14讲 傅里叶级数解析

合集下载

傅里叶级数通俗解析

傅里叶级数通俗解析

=
=
=0 (n,m=1,2,3,…,n ) 当 n=m 时
=
= 最后证明两个是不同名的三角函数的情况


,把

代入(1)得
=
=
=0
(n,m 为任意整数)
因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个
皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满
足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备
息就喷涌而出。根据所叠加的不同三角函数的 不同,我们可以以 为 x 轴,作
频率谱线,研究一个信号所叠加的不同频率。根据所叠加的不同三角函数的 不
同,我们还可以以 为 x 轴,作相位谱线,研究一个信号中的不同相位角。
7
本人才疏学浅,在学习和理解的时候借助了网络的一些图片以及文集,得 到了启发。我摘抄了网上的一张图片,希望能形象的阐明傅里叶级数在物理中 的意义。
傅里叶级数通俗解析
-CAL-FENGHAI.-(YICAI)-Company One1
傅里叶级数
本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级 数代表的物理含义。
1.完备正交函数集
要讨论傅里叶级数首先得讨论正交函数集。如果 n 个函数
,… 构成一个函数集,若这些函数在区间
上满足
如果是复数集,那么正交条件是
杨煜基 2016 年 3 月
8

化简合并得到
(8) 对于(8)式。其中的参数有


(8)式可化成
(9) 6
(9)式就是傅里叶级数的复指数形式。 现在求 ,将上式两边同乘 ,并在一个周期内求积分得:
当 m=n 时

傅里叶级数原理

傅里叶级数原理

傅里叶级数原理1. 简介傅里叶级数原理是分析不规则周期信号最重要的工具之一。

在数学、物理、工程等领域中广泛应用。

它的核心思想是:任何周期信号都可以表示为一系列基频为整数倍的正弦和余弦函数叠加而成。

这些正弦和余弦函数在傅里叶级数中被称为谐波分量。

2. 傅里叶级数的定义设周期为T的函数f(t)在一个周期内满足可积且连续,则它可以表示为以下形式的级数:f(t)=a0/2+ Σ [an*cos(nωt)+bn*sin(nωt)]其中,ω=2π/T,an和bn是傅里叶系数,a0/2是等于f(t)在一个周期内的平均值。

可以看出,f(t)的傅里叶级数展开式是一组带有不同频率的正弦和余弦函数的和。

3. 傅里叶级数的意义通过傅里叶级数展开式,我们可以得到一个正弦和余弦函数的频域图像。

从这个频域图像中,我们可以得到一些信息,比如信号中哪些频率成分占比较高,哪些成分占比较低。

甚至可以根据这些信息对原始信号进行重建或修正。

具体地说,如果从一个连续不依赖于时间的物理现象中获得一段周期数据,那么可以通过法力级数的计算来确定信号包含的基本频率,并且据此对信号进行频谱分析。

频谱分析可以帮助我们更好地理解和利用信号,比如音频和视频信号的处理。

4. 傅里叶级数的应用在数学中,可以用傅里叶级数来解决微分方程的边界条件问题、傅里叶级数的离散化应用——快速傅里叶变换在信号处理中大量应用,还可以用于数值匹配。

在物理学中,傅里叶级数主要应用于波的传播和放大中,可以确定波的频率,方法是通过光谱来确定。

在光学领域中,傅里叶级数被广泛应用于计算机成像,用于抵消扰动、组合图像等。

在工程实践中,傅里叶级数也具有重要的应用价值。

特别是对于电子和通信工程师来说,傅里叶级数和傅里叶变换是必不可少的工具。

它们可用于信号处理、控制、数据分析和通信等领域。

傅里叶级数的应用不仅局限于上述领域,在音乐节拍分析、图像处理、机器学习等领域中都得到广泛应用。

5. 总结无论是在理论研究还是在工程实践中,傅里叶级数都是一个非常重要的工具。

傅里叶级数通俗解析

傅里叶级数通俗解析

傅里叶级数本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。

1.完备正交函数集要讨论傅里叶级数首先得讨论正交函数集。

如果n个函数,…构成一个函数集,若这些函数在区间上满足如果是复数集,那么正交条件是为函数的共轭复函数。

有这个定义,我们可以证明出一些函数集是完备正交函数集。

比如三角函数集和复指数函数集在一个周期内是完备正交函数集。

先证明三角函数集:设,,把代入(1)得当n时===0 (n,m=1,2,3,…,n)当n=m时==再证两个都是正弦的情况设,,把代入(1)得当n时===0 (n,m=1,2,3,…,n)当n=m时==最后证明两个是不同名的三角函数的情况设,,把代入(1)得===0 (n,m为任意整数)因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。

至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。

证毕。

由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。

接着是复指数函数集的证明设,,则把代入(2)得当n时,根据欧拉公式==0 (n,m=1,2,3,…,n)当n=m时,=1 (n,m=1,2,3,…,n)所以,复指数函数集也是正交函数集。

因为n,m的取值范围是所有整数,所以复指数函数集是完备的正交函数集。

明明是讨论傅里叶级数,为什么第一部分在阐述完备正交函数集呢。

因为,在自然界中,没有规则的信号,比如说找一个正弦信号,是完全不可能找到的。

有的是一堆杂乱的信号,无规律的波形。

我们要研究它,基本的思想是把它拆分,分解成一个一个有规律的可研究的波形,这些波形能用数学表达式准确表达出来。

把一个复杂的信号分解的过程,可以理解成用已知的可以准确表达的函数表示他,比如一个复杂的信号把它分解,就是其中,…是我们所熟悉的函数,比如二次函数,一次函数,三角函数,指数函数等等。

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第15章 傅里叶级数§ 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , , , , n x x x线性表出而得.不妨称2{1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π[,]ππ-上按 段光滑,则x R ∀∈,有 ()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰ 2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得2222000118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,2222011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰2222200224cos cos d |x nx nx x n n n ππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰, 所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰. 当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a bn π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n c b f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,()cos d ()cos d n a f x nx x f x nx xπππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰11(1)()cos d n f x nx xππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=, 所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.()sin d ()sin d n b f x nx x f x nx xπππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,201sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系.但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1) (),022x f x x ππ-=<<; (),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得2200011()d d 02x a f x x x πππππ-===⎰⎰. 当1n ≥时, 220011cos d d(sin )22n x x a nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰, 所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2) ()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰0sin d sin d 22x x x x ππ-=+=.当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππ-=+=.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxn∞==-,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<; 解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24a n =,2201()sin d n b ax bx c nx xππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23a ax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n a n =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a bnx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx x n n ππππππ--=-⎰ 21sh d(cos )x nx n πππ-=⎰ 2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n n ππ=--,所以22sh (1)(1)nn a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰ 2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰ 122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n nb n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n nπ∞==∑.解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n n u x n a nx n b nx'≤+n n n a n b ≤+22M n ≤.而22Mn ∑收敛, 所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑. 其中 1()cos ,l n l n x a f x dx l l π-=⎰1()sin l n l n x b f x dxl l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n x a f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰.从而01()2n n a f x a ∞=+∑由此可知,函数(),(0,)f x x l∈偶延拓() (0,)()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--.2222222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π); 解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.2222由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x xππ-⎛⎫=⎪⎝⎭⎰24311cos 2cos 4d 828x x x ππ⎛⎫=-+⎪⎝⎭⎰34=.当1n ≥时,24311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰ 4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x x π+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪⎪⎝⎭⎝⎭⎰.当1n ≥时,02cos d 2n a x nx xπππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰11cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰240211(1)cos d (3)cos d 2424n x n xx x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.2arcsin(sin )sin d n b x nx xππ=⎰20222sin d ()sin d x nx x x nx xππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1) 211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑ 1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()22221()d 2mn n n af x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.。

傅里叶级数和函数公式

傅里叶级数和函数公式

傅里叶级数和函数公式傅里叶级数是十九世纪初第二次工业革命时期最重要的数学发现之一,它也被称为“傅里叶级数理论”。

它是由法国数学家约瑟夫傅里叶于1822年首次提出的。

傅里叶级数可以用来描述一个函数的一般表示形式,或者更大的形式。

简单来说,傅里叶级数定义了一个易于表示和分析的函数公式,该公式用于将任意函数表示为无穷多的正弦和余弦函数的和。

傅里叶级数的基本思想是将一个连续的、可积分的周期函数的值表示为一系列的正弦和余弦函数的加权和。

另外,傅里叶级数还可以用来表示非周期函数,即使这些函数没有看上去有任何规律。

傅里叶级数的主要思想是:把一个函数形式地分解成无穷多个正弦和余弦函数的加权和。

傅里叶级数在许多领域,如比较分析学、通讯学和信号处理学中都有应用。

比如,在数字图像处理中,可以使用傅里叶变换来处理图像信号。

在通讯学中,可以使用傅里叶级数来分解信号,以便进行更精确的处理。

傅里叶级数的函数公式可以表示为:f (x) = a_0 + sum_{n = 1}^{infty} left[ a_n cos left( frac{n pi x}{L} right) + b_n sin left( frac{n pi x}{L} right) right] 其中,a_0 为常数项,a_n b_n变量系数,L 为周期长度。

在特定的函数中,系数 a_n b_n值可以通过傅里叶级数定理进行计算。

比如,若 f (x) 为一个周期为 L函数,则其系数 a_n b_n值分别可以表示为:a_n = frac{2}{L} int_{0}^{L} f (x) cos left( frac{n pi x}{L} right) , dxb_n = frac{2}{L} int_{0}^{L} f (x) sin left( frac{n pi x}{L} right) , dx而 a_0可以表示为:a_0 = frac{1}{L} int_{0}^{L} f (x) , dx从上面的公式可以看出,傅里叶级数的系数 a_n b_n际上是函数 f (x)正弦和余弦函数上的加权和。

傅里叶级数分析

傅里叶级数分析

c2
c2 1
2 0.25 π
20
1
O
1
2 1
1
O
2 1
0.15π
X
化为指数形式
1 j 1t f (t ) 1 e e j 1t 2j


π π 2 j t 2 j n t 1 1 2 j 1t 1 j 1 t 4 4 e e e e 2 整理 2 π j 1 j 1t 1 j 1t 1 jπ 1 4 j 2 1 t 4 j 2 1 t f (t ) 1 1 e 1 e e e e e 2 j 2 j 2 2
1.复指数正交函数集 e j n 1 t 2.级数形式 3.系数 利用复变函数的正交特性
f (t )
n


n 0 , 1, 2
j n 1 t F ( n ) e 1
4
F ( n )
1
T1
0 T1 0
f ( t ) e j n 1 t d t e j n 1 t e j n 1 t d t
1 T1 f (t )e j n1t d t T1 0
5
16
说明
f (t )
n
F ( n

1
)e
j n 1 t
4
5
1
1 T1 F n1 f (t ) e j n1t d t T1 0
周期信号可分解为 的线性组合。
, 区间上的指数信号e jn t
• 指数信号与正弦信号具有相同的特性
• 由系统的组成来说:当输入为指数信号时, 系统的输出一定也是一个指数信号,只不 过指数信号幅值发生变化。

傅里叶级数总结

傅里叶级数总结

傅里叶级数总结傅里叶级数是数学中非常重要的概念之一,它在物理、工程、信号处理等领域都有广泛的应用。

本文将以傅里叶级数为主题,介绍傅里叶级数的定义、性质和应用。

让我们来了解一下傅里叶级数的定义。

傅里叶级数是由法国数学家傅里叶在19世纪初提出的,用于描述周期函数的一种方法。

对于一个周期为T的函数f(t),傅里叶级数将其表示为一组正弦函数和余弦函数的线性组合。

具体地说,傅里叶级数可以写成以下形式:f(t) = a0 + Σ(a_n*cos(nωt) + b_n*sin(nωt))其中,a0是常数项,a_n和b_n是傅里叶系数,n是正整数,ω是角频率,ω=2π/T。

傅里叶级数有许多重要的性质。

首先,傅里叶级数可以用于表示任意周期函数,不论其形状如何。

其次,傅里叶级数是线性的,即如果一个函数可以表示为两个函数的傅里叶级数之和,那么这个函数的傅里叶级数也可以表示为这两个函数傅里叶级数的和。

此外,傅里叶级数还具有很好的逼近性质,即当级数中的项数足够多时,级数可以无限接近原函数。

傅里叶级数在物理、工程和信号处理中有广泛的应用。

首先,在物理学中,傅里叶级数可以用于描述振动和波动现象,例如声波、光波和电磁波等。

其次,在电路分析和电子工程中,傅里叶级数可以用于分析交流电路中的电压和电流信号。

此外,傅里叶级数还可以在图像处理和数据压缩中应用,通过将图像或数据分解为傅里叶级数的组成部分,可以实现对图像和数据的压缩和恢复。

虽然傅里叶级数在理论和应用中都有很大的成功,但是它也有一些局限性。

首先,傅里叶级数要求函数是周期的,这在某些情况下可能不成立。

其次,傅里叶级数在描述非周期函数时可能需要无限多个项,这导致计算和处理的复杂性增加。

为了解决这些问题,人们提出了傅里叶变换和离散傅里叶变换等概念,它们可以处理非周期函数和离散信号,并且具有更广泛的应用领域。

傅里叶级数是一种重要的数学工具,用于描述周期函数,并在物理、工程和信号处理等领域有广泛的应用。

傅里叶级数课件分解

傅里叶级数课件分解
若两个函数


上可积, 且
则称

在பைடு நூலகம்
上是正交的, 或在
上具有正
交性. 由此三角函数系(4)在
上具有正交性.
或者说(5)是正交函数系.
现应用三角函数系(5)的正交性来讨论三角级数(4)
的和函数 f 与级数(4)的系数
之间的关系.
定理12.2 若在[-π,π]上
且等式右边级数一致收敛, 则有如下关系式:
光滑弧段所组成,它至
收敛定理指出, f 的傅里叶级数在点 x 处收敛于 在
该点的左、右极限的算术平均值
而当 f 在点 x 连续时,则有
即此时f的傅里叶级数收敛于
. 这样便有
上按段光滑, 则 f 的傅里叶级数在
上收敛
于 f .
推论 若 f 是以 为周期的连续函数, 且在
上每一点都存在
, 如果在不连续
点补充定义
, 或
, 则
还有
(iii) 在补充定义

上那些至多有限个不存在
导数的点上的值后 ( 仍记为
),
在[a, b]上可积.
从几何图形上讲, 在
区间[a, b]上按段光滑
光滑函数,是由有限个
多有有限个第一类间
断点 (图15-1).
时,
于是当
当 时, 级数收敛到 0( 实际上级数每一项都为 0 ).
为进一步研究三角级数(4)的收敛性, 先讨论三角函
数系 (5) 的特性. 首先容易看出三角级数系(5)中所
定理 12.1 若级数
其次, 在三角函数系(5)中, 任何两个不相同的函数

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。

傅里叶级数的展开与应用

傅里叶级数的展开与应用

傅里叶级数的展开与应用傅里叶级数是数学中一种重要的函数展开方法,可以将周期函数分解成一系列正弦和余弦函数的线性组合。

它在信号处理、图像处理、物理学等领域中有着广泛的应用。

本文将介绍傅里叶级数的定义、展开公式以及其在不同领域的实际应用。

一、傅里叶级数的定义及展开公式傅里叶级数的基本思想是将一个周期为T的函数表示为一系列正弦和余弦函数的和,具体的定义如下:设f(t)是一个周期为T的函数,则其傅里叶级数可表示为:f(t) = a0/2 + Σ(an*cos(nω0t) + bn*sin(nω0t))其中,a0、an、bn为待定系数,ω0 = 2π/T是角频率,n为任意正整数。

傅里叶级数的展开公式包含了一个直流分量a0/2以及多个谐波成分(an*cos(nω0t)和bn*sin(nω0t))。

这些谐波成分的频率是基频f0=1/T的整数倍,并且其振幅和相位由系数an和bn决定。

二、傅里叶级数的应用1. 信号处理中的应用傅里叶级数在信号处理中有着广泛的应用。

通过对信号进行傅里叶级数展开,可以将信号分解成不同频率的谐波成分,方便进行频域分析。

例如,在音频处理中,可以使用傅里叶级数将复杂的声音信号分解成一系列的基波和谐波,进而实现声音合成、滤波以及音频效果的提取。

2. 图像处理中的应用在图像处理中,傅里叶级数同样扮演着重要的角色。

通过对图像进行傅里叶变换,可以将其转换到频域,从而实现图像的频域滤波、频谱分析和图像增强等操作。

傅里叶级数的展开公式为图像处理提供了一种有效的数学表示方法,为图像的压缩编码、变换以及特征提取提供了基础。

3. 物理学中的应用在物理学中,傅里叶级数的应用广泛而深入。

通过将物理量表示为傅里叶级数的形式,可以简化问题的处理,并得到物理系统的稳定解。

例如,在波动力学中,可以利用傅里叶级数展开波函数,从而研究波的传播与干涉;在热传导中,可以使用傅里叶级数解析热量的传递与分布。

4. 工程中的应用傅里叶级数在工程中也有着广泛的应用。

如何理解傅里叶级数

如何理解傅里叶级数

如何理解傅里叶级数傅里叶级数是一种非常重要的数学工具,用于分析周期性信号。

它的概念由法国数学家傅里叶在18世纪末提出,经过两个世纪的发展和完善,已经成为了现代物理学、工程学、计算机科学等领域中不可或缺的数学方法之一。

傅里叶级数的核心思想是将一个周期性函数表示为一系列正弦和余弦函数的线性组合。

具体来说,对于一个周期为T的函数f(t),可以将其表示为以下形式的级数:f(t) = a0 + Σ(an cos(nωt) + bn sin(nωt))其中,a0、an和bn是常数,ω是角频率,n是正整数。

这个级数中的每一项都是一个正弦或余弦函数,而这些函数的频率是ω/n。

傅里叶级数告诉我们,一个周期性函数可以由不同频率的正弦和余弦函数组成,而这些函数在一起又可以还原成原始函数。

为了求解傅里叶级数的系数a0、an和bn,我们可以利用傅里叶级数的正交性质。

具体来说,正弦和余弦函数在一个周期上的积分等于0,除非它们具有相同的频率。

这意味着,我们可以通过对原始函数进行积分和乘法操作,与正弦和余弦函数相乘后再在一个周期上积分,来计算出傅里叶级数的系数。

傅里叶级数在物理学中有着广泛的应用。

例如,在声音分析中,我们可以将一个复杂的声音信号分解成多个不同频率的正弦波,从而得到声音的频谱信息。

在图像处理中,傅里叶级数可以将一个图像分解成不同频率的正弦和余弦模式,从而实现图像的压缩和特征提取。

在通信领域,傅里叶级数可以用来分析和合成信号,帮助我们设计和优化通信系统。

除了傅里叶级数,还有傅里叶变换和傅里叶级数的离散形式——离散傅里叶级数和离散傅里叶变换。

傅里叶变换将一个非周期性的函数表示为频域上的连续谱,而离散傅里叶级数和离散傅里叶变换则适用于离散信号的频谱分析。

总结一下,傅里叶级数是一种将周期性函数表示为正弦和余弦函数的线性组合的数学工具。

它的应用广泛,可以用于信号处理、图像处理、通信系统等领域。

通过傅里叶级数,我们可以将复杂的信号分解成简单的频率成分,从而更好地理解和处理这些信号。

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法傅里叶级数:理解傅里叶级数的概念和计算方法傅里叶级数是一种数学工具,用于将任意周期函数分解成一系列正弦和余弦函数的和。

它是由法国数学家傅里叶提出的,具有重要的物理和工程应用。

本文将介绍傅里叶级数的概念和计算方法。

一、傅里叶级数的概念傅里叶级数的核心思想是利用正弦和余弦函数的线性组合来表示周期函数。

对于一个周期为T的函数f(t),如果它满足一定条件(可积、狄利克雷条件等),则可以用以下公式表示:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待确定的系数,n表示正整数,ω=2π/T是角频率。

a0表示直流分量,即周期函数在一个周期内的平均值。

an和bn表示交流分量,分别代表正弦和余弦函数的振幅。

二、傅里叶级数的计算方法1. 计算a0:将周期函数在一个周期内的积分除以周期T即可得到a0。

2. 计算an和bn:将周期函数与正弦或余弦函数相乘后在一个周期内积分,最后除以周期T即可得到an或bn。

3. 根据需要确定级数的取舍:当n趋向于无穷大时,傅里叶级数能准确地还原原始函数。

但实际应用中,通常会根据需要截断级数,只考虑前几项的和来逼近原函数。

三、傅里叶级数的应用傅里叶级数在物理和工程领域有广泛的应用。

以下是一些常见的应用领域:1. 信号处理:傅里叶级数可以将信号分解成不同频率的分量,用于信号滤波、降噪等处理。

2. 电路分析:傅里叶级数可以将电路中的周期性电信号转化为频域上的分布,用于电路分析和设计。

3. 通信系统:傅里叶级数是调制和解调过程的基础,用于信号的传输和接收。

4. 图像处理:傅里叶级数在图像压缩、频域滤波和图像识别等方面有重要应用。

四、总结傅里叶级数是将任意周期函数分解成正弦和余弦函数的和的数学工具。

通过计算待确定的系数,可以将周期函数用傅里叶级数表示。

傅里叶级数在物理和工程领域的应用广泛,包括信号处理、电路分析、通信系统和图像处理等。

傅里叶级数的理解

傅里叶级数的理解

傅里叶级数的理解
一、傅里叶级数的定义
傅里叶级数是一种将周期函数表示为无穷级数的方法,它是由法国数学家约瑟夫·傅里叶在19世纪初提出的。

傅里叶级数是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合,其中每个正弦函数和余弦函数都具有一定的幅度和相位。

二、傅里叶级数的展开
傅里叶级数的展开是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合的过程。

三、傅里叶级数的三角形式
傅里叶级数的另一种表示形式是三角形式,它将每个正弦和余弦函数合并为一个三角函数形式。

这种形式更加简洁,并且可以更容易地看出函数的对称性和周期性。

四、傅里叶系数的计算
傅里叶系数的计算是傅里叶级数展开的关键步骤,它可以通过对函数的积分来得出。

五、傅里叶级数的收敛性
傅里叶级数是一个无穷级数,因此需要满足一定的条件才能收敛到原函数。

傅里叶级数推导

傅里叶级数推导

傅里叶级数推导
傅里叶级数是一种用正弦和余弦函数来表示周期性函数的方法。

这种方法将一个周期性函数分解为多个正弦和余弦函数的和,从而可以更好地理解和分析这种函数的特性。

傅里叶级数的基本思想是任何周期性函数都可以表示为正弦和余弦函数的组合。

这意味着我们可以用一系列不同振幅和频率的正弦和余弦函数来逼近任何周期性函数。

这种分解的过程称为傅里叶级数展开。

通过傅里叶级数展开,我们可以将一个周期为T的函数f(t)表示为无穷级数的形式:
f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))
其中,a0是直流分量,an和bn是函数f(t)的傅里叶系数,n是正整数,ω是基本频率,也就是2π/T。

傅里叶级数的展开式可以帮助我们更好地理解周期性函数的振幅和频率分布。

通过调节不同的傅里叶系数,我们可以改变正弦和余弦函数的振幅和频率,从而调整逼近函数的精度。

傅里叶级数在信号处理、通信工程、物理学等领域都有广泛的应用。

在信号处理中,傅里叶级数可以帮助我们分析复杂信号的频谱特性,从而更好地理解信号的特点和行为。

在通信工程中,傅里叶级数可以帮助我们设计滤波器、调制解调器等设备,从而实现信号的传输
和处理。

在物理学中,傅里叶级数可以帮助我们研究波动现象、振动现象等,从而揭示自然界的规律和定律。

总的来说,傅里叶级数是一种非常重要的数学工具,可以帮助我们分析周期性函数的特性,揭示信号的频谱特性,设计通信系统和物理系统,从而推动科学技术的发展。

通过深入学习和理解傅里叶级数,我们可以更好地应用它来解决实际问题,促进科学技术的进步。

傅里叶级数课程及习题讲解共14页word资料

傅里叶级数课程及习题讲解共14页word资料

第15章 傅里叶级数 §15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积, 称为函数()f x 的傅里叶系数,而三角级数 称为()f x 的傅里叶级数,记作这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若 [,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π为周期的连续函数,且在[,]ππ-上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x ∈当n ≥所以1n f =)为所求.(3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.由系数公式得 当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n xn ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有 从而2 1()cos d c n ca f x nx xππ+=⎰同理可得3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得 当1n ≥时,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得 当1n ≥时,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰, 又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时, 所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,又,m n ∀,m n ≠时,所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系. 实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<当n 所以1n n =,(0,2)x π∈为所求. (2) ()f x x ππ-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2()2xxf xxxππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得当1n≥时,所以211()cos41nf x nxn∞==-,(,)xππ∈-.而xπ=±时,(0)(0)()2f ffπππ±-+±+±,故211()cos41nf x nxn∞==-,[,]xππ∈-为所求.(3) 2(), (i) 02, (ii)f x ax bx c x xπππ=++<<-<<;解:(i)由系数公式得当1n≥时,故224()3af x ax bx c b cππ=++=++21442cos sin,(0,2)na a bnx nx xn nππ∞=++-∈∑为所求.(ii)由系数公式得当1n≥时,故222()3af x ax bx c cπ=++=+2142(1)cos(1)sin,(,)n nna bnx nx xn nππ∞=+---∈-∑为所求.(4) ()ch,f x x xππ=-<<;解:由系数公式得当1n≥时,所以22sh(1)(1)nnanππ=-+.所以0nb=,故21211()ch sh(1)cos21nnf x x nxnππ∞=⎡⎤==+-⎢⎥+⎣⎦∑,(,)xππ∈-为所求.(5) ()sh,f x x xππ=-<<.解:由系数公式得当1n≥时,1sh cos d0na x nx xπππ-==⎰.所以122sh(1)(1)nnn xbnπ+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得而2(00)(20)6f f ππ+=-=,故由收敛定理得9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 而22Mn∑收敛,所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积. 于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 从而 01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有 其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n x a f x x l l π-==⎰, 从而01()sin2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数要展开为余弦级数必须作偶延拓.偶延拓() (0,)()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x )是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得2222故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得 当1n ≥时,故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 当1n ≥时,故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞. 2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求. 5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,1202(1)cos d n a x n x xπ=-⎰所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于f 是偶函数,故其展开式为余弦级数.当n ≥所以2141()arcsin(cos )cos(21)(21)n f x x n xn π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:再把()f x 延拓到[0,2]π上,方法如下:其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下.再把()f x 延拓到[0,2]π上,方法如下.)x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()cos d 0n a f x nx x ππ==⎰所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则 其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则推论2 设()f x 在[,]ππ-上可积,则定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则定理5 如果()f x 在[,]ππ-按段单调,则二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,于是2(),()m m f x S f x S ε--<.而所以m N >时,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰, 即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑. 4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ 所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5 证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰, ()()f f ππ-=,且成立贝塞尔等式,则证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑,由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是由贝塞尔等式得 总练习题151 试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得 当1k ≥时,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2 设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x x ππ--⎰取最小值,且最小值为上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====,因为[]2()()d n f x T x xππ--⎰而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰,所以[]2()()d n f x T x x ππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为3 设f 为以2π周期,且具有二阶连续可微的函数,若级数n b ''∑绝对收敛,则证:因为()f x 为以2π周期,且具有二阶连续可微的函数,所以1()sin d nb f x nx xπππ-''''=⎰即211,n nn b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=故结论成立.4 设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1) ()()x x ϕψ-=; (2) ()()x x ϕψ-=-. 试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,(1) 则当()()x x ϕψ-=时, 0n ∀≥,(2) 当()()x x ϕψ-=-时,0n ∀≥,5 设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系 对于在[,]a b 上的可积函数f ,定义 证明21nn a∞=∑收敛,且有不等式 22 1[()]d bn an a f x x∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为则函数列{}()n x ϕ为标准正交系.令1()(),1,2,mm n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=,又 2 [()()]d b m af x S x x-⎰而11(),()(),()(),()mmn n n n n n n f x S x f x a x a f x x ϕϕ====∑∑于是222 1()d [()()]d 0mbn m an f x x a f x S x x ππ-=-=-≥∑⎰⎰,所以22 11,[()]d mbn a n m a f x x=∀≥≤∑⎰,即{}()m S x 有上界.故21nn a∞=∑收敛,且22 1[()]d bn an a f x x∞=≤∑⎰.。

傅里叶级数定理

傅里叶级数定理

傅里叶级数定理傅里叶级数定理是数学中的一项重要定理,它是法国数学家傅里叶在18世纪提出的。

傅里叶级数定理的中心思想是任意一个周期函数都可以表示成一系列三角函数的和,这些三角函数的频率是原周期函数的基本频率的整数倍。

这个定理在数学、物理和工程等学科中都有非常广泛的应用。

傅里叶级数定理的表述可以用以下方式来说明:设f(x)是一个周期为T的函数,那么f(x)可以展开成各个频率的三角函数幅度和相位逐渐递减的级数表达式。

这个级数中的三角函数是正弦函数和余弦函数,其频率为基频的整数倍。

傅里叶级数表达式如下:f(x) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]在这个公式中,A0是基频分量的直流分量,An和Bn分别是基频分量的余弦和正弦分量。

ω是基频角频率,n是频率的整数倍。

这个定理是非常重要的,因为它告诉我们任意周期函数都可以用无穷多个正弦和余弦函数来逼近。

这个逼近的程度可以通过级数中各个分量的幅度来控制。

如果级数中的幅度越大,那么逼近的程度就越高,而如果幅度趋近于零,那么函数的表示也就趋近于原函数。

傅里叶级数定理的应用非常广泛。

在数学领域,它可以用于解决各种泛函方程,比如热传导方程、波动方程和拉普拉斯方程等。

通过傅里叶级数的展开,我们可以将这些复杂的方程转化为简单的三角函数的运算。

在物理学中,傅里叶级数定理是研究振动和波动现象的重要工具。

通过将物理量表示为傅里叶级数,我们可以更好地理解光、声音等波动的性质。

在工程学中,傅里叶级数定理被广泛应用于信号处理和通信系统。

通过将信号进行频域变换,我们可以分析信号的频率成分,进而提取有用的信息。

傅里叶级数定理还有一项重要的推广,即傅里叶变换。

傅里叶变换是将一个非周期函数表示成一系列连续频谱的方法。

通过傅里叶变换,我们可以将信号从时域转换到频域,进而分析信号的频率特性。

傅里叶变换在数字信号处理、图像处理和音频处理等领域有着广泛的应用。

总结起来,傅里叶级数定理是数学中的一个重要定理,它告诉我们任意周期函数都可以表示成一系列三角函数的和。

傅里叶级数如何通过傅里叶级数实现各种函数展开求解问题

傅里叶级数如何通过傅里叶级数实现各种函数展开求解问题

傅里叶级数如何通过傅里叶级数实现各种函数展开求解问题傅里叶级数的应用广泛,不仅在数学领域中有着重要的地位,在物理、工程等应用领域中也有着广泛的应用。

本文将介绍傅里叶级数是什么,以及如何利用傅里叶级数实现各种函数展开求解问题。

一、什么是傅里叶级数傅里叶级数是一种将一个周期函数表示为一个三角函数级数的方法。

其中,周期函数可以表示为以下级数的形式:$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n\cos\frac{2n\pi}{T}x+b _n\sin\frac{2n\pi}{T}x)$$其中,$T$ 表示周期,$a_0$ 、$a_n$ 和 $b_n$ 是傅里叶系数。

将上式中的三角函数展开,可以得到以下式子:$$f(x)=\frac{a_0}{2}+a_1\cos(\frac{2\pi}{T}x)+b_1\sin(\frac{2\pi}{T} x)+a_2\cos(\frac{4\pi}{T}x)+b_2\sin(\frac{4\pi}{T}x)+\cdots$$根据傅里叶级数的定义,任意一个周期函数都可以表示为三角函数的级数和。

在具体的实践中,为了实现傅里叶展开函数,需要进行一系列的计算,包括通过傅里叶系数的计算、归一化等步骤实现。

二、如何通过傅里叶级数实现各种函数展开求解问题傅里叶级数可以应用于各种展开求解问题,以下是傅里叶级数的一些应用:1. 使用傅里叶级数实现周期函数的展开周期函数是一种特殊的函数,其在 $[-T/2,T/2]$ 区间内是一个循环函数,可以表示为傅里叶级数的形式。

通过傅里叶级数的展开,可以将周期函数表示为一系列三角函数的和,实现函数的展开操作。

根据展开后的三角函数,可以对周期函数进行各种分析操作,包括频域分析、时域分析等。

2. 使用傅里叶级数实现非周期函数的展开在实际生活中,有很多函数是非周期的,而傅里叶级数只适用于周期函数的展开。

为了实现非周期函数的展开操作,可以通过复合几个相邻的周期函数的方法来实现。

《傅里叶级数 》课件

《傅里叶级数 》课件

信号处理:用于 分析信号的频率 成分,如音频、 视频信号等
工程领域:用于 分析机械振动、 电磁场等物理现 象
数学物理:用于 求解偏微分方程、 热传导等问题
计算机科学:用 于图像处理、数 据压缩等领域
03 傅里叶级数的基本原理
三角函数的定义与性质
三角函数:正弦、余弦、正切、余切、正割、余割 定义:以直角三角形的边长和角度为基础定义的函数 性质:周期性、奇偶性、对称性、单调性 应用:傅里叶级数、信号处理、工程计算等
傅里叶级数的历史背景
傅里叶级数是 由法国数学家 傅里叶在1807
年提出的
傅里叶级数是 傅里叶分析的 基础,是研究 信号处理、图 像处理等领域
的重要工具
傅里叶级数在 数学、物理、 工程等领域有 着广泛的应用
傅里叶级数在 信号处理、图 像处理等领域 的应用,推动 了这些领域的
发展
傅里叶级数的应用领域
06
傅里叶级数的扩展与展 望
傅里叶变换的推广与应用
傅里叶变换在信号 处理中的应用
傅里叶变换在图像 处理中的应用
傅里叶变换在语音 识别中的应用
傅里叶变换在金融 分析中的应用
傅里叶分析在其他数学领域的应用
信号处理:傅里叶变换在信号处理领域有着广泛的应用,如滤波、频谱分析等。 数值分析:傅里叶级数在数值分析中用于求解微分方程、积分等。 概率论与统计学:傅里叶变换在概率论与统计学中用于分析随机信号、随机过程等。 量子力学:傅里叶变换在量子力学中用于描述量子态的演化和测量。
傅里叶级数的收敛性:傅里叶级数在满足一定条件下是收敛的 收敛条件:傅里叶级数的收敛性取决于其系数的绝对值之和是否收敛 证明方法:可以通过积分法、极限法等方法进行证明 收敛速度:傅里叶级数的收敛速度可以通过其系数的绝对值之和的收敛速度来衡量

数学分析第十四章课件傅里叶级数

数学分析第十四章课件傅里叶级数
P128:f (x) 在[a,b]逐段可微: 2. f (xi 0) 存在
逐段光华 3.广义左右微商存在,即
lim f (xi t) f (xi 0) ,lim f (xi t) f (xi 0) 存在
t 0
t
t 0
t
综合:得:
定理14.5 P128 若
f (x),T 2 在 [ , ] 逐段可微,则f (x) 的 Fourier级数
第十四章 Fourier级数
两类重要的函数项级数

幂级数 un x n0
三角级数
a0 2

n1
an
cos nx
bn
sin
nx
问题
三角级数 给定函数
收敛? 表示的函数 能否用三角级数表示
研究函数
(i) f x 满足什么条件,可以展开成三角级数
(ii) 若可以展开,展开式是什么形式?
f (x)

2
n1
(1)n1 sin nx n

f (x), 0,
x x

看P131图
例3
f (x) x2, x . 求其 Fourier 展开式。
解: 1).画图
2).求 Fourier 系数。f (x) 为偶函数,
bn

0, a0


2


x cos nxdx
2
0
n

sin nxdx
0
看P118图


4
n2
,
n 为奇数
0, n 为偶数
f (x) 4 cos(2n 1)x 4 (cos x cos 3x cos 5x ...)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、引入圆频率 令w02/T为圆频率,则函数f(t)的傅里叶级数可写成:
f (t ) a0 (ak cos kw0t bk sin kw0t ).
k 1
这说明,任何一个周期信号f(t)必定可以分解为直流成分a0和基波 成分(w0)以及高次谐波成分(kw0)之和。
3、空间坐标的傅里叶级数
a
函数f(x)的模定义为
f ( f , f ).
若(f,g)=0,则称两函数关于权重函数在[a,b]上正交。 若定义在[a,b]上的实函数系{fn}(n=0,1…)满足:
1 (m n), 0 (m n).

b
a
r ( x)fm ( x)fn ( x)dx fn mn , 其中克罗内克符号 mn
(3)(收敛准则)狄里希利定理:设f(t)是以T为周期的函数,在区
间[-T/2,T/2]上有有限个第一类间断点,且分段单调,则函数的傅 里叶级数在(-∞,+∞)上收敛。其和函数S(t)在f(t)的连续区域上与
之相等,而在f(t)的间断点c处有S(c)=[f(c-0)+f(c+0)]/2。
一致收敛定理:设f(t)是以T为周期的函数,在[-T/2,T/2]的一个 子区间[a,b]上连续且分段单调(无间断),则函数的傅里叶级数在 区间[a,b]上一致收敛于f(t)。
T 2
1 f (t )dt a0 dt 0, 即a0 T 2 T
T 2

T 2
T 2
f (t )dt .
dt . ak cos dt 0, 即ak T 2 f (t ) cos T T T T 2 T2 2k t 同理,可得 bk f (t ) sin dt . 2cos2x=1+cos(2x) T T 2 T
a b
其中权重函数仍为大于0的实函数。
注:正交系一定要指明区间。
三角函数族是权重为1的正交系(自证),由此可确定其傅里叶系数。 如,展开式两边同乘以基函数1,并在一个周期[-T/2,T/2]上积分得
T 2


T 2
展开式两边同乘以基函数cos(2kt/T) ,并在 [-T/2,T/2]上积分得 2 T 2 T 2 2k t 2k t 2 T2 2k t Fra bibliotek第五章 傅里叶变换
§5.1 傅里叶级数 本节主要内容 1、周期函数的傅里叶展开、正交归一性、完备性与收 敛准则(狄里希利定理) 2、奇偶函数以及任意给定区域上函数的傅里叶展开 3、复数形式的傅里叶级数 4、多元函数的傅里叶展开 5、应用举例
一、周期函数的傅里叶展开 1、周期函数
定义:若函数f(t+T)=f(t),则称T为函数f(t)的周期。 周期为T的函数f(t)在区间[-T/2,T/2]上可以展成以三角函数族为 基的级数 2k t 2k t
f (t ) a0 (ak cos
k 1
T
bk sin
T
),
则该级数称为函数f(t)的傅里叶级数,展开系数为傅里叶系数。 其中:1, … cos(2kt/T)称为偶基函数, … sin(2kt/T)称为奇基函数.
(1)基函数的正交归一性 函数内积:在区间[a,b]上两个实函数f(x)和g(x)关于权重实函数 b r(x)>0的内积定义为 ( f , g ) r ( x) f ( x) g ( x)dx.
对于完备系{fn} ,任何一个连续函数f(x)都可在其上展开,且 满足完备性方程(也称巴塞瓦尔等式):
2 f ( x) r ( x) f ( x)dx cn fn . 2 b 2 2 a n 0
方程表明,展开级数平均收敛于f(x),但并不意味着其一定收
敛于f(x),因此还需要条件。
l l
0
l
在边界处满足Ⅱ类边界: f ( x) x 0,l 0. 三、有限区间上函数的周期延拓 定义在(0,l)上的非周期函数f(x) ,总可以采用延拓的办法找到周 期函数g(x),使之在(0,l)有g(x)≡f(x)。这样对g(x)的傅里叶展开级 数在(0,l)上即代表f(x)。
若把函数f(t)变换到空间坐标x,同时时间周期T变换成空间周期 2l(l),则傅里叶级数可写成:
k x k x f ( x) a0 (ak cos bk sin ), ( x [l , l ]). l l k 1 1 l 1 l k x 1 l k x 其中 a0 f ( x)dx , ak f ( x) cos dx , b f ( x ) sin dx. k l l l 2l l l l l
f (t ) cos
dt
T 2
(2)基函数的完备性 零函数:若[a,b]上的实函数f(x)的模为0,则称其为零函数。 若内积(f,fn)0,仅当f(x) 为零函数时成立,则称正交系{fn}是 完备的。 完备性表明,对于任何一个非零函数总可以以正交系为基展 开,且展开系数中总有不为0的项。 注:正交不一定完备,但完备系总可以使之正交。

二、奇偶函数的傅里叶展开 若周期函数f(x)是奇函数,则傅里叶级数中偶基函数的系数a0和 l 1 ak都应等于0。而展开系数 bk f ( ) sin k d
l 2 l k 中的被积函数是偶函数,故系数可写成: bk f ( ) sin d . 0 l l
l
l
由于在边界x=0和x=l处,sin(kx/l)=0,故f(0)=0=f(l),这称为Ⅰ边界. 若周期函数f(x)是偶函数,则傅里叶级数中bk都应等于0,而 1 l l a0 f ( )d , ak 2 f ( ) cos k d . 0
2
则称该函数为正交函数系。 若函数系中的每个函数的模均为1,则称该函数系为区间[a,b]上
的正交归一函数系。
任何正交系都可构造成一个正交归一系。例如,{fn}正交不归 一,可构建新的系yn(x)= fn(x)/|fn|,则{yn}正交归一。 内积概念可以推广到复函数,其定义为: ( f , g ) r ( x) f ( z ) g * ( z )dz,
相关文档
最新文档