直线:20l ax y ++=,若直线l 过线段AB 的中点,则=a A .-5 B .5 C .-4 D .414.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y ++=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -= 15.已知直线1l 经过()3,4A -,()8,1B --两点,直线2l 的倾斜角为135,那么1l 与2l A .垂直 B .平行 C .重合 D .相交但不垂直 16.已知ABC ∆的顶点坐标为()7,8A ,()10,4B ,()2,4C -,则BC 边上的中线AM 的长为A .8B .13C .D 17.已知直线l 经过点()0,1,且与直线210x y -+=的倾斜角互补,则直线l 的方程为( ) A .220x y +-= B .210x y +-= C .210x y +-= D .210x y ++=18.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线l 与直线g :20++=ax by b 平行,则直线l ,g 间的距离为( )A B C D19.已知直线l 过点2)-和(0,1),则直线l 的倾斜角大小为A .150︒B .120︒C .60︒D .3020.直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,则其斜率的取值范围为( )A .B .C .⎝D . 21.已知两条直线1:60l x my ++=,()2:2320l m x y m -++=,若1l 与2l 平行,则m 为( )A .1-B .3C .1-或3D .022.已知椭圆:22143x y +=,直线l :y x =+P ,则点P 到直线l 的距离的最大值( )A .B .C .D .23.若点(,0)P m 到点(3,2)A -及(2,8)B 的距离之和最小,则m 的值为A .2B .2-C .1D .1-24.已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( ) A .(0,2) B .(1,0) C .(1,1)a + D .(,1)e25.已知直线1:32l y x =-,直线221:60l x y -+=,则1 l 与2 l 之间的距离为( )A B C D 26.已知直线2120l x a y a -+=:与直线()2110l a x ay --+=:互相平行,则实数a 的值为( )A .-1B .0C .1D .227.经过点()0,1且与直线210x y +-=垂直的直线的方程为( )A .220x y +-=B .220x yC .210x y -+=D .210x y +-=28.已知直线()():20l y k x k =+>与抛物线28C y x =:相交于A 、B 两点,且2AF BF =,则k 为( )A B C D 29.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 30.已知抛物线2x y =上的点P 到直线240x y --=的距离最小,则点P 的坐标是( ) A .()1,1- B .()1,1 C .()2,2 D .()0,031.在Rt ABO 中,90BOA ∠=︒,8OA =,6OB =,点P 为Rt ABO 内切圆C 上任一点,则点Р到顶点A ,B ,O 的距离的平方和的最小值为( )A .68B .70C .72D .7432.“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分也非必要 33.已知圆C :x 2+(y ﹣2)2=r 2与直线x ﹣y =0交于A ,B 两点,若以弦AB 为直径的圆刚好经过已知圆的圆心C ,则圆C 的半径r 的值为( )A .1BC .2D .434.已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且||2AB =,则||PA PB +的最小值是( )A .B .C .1D .235.以下四个命题表述正确的是( ) ①若点(1,2)A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆上②圆22:28130C x y x y +--+=的圆心到直线4330x y -+=的距离为2③圆22120C :x y x ++=与圆222:4840C x y x y +--+=外切④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的直线方程为260x y ++=A .①②B .①③C .②③D .②④36.已知两条直线l 1:x +m 2y +6=0,l 2:(m ﹣2)x +3my +2m =0,若l 1与l 2平行,则m =( ) A .﹣1或0B .﹣1C .0D .﹣1或0 或3二、填空题37.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 . 38.直线20x y +-=和10ax y -+=的夹角为3π,则a 的值为______.39.设点p 为y 轴上一点,并且点P 到直线3460x y -+=的距离为6,则点P 的坐标为_________.40.直线3y x =-+与坐标轴围成的三角形的面积是_________.41.若在平面直角坐标系内过点P ,且与原点的距离为d 的直线有两条,则d 的取值范围为________.42.已知直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行,则a =___________.43.若点(),a b 在直线10x -=上,则22a b +的最小值为_____________________. 44.设△ABC 的三个顶点的坐标为A (2,0),B (﹣1,3),C (3,﹣2),则AB 边上的高线CD 所在直线的方程为_____.45.已知函数()243f x x x =-+的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,则ABC 的外接圆E 的方程是________.46.设直线212:260,(1)10l ax y l x a y a ++==+-+-=,若12l l ⊥,则a =__________.47.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________.48.已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是___________.49.已知两直线与平行,则___ 50.已知函数2()1f x og x =,a b >且1223b ≤≤,()()f a f b k ==,设k 值改变时点(,)a b 的轨迹为C ,若点M ,N 为曲线C 上的两点,O 为坐标原点,则MON ∆面积的最大值为__.51.点(3,2)P 关于直线1y x =+的对称点P '的坐标为__________.52.若直线1:20l ax y +=和()2:3110l x a y +++=平行,则实数的值为__________. 53.已知直线80(,)ax by a b R +-=∈经过点(1,2)-,则124a b+的最小值是__. 54.若对于任意一组实数(),x y 都有唯一一个实数z 与之对应,我们把z 称为变量,x y 的函数,即(),z f x y =,其中,x y 均为自变量,为了与所学过的函数加以区别,称该类函数为二元函数,现给出二元函数(),f m n ()229m n n ⎫=-+⎪⎭,则此函数的最小值为__________.三、解答题55.设直线4310x y +=与210x y -=相交于一点A .(1)求点A 的坐标;(2)求经过点A ,且垂直于直线3240x y -+=的直线的方程.56.已知:ABC 的三个顶点的坐标分别为(1,2),(4,1),(6,5)A B C -.求AB 边上的高所在直线的点法向式方程.57.(本小题满分12分)已知直线l 经过两条直线280x y +-=和210x y -+=的交点.(1)若直线l 平行于直线3240x y -+=,求直线l 的方程;(2)若直线l 垂直于直线4370x y --=,求直线l 的方程.58.已知点P 在圆22:4240C x y x y +--+=上运动,A 点坐标为()2,0-.(1)求线段AP 中点的轨迹方程;(2)若直线:250l x y --=与坐标轴交于MN 两点,求PMN 面积的取值范围.59.在平面直角坐标系中,已知点(2,0),(1,3)A B -.(1)求AB 所在直线的一般式方程;(2)求线段AB 的中垂线l 的方程.60.求满足下列条件的直线方程:(1)直线l 过点A (2,-3),并且与直线13y x =的倾斜角相等; (2)直线l 经过点P (2,4),并且在x 轴上的截距是y 轴上截距的12.61.已知两直线1l :240x y -+=,2l :4350x y ++=.()1求直线1l 与2l 的交点P 的坐标;()2设()1,2A --,若直线l 过点P ,且点A 到直线l 的距离等于1,求直线l 的方程. 62.矩形ABCD 的两条对角线相交于点(2,0),M AB 边所在直线的方程为360x y --=,点(1,1)T -在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)若直线:10l ax y b +++=平分矩形ABCD 的面积,求出原点与(,)a b 距离的最小值.63.已知直线l 1:3x+4y ﹣2=0和l 2:2x ﹣5y+14=0的相交于点P .求:(1)过点P 且平行于直线2x ﹣y+7=0的直线方程;(2)过点P 且垂直于直线2x ﹣y+7=0的直线方程.64.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,直线l 与椭圆C 交于M 、N 两点. (1)点P 的坐标为1(1,)3P ,若MP PN =,求直线l 的方程; (2)若直线l 过椭圆C 的右焦点F ,且点M 在第一象限,求23(MA NB MA k k k -、NB k 分别为直线MA 、NB 的斜率)的取值范围.65.已知直线()()222:11310l a a x a a y a a -+-++-+-=,a R ∈(1)求证,直线l 恒过定点,并求出定点坐标;(2)求当1a =和1a =-时对应的两条直线的夹角.66.在平面直角坐标系xOy 中,已知点(20)A ,、3(5)B ,,经过原点O 的直线l 将OAB ∆ 分成面积之比为1:2的两部分,求直线l 的方程.67.已知直线:120l kx y k -++=(1)求证:直线l 经过定点.(2)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(3)若直线l 不经过第四象限,求实数k 的取值范围.68.已知圆C:x 2+(y −3)2=4,直线m:x +3y +6=0,过A(−1,0)的一条动直线l 与直线m 相交于N ,与圆C 相交于P ,Q 两点.(1)当l 与m 垂直时,求出N 点的坐标;(2)当|PQ|=2√3时,求直线l 的方程.69.已知圆P 过点1,0A ,()4,0B .(1)若圆P 还过点()6,2C -,求圆P 的标准方程;(2)若圆心P 的纵坐标为2,求圆P 的标准方程.70.已知(),4A m ,()2,B m -,()1,1C ,()2,3D m +四点.(1)当直线AB 与直线CD 平行,求m 的值;(2)求证:无论m 取何值,总有90ACB ∠=.71.已知圆心为M 的圆经过点(0,4),(2,0),(3,1)A B C 三个点.(1)求ABC 的面积;(2)求圆M 的方程.72.已知过原点O 的直线:40l x y -=和点(6,4)P ,动点(Q m ,)(0)n m >在直线l 上,且直线QP 与x 轴的正半轴交于点R .(1)若QOR 为直角三角形,求点Q 的坐标;(2)当QOR 面积的取最小值时,求点Q 的坐标.73.平面直角坐标系xOy 中,已知点(0,1)F ,直线:3l y =-,动点M 到点F 的距离比它到直线l 的距离小2.(1)求点M 的轨迹C 的方程;(2)设斜率为2的直线与曲线C 交于A 、B 两点(点A 在第一象限),过点B 作x 轴的平行线m ,问在坐标平面xOy 中是否存在定点P ,使直线PA 交直线m 于点N ,且PB PN =恒成立?若存在,求出点P 的坐标,若不存在,说明理由.74.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B .(1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.75.如图所示,将一块直角三角形板ABO 置于平面直角坐标系中,已知1,AB OB AB OB ==⊥,点11,24P ⎛⎫ ⎪⎝⎭是三角板内一点,现因三角板中,阴影部分受到损坏,要把损坏部分锯掉,可用经过点P 的任一直线MN 将三角板锯成AMN ∆,设直线MN 的斜率为k .(1)用k 表示出直线MN 的方程,并求出点,M N 的坐标;(2)求出k 的取值范围及其所对应的倾斜角α的范围;(3)求AMN ∆面积的取值范围.76.求满足下列条件的直线的方程:(1)求与直线20x y -=平行,且过点(2)3,的直线方程; (2)已知正方形的中心为直线220x y -+=和10x y ++=的交点,其一边所在直线的方程为350x y +-=,求其他三边的方程.77.过圆222:C x y r +=上一点()2,2A -作圆的切线,切线与x 轴交于点B ,过点B 的直线与圆C 交于不同的两点M 、N ,MA 、NA 分别交直线4x =-交于点P 、Q .(1)求点B 的坐标;(2)求PBQB 的值.78.已知点()2,0M -,()2,0N ,动点P 满足条件2PM PN -=,记动点P 的轨迹为W . (1)求W 的方程;(2)若P 是W 上任意一点,求2PMPN 的最小值.79.在平面直角坐标系xOy 中,已知圆22:4O x y +=与x 轴的正负半轴的交点分别是M ,N .(1)已知点(2,4)Q ,直线l 过点Q 与圆O 相切,求直线l 的方程;(2)已知点P 在直线:4x =上,直线PM ,PN 与圆的另一个交点分别为E ,F . ①若(4,6)P ,求直线EF 的方程;②求证:直线EF 过定点.参考答案1.A【分析】根据两点之间的距离公式,即可代值求解.【详解】因为(3,4)A ,(1,1)B -,故可得5AB ==.故选:A.【点睛】本题考查平面中两点之间的距离公式,属基础题.2.B【分析】由平行关系可得直线l 斜率,由直线点斜式方程可求得结果.【详解】l 与21y x =-平行,∴直线l 的斜率2k =,l ∴方程为:()2122y x x =-=-.故选:B.3.D【分析】由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案. 【详解】因为直线l 倾斜角是arctan 2π-,所以直线l 的斜率tan(tan 2)tan arctan 22k arc π=-=-=-, 所以直线l 的斜截式方程为:22y x =-+,由22x t y t =+⎧⎨=-⎩消去t 得24y x =-+,故A 不正确;由2x t y t =+⎧⎨=-⎩消去t 得2y x =-+,故B 不正确; 由22x t y t =⎧⎨=-⎩消去t 得122y x =-+,故C 不正确;由22x ty t=⎧⎨=-⎩消去t 得22y x =-+,故D 正确; 故选:D. 【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题. 4.B 【分析】求出直线的斜率,利用斜截式可得出直线的方程. 【详解】由倾斜角为45可知所求直线的斜率为1,由直线的斜截式方程可得1y x =-. 故选:B. 5.A 【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果. 【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A. 6.D 【分析】①利用曲线中变量的范围来判断;②利用点斜式的适用条件来判断;③利用圆的一般式方程的系数关系来判断;④利用椭圆几何性质来判断. 【详解】解:①y =0y >,其仅表示抛物线的一部分,与2y x =表示的不是同一条抛物线,故错误;②所有过原点的直线中,0x =不可设为y kx =,故错误;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->,故正确;④椭圆2248x y +=标准方程为22182x y +=,2b =.故选:D. 【点睛】本题考查学生对圆锥曲线的基础知识的掌握情况,是基础题. 7.D 【分析】联立两直线方程,得到交点坐标,即为圆心,再结合半径就可写出圆的方程. 【详解】解:联立2030x y x y -=⎧⎨+-=⎩,得()2,1M ,则以点M 为圆心,半径长为1的圆的方程是22(2)(1)1x y -+-=. 故答案为:D 【点睛】本题考查圆的标准方程,是基础题. 8.A 【分析】直接利用平行线之间的距离公式化简求解即可. 【详解】两条直线1:3420l x y +-=与2:6810l x y ++=,化为直线1:6840l x y +-=与2:6810l x y ++=,则1l 与2l 12=,故选A. 【点睛】本题主要考查两平行线之间的距离,属于简单题.解析几何中的距离常见有:(1)点到点距离,AB =(2)点到线距离,d =,(3)线到线距离d 9.D 【分析】由平行可得()120m m --=,解之,排除重合的情形即可. 【详解】解:∵直线220mx y +-=与直线(1)20x m y +-+=平行, ∴()120m m --=,即220m m --=,解得1m =-或2m =,经验证当1m =-时,直线重合应舍去, 故选:D. 【点睛】本题考查直线的一般式方程和平行关系,属基础题. 10.B 【分析】设直线123,,l l l 所对应的倾斜角为123,,ααα, 由图可知,12302παααπ<<<<<,由直线的倾斜角与斜率的关系可得231k k k <<,得解. 【详解】解:由图可知,直线1l 的倾斜角为锐角,所以10k >,而直线2l 与3l 的倾斜角均为钝角,且2l 的倾斜角小于3l 的倾斜角,故230k k <<.所以231k k k <<. 故选B.本题考查了直线的倾斜角与斜率的关系,重点考查了识图能力,属基础题. 11.C 【详解】试题分析:直线20ax y +=平行于直线1x y +=122aa -⇒=-⇒=,因此正确答案应是充分必要条件,故选C. 考点:充要条件. 12.A 【分析】提取公因数a ,得()11y a x =+-,即得1x =-时,1y =-,即得定点. 【详解】直线1y ax a =+-,整理得()11y a x =+-,故对于a R ∈,恒有1x =-时,1y =-.故直线恒过点()1,1--. 故选:A. 13.B 【分析】根据题意先求出线段AB 的中点,然后代入直线方程求出a 的值. 【详解】因为(1,4)A ,(3,2)B -,所以线段AB 的中点为(1,3)-,因为直线l 过线段AB 的中点,所以320a -++=,解得5a =.故选B 【点睛】本题考查了直线过某一点求解参量的问题,较为简单. 14.A 【详解】设所求直线为20x y c =++, 由直线与圆相切得,=解得5c =±.所以直线方程为250x y ++=或250x y +-=.选A.【分析】根据两点求出直线1l 的斜率,根据倾斜角求出直线2l 的斜率;可知斜率乘积为1-,从而得到垂直关系. 【详解】直线1l 经过()3,4A -,()8,1B --两点 ∴直线1l 的斜率:141138k +==-+ 直线2l 的倾斜角为135 ∴直线2l 的斜率:2tan1351k ==- 121k k ∴⋅=- 12l l ∴⊥本题正确选项:A 【点睛】本题考查直线位置关系的判定,关键是利用两点连线斜率公式和倾斜角求出两条直线的斜率,根据斜率关系求得位置关系. 16.D 【分析】利用中点坐标公式求得()6,0M ,再利用两点间距离公式求得结果. 【详解】由()10,4B ,()2,4C -可得中点()6,0M又()7,8A AM ∴=本题正确选项:D 【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标. 17.A 【分析】根据题意求出直线l 的斜率,然后利用斜截式即可写出直线的方程,进而转化为一般式方程即可. 【详解】因为与直线210x y -+=的倾斜角互补,而直线210x y -+=的斜率为12,所以直线l 的斜率为12-,则直线l 的方程为112y x =-+,即220x y +-=.故选:A 18.D 【分析】由题可得渐近线方程,利用直线平行可得a =,再利用平行线间距离公式即得. 【详解】根据题意,双曲线C 的渐近线l 的方程为0bx ay +=,该直线与直线g 平行,所以2-=-b aa b,所以a ,此时直线l 的方程为0x +=,直线g 的方程为02+=x ,所以直线l ,g=故选:D . 19.B 【分析】求出斜率后可得直线的倾斜角 【详解】=,故直线的倾斜角为120︒. 故选:B. 【点睛】本题考查直线的斜率与倾斜角的计算,注意倾斜角的范围为0,.本题属于基础题.20.B 【分析】根据倾斜角和斜率的关系,确定正确选项. 【详解】直线的倾斜角为2παα⎛⎫≠ ⎪⎝⎭,则斜率为tan α,tan y x =在0,2π⎛⎫ ⎪⎝⎭上为增函数.由于直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,所以其斜率的取值范围为tan ,tan 43ππ⎛⎫ ⎪⎝⎭,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题. 21.A 【分析】由题意利用两条直线平行的性质,求得m 的值. 【详解】解:两条直线1:60l x my ++=,2:(2)320l m x y m -++=,若1l 与2l 平行,则()213m m -=⨯且()2162m m ⨯≠⨯-,由()213m m -=⨯解得1m =-或3m =, 当3m =时()2162m m ⨯=⨯-故舍去,所以1m =-; 故选:A . 22.C 【解析】设椭圆上点的坐标为()()2cos P R θθθ∈ ,由点到直线距离公式可得:d ==,则当()sin 1θϕ+=- 时,点P 到直线l 的距离有最大值max d =.本题选择C 选项.点睛:求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.23.B 【详解】试题分析:点(3,2)A -关于x 轴的对称点为()3,2A '--.因为点(,0)P m 在x 轴上,由对称性可知PA PA =',所以PA PB PA PB +='+,所以当,,A P B '三点共线时此距离和最短. 因为8+2223A B k '==+,所以直线A B '方程为()822y x -=-,即24y x =+,令0y =得2x =-,即,,A P B '三点共线时()2,0P -.所以所求m 的值为2-.故B 正确. 考点:点关于直线的对称点,考查数形结合思想、转化思想. 24.A 【分析】根据导数几何意义求出切线方程,化成斜截式,即可求解 【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2) 故选:A 【点睛】本题考查由导数的几何意义求解切线方程,直线过定点问题,属于简单题 25.D 【分析】利用两平行线间的距离公式即可求解. 【详解】直线1l 的方程可化为6240x y --=,则1l 与2l 之间的距离d = 故选:D 26.B 【分析】由题意利用两条直线平行的性质,分类讨论,求得结果. 【详解】解:当0a =时,直线1l :即0x =,直线2l :即1x =,满足12l l //. 当0a ≠时,直线21:20l x a y a -+=与直线2:(1)10l a x ay --+=互相平行,∴2211a a a a -=≠--,解得实数a ∈∅. 综上,0a =, 故选:B . 【点睛】本题主要考查两条直线平行的性质,考查分类讨论思想,属于基础题. 27.C 【分析】与直线210x y +-=垂直的直线的斜率为2,结合点斜式即可求解直线方程. 【详解】直线210x y +-=的斜率为12-所以与直线210x y +-=垂直的直线的斜率为2,又过点()0,1, ∴所求直线方程为:21y x =+ 即210x y -+= 故选:C 28.D 【分析】根据直线方程可知直线l 恒过定点()2,0P -,过A B ,分别作准线的垂线,垂足分别为M N ,,由2AF BF =,得到点B 为AP 的中点,连接OB ,进而可知||||OB BF =,由此求得点B 的坐标,最后利用直线上的两点求得直线l 的斜率. 【详解】抛物线2:8C y x =的准线2x =-,直线l :(2)y k x =+恒过定点()2,0P -, 如图过,A B 分别作准线的垂线,垂足分别为M N ,,由2AF BF =,则||2||AM BN =, 所以点B 为AP 的中点,连接OB ,则1||||2OB AF =,∴||||OB BF =,OBF ∴∆为等腰三角形,点B 的横坐标为1,故点B 的坐标为(,又(2,0)P -,所以k =故选:D【点睛】本题主要考查了抛物线的简单性质,抛物线的定义,直线斜率的计算,考查了数形结合,转化与化归的思想,考查了学生的运算求解能力. 29.A 【分析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()()12,0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线1l 过点()13,0F -,直线2l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以e ⎛ ⎝⎭∈. 故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题. 30.B 【分析】 设抛物线2yx 上一点为200),(A x x ,求出点200),(A x x 到直线240x y --=的距离,利用配方法,由此能求出抛物线2x y =上一点到直线240x y --=的距离最短的点的坐标. 【详解】 解:设抛物线2yx 上一点为200),(A x x ,点200),(A x x 到直线240x y --=的距离2201)3d x -+,∴当01x =时,即当()1,1A 时,抛物线2yx 上一点到直线240x y --=的距离最短.故选:B . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,考查学生的计算能力,属于中档题. 31.C 【分析】利用直角三角形的性质求得其内切圆的半径,如图建立直角坐标系,则内切圆的方程可得,设出p 的坐标,表示出,222||||||S PA PB PO =++,利用x 的范围确定S 的范围,则最小值可得 【详解】解:如图,ABO 是直角三角形,设ABO 的内切圆圆心为O ',切点分别为D ,E ,F ,则1(1086)122AD DB EO ++=++=.但上式中10AD DB +=,所以内切圆半径2r EO ==,如图建立坐标系,则内切圆方程为:22(2)(2)4x y -+-= 设圆上动点P 的坐标为(,)x y , 则222||||||S PA PB PO =++222222(8)(6)x y x y x y =-+++-++ 22331612100x y x y =+--+223[(2)(2)]476x y x =-+--+ 34476884x x =⨯-+=-.因为P 点在内切圆上,所以04x ,所以881672S =-=最小值故选:C 32.B 【解析】2a =-时,两条直线分别化为:610,430y y -+=--=,此时两条直线相互垂直,满足条件;由“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”,可得,()()[]22320a a a a +-+⨯+=,解得12a =或2a =-,∴“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的充分非必要条件,故选B. 33.C 【分析】转化以弦AB 为直径的圆刚好经过已知圆的圆心C 为AC ⊥BC ,可得弦心距2d =,再用圆心到直线距离表示d ,即得解 【详解】由题意,AC ⊥BC ,则C (0,2)到直线x ﹣y =0的距离2d =,2=,即r =2. 故选:C34.B 【分析】由已知得到12l l ⊥,1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,作线段CD AB ⊥,先求得CD ,求得PD 的最小值,再由||2||PA PB PD +=可得答案.【详解】设圆C 的半径为1r ,直线1:310l mx y m --+=与2310l x my m +--=∶ 垂直, 又1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,设圆心为M ,半径为2r ,作垂直线段CD AB ⊥,则CDmin 12||||PD CM r r ∴=--=2PA PB PD +=∴||PA PB + 的最小值为故选:B35.B 【分析】代入点验证知①正确,计算点到直线的距离得到②错误,计算圆心距为125r r =+,得到③正确,圆方程相减得到公共弦方程,④错误,得到答案. 【详解】将点代入圆方程,222242110++-⨯+=满足,故①正确;圆22:28130C x y x y +--+=的圆心为()1,4,到直线4330x y -+=1=,②错误;圆()221:11C x y ++=,圆心为()1,0-,半径11r =,圆()()222:2416C x y -+-=,圆心为()2,4,半径为24r =125r r =+,故③正确;两圆22440x y x y ++-=与222120x y x ++-=方程相减得到24120x y -+=,即公共弦方程为:260x y -+=,④错误. 故选:B. 36.A 【分析】解方程213(2)0m m m ⨯-⨯-=,再检验即得解. 【详解】解:因为l 1与l 2平行,所以2213(2)0,(23=0m m m m m m ⨯-⨯-=∴--), 所以(3)(1)=0,0m m m m -+∴=或1m =-或3m =.当3m =时,两直线重合为x +9y +6=0,与已知不符,所以舍去. 当0m =或1-时,符合题意. 故选:A 37.10x y -+= 【详解】圆:x 2+2x +y 2=0的圆心C(-1,0),因为直线0x y +=的斜率为1-,所以与直线0x y +=垂直的直线的斜率为1,因此所求直线方程为+1y x =,即x -y +1=038.2 【分析】先求出两条直线的斜率,再利用两条直线的夹角公式求得a 的值. 【详解】解:直线20x y +-=的斜率为1-,和10ax y -+=的斜率为a ,直线20x y +-=和10ax y -+=的夹角为3π,∴()()1tan311a a π--==+⋅-,求得2a ==,或2a ==,故答案为:2【点睛】本题考查两直线的夹角公式,是基础题. 39.()0,6-或()0,9 【分析】设P 点坐标,由点到直线距离公式求解. 【详解】设(0,)P a 6=,解得a =6-或9.所以P 点坐标为(0,6)-或(0,9). 故答案为:(0,6)-或(0,9). 【点睛】本题考查点到直线的距离公式,掌握点到直线距离公式是解题关键.40.92【分析】根据直线方程求其与坐标轴的交点坐标,再应用三角形面积公式求直线与坐标轴围成的三角形的面积即可. 【详解】令0y =,则3x =;令0x =,则3y =, ∴直线与坐标轴围成的三角形的面积193322S =⨯⨯=. 故答案为:9241.(0,2) 【分析】先计算原点与点P 的距离,此时过点P 与原点的距离最大且仅有一条,过原点和点P 时,距离最小,最小为0,可得与原点的距离为d 的直线有两条时d 的取值范围. 【详解】过点P 的直线中,与原点的距离最大为||2OP ,最小为0, 当02d <<时,与原点的距离为d 的直线有两条. 故答案为:(0,2). 【点睛】本题考查了过定点的直线与定点的距离的范围问题,属于基础题. 42.3 【分析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解. 【详解】因为直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行, 所以()()2324(3)0a a a -----=,解得3a =或5a =, 又因为5a =时,1:210l x y -+=,2:4220l x y -+=, 所以直线1l ,2l 重合故舍去,而3a =,1:10l y +=,2:220l y -+=,所以两直线平行. 所以3a =, 故答案为:3. 【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.43.14【分析】由题意,可得22a b +表示直线上的点(),a b 到原点的距离的平方,根据点到直线距离公式,即可求出最小值.【详解】因为22220(()0)+-+=-a b a b 表示点(),a b 到原点距离的平方,又点(),a b 在直线10x -=上,所以当点(),a b 与原点连线垂直于直线10x -=时,距离最小,即22a b +最小;因为原点到直线10x +-=的距离为12==d , 所以22214≥=+d a b . 即22a b +有最小值14.故答案为:14【点睛】本题主要考查直线上的点与原点距离最值的问题,熟记点到直线距离公式即可,属于常考题型. 44.x-y -5=0 【分析】利用两条直线垂直的条件,求得AB 边上的高线CD 所在直线的斜率,再用点斜式求得AB 边上的高线CD 所在直线的方程. 【详解】AB 直线的斜率为3012AB k -=--=﹣1,故AB 边上的高线CD 所在直线的斜率为1, 故AB 边上的高线CD 所在直线的方程为y +2=1(x ﹣3),即 x ﹣y ﹣5=0, 故答案为:x ﹣y ﹣5=0. 45.22(2)(2)5x y -+-= 【分析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求. 【详解】令2()430f x x x =-+=,得1x =或3x =, 则(1,0)A ,(3,0)B∴外接圆的圆心E 的横坐标为2,设()2,E m ,半径为r ,由(0)3f =,得(0,3)C ,则||||EA EC =r , 得2m =,r =∴ABC 的外接圆E 的方程为22(2)(2)5x y -+-=. 故答案为:22(2)(2)5x y -+-=.46.【详解】试题分析:由12l l ⊥,那么,解得:.考点:两条直线在一般式下垂直的充要条件的应用. 47.0或83【分析】利用已知条件得(1)0a b a +-=⎧⎪=,求解检验即可得解. 【详解】由题意得(1)0a b a +-=⎧⎪, 解得22a b =⎧⎨=-⎩或232a b ⎧=⎪⎨⎪=⎩, 经检验,两种情况均符合题意, ∴a +b 的值为0或83.故答案为:0或83.【点睛】方法点睛:形如直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=, 当l 1∥l 2时,A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0;当l 1⊥l 2时,A 1A 2+B 1B 2=0.48. 【详解】令(),P x y ,而点P 关于直线y x =的对称点为P ',所以(),P y x ',(),OP y x '=;而AQ OP '=,所以(),AQ y x =;而()1,1A ,所以()1,1Q y x ++;所以()1,1PQ y x x y =-+-+,2PQ =()222y x -+;而动点P 在圆221x y +=上,所以()202y x ≤-≤,所以()22226y x ≤-+≤,6PQ ≤,所以PQ 的取值范围是.故答案为. 49.7- 【详解】试题分析:由题意可知系数满足()()()()3542{38532a a a a ++=⨯+⨯≠-⨯,解方程得7a =-考点:两直线平行的判定 50.724【分析】由2()1f x og x =,()()f a f b k ==,得到1ab =,然后根据a ,b 范围画出其图像,找到MON∆面积最大的情况,求出此时MN 长度,及O 点到MN 的距离,从而计算出MON ∆面积的最大值. 【详解】 由题意,可知:1223b ≤≤,()f b ∴2211og b og b ==-. 又()()f a f b k ==,1a ∴>,()2211f a og a og a ∴==.()()f a f b =,2211og a og b ∴=-,即:2221110og a og b og ab +==,1ab ∴=.∴曲线C 的轨迹方程即为:1ab =.1223b≤≤,1ab=.∴322a≤≤,则曲线C的图象如图:MON∆面积要取最大值,∴当M、N为曲线C的两个端点时,MON∆面积最大,M∴点坐标为32,23⎛⎫⎪⎝⎭,N点坐标为12,2⎛⎫⎪⎝⎭.则直线MN的直线方程为:23323122223yx--=--,化简,得:2670x y+-=.MN⎛==⎝原点O到直线MN的距离d==MON∴∆面积的最大值为:1172224MN d⋅⋅==.故答案为724.【点睛】本题考查对数函数的图像与性质,两点间距离,点到直线的距离,题目涉及到的知识点较多,比较综合,属于中档题.51.()1,4【详解】设(,)P x y ' ,则21113(1,4)423122y x x P y y x -⎧⋅=-⎪=⎧⎪-⇒∴⎨⎨=++⎩⎪+⎩'=⎪ 52.3-或2 【详解】试题分析:依题意可得20311a a =≠+,解得3a =-或2a =. 考点:两直线平行. 53.32 【分析】根据题意,由直线经过点(1,2)-,分析可得28a b -=,即82a b =+;进而可得824111224444a b bb b b+++=+=+,结合基本不等式分析可得答案. 【详解】根据题意,直线80(,)ax by a b R +-=∈经过点(1,2)-,则有28a b -=, 即82a b =+;则82441112242432444a b bb b b b ++++=+=+⨯=,当且仅当2b =-时等号成立; 即124ab +的最小值是32;故答案为:32. 【点睛】本题考查基本不等式的性质以及应用,涉及直线的一般式方程,属于中档题. 54.22-【详解】因为点(m 在圆224x y += 上,点9(,)n n 在曲线9y x= 上,所以本题转化为求圆224x y +=与曲线9y x=上的两点之间的最小值,如下图,作直线y x = 与它们的图象在第一象限交于A,B 两点,显然圆224x y +=与曲线9y x=的图象都关于直线y x =对称,所以AB 就是圆224x y +=与曲线9y x=上的两点之间距离的最小值,求出(3,3)A B ,所以222(3(322AB =+=-所以。

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题07 直线与圆的方程(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题07 直线与圆的方程(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学专题07 直线与圆的方程(解析版)【考点定位】2014考纲解读和近几年考点分布考纲原文:(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. ③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系. ③能用直线和圆的方程解决一些简单的问题. ④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①了解空间直角坐标系,会用空间直角坐标表示点的位置.②会推导空间两点间的距离公式.考纲解读:直线问题难度不大,单独命题可能性不大,常与圆、圆锥曲线相结合,要注意数形结合、分类讨论思想的应用;直线的平行与垂直常与充要条件的判断相结合;直线方程要注意适用的条件,特别是点斜式与斜截式应用较多,要注意分类讨论.直线与圆的位置关系一直是命题的热点,多在选择、填空题中出现;会用待定系数法求圆的方程;注意利用圆的性质解题(相切、弦长、位置关系等)近几年考点分布直线与圆的方程考察重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题的形式出现,有时在解析几何中也会出现大题,多考察其几何图形的性质或方程知识。

直线与圆的方程所涉及到的知识都是平面解析几何中最基础的内容.它们渗透到平面解析几何的各个部分,正是它们构成了解析几何问题的基础,又是解决这些问题的重要工具之一.这就要求我们必须重视对“三基”的学习和掌握,重视基础知识之间的内在联系,注意基本方法的相互配合,注意平面几何知识在解析几何中的应用,注重挖掘基础知识的能力因素,提高通性通法的熟练程度,着眼于低、中档题的顺利解决。

2013高中数学精讲精练(新人教A版)第08章__直线和圆的方程

2013高中数学精讲精练(新人教A版)第08章__直线和圆的方程

2013高中数学精讲精练第八章直线和圆的方程【知识图解】【方法点拨】1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.3.熟练运用待定系数法求圆的方程.4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.第1课 直线的方程【考点导读】理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考. 【基础练习】1. 直线x cos α+3y +2=0的倾斜角范围是50,,66πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是10320-+=-=或x y x y3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】例1.已知两点A (-1,2)、B (m ,3)(1)求直线AB 的斜率k ; (2)求直线AB 的方程;(3)已知实数m 1⎡⎤∈-⎢⎥⎣⎦,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况.解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,11k m =+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1211y x m -=++. (3)①当m =-1时,2πα=;②当m ≠-1时,∵(1,1k m ⎫=∈-∞⋃+∞⎪⎪+⎣⎭∴2,,6223ππππα⎡⎫⎛⎤∈⋃⎪ ⎢⎥⎣⎭⎝⎦故综合①、②得,直线AB 的倾斜角2,63ππα⎡⎤∈⎢⎥⎣⎦例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|²|PB|取最小值时,求直线l 的方程.分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1k ,0),B(0,1-2k ),且2-1k>0, 1-2k >0,即k <0. △AOB 的面积S=12(1-2k )(2-1k )=12[(-4k )+1k -+4]≥4,当-4k =1k -,即k =12-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0.(2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k,0),B(0,1-2k ), ∴|PA|²4=,当且仅当k 2=1,即k =±1时, |PA|²|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2π),且|PA|²|PB|=||||44sin cos sin 2PE PF θθθ⋅=≥ 当且仅当θ=4π时, |PA|²|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.分析 本题关键是如何使用好中点坐标,对问题进行适当转化.解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有4303(2)5(4)50a b a b ++=⎧⎨-----=⎩,解得25a b =-⎧⎨=⎩ 直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),例2图且l 的斜率k =nm ,∵A,B 两点分别l 1和l 2上,∴4(1)(2)303(1)5(2)50m n m n -++++=⎧⎨-----=⎩,消去常数项得-3m =n ,所以k =-3,从而直线l 的方程为3x +y +1=0.解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。

高考数学题库精选核心考点大冲关专题演练直线与圆

高考数学题库精选核心考点大冲关专题演练直线与圆

考点28 直线与圆【考点分类】热点一 直线的方程与位置关系1.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知点A (-1,0);B (1,0),C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) (A )(0,1) (B)(1-,12) ( C)(1-,1]3 (D)[13,12)2.【2013年全国高考统一考试天津数学(文)卷】 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( )(A) 12- (B) 1 (C) 2 (D) 123.【2013年高考新课标Ⅱ数学(文)卷】 设抛物线C:y 2=4x 的焦点为F ,直线l 过F 且与C 交于A, B 两点.若|AF|=3|BF|,则l 的方程为( )(A ) y=x-1或y=-x+1 (B )y=33(X-1)或y=33-(x-1) (C )y=3(x-1)或y=3-(x-1) (D )y=22(x-1)或y=22-(x-1)4.【2013年普通高等学校招生全国统一考试(湖南卷)】在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等于( )A .2B .1C .83 D .435.【2013年普通高等学校招生全国统一考试(山东卷)理】过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为 A.032=-+y xB.032=--y xC.034=--y xD.034=-+y x6.【2013年普通高等学校招生全国统一考试(四川卷)文科】在平面直角坐标系内,到点(1,2)A ,(1,5)B ,(3,6)C ,(7,1)D -的距离之和最小的点的坐标是_______.A a a,P是函数7.【2013年普通高等学校统一考试江苏数学试题】在平面直角坐标系xoy中,设定点(,)1=>图象上一动点. 若点P,A之间的最短距离为22,则满足条件的实数a的所有值为(0)y xx.8.(2012年高考辽宁卷文科7)将圆x2+y2 -2x-4y+1=0平分的直线是( )(A)x+y-1=0 (B)x+y+3=0 (C)x-y+1=0 (D)x-y+3=09.(2012年高考浙江卷理科3)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(2012年高考湖北卷文科5)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为 ( )A.x+y-2=0B.y-1=0C.x-y=0D.x+3y-4=0【方法总结】(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l 1和l 2有斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则:直线l 1⊥l 2的充要条件是k 1·k 2=-1.②设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.则:l 1⊥l 2⇔A 1A 2+B 1B 2=0.热点二 圆的方程和性质11.【2013年普通高等学校招生全国统一考试(江西卷)文科】若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是 . [答案]22325(2)().24x y -++=[解析]由题意得圆心坐标为(2,y),半径r=1-y,则有22235(1)2,,,22y y y r -=+∴=-∴=则圆C 的方程是22325(2)().24x y -++=12.(2012年高考山东卷文科9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.13.(2012年高考新课标全国卷理科20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【方法总结】1.利用圆的几何性质求方程:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. 2.利用待定系数法求圆的方程:(1)若已知条件与圆的圆心和半径有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程 组,从而求出D ,E ,F 的值.热点三 直线与圆的位置关系14.【2013年普通高等学校招生全国统一考试(广东卷)文科】垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .20x y +-=B .10x y ++=C .10x y +-=D .20x y ++=15.【2013年普通高等学校招生全国统一考试(陕西卷) 文科】 已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是( )(A) 相切(B) 相交(C) 相离(D) 不确定16.【2013年普通高等学校招生全国统一考试(江西卷)理】过点(,0)引直线ι与曲线21y x =- 交于A,B两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线ι的斜率等于( )A. B.- C. D-17.(2012年高考广东卷文科8)在平面直角坐标系xOy 中,直线3x+4y-5=0与圆x ²+y ²=4相交于A 、B 两点,则弦AB 的长等于( )A.33B.23C.3D.118. (2012年高考天津卷理科8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )(A )[13,1+3]- (B)(,13][1+3,+)-∞-∞ (C)[222,2+22]- (D)(,222][2+22,+)-∞-∞19.(2012年高考陕西卷理科4)已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )(A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能20.(2012年高考重庆卷理科3)对任意的实数k ,直线y=kx+1与圆222=+y x 的位置关系一定是( ) A.相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心21.【2013年普通高等学校招生全国统一考试(湖北卷)文科】已知圆O :225x y +=,直线l : cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .22.【2013年普通高等学校招生全国统一考试(山东卷)文科】过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.23.【2013年普通高等学校招生全国统一考试(浙江卷)文科】直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.24.(2012年高考江西卷文科14)过直线x+y-=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.25. (2012年高考天津卷文科12)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 .3.26. (2012年高考江苏卷12)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .27.(2012年高考浙江卷理科16)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________.492)41(212'=⇒+-==a a d .28.【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.29.【2013年普通高等学校招生全国统一考试(四川卷)文科】已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于M 、N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.根据题意,点Q 在圆C 内,则0n >,所以223631518055m m n ++==, 于是n 与m 的函数关系为2151805m n +=((3,0)(0,3)m ∈-). ……………………13分【方法总结】1.判断直线与圆的位置关系常见的有两种方法(1)代数法:――――――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交,=0⇔相切,<0⇔相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交,d =r ⇔相切,d >r ⇔相离.2.圆的弦长的常用求法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则(l2)2=r 2-d 2 (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.3.求过一点的圆的切线方程时,首先要判断此点是否在圆上.然后设出切线方程,用待定系数法求解.注意斜率不存在情形.【考点剖析】一.明确要求1.能根据两条直线的斜率判定这两条直线平行或垂直.2.会求两直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.4.掌握圆的标准方程和一般方程.5.能判断直线与圆、圆与圆的位置关系.6.能用直线和圆的方程解决一些简单的问题.二.命题方向1.两条直线的平行与垂直,点到直线的距离,两点间距离是命题的热点.对于距离问题多融入解答题中,注重考查分类讨论与数形结合思想.题型多为客观题,难度中低档.2.求圆的方程或已知圆的方程求圆心坐标,半径是高考的热点,多与直线相结合命题,着重考查待定系数法求圆的方程,同时注意方程思想和数形结合思想的运用.多以选择题、填空题的形式出现,属中、低档题.3.直线与圆的位置关系,特别是直线与圆相切一直是高考考查的重点和热点.多以选择题和填空题的形式出现,有时也出现在综合性较强的解答题中.三.规律总结一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0. 两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等. 三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0). (2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线. 一种方法确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 两个防范(1)求圆的方程需要三个独立条件,所以不论设哪一种圆的方程都要列出关于系数的三个独立方程. (2)过圆外一定点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况. 三个性质确定圆的方程时,常用到的圆的三个性质 (1)圆心在过切点且与切线垂直的直线上; (2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线. 一条规律过圆外一点M 可以作两条直线与圆相切,其直线方程可用待定系数法,再利用圆心到切线的距离等于半径列出关系式求出切线的斜率即可. 一个指导直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,“代数法”侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.解题时应根据具体条件选取合适的方法. 两种方法计算直线被圆截得的弦长的常用方法 (1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算. (2)代数方法运用根与系数关系及弦长公式 |AB |=1+k 2|x A -x B | =(1+k 2)[(x A +x B )2-4x A x B ].说明:圆的弦长、弦心距的计算常用几何方法.【考点模拟】一.扎实基础1.【湖北省黄冈市黄冈中学2013届高三五月第二次模拟考试】 “2a =”是“直线214ay ax y x =-+=-与垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.【2013安徽省省级示范性高中名校高三联考】已知圆221x y +=的一条切线是0x y k -+=,则k=( )A .4π B .22± C .4π或34πD .2±3.【山东省济南市2013届高三高考第一次模拟考试】已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l 平行,则=a ( )A .-1B .2C .0或-2D .-1或24.【2013年“江南十校”高三学生第二次联考(二模)测试】若双曲线2213x y -=的渐近线与圆222(4)(0)x y r r +-=>相切,则r =( )A .2B .3C .22D .235.【安徽省江淮名校2013届高考最后一卷文科数学】直线33y x m =-+与圆221x y +=在第一象限内有两个不同的交点,则m 取值范围是( ) A .32m << B .33m << C .32333m << D .2313m <<线)之间.6.【天津市新华中学2013届高三上学期第三次月考数学试卷】倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A. 01=+-y xB. 01=--y xC. 01=-+y xD. 01=++y x7.【2013年山东省日照市高三模拟考试】若PQ 是圆229x y +=的弦,PQ 的中点是(1,2)则直线PQ 的方程是( ) A.250x y +-=B.230x y +-=C.240x y -+=D.20x y -=8.【湖北省黄冈市黄冈中学2013届高三下学期6月适应性考试】圆C :222220x y x y ++--=的圆心到直线3x +4y +14=0的距离是 .9.【浙江省镇海中学2013年高三考前模拟】若圆C :222220x mx y m y -+-+=与x 轴有公共点,则m 的取值范围是________.10. 【广东省揭阳市2013届高三3月第一次高考模拟】已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为 .二.能力拔高11.【2013年长春市高中毕业班第四次调研测试】已知直线l :y x m =+()m ∈R ,若以点(2,0)M 为圆心的圆与直线l 相切于点P ,且P 在y 轴上,则该圆的方程为( ) A. 22(2)8x y -+= B. 22(2)8x y ++=C. 22(2)8x y +-=D. 22(2)8x y ++=12.【山东省烟台市2013届高三第一次模拟诊断性测试】已知抛物线y 2 =2px (p>0)上一点M (1,m )(m>0)到其焦点F 的距离为5,则以M 为圆心且与y 轴相切的圆的方程为( )A .(x -1)2+(y -4)2=1B .(x -1)2+(y+4)2=1C .(x -l )2+(y -4)2 =16D .(x -1)2+(y+4)2=1613.【山东省济南市2013届高三高考第一次模拟考试】已知直线0=++c by ax 与圆1:22=+y x O 相交于,A B 两点,且,3=AB 则OB OA ⋅ 的值是( )A .12- B .12C .34-D .014.【2013年云南省第二次高中毕业生复习统一检测】已知⊙P 的半径等于6,圆心是抛物线x y 82=的 焦点,经过点)2,1(-M 的直线l 将⊙P 分成两段弧,当优弧与劣弧之差最大时,直线l 的方程为( ) (A )032=++y x (B )052=--y x(C )02=+y x(D )052=--y x15.【江西省南昌市2013届二模考试】已知点1)0,0)(,(22=+>>y x C b a b a M :是圆内任意一点,点),(y x P 是圆上任意一点,则实数1-+by ax ( )A.一定是负数B.一定等于0C.一定是正数D.可能为正数也可能为负数 【答案】A【解析】令θθcos y sin x ==,,()1sin b a 1bsin acos 1-by ax 22-∂++=-+=+θθθ ,又因为22b a +小于1,所以必定是负数,故选A 。

2013年高考试题分项版解析数学(理) 专题08 直线与圆(Word精析版)

2013年高考试题分项版解析数学(理) 专题08 直线与圆(Word精析版)

第八章 直线与圆一.基础题组1.【2013年普通高等学校招生全国统一考试(四川卷)理科】抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )(A )12(B )2(C )1 (D二.能力题组2.【2013年普通高等学校招生全国统一考试(山东卷)理】过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为A.032=-+y xB.032=--y xC.034=--y xD.034=-+y x3.【2013年普通高等学校统一考试江苏数学试题】在平面直角坐标系xoy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点P,A之间的最短距离为,则满足条件的实数a的所有值为.三.拔高题组4.【2013年普通高等学校招生全国统一考试(江西卷)理】过点(错误!未找到引用源。

,0)引直线ι与曲线y=交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线ι的斜率等于()A.错误!未找到引用源。

B.-错误!未找到引用源。

C.错误!未找到引用源。

D-错误!未找到引用源。

【答案】B5.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知点A(-1,0);B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1) (B)(1-错误!未找到引用源。

,12) ( C)(1-错误!未找到引用源。

,1]3(D)[13,12)6.【2013年普通高等学校招生全国统一考试(湖南卷)】在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等于( )A .2B .1C .83D .43【答案】D ;7.【2013年普通高等学校统一考试江苏数学试题】如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题训练(八) 直线与方程、圆与方程时间:45分钟 分值:75分一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在括号里.1.(2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞)解析 由直线与圆相切得:|m +1+n +1-2|(m +1)2+(n +1)2=1⇒m +n +1=mn ≤⎝⎛⎭⎪⎫m +n 22⇒(m +n )2-4(m +n )-4≥0,所以:m +n ≥2+22或m +n ≤2-2 2.答案 D2.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是M (1,2),则直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =0解析 由圆的几何性质知k PQ ·k OM =-1,∵k OM =2,∴k PQ =-12,故直线PQ 的方程为y -2=-12(x -1),即x +2y -5=0.答案 B3.(2012·日照市模拟)若直线x a +yb =1经过点M (cos α,sin α),则( )A .a 2+b 2≤1B .a 2+b 2≥1 C.1a 2+1b 2≤1D.1a 2+1b 2≥1解析 由点M (cos α,sin α)可知,点M 在圆x 2+y 2=1上,又直线x a +y b =1经过点M ,所以|ab |a 2+b 2≤1⇒a 2+b 2≥a 2b 2,不等式两边同时除以a 2b 2得1a 2+1b 2≥1,故选D.答案 D4.(2012·临沂市模拟)已知直线x +3y -m =0与圆x 2+y 2=1交于A 、B 两点,则与OA →+OB →共线的向量为( )A.⎝ ⎛⎭⎪⎫12,-33B.⎝ ⎛⎭⎪⎫12,33C .(-1,3)D .(1,3)解析 根据题意得|OA →|=|OB →|=1,故(OA →+OB →)⊥AB →,直线AB 的斜率为-33,故向量OA →+OB →所在直线的斜率为3,结合选项知,只有选项D 符合要求.答案 D5.(2012·烟台市模拟)若圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .y 2-4x +4y +8=0B .y 2+2x -2y +2=0C .y 2+4x -4y +8=0D .y 2-2x -y -1=0解析 由圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称可知两圆半径相等,故可得a =±2(舍负),即点C (-2,2),所以过点C (-2,2)且与y 轴相切的圆圆心的轨迹方程为(x +2)2+(y -2)2=x 2,整理即得y 2+4x -4y +8=0,故答案选C.答案 C6.(2012·山东省临沂市模拟)已知点P (x ,y )在直线x +2y =3上移动,当2x+4y取最小值时,过点P (x ,y )引圆C :⎝⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +142=12的切线,则此切线长等于( )A.12B.32C.62D.32解析 由于点P (x ,y )在直线x +2y =3上移动,得x ,y 满足x +2y =3,又2x +4y =2x +22y ≥22x +2y =42,取得最小值时x =2y ,此时点P 的坐标为⎝ ⎛⎭⎪⎫32,34.由于点P 到圆心C ⎝ ⎛⎭⎪⎫12,-14的距离为d =⎝ ⎛⎭⎪⎫32-122+⎝ ⎛⎭⎪⎫34+142=2,而圆C 的半径为r =22,那么切线长为d 2-r 2= 2-12=62,故选C.答案 C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.圆心为原点且与直线x +y -2=0相切的圆的方程为________.解析 本题考查了直线与圆的位置关系,在解题时应首先求得原点到直线的距离,即是圆的半径,写出圆的方程即可,题目定位于简单题.由题意可知,原点到直线x +y -2=0的距离为圆的半径,即r =|0+0-2|2=2,所以圆的方程为x 2+y 2=2.答案 x 2+y 2=28.若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.解析 本小题主要考查了直线与圆的知识,并且考查了圆关于直线对称的知识点.由题可知k PQ =3-a -b3-b -a =1,又k l k PQ =-1⇒k l =-1,圆关于直线l 对称,找到圆心(2,3)的对称点(0,1),又圆的半径不变,易得x 2+(y -1)2=1.答案 -1 x 2+(y -1)2=19.(2012·临沂市模拟)已知点P 在直线x +2y -1=0上,点Q 在直线x +2y +3=0上,PQ 中点为M (x 0,y 0),且y 0≥x 0+2,则y 0x 0的取值范围为________.解析 如下图所示,点M 在射线AB 上,射线AB 的方程为y =-12x -12⎝ ⎛⎭⎪⎫x ≤-53,点A 的坐标是⎝ ⎛⎭⎪⎫-53,13,根据y 0x 0的几何意义可知y 0x 0的取值范围是⎝ ⎛⎦⎥⎤-12,-15.答案 ⎝ ⎛⎦⎥⎤-12,-15 10.(2012·浙江)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.解析 由于曲线C 2的圆心为(0,-4),半径为2,而圆心到直线l 的距离为d =|0+4|2=22,那么根据定义知曲线C 2到直线l 的距离为22-2=2,而对于曲线C 1,y ′=2x ,由y ′=2x =1得x=12,此时y =14+a ,那么点⎝ ⎛⎭⎪⎫12,14+a 到直线l 的距离为d =⎪⎪⎪⎪⎪⎪12-⎝ ⎛⎭⎪⎫14+a 2=2,解得a =94或-74(数形结合知负值不满足条件,舍去).答案 94三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤.11.(12分)已知,如图,⊙O :x 2+y 2=1和定点A (2,1),由⊙O 外一点P (a ,b )向⊙O 引切线PQ ,切点为Q ,且满足|PQ |=|P A |.(1)求实数a 、b 间满足的等量关系; (2)求线段PQ 长的最小值;(3)若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径取最小值时⊙P 的方程.解 (1)连接OP ,∵Q 为切点,PQ ⊥OQ ,由勾股定理有|PQ |2=|OP |2-|OQ |2.又由已知|PQ |=|P A |,故|PQ |2=|P A |2, 即(a 2+b 2)-12=(a -2)2+(b -1)2.化简得实数a 、b 间满足的等量关系为2a +b -3=0. (2)由2a +b -3=0,得b =-2a +3. |PQ |=a 2+b 2-1=a 2+(-2a +3)2-1 =5a 2-12a +8=5⎝⎛⎭⎪⎫a -652+45. 故当a =65时,|PQ |min =255, 即线段PQ 长的最小值为25 5.(3)设⊙P 的半径为R ,⊙P 与⊙O 有公共点, ∵⊙O 的半径为1,∴|R -1|≤|OP |≤R +1,即R ≥|OP |-1且R ≤|OP |+1.而|OP |=a 2+b 2=a 2+(-2a +3)2 =5⎝⎛⎭⎪⎫a -652+95.故当a =65时,|PO |min =355,此时b =-2a +3=35,R min =355-1.则半径取最小值时⊙P 的方程为⎝⎛⎭⎪⎫x -652+⎝⎛⎭⎪⎫y -352=⎝⎛⎭⎪⎫355-12.12.(13分)(2012·湖南)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过点P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.解 (1)解法一:设M 的坐标为(x ,y ),由已知得|x +2|=(x -5)2+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以(x -5)2+y 2=x +5.化简得曲线C 1的方程为y 2=20x .解法二:由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,点P 的坐标为(-4,y 0).又y 0≠±3,则过点P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x得 k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20(y 0+4k 1)k1.④ 同理可得y 3y 4=20(y 0+4k 2)k2.⑤ 于是由②,④,⑤三式得 y 1y 2y 3y 4=400(y 0+4k 1)(y 0+4k 2)k 1k 2 =400[y 20+4(k 1+k 2)y 0+16k 1k 2]k 1k 2=400(y 20-y 20+16k 1k 2)k 1k 2=6 400. 所以,当点P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.。

相关文档
最新文档