2016东南大学模电实验1运算放大器的基本应用

合集下载

2016东南大学模电实验1运算放大器的基本应用 (1)

2016东南大学模电实验1运算放大器的基本应用 (1)

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极转换速率(SlewRate)V/us运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。

极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流6mA输出电流的最大值最大电源电压3V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图反相输入比例运算电路 LM324 管脚图1)图中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

运算放大器的基本应用

运算放大器的基本应用

运算放大器的基本应用东南大学电工电子实验中心实验报告课程名称:电子电路实践第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电一姓名:杨阳学号: 61011108实验室: 101 实验组别:同组人员:实验时间:2019年3月26日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、带宽的测量方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念;5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。

二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

2、设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)仿真原理图(2)参数选择计算Au要求|AV|=10且为反向比例放大电路,即u0RF10uiR1,又因为Ri>10KΩ,则选择R1=20kΩ,RF=200kΩ,RL=200kΩ,RP=20k//200kΩ。

信号源输入频率为1kHz,峰峰值为10V的方波信号。

A通道为输出信号,B通道为输入信号。

(3)仿真结果由波形图可知,输入Ui=10V,输出Uo=-100V,Au=Uo/Ui=-10,满足设计要求。

3、设计一个电路满足运算关系UO= -2Ui1 + 3Ui2 (1)仿真原理图(2)参数选择计算根据题目要求UO= -2Ui1 + 3Ui2 ,参数选择如上图所示,则有3u3ui2R1202ui2 ui210303032ui122ui22ui13ui2 15ui120u3u0u46ui16u3R4R5(3)仿真结果三、实验内容: 1、基本要求:内容一:反相输入比例运算电路(I) 图1.3中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

实验1 集成运算放大器的基本应用(I)

实验1  集成运算放大器的基本应用(I)

实验二 集成运算放大器的基本应用(I)─ 模拟运算电路 ─一 实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2. 了解μA741的使用方法。

3. 了解运算放大器在实际应用时应考虑的一些问题。

二 实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

集成运算放大器配接不同的外围元件可以方便灵活地实现各种不同的运算电路(线性放大和非线性电路)。

用运算放大器组成的运算电路(也叫运算器),可以实现输入信号和输出信号之间的数学运算和函数关系,是运算放大器的基本用途之一,这些运算器包括比例器、加法器、减法器、对数运算器、积分器、微分器、模拟乘法器等各种模拟运算功能电路。

(1) 反相比例运算电路电路如图1所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

iU 10-=-=i 1FO U R R U图1 反相比例运算电路(2) 同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为i U 11=+=i 1FO )U R R (1U R 2=R 1// R F图2 同相比例运算电路三 实验设备与器件1.±12V 直流电源2. 函数信号发生器3.交流毫伏表4. 数字式万用表5.双通道数字示波器6.集成运算放大器μA741×17.9.1K Ω、10 K Ω、100 K Ω电阻各1个,导线若干8.THM-3A 型模拟电路实验箱。

2 3674152 315467四实验内容实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

运算放大器的作用

运算放大器的作用

运算放大器的作用
运算放大器是一种电子装置,主要用于放大电路中的信号。

它可以增大输入信号的幅度,使其达到足够大的数值以便后续处理。

运算放大器通常由多个晶体管以及其他电子元件组成。

运算放大器在电子电路中有广泛的用途。

首先,它可以在放大器中起到放大输入信号的作用。

通过调节运算放大器的增益,可以将输入信号放大到所需的幅度。

这对于各种电子设备和系统中的信号处理过程非常重要。

其次,运算放大器在模拟计算器和模拟电脑中也是必不可少的部分。

它们可以进行各种数学运算,如加法、减法、乘法和除法,以及其他复杂的运算。

通过使用运算放大器,可以实现高精度和快速的模拟计算。

另外,运算放大器还可以用于信号滤波。

在许多电子设备中,可能会出现各种噪声和杂散信号,这会对正常的信号处理和识别造成干扰。

运算放大器可以通过滤除或衰减这些噪声信号,提高信号的质量和准确性。

此外,运算放大器还可以用于自动控制系统中的反馈机制。

通过将输出信号与期望信号进行比较,并通过运算放大器将误差信号放大到合适的幅度,可以实现对系统状态的监测和调节。

这种反馈控制可以提高系统的稳定性和精度。

总之,运算放大器在电子电路中起着至关重要的作用。

它们可以放大输入信号、进行模拟计算、滤波信号以及实现反馈控制。

这些功能使得运算放大器成为许多电子设备和系统中不可或缺的组成部分。

东南大学模电实验运算放大器的基本应用

东南大学模电实验运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图1.1 反相输入比例运算电路LM324 管脚图1)图1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

按图连接电路,输入直流信号Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同Ui 时的Uo 值,列表计算Au 并和理论值相比较。

2016东南大学模电实验1运算放大器的基本应用

2016东南大学模电实验1运算放大器的基本应用
=100 kΩ 数据进行比较,分析数据不同的原因。(提示:考虑运算放大器的最大输出 电流)。 当 RL=220Ω 时,此时电源电压为正负 15V,测量出来的最大不失真电压有效值为 5.58V, 比 RL=100kΩ 的最大不失真电压值 10.0V 小了将近 5V。
原因分析:由于输出电压是通过运放的输出电流乘以负载得到的,但运放是有最大输出电 流的限制,这也就意味着当负载很小的时候,运放输出电流达到最大值后,输出电压将会 受限。由 LM324 的数据表知最大输出电流为 60mA,通过计算可知
可以看到,当频率提高到 71kHz 时,输入电压峰峰值为 106mV,基本不变;输出电压峰峰 值为 1.64V,放大倍数为 15.5 倍,与上限截止频率要求的放大倍数
21 × 0.707 = 14.847 基本一致,而利用 multisim 仿真中扫频仪可得,
上限截止频率大约为 50kHz,考虑到理论与实际的误差,结果基本相符。
由计算可知此时放大倍数为 3 倍。
同上,可以计算出此时的相位差为滞后 137.8°。
由转换速率的计算公式得:푆푅
=
1.58푉 3.480푢푠
=
0.454푉/푢푠
与数据表上的 0.5 基本一致。
列表比较 电阻 RF 100kΩ 10kΩ
上限截止频率 fH 71kHz
602.4kHz
相位差(滞后) 59.32° 137.8°
2) Ui 输入 0.2V(有效值)、 1kHz 的正弦交流信号,在双踪示波器上观察并记录输入输 出波形,在输出不失真的情况下测量交流电压增益,并和理论值相比较。注意此时不 需要接电阻分压电路。
可以看到,此时输入电压有效值为 215mV,输出电压有效值为 2.01V,放大倍数基本上与 理论值 10 倍相符,而且可以看到,此时输出与输入波形相位相反,符合反向放大比例电路 的作用。

东南大学模拟电子线路实验报告运算放大器的基本应用

东南大学模拟电子线路实验报告运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:电路与电子线路实验Ⅱ第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:工科试验班姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年4月11 日评定成绩:审阅教师:了解运放的基本特性,以运放构成的同相比例放大电路为例,研究运算放大器的转换速率和增益带宽积性能。

二、 实验原理1. 实验一 同相比例放大电路根据运算放大器基本原理及性质,可得00u u i i +-+-====11o F i u R u R =+ 2. 实验二 减法电路的设计3211231(1)F F o R R Ru u u R R R R =+-+ 3. 实验三 波形转换电路的设计1O i u u dt RC=-⎰1.实验内容(补充实验):(1)设计一个同相输入比例运算电路,放大倍数为11,且 RF=100 kΩ。

输入信号保持Ui=0.1Vpp不变,改变输入信号的频率,在输出不失真的情况下,并记录此时的输入输出波形,测量两者的相位差,并做简单测出上限频率fH分析。

/°图像14.032.042.647.9(b )(c )实验结果分析: 由上表可得,当*0.1*110.778O U AuU V === 时,输出波形已经失真,此时fH=78.86kHz ,φ=47.9°,可以看出相位差与理论值45°存在较小差距,基本吻合。

(2)输入信号为占空比为50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。

(a )双踪显示输入输出波形图(c ) 实验结果分析:7.84/0.501/1/(32*2)dV SR V s V s dt μμ===由SR 的计算公式可得SR ≈0.5V/μs ,与理论值近似(3)将输入正弦交流信号频率调到前面测得的fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不像正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。

运算放大器的应用实验报告

运算放大器的应用实验报告

运算放大器的应用实验报告运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,在电子电路中有着广泛的应用。

本实验旨在通过实验操作,加深对运算放大器的工作原理和应用特性的理解,同时掌握运算放大器在电路中的具体应用。

一、实验目的。

1. 了解运算放大器的基本工作原理;2. 掌握运算放大器的基本参数测量方法;3. 学习运算放大器在电路中的应用,包括比较器、放大器、积分器和微分器等。

二、实验仪器与设备。

1. 示波器。

2. 直流稳压电源。

3. 示波器探头。

4. 运算放大器集成电路。

5. 电阻、电容等元件。

6. 实验电路板。

7. 万用表。

三、实验原理。

运算放大器是一种差动放大器,具有高输入阻抗、低输出阻抗、大增益和宽带宽等特点。

在实验中,我们将通过测量运算放大器的输入输出特性、电压增益、输入偏置电流等参数,来了解其基本特性。

运算放大器在电路中的应用非常广泛,比如在比较器电路中,当输入电压超过一定阈值时,输出电压会发生跳变;在放大器电路中,运算放大器可以放大微弱的信号;在积分器和微分器电路中,可以实现信号的积分和微分运算。

四、实验内容与步骤。

1. 搭建运算放大器的输入输出特性测量电路,通过改变输入电压,测量输出电压与输入电压的关系曲线;2. 测量运算放大器的电压增益,并分析其影响因素;3. 搭建运算放大器的比较器电路,观察输入电压与输出电压的关系;4. 搭建运算放大器的放大器电路,测量放大电路的电压增益;5. 搭建运算放大器的积分器和微分器电路,观察输入输出波形,并分析其特性。

五、实验数据与分析。

1. 输入输出特性曲线如图所示(图表略),通过测量得到的数据绘制曲线,可以看出运算放大器的输入输出特性呈线性关系;2. 测量得到的电压增益为100,经分析发现电阻值的选择对电压增益有一定影响,需要合理选择电阻值以满足设计要求;3. 比较器电路的实验结果表明,运算放大器在一定输入电压范围内输出电压保持稳定,一旦超过阈值,输出电压会发生跳变;4. 放大器电路的实验结果显示,运算放大器可以有效放大输入信号,且放大倍数与电阻值的选择有关;5. 积分器和微分器电路的实验结果表明,运算放大器可以实现信号的积分和微分运算,输出波形与输入波形呈现出相应的积分和微分关系。

201x东南大学模电实验1运算放大器的基本应用

201x东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

增益带宽积(GBW) 1.2MHz 增益带宽积是用来简单衡量放大器的性能的一个参数。

这个参数表示增益和带宽的乘积。

转换速率(Slew Rate)0.5V/us 运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。

极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流60mA输出电流的最大值最大电源电压30V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

模拟电子技术实验-集成运算放大器的基本应用电路

模拟电子技术实验-集成运算放大器的基本应用电路

模拟电⼦技术实验-集成运算放⼤器的基本应⽤电路实验:集成运算放⼤器的基本应⽤电路⼀、实验⽬的1、掌握集成运算放⼤器的基本使⽤⽅法;2、掌握集成运算放⼤器的⼯作原理和基本特性;3、掌握集成运算放⼤器的常⽤单元电路的设计和调试的基本⽅法。

⼆、实验仪器名称及型号KeySight E36313A型直流稳压电源,KeySight DSOX3014T型⽰波器/信号源⼀体机。

模块化实验装置。

本实验所选⽤的运算放⼤器为通⽤集成运放µA741,其引脚排列及引脚功能如图1所⽰。

引脚2为运放反相输⼊端,引脚3为同相输⼊端,引脚6为输出端,引脚7为正电源端,引脚4为负电源端。

1脚和5脚为输出调零端,8为空脚。

图1 µA741的引脚图三、实验内容1. 反相⽐例运算电路(远程在线实验)在反向⽐例运算电路中,信号由反向端输⼊,其运算电路如图2所⽰。

o图2 反相⽐例运算电路设计反相⽐例运算电路,要求输出电压与输⼊电压满⾜解析式u o=-0.5u i;写出设计过程,在远程实验平台进⾏实验验证。

实验验证时,信号发⽣器输出正弦波,频率为1kHz,峰峰值为4V,连接到输⼊端u i,利⽤⽰波器观察输⼊端u i和输出端u o的电压波形并截图。

注意:要根据远程实验提供的阻值进⾏设计,其中R1可选择20k或10k,R2可选择10k、20k或100k,其中且不可打乱图中R1、R2和R3的位置。

进⼊远程实验操作界⾯:打开远程实验操作界⾯,主界⾯左上⽅为KeySight E36313A型直流稳压电源,右上⽅为KeySight DSOX3014T⽰波器/信号源⼀体机。

两个仪器中间为指导说明区,实验前应从头⾄尾阅读⼀遍指导说明。

主界⾯中下区域为实验操作区。

直流稳压电源的调节:主界⾯左上⽅为直流稳压电源,要求其输出±12V电压。

点击直流稳压电源进⼊调节界⾯。

点击电源开关打开电源,观察屏幕显⽰。

分别点击电源右上⾓的2或3通道选择按钮,在数字区输出12后再按Enter按键,分别设置2和3两个通道的电压为12V。

模拟电路中运放的应用

模拟电路中运放的应用

模拟电路中运放的应用
运算放大器(Operational Amplifier,简称运放)是模拟电路中常见的一种器件,它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、信号调理等模拟电路中。

在信号放大方面,运放可以将输入信号放大到所需的幅度。

例如,在音频放大器中,运放可以将微弱的音频信号放大到足以驱动扬声器的幅度。

在滤波方面,运放可以构成各种滤波器,如低通滤波器、高通滤波器、带通滤波器等。

这些滤波器可以用于去除信号中的噪声或提取特定频率分量。

在信号调理方面,运放可以对输入信号进行加减、比例缩放、积分、微分等运算。

例如,在模数转换器(ADC)前级,运放可以对输入信号进行调理,使其满足 ADC 的输入范围。

除了以上应用,运放还可以用于比较器、振荡器、稳压器等模拟电路中。

在实际应用中,运放的性能参数如增益带宽积、输入失调电压、输入阻抗等对电路的性能有着重要影响,因此需要根据具体应用需求选择合适的运放型号。

总的来说,运放在模拟电路中具有广泛的应用,它是模拟电路设计中不可或缺的一种器件。

模拟电路应用实验—运算放大器应用综合实验

模拟电路应用实验—运算放大器应用综合实验

实验四 运算放大器应用综合实验一、实验目的1、 了解运算放大器的基本使用方法,学会使用通用型线性运放μA741。

2、 应用集成运放构成基本运算电路——比例运算电路,测定它们的运算关系。

3、 掌握加法、减法运算电路的构成、基本工作原理和测试方法。

二、预习要求1、 集成电路运算放大器的主要参数。

2、 同相比例、反相比例电路的构成以及输出、输入之间的运算关系。

3、 加法、减法电路的构成及运算关系。

三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。

四、实验内容及步骤运放的线性应用——比例及加减法电路实验 1、反相比例运算反相比例运算电路如图3.1所示,按图接线。

根据表3.1给定的u i 值,测量对应的u o 值并记入表3.1中。

并用示波器观察输入V i 和输出V o 波形及相位。

理论值: i ii f o u V u R R u 10101003-=-=-=注意:①当V i 为直流信号时,u i 直接从实验台上的-5~+5V 直流电源上获取,用数字直流电压表分别测量u i 、u o 。

②当u i 为交流信号时,u i 由函数信号发生器提供频率为1kHz 正弦波信号,用交流毫伏表分别测量u i 、u o 。

(下同)图3.1 反相比例运算电路表3.1测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。

2、同相比例运算同相比例运算电路如图3.2所示,根据表3.2给定的u i值,测量对应的u o值并记入表3.2中。

并用示波器观察输入u i和输出u o波形及相位。

理论值: u O=(1+R f/R3)u i=11u i。

图3.2 同相比例运算电路表3.2测量结束后,将Rf改为电位器Rp,观察输入ui一定,调节Rp,输出的变化规律。

表3.2 同相比例参数测量3、加法运算加法运算原理电路如图3.3。

根据表3.3给定的u i1、u i2值,测量对应的u o值,并记入表3.3中。

东南大学模电实验报告模拟运算放大电路(一)

东南大学模电实验报告模拟运算放大电路(一)

东南⼤学模电实验报告模拟运算放⼤电路(⼀)东南⼤学电⼯电⼦实验中⼼实验报告课程名称:模拟电路实验第⼀次实验实验名称:模拟运算放⼤电路院(系):专业:姓名:学号:实验室:实验组别: 同组⼈员:实验时间:评定成绩:审阅教师:实验⼀模拟运算放⼤电路(⼀)⼀、实验⽬的:1、熟练掌握反相⽐例、同相⽐例、加法、减法等电路的设计⽅法。

2、熟练掌握运算放⼤电路的故障检查和排除⽅法,以及增益、传输特性曲线的测量⽅法。

3、了解运放调零和相位补偿的基本概念。

⼆、实验原理:1、反向⽐例放⼤器反馈电阻R F 值⼀般为⼏⼗千欧⾄⼏百千欧,太⼤容易产⽣较⼤的噪声及漂移。

R 的取值则应远⼤于信号源 V i 的内阻。

若R F = R,则为倒相器,可作为信号的极性转换电路。

2、电压传输特性曲线双端⼝⽹络的输出电压值随输⼊电压值的变化⽽变化的特性叫做电压传输特性。

电压传输特性在实验中⼀般采⽤两种⽅法进⾏测量。

⼀种是⼿⼯逐点测量法,另⼀种是采⽤⽰波器X-Y ⽅式进⾏直接观察。

⽰波器X-Y ⽅式直接观察法:是把⼀个电压随时间变化的信号(如:正弦波、三⾓波、锯齿波)在加到电路输⼊端的同时加到⽰波器的X 通道,电路的输出信号加到⽰波器的 Y通道,利⽤⽰波器 X-Y 图⽰仪的功能,在屏幕上显⽰完整的电压传输特性曲线,同时还可以图1电压传输特性曲线测量测量相关参数。

具体测量步骤如下:(1)选择合理的输⼊信号电压,⼀般与电路实际的输⼊动态范围相同,太⼤除了会影响测量结果以外还可能会损坏器件;太⼩不能完全反应电路的传输特性。

(2)选择合理的输⼊信号频率,频率太⾼会引起电路的各种⾼频效应,太低则使显⽰的A V =-R FR波形闪烁,都会影响观察和读数。

⼀般取50?500Hz即可。

(3)选择⽰波器输⼊耦合⽅式,⼀般要将输⼊耦合⽅式设定为DC,⽐较容易忽视的是在X-Y⽅式下,X通道的耦合⽅式是通过触发耦合按钮来设定的,同样也要设成DC。

(4)选择⽰波器显⽰⽅式,⽰波器设成X-Y⽅式,对于模拟⽰波器,将扫描速率旋钮逆时针旋到底就是X-Y⽅式;对于数字⽰波器,按下“Display”按钮,在菜单项中选择X-Y (5)进⾏原点校准,对于模拟⽰波器,可把两个通道都接地,此时应该能看到⼀个光点,调节相应位移旋钮,使光点处于坐标原点;对于数字⽰波器,先将CH1通道接地,此时显⽰⼀条竖线,调节相应位移旋钮,将其调到和Y轴重合,然后将CH1改成直流耦合,CH2接地,此时显⽰⼀条⽔平线,调节相应位移旋钮,将其调到和X轴重合。

模电实验运算放大器报告文档

模电实验运算放大器报告文档

《电子线路设计、测试与实验》实验报告实验名称:集成运算放大器的基本应用院(系):专业班级:姓名:学号:时间:地点:实验成绩:指导教师:一.实验目的1.掌握集成运算放大器的正确使用方法。

2.掌握用集成运算放大器构成各种基本运算电路的方法。

3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。

二.实验元器件类型型号(参数) 数量 集成运算放大器 1片 电位器 1k Ω 1只 电阻 100k Ω 2只; 10k Ω 3只; 5.1k Ω 1只; 9k Ω 1只 电容 0.01μf 1只三、预习要求1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。

2.写出上述四种运算电路的vi 、vo 关系表达式。

3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。

4.自拟实验数据表格。

四.实验原理及参考电路本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。

1. 反向比例运算反向比例运算电路如图1所示,设组件LM324为理想器件,则图1 反向比例运算电路原理图其输入电阻1R R if ≈,图中1//R R R f ='。

由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。

在选择电路参数是应考虑:○1根据增益,确定f R 与1R 的比值,因为 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。

若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。

○2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。

实验1 运算放大器的基本应用

实验1 运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:电子电路实践第1次实验实验名称:运算放大器的基本应用院(系):专业:姓名:学号:实验室: 104 实验组别:\同组人员:\ 实验时间:2011年3月31日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、带宽的测量方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、了解运放调零和相位补偿的基本概念;5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。

二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

2、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)原理图(2) 参数选择计算电源电压为±15V ,R1=10k Ω,R F =100k Ω,R L =100k Ω,R P =10k//100k Ω。

运放的理论放大倍数为0110F u i u RA u R ==-=- (3) 仿真结果A )0.5V 直流电压如图,输入为0.2V ,输出-2.001V ,反相放大了10倍,符合理论值。

B )2V 直流电压如图,输入为2V直流电压,输出为13.005V直流电压,由于输出电压超过电源电压,故只能输出13V的电压。

C)0.5V,1kHz的正弦交流信号如图,CH1为输入信号,为200mV;CH2为输出信号,为2V,放大10倍,且两者反相D)2V,1kHz的正弦交流信号如图,输入电压为2V,输出为10V,由于输出正弦信号中包含了超过电源电压部分的波形,故最大电压为10V,出现失真现象。

运算放大器的作用

运算放大器的作用

运算放大器的作用运算放大器是一种特殊的放大器芯片,用于将微弱的输入信号放大到适合于后续处理的级别。

它在各种电子设备中广泛应用,包括通信系统、音频设备、仪器仪表和自动控制系统等。

运算放大器具有以下主要的作用:1. 放大信号:运算放大器主要作为信号的放大器使用。

它能够将微弱的输入信号放大到较高的电压或电流级别,以便于后续的处理和分析。

由于运算放大器本身具有高增益和高输入阻抗,所以能够实现对信号的精确放大。

2. 实现数学运算:运算放大器可以通过不同的电路连接方式,实现各种数学运算功能。

例如,通过负反馈电路连接,可以实现加法、减法、乘法和除法等运算。

这种能力使得运算放大器可以广泛应用于信号处理、控制系统和计算设备等领域。

3. 产生参考电平:运算放大器可以通过调整反馈电阻的比例,产生一个固定的参考电平。

这个参考电平可以作为其他电路的输入参考,用于比较、测量和判断等操作,从而实现更加精确的信号处理和控制。

4. 调节电压和电流:运算放大器可以通过负反馈电路实现对电压和电流的调节。

通过调整反馈电阻、输入电阻和输入电压等参数,可以实现对输出电压和电流的精确控制。

这种能力使得运算放大器在自动控制系统、调节电路和功率放大器等应用中非常重要。

5. 提供高输入阻抗:运算放大器具有非常高的输入阻抗,通常在百万到千万欧姆的范围内。

这种高输入阻抗可以有效减少输入信号源和电路之间的负载效应,从而保持输入信号的稳定性和精确性。

同时,高输入阻抗还能够避免对输入信号源的损耗,提高了系统的灵敏度和测量范围。

总的来说,运算放大器在电子设备中的作用是非常重要的。

它不仅可以实现信号的放大和精确处理,还能够提供参考电平、调节电压和电流,并具有高输入阻抗等特性。

这些功能使得运算放大器成为现代科技领域中不可或缺的一部分,并在各种应用场合中发挥着至关重要的作用。

东南大学模电实验报告模拟运算放大电路

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心实 验 报 告课程名称: 模拟电路实验第 一 次实验实验名称: 模拟运算放大电路(一) 院 (系): 专 业: 姓 名:学 号:实 验 室: 实验组别: 同组人员: 实验时间: 评定成绩: 审阅教师:实验一 模拟运算放大电路(一)一、实验目的:1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

2、 熟练掌握运算放大电路的故障检查与排除方法,以及增益、传输特性曲线的测量方法。

3、 了解运放调零与相位补偿的基本概念。

二、实验原理:1、反向比例放大器反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。

R 的取值则应远大于信号源v i 的内阻。

若R F = R ,则为倒相器,可作为信号的极性转换电路。

2、电压传输特性曲线F V R A =-R双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。

电压传输特性在实验中一般采用两种方法进行测量。

一种就是手工逐点测量法,另一种就是采用示波器X-Y方式进行直接观察。

示波器X-Y方式直接观察法:就是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X通道,电路的输出信号加到示波器的Y通道,利用示波器X-Y图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以测量相关参数。

具体测量步骤如下:(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。

(2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察与读数。

一般取50~500Hz 即可。

(3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的就是在X-Y 方式下,X 通道的耦合方式就是通过触发耦合按钮来设定的,同样也要设成DC。

(4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。

实验集成运算放大器的基本应用(1)

实验集成运算放大器的基本应用(1)

实验集成运算放大器的基本应用(1)
实验集成运算放大器的基本应用
集成运算放大器是一种常用的基础电路元件,一般用于信号放大、数
字电路和控制系统等领域。

本文将从以下几个方面讲解实验集成运算
放大器的基本应用。

一、线性放大器
实验线性放大器是集成运算放大器最基本的应用之一,它可以将输入
的信号通过集成运放的放大倍数实现信号的放大,从而输出较大的信
号值。

线性放大器是控制系统、通信电路和电子测量等领域中最基础
的电路基础。

二、滤波器
实验集成运算放大器还可以作为滤波器,用于抑制或增强信号的某些
频率分量。

滤波器可以分为低通滤波器、高通滤波器、带通滤波器和
带阻滤波器。

对于不同的信号处理需求,可以选择不同类型的滤波器。

三、非线性电路
实验集成运算放大器还可以被用于非线性电路,例如比较器和开关。

比较器可以将输入信号的电位与参考电位进行比较,从而输出一个高
电平或低电平的信号。

开关可以实现对大电流或高功率负载的开关。

四、正弦波振荡器
实验集成运算放大器也可以用作正弦波振荡器。

使用反馈网络和集成运放,可以产生正弦波。

正弦波振荡器被广泛用于电子信号发生器和精密测量仪器中。

五、稳压电源
实验集成运算放大器还可以用作稳压电源。

稳压电源通过将输入电压调节成稳定的输出电压,从而实现对电路的稳定控制。

这对于需要稳定电压的电路非常重要。

以上是实验集成运算放大器的基本应用,希望对初学者有所帮助。

需要注意的是,在实验过程中应安全使用电路元件,确保安全性。

模电实验--集成运算放大器的基本应用

模电实验--集成运算放大器的基本应用

2.7集成运算放大器的基本应用一.实验目的(1)了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

(2)掌握集成运算放大器的基本应用,为综合应用奠定基础。

(3)进一步熟悉仿真软件的应用。

二.实验原理及电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。

当外部接入由不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活的实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

在大多数情况下,将运放视为理想的,即在一般地讨论中,以下三条基本结论是普遍适用的:(1)开环电压增益V A =∞。

(2)运算放大器的两个输入端电压近似相等,即V V +-=,称为“虚短。

(3) 运算放大器同相和反相两个输入端的电流可视为零,即I I +-==0,称为“虚断”。

应用上述理想运算放大器三条基本原则,可简化运算放大器电路的计算,得出本次实验的结论。

1. 基本运算电路(1) 反相比例运算电路。

电路如图2.7-1所示。

对于理想运算放大器,该电路的输出电压与输入电压之间的关系为01f i R V V R =-为了减小输入级偏执电流引起的运算误差,在同相输入端应接入平衡电阻21//f R R R =。

2.7-1反响比例运算电路(2) 同相比例运算电路。

图2.7-2(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为01(1)f i R V V R =+,21//f R R R =当1R →∞时,0i V V =,即得到如图2.7-2(b )所示的电压跟随器。

图中2f R R =,用以减小漂移和起保护作用。

一般f R 取10k Ω,f R 太小起不到保护作用,太大影响跟随性。

图2.7-2(a )同相比例运算电路 (b )电压跟随器(3) 反相加法电路。

电路如图2.7-3所示,输出电压与输入电压之间的关系为01212()f f i i R R V V V R R =-+,321////f R R R R = 当21fR R R ==时,012()i i V V V =-+。

2016东南大学模电实验1运算放大器的基本应用

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图1.1 反相输入比例运算电路LM324 管脚图1)图1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

按图连接电路,输入直流信号Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同Ui 时的Uo 值,列表计算Au 并和理论值相比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:******实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。

二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。

3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。

三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图1.1 反相输入比例运算电路LM324 管脚图1)图1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。

按图连接电路,输入直流信号Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同Ui 时的Uo 值,列表计算Au 并和理论值相比较。

其中Ui 通过电阻分压电路产生。

Ui/V Uo/VAu测量值理论值-213.365-6.6825\-0.5 5.06-10.12-100.5-4.92-9.84-102-13.964-6.982\分析:根据数据表格可知,当Ui小于1.5V时,放大倍数与理论值10倍基本一致;当超过1.5V时,如表格中的2V,其放大后的理论值Uo应为-20V,但是由于电源电压为+15V和-15V,根据放大器的性质,不能提供比电源电压更高的电压,所以最大也只能在13-14V,比电源电压略小1-2V。

2)Ui 输入0.2V(有效值)、1kHz 的正弦交流信号,在双踪示波器上观察并记录输入输出波形,在输出不失真的情况下测量交流电压增益,并和理论值相比较。

注意此时不需要接电阻分压电路。

可以看到,此时输入电压有效值为215mV,输出电压有效值为2.01V,放大倍数基本上与理论值10倍相符,而且可以看到,此时输出与输入波形相位相反,符合反向放大比例电路的作用。

3)输入信号频率为1kHz 的正弦交流信号,增加输入信号的幅度,测量最大不失真输出电压值。

此时输入电压的有效值为1.01V,输出电压的有效值为10.0V,仍满足10倍的放大倍数。

但可以看到,输出电压的波峰部分已开始变形,变得较平,说明已经达到了最大不失真的电压值,而随后增大输入电压,观察到输出电压的放大倍数也渐渐小于10倍,说明输出电压有效值为10V时为最大不失真电压。

4)用示波器X-Y 方式,测量电路电压的传输特性曲线(教师当堂验收),计算传输特性的斜率和转折点值。

注:由于拍摄时使用的是1kHz,所以图像右下角有重影的部分,事实是当调整为100-500Hz时,图像会很清晰,但数据仍然不变,特此说明。

由图可知,输出电压当达到转折点上限13.30V和下限-13.80V时,电压便不再变化,呈现出水平的直线,这表明了最大输出电压需满足低于电源电压1-2V的条件。

同时可以观察到在当输入电压在-1.270V到1.510V之间时,X-Y图像呈现为斜线,通过计算得到斜率为-9.748,这与理论的放大倍数-10十分接近。

5)电源电压改为±12V,重复(3)、(4),并对实验结果进行分析比较。

当电源电压改为正负12V时,理论上最大不失真电压将相应的减小,而X-Y图像中的转折点上下限电压也会相应减小,斜率将会不变,而事实也的确是这样。

此时输入电压的有效值为821mV,输出电压的有效值为8.08V,略微小于10倍的放大倍数。

但可以看到,输出电压的波峰部分已开始变形,变得较平,说明已经达到了最大不失真的电压值,而随后增大输入电压,观察到输出电压的放大倍数也渐渐小于10倍,说明输出电压有效值为8.08V时为最大不失真电压。

注:此时已调整为100Hz,图像很清晰,而且无重影,与之前1kHz的图像形成鲜明对比。

由图可知,输出电压当达到转折点上限10.90V和下限-11.50V时,电压便不再变化,呈现出水平的直线,这表明了最大输出电压需满足低于电源电压1-2V的条件。

同时可以观察到在当输入电压在-1.030V到1.150V之间时,X-Y图像呈现为斜线,通过计算得到斜率为-10.275,这与理论的放大倍数-10十分接近。

斜率基本不变。

6)重新加负载(减小负载电阻RL),使RL=220Ω,测量最大不失真输出电压,并和RL=100 kΩ数据进行比较,分析数据不同的原因。

(提示:考虑运算放大器的最大输出电流)。

当RL=220Ω时,此时电源电压为正负15V,测量出来的最大不失真电压有效值为5.58V,比RL=100kΩ的最大不失真电压值10.0V小了将近5V。

原因分析:由于输出电压是通过运放的输出电流乘以负载得到的,但运放是有最大输出电流的限制,这也就意味着当负载很小的时候,运放输出电流达到最大值后,输出电压将会受限。

由LM324的数据表知最大输出电流为60mA,通过计算可知V=60mA×220Ω=13.2V理论上的最大值为13.2V,小于100kΩ时的最大值15V(电源电压),所以实际上也会小于100kΩ时的10.0V。

注:实际使用220Ω的电阻作为负载时,电路工作一段时间后,此电阻产热很大,消耗的功率也很大,比较直观的表示为烫手。

内容二:1)设计一个同相输入比例运算电路,放大倍数为21,且RF=100 kΩ。

输入信号保持Ui=0.1Vpp 不变,改变输入信号的频率,在输出不失真的情况下,测出上限频率fH 并记录此时的输入输出波形,测量两者的相位差,并做简单分析。

此时的输入电压峰峰值为112mV,输出电压峰峰值为2.32V,放大倍数为20.71,与要求的21倍基本一致。

此时的频率为1kHz,下面开始提高频率,测量上限截止频率。

可以看到,当频率提高到71kHz时,输入电压峰峰值为106mV,基本不变;输出电压峰峰值为1.64V,放大倍数为15.5倍,与上限截止频率要求的放大倍数21×0.707=14.847基本一致,而利用multisim仿真中扫频仪可得,上限截止频率大约为50kHz,考虑到理论与实际的误差,结果基本相符。

调整时基旋钮使波形尽可能展开便于测量,通过光标读数和计算可知,相位差为滞后相位φ=2.320us14.08us×360o=59.32°由扫频仪的相频曲线仿真可知:理论值为58.921°,与实际测量的结果59.32°非常接近。

2)输入信号为占空比为50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。

=0.328V/us由转换速率的计算公式得:S R=1.64V5us与数据表上的0.5基本一致。

3)将输入正弦交流信号频率调到前面测得的fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不象正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。

此时频率为上限截止频率71kHz,输出波形波峰部分较尖,已经不太像正弦波了=0.374V/us由转换速率的计算公式得:S R= 2.64V7.05us与数据表上的0.5基本一致。

4)RF 改为10 kΩ,注意调整RP 的阻值,重复内容二(1)(2)。

列表比较前后两组数据的差别,从同相比例放大器增益计算、增益带宽积等角度对之进行分析。

并总结在高频应用中该如何综合考虑增益带宽积和转换速率对电路性能的影响。

由计算可知此时放大倍数为3倍。

同上,可以计算出此时的相位差为滞后137.8°。

=0.454V/us由转换速率的计算公式得:S R= 1.58V3.480us与数据表上的0.5基本一致。

可以看出,当电阻为10kΩ时,上限截止频率、相位差和转换速率都比电阻为100 kΩ时大。

由于LM324的增益带宽积为1.2MHz,这也就意味着增益和带宽的乘积的最大值为1.2MHz,放大倍数越小,增益带宽越大。

如果超过该数值,增益的倍数就会相应减小。

通过计算21×0.707×71kHz=1.05MHz3×0.707×602.4kHz=1.28MHz得到的增益带宽积基本与1.2MHz一致。

内容三:设计电路满足以下加法运算关系(预习时设计好电路图,并用Multisim软件仿真) :U O=−2U i1+5U i2Ui1接入方波信号,方波信号从示波器的校准信号获取(模拟示波器的校准信号为1KHz、1V(峰峰值)的方波信号,数字示波器的校准信号为1KHz、5V(峰峰值)的方波信号),Ui2 接入5kHz,0.1V(峰峰值)的正弦信号,用示波器观察输出电压Uo的波形,画出波形图并与理论值比较。

实验中如波形不稳定,可微调Ui2的频率。

通过仿真可得:通过示波器显示为:通过比较,数据基本一致,并且符合题意。

2.提高要求设计一个运算电路,满足运算公式u o(t)=101100u i(t)+100∫u i(t)dt+110000du i(t)dt1)写出具体的设计过程,比例、积分、微分的系数可以有所不同,请考虑不同的系数对设计输出有何影响?考虑到PID各波形幅度对整体波形的影响,此处调整了PID的系数,调整为u o(t)=101100u i(t)+10000∫u i(t)dt+10−6du i(t)dt2)分别观察比例-积分,比例-微分,积分-微分,比例-积分-微分运算电路的波形,并进行分析比较,各算式系数对波形的影响。

比例-积分(PI)比例-微分(PD)积分-微分(ID)比例-积分-微分(PID)PID各部分影响:比例:使波形呈现双极性方波形态积分:使波形呈现三角波形态微分:使波形呈现上下振荡衰减且频率高的三角波形态四、实验总结1.模电第一个实验,从着手设计到现在完成报告,前前后后花了两周时间,也从这里面学到不少。

相关文档
最新文档