基于ANSYS有限元的热学力模拟分析全文
《2024年ANSYS有限元分析软件在热分析中的应用》范文
《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。
其中,热分析作为工程领域的一个重要部分,ANSYS软件在其中发挥了重要作用。
本文将详细探讨ANSYS有限元分析软件在热分析中的应用,包括其基本原理、应用领域、优势及挑战等方面。
二、ANSYS有限元分析软件基本原理ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、电磁场和热分析等领域。
在热分析中,ANSYS利用有限元法将复杂的连续体离散化,将求解域划分为一系列的单元体,然后通过对每个单元进行分析,从而得出整个结构的热行为特性。
三、ANSYS在热分析中的应用1. 稳态热分析稳态热分析主要用于研究物体在恒定温度场下的热行为。
通过ANSYS软件,可以建立物体的三维模型,设置材料属性、边界条件等参数,然后进行稳态热分析。
分析结果可以用于产品设计、优化和性能评估等方面。
2. 瞬态热分析瞬态热分析主要用于研究物体在温度场随时间变化情况下的热行为。
例如,在汽车发动机、电子设备等领域的热管理中,需要了解设备在运行过程中的温度变化情况。
通过ANSYS软件进行瞬态热分析,可以得出设备在不同时间点的温度分布情况,为产品设计、优化和故障诊断提供依据。
四、ANSYS在热分析中的优势1. 高精度:ANSYS软件采用先进的有限元法,可以将求解域划分为足够小的单元体,从而得出较为精确的解。
2. 多物理场耦合分析:ANSYS可以用于多物理场耦合分析,包括热-结构耦合、热-流体耦合等,能够更全面地反映实际工程问题的复杂性。
3. 丰富的材料库:ANSYS拥有丰富的材料库,可以用于模拟各种材料的热性能。
4. 强大的后处理功能:ANSYS具有强大的后处理功能,可以方便地查看和分析计算结果,为工程设计提供有力支持。
五、挑战与展望尽管ANSYS在热分析中具有诸多优势,但仍面临一些挑战。
例如,在处理大规模复杂问题时,计算资源的消耗较大;对于某些特殊材料和复杂结构的建模和分析难度较高;此外,ANSYS软件的学系成本较高,需要专业知识和技能。
热分析(ansys教程)
1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
ANSYS热分析指南——ANSYS稳态热分析word精品文档59页
ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。
稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。
稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。
这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。
事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。
当然,如果在分析中考虑辐射,则分析也是非线性的。
3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。
有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。
单元名采用大写,所有的单元都可用于稳态和瞬态热分析。
其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。
这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。
首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。
最后,本章提供了该实例等效的命令流文件。
Ansys热分析教程(全)
章节内容概述
• 第7章-续 – 例题 6 - 低压气轮机箱的热分析
• 第 8 章 - 辐射 – 辐射概念的回顾 – 基本定义 – 辐射建模的可选择方法 – 辐射矩阵模块 – 辐射分析例题 - 使用辐射矩阵模块进行热沉分析,隐式和非隐式方 法。
• 第 9 章 - 相变 – 基本模型/术语 – 在 ANSYS中求解相变 – 相变例题 - 飞轮铸造分析
传导
• 传导的热流由传导的傅立叶定律决定:
q*
=
− Knn
∂T ∂n
=
heat
flow
rate
per
unit
area
in
direction
n
Where, Knn = thermal conductivity in direction n
T = temperature
∂T = thermal gradient in direction n ∂n
• 负号表示热沿梯度的反向流动(i.e., 热从热的部分流向冷的).
q*
T
dT
dn
n
对流
• 对流的热流由冷却的牛顿准则得出:
q* = hf (TS − TB ) = heat flow rate per unit area between surface and fluid
Where, hf = convective film coefficient TS = surface temperature TB = bulk fluid temperature
• 第 6 章 - 复杂的, 时间和空间变化的边界条件 – 表格化的热边界条件 (载荷) – 基本变量 – 用户定义的因变变量
章节内容概述
基于ANSYS软件的有限元分析
目前在工程领域中常用的数值模拟方法有有限单元法、边界元法、有限差分法等,其中以有限单元法的应用和影响最广。
有限单元法是一种连续结构离散化数值计算方法,通过对连续体划分单元,用单元和节点组成有限未知量的近似离散系统去逼近无限未知量的真实连续系统[1]。
有限单元法具有适应性强、计算精度高、计算格式规范统一等诸多优点,已经广泛应用到土木工程、机械工程、航空航天、核工程、海洋工程、生物医学等诸多领域中。
早在18世纪末,欧拉就用与现代有限元相似的方法求解了轴力杆的平衡问题。
随着计算机技术的快速发展,有限元数值模拟技术日益成熟。
AN -SYS 软件是美国ANSYS 公司出品的集结构、流体、电场、磁场、声场等多领域分析于一体的大型通用有限元分析软件,能与多数计算机辅助设计软件(如Pro/Engineer ,CATIA ,AutoCAD 等)接口,实现数据的共享和交换[2]。
基于ANSYS 软件的有限元分析,将有限元分析和计算机图形学结合在一起,不仅能够为各种工程问题提供可靠的有限元分析结果,而且可以显示构件的变形图和应力云图等可视化结果,还可以观察到试验中无法观察到的发生在结构内部的一些物理现象,例如弹体在不均匀介质侵彻过程中的受力与偏转等。
1ANSYS 软件介绍1.1发展历程20世纪60年代,SWANSON J 博士任职于美国西屋公司,因工作需要为某个核子反应火箭应力分析编写了STASYS 有限元分析程序;1969年,SWANSON J 博士离开美国西屋公司创立了SASI 公司,并推出了ANSYS 软件;1970年前后推出的ANSYS 软件2.0版本仅支持定格输入模式;1979年前后推出的ANSYS 软件3.0版本可以在VAX-11/780计算机上使用,由定格输入模式升级为指令模式,并可以在屏幕显示图形,有简单的前处理器PREP7;1984年推出的ANSYS 软件4.0版本可以在个人计算机(PC )上使用,采用指令互动模式,是ANSYS 软件在PC 上运行的第一版;1993年推出的ANSYS 软件5.0版本采用Motif 格式的图形界面,整合了以有限单元法为基础的CFD 程序———FLO -TRAN ;1994年推出了ANSYS 软件5.1版本,FLOTRAN 已经完全整合成ANSYS 软件的一部分,同年SASI 公司被TA Associates 并购,ANSYS 公司正式成立;1996年推出了ANSYS 软件5.3版本,开始支持LS-DYNA ;2001年推出了ANSYS 软件6.0版本,对Sparse 求解模块进行了升级,不仅加快了求解速度,而且减小了对内存空间的需求;基于ANSYS 软件的有限元分析朱旭,霍龙,景延会,张扬收稿日期:2018-04-30;修回日期:2018-06-01作者简介:朱旭(1995-),男,河南周口人,在读本科,主要从事数值模拟研究,E-mail :709759396@ 。
ansys有限元分析实用教程2篇
ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
基于ANSYS的有限元分析
基于ANSYS的有限元分析有限元大作业基于ansys的有限元分析班级:学号:姓名:指导老师:完成日期:ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD等。
是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。
ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。
目前,中国100多所理工院校采用ANSYS 软件进行有限元分析或者作为标准教学软件。
2D Bracket问题描述:We will model the bracket as a solid 8 node plane stress element.1.Geometry: The thickness of the bracket is 3.125 mm2.Material: steel with modulus of elasticity E=200 GPa.3.Boundary conditions: The bracket is fixed at its left edge.4.Loading: The bracket is loaded uniformly along its top surface. Theload is 2625 N/m.5.Objective: a.Plot deformed shapeb.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these)c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see howd.principal stress and von Mises stress change.一,建立模型1设置工作平面在ansys主菜单里找到workplane>wp settings,输入如下参数。
ANSYS有限元分析软件在热分析中的应用
ANSYS有限元分析软件在热分析中的应用随着科学技术的不断发展,工程领域的热分析越来越重要。
热力学、热传导、热对流、辐射传热等问题是工程领域中需要解决的关键问题之一。
ANSYS有限元分析软件作为一款功能强大、使用广泛的工程分析工具,在热分析领域发挥着重要的作用。
ANSYS有限元分析软件是一种基于有限元理论的数值计算工具。
它通过将一个复杂的物理问题划分成一个个简单的子域,然后将这些子域用有限元进行离散,再通过数值计算方法求解模型的应力、应变等物理场。
在热分析中,ANSYS能够非常准确地模拟材料的温度分布、热流量分布以及传热过程等问题,为工程师提供必要的设计信息。
在热分析中,ANSYS可以解决一系列不同的问题。
首先,它可以模拟材料的温度分布。
通过定义不同的材料参数和边界条件,ANSYS可以准确地计算出材料在不同情况下的温度分布,并可以用图形的形式进行展示。
这对于工程师来说非常有用,因为他们可以根据这些温度分布来判断材料是否会出现过热或者过冷的问题,从而进行相应的调整。
其次,ANSYS还可以模拟热流量的分布。
在实际工程中,热流量的分布是一个很重要的参数。
通过分析热流量的分布情况,工程师可以判断热量的传输是否合理,从而优化设计,提高效率。
ANSYS可以非常准确地计算出热流量的分布,并提供相应的图像展示,方便工程师观察和分析。
此外,ANSYS还可以模拟热对流传热问题。
热对流传热是指通过流体的对流而传递热量的现象。
在实际工程中,热对流非常常见,比如汽车发动机的冷却系统等。
ANSYS可以根据流体的流动特性和边界条件,准确地计算出热对流传热的情况,并提供相应的结果分析。
这对于工程师来说非常重要,他们可以通过这些结果来评估流体的冷却效果是否达到设计要求。
最后,ANSYS还可以模拟辐射传热问题。
辐射传热是指通过辐射而传递热量的现象,是热传导和热对流之外的一种重要传热方式。
在一些高温环境中,辐射传热非常显著,比如高温工业炉等。
ANSYS作业-换热管的热分析
二、 定义单元类ain Menu⟶Preprocessor⟶Element Type⟶ Add/Edit/Delete 命令,弹出 Element Type 对话框。单击 Add 按钮, 弹出 Library of Element Type 对话框。在左右列表中分别选择 Thermal solid 和 Brick 20node 90 选项,如图 4 所示。单击 OK 按 钮。
表一:壳程温度及对应的表面传热系数 壳程温度(℃) 210 220 230 240 250 260 270 280
壳程表面传热系 1405 1701 2079 2516 3059 3731 4539 5575
数(W⁄(m2 ∙ ℃))
换热管内径为0.0121m,外径为0.01905m,管板厚度为0.05m,换热管长度为0.35m, 管板长和宽均为0.026m,其结构如图 1 所示。
图 4 Library of Element Type 对话框
2、设置材料属性
执行 Main Menu⟶Preprocessor⟶Material Props⟶Material Models 命令,出现如图 5 Define Material Models Behavior 对话框。 在 Material Models Available 下面的选项连续点击 Structural⟶Linear⟶Elastic⟶Isotropic,出现 Linear Isotropic
Change Title 对话框,如图 3 所示。在弹出的对话框中输入 Temperature Distribution in heat-exchange pipe,单击 OK 按钮。
基于ANSYS的基准频率源模块热分析——以某电子设备为例
表1 材料的物理特性表2 仿真结果汇总
材料铝合金PCB 板组成部分快跳源晶振功分电源和控制抗振晶振密度/(kg/m 3)2.7×1031.9×103热功耗/W 3.54.52.53.5导热系数/[W/(K·m)]2380.6热耗占比/%25321825比热容/[J/(Kg·K)]
9041 400
最高温度/℃10410397109备注
盒体
最大温升
/℃
19
1812
24
(b )快跳源部分(a )快跳源(c )电源和控制(b )晶振功分(d )抗振晶振
(a )晶振功分、电源和控制、抗振晶振部分
图2 基准频率源模块实物图3 热分析结果
(a )模型本体结构 (b )模型安装于机架图1 结构设计方案挥不会有很大影响。
4 结束语
振功分热功耗4.5 W ;抗振晶振热功耗3.5 W ;电源和控
制部分热功耗2.5 W 。
模块的整体功耗约14 W 左右。
为了便于分析计算,将盒体结构和PCB 单元进行了适当简化。
这些简化对热分析结果的影响可以忽略。
首先进行壳体材料设置。
然后设定器件参数,根据器件实际功耗,对所有功耗大于0.01 W 的器件进行。
ANSYS有限元热分析教程
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析*在ANSYS/Multiphysic s、ANSYS/Mech anica l、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN 不含相变热分析。
*ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
*ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS热分析分类*稳态传热:系统的温度场不随时间变化*瞬态传热:系统的温度场随时间明显变化四、耦合分析*热-结构耦合*热-流体耦合*热-电耦合*热-磁耦合*热-电-磁-结构耦合等第二章基础知识一、符号与单位二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:*对于一个封闭的系统(没有质量的流入或流出〕PEKE U W Q ∆+∆+∆=−式中:Q ——热量;W ——作功;——系统内能;∆U ——系统动能;∆KE ——系统势能;∆PE *对于大多数工程传热问题:;0==PE KE ∆∆*通常考虑没有做功:,则:;0=W U Q ∆=*对于稳态热分析:,即流入系统的热量等于流出的热量;0=∆=U Q *对于瞬态热分析:,即流入或流出的热传递速率q 等于系统内能的变化。
dtdUq =三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:,式中为热流dxdTkq −=′′′′q 密度(W/m 2),为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
ansys中的热分析
ansys中的热分析【转】热-结构耦合分析知识掌握篇2022-05-3114:09:19阅读131评论0字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57四节点四边形壳单元点MASS71节点质量单元21.1.2耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为\体载荷\施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个图21.1间接法顺序耦合分析数据流程图21.2稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1)如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE,STATIC,NEWGUI:Mainmenu|Solution|-AnalyiType-|NewAnalyi|Steady-tate(2)如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能:COMMAND:ANTYPE,STATIC,RESTGUI:Mainmenu|Solution|AnalyiType-|Retart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件).(1)恒定的温度:通常作为自由度约束施加于温度已知的边界上.COMMAND:D GUI:MainMenu|Solution|-Load-Apply|-Thermal-Temperature(2)热流率:热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlow(3)对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND:SFGUI:MainMenu|Solution|-Load-Apply|-Thermal-Convection(4)热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRANCFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlu某(5)生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND:BFGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatGenerat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项GUI:MainMenu|Solution|AnalyiOption5.求解GUI:MainMenu|Solution|CurrentLS21.2.3后处理ANSYS将热分析的结果写入某.rth文件中,它包含如下数据信息:(1)基本数据:节点温度(2)导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND:SETGUI:MainMenu|GeneralPotproc|-ReadReult-ByLoadStep2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND:PLNSOL,PLESOL,PLETAB等GUI:MainMenu|GeneralPotproc|PlotReult|NodalSolu,ElementSolu, ElemTable矢量图显示COMMAND:PLVECTGUI:MainMenu|GeneralPotproc|PlotReult|Pre-definedorUerdefined列表显示COMMNAD:PRNSOL,PRESOL,PRRSOL等GUI:MainMenu|GeneralPotproc|LitReult|NodalSolu,ElementSolu,R eactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1.定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1)定义均匀温度场GUI:MainMenu|Solution|-Load-|Setting|UniformTempGUI:MainMenu|Solution|-Load-|Apply|-Thermal-|Temperature|OnNodeGUI:MainMenu|Solution|-Load-|Delete|-Thermal-Temperature|OnNode(2)设定非均匀的初始温度GUI:MainMenu|Solution|Load|Apply|-InitialCondit'n|Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.GUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeIntegrationGUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeandSubtp写入载荷步文件:GUI:MainMenu|Preproceor|Load|WriteLSFile或先求解:GUI:MainMenu|Solution|Solve|CurrentLS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1)普通选项GUI:MainMenu|Solution|-LoadStepOpt-Time/Frequenc|TimeandSubtp每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp(2)非线性选项GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeIntegrationGUI:MainMenu|Solution|-LoadStepOpt-|OutputCtrl|DB/ReultFile4.在定义完所有求解分析选项后,进行结果求解.21.3.3结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;GUI:MainMenu|GeneralPotproc.GUI:MainMenu|TimeHitPotproc1.用POST1进行后处理GUI:MainMenu|GeneralPotproc|ReadReult|ByTime/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI:MainMenu|GeneralPotproc|ReadReult|ByLoadStep然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.GUI:MainMenu|TimeHitPotproc|GraphVariable或列表输出GUI:MainMenu|TimeHitPotproc|LitVariable21.4热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项,并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径MainMenu|Preference,在弹出的对话框中选择\选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径MainMenu|Preproceor|ElementType|SwitchElemType,将弹出SwithchElemType(转换单元类型)对话框,如图21.3所示.图21.3转换单元类型对话框4.在对话框中的Changeelementtype(改变单元类型)下拉框中选择\然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径MainMenu|Solution|DefineLoad|Apply|Structural|Temperature|FromThermAn aly,将弹出ApplyTEMPfromThemalAnalyi(从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件某.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.。
(完整版)ansys有限元分析报告
桌面受力有限元分析报告班级:机自0805姓名:刘刚学号:200802070515摘要:本报告是在ANSYS10.0的平台上,采用有限元静力学分析方法,对桌面受力进行应力与变形分析。
一、问题描述:桌面长1500mm,宽800mm,厚50mm,桌脚长650mm,为空心圆管,外径70mm,内径60mm,桌面中央300mmX150mm的区域内承受2.5 Mpa的压力,四个桌脚完全固定,假设所有材料为铝合金,弹性模量E=7.071×104 Mpa,泊松比μ=0。
3。
试用Shell63单元模拟桌面、Beam188单元模拟桌脚,分析此桌子的变形及受力情况。
假设桌子的垂直方向最大变形量的许用值为0。
5%(约7。
5mm),该设计是否满足使用要求,有何改进措施?二、定义类型:(1)定义单元类型 63号壳单元和188号梁单元(2)定义材料属性弹性模量E=7.071×104 Mpa泊松比μ=0.3(3)定义63号壳单元的实常数,输入桌面厚度为50mm定义梁单元的截面类型为空心圆柱,内半径30mm,外半径35mm(4) 建立平面模型(5)划分网格利用mapped网格划分工具划分网格(6)施加载荷将四个桌脚完全固定,在桌面中央300mmX150mm的区域内施加向下的2.5 Mpa压力三、分析求解(1)变形量(2)位移云图(3)应力云图四、结果分析根据位移云图可知,蓝色地方的变形量最大,最大变形量为:10.048mm根据应力云图可知,红色地方所受的应力最大,最大应力为:191.73Mpa五、结论由于桌子垂直方向最大变形量为10.048mm,而材料最大许用变形量为7。
5mm 即SMX=10.048mm>[SMX=7。
5mm]故:此设计不满足要求,应该重新选择材料。
ansys有限元分析报告
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
基于Ansys的球磨机干燥设备有限元热力耦合分析
訇 化
基于A n s y s 的球磨机干燥设备有限元热 力耦合分析
Ther m aI st r uct ur e f i ni t e el em ent anal y si s of t he beam of bal l mi l l dr yi n g equi pm en t s bas ed on A ns y s
梁 的 内部 流动 冷却 水 ( 假设 流入 水 温 为2 2 度 ,流
出水 温 为 8 0 度 ) ,梁 的 中部 受 到重 物 施 压 。在 此 情 况下 通 过 有 限 元分 析 观 察 梁 的变 形 ,从 而 确 定
其 合理 的尺 寸和结 构 。 对梁 进 行有限 元分析 时需 作如下 假设 :
王海 洋 ,姚 芳萍
V V ANG Ha l — y a n g .Y AO F an g — p i n g
( 辽宁工业大学 机械工程与自动化学 院,锦州 1 2 1 0 0 1 ) 摘 要 :文章基于A n s y s 有限元分 析软件对球磨机干燥设备中的梁在不同载荷情况下进行 了热 力耦合分 析 。根据分析结果 可知 ,给定梁 的结构和尺 寸只 有在所受 压力为1 0 1 1 1 1 1 ,其热 力耦合分析 的 结果 才能满足使用 要求。若要使 其承受更大载荷 ,则需根据 实际情况进行结构 改造 。分析结 果对梁的结构改造有着重要的理论指导作用。 关键词 :An s y s ;球磨机 干燥设备 ;梁 ;热力耦合
2 方案分析
如 图I n 示 :干 燥设 备 中被 窑头 罩子 包 围的梁
荷 ,在 热 分析 过 程 中 ,温 度 载 荷 是 以热 对 流 形式 设置 ( 如 图3 所示 ),具 体如 下 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS有限元的热学力模拟分析全文第1章绪论1.1选题背景及意义随着时代的发展,现代各个领域包括船舶,航天等对于新型高分子纳米材料的诉求越来越高,基于这种背景下,石墨烯(G)和碳纳米管(CNTs)诞生了。
虽然二种材料从发明开始,就受到了极大的推崇,但是不能否认的是,它们也有一些缺陷,比如团聚现象;这一种现象在某些特殊的背景下应用,缺陷暴露的就更加明显了。
因此,必众多学者从本质上出发,根据二种材料的最外层电子为4的特性,从共价非共价改性进行探索,进而拓宽了二种材料的应用。
并且基于实际情况的需求,由于离子液体(ILs)一些优良性能,比如不易挥发等;完美的契合了这些实际情况的需求,并且ILs对于石墨烯材料以及碳纳米管材料有着很好地改良作用,进而进一步得到了推崇。
本文最大的创新就在于对于三者的综合应用,本文选用的离子液体是绿色溶剂离子液体,选用此溶剂是因为其对于石墨烯材料以及碳纳米管材料有着物理吸附作用,物理吸附可以不破外这些材料本身的化学结构,并且使得二种材料在基体中具有之前没有的特性:分散性,进而得到导电润滑脂。
这一新的研究,是一种三种元素结合起来的新的研究方向。
最后,把本文比较了ILs改性后和未改性后的二种高分子纳米材料作为润滑添加剂的各项性能。
1.2 石墨烯1.2.1 石墨烯的结构与性质对于石墨烯(G)这样一种新型高分子纳米材料而言,本质是碳原子组成的二维晶体,其各个维面是六边形蜂窝状。
首次发现是在21世纪初期,是由Novoselov[1]等通过胶带法首次获得的。
石墨烯具有一个特殊的离域大π键,其穿透了只有一个碳原子厚度的石墨烯。
这一特性使得石墨烯具有强度高,导电性好[2]、几乎完全透明、比表面积大[3]、载流子迁移率高[4]。
1.2.2石墨烯的制备方法对于石墨烯(G)获得的方法划分可以分为三种、石墨烯超声研磨法制取、石墨烯热剥离法制取、、石墨烯电化学法制取,三种方法具体情况如下:(1)超声研磨法第一种方法主要是根据超声波的原理,使得完整的石墨内部承受超过其承受能力的剪切应力,进而其二侧会造成缺陷,也就得到了石墨烯;该方法对于石墨的剥落产生了极大地便利。
但是这种方法也是有着一定的缺陷的,由于巨大的剪切应力会造成所使用的石墨片层不完整[5],进而影响生成的石墨烯的产量以及性能。
2010 年,Wang 等[6]最早采用超声进行剥离。
从一种叫做三氟甲磺酰基形成的亚胺盐使用石墨烯超声研磨法制取得到,并且经过试验,最好的时候,获得了0.95 mgmL−1 的悬浮液,然后利用得到的悬浮液经过相应的离心干燥处理,就可以得到石墨烯片。
基于Wang 等研究,著名学者Nuvoli 等[7]进一步改进,采用了改进的1-己基-3-甲基六氟磷酸盐,使用同样的方法,经过试验,最好的时候,获得了5.33 mgmL−1 的悬浮液。
Shang 等[8]在上面二者的研究基础上,直接物理层面的对于使用研钵和杵研磨,对于1-丁基-3-甲基咪唑六氟硼酸盐进行了处理,进而进一步得到了相应的凝胶。
然后加入化学原料二甲基甲酰胺以及化学原料丙酮,继续进行离心操作,然后对于所得物进行改造,就得到了需要的石墨烯。
Shang 等改进的方法在一定程度上来说,可以一定程度的降低成本,操作也变得更为简单了,但是制取的产品会变得隔更加容易破碎。
(2)热剥离法对于石墨烯的制取的研究从未停止,在2012年的时候,著名学者Safavi 等[9]通过对于大于或者等于12个碳阳离子的烃基链进行研究,发现了烃基链如果加大的话,对应的离子液体也会相应的液晶态,进而得到了石墨烯片。
Jin 等[10]在惰性气氛下,将重氮盐和离子液体还有碳酸钾混合,其中离子液体可以选取二种,一种是1-辛基-3-甲基咪唑四氟硼酸盐;另一种是己基吡啶四氟硼酸盐,将三种混合物加热到上千度,进而进一步研磨,然后过滤,即可以得到一种含氧量不超过百分之三的石墨烯。
第二种方法获取石墨烯,相对于第一种方法来说,条件相对苛刻一些。
在剥落的过程之中,由于任然存在着少量的气体小分子,进而使得剥落获得的石墨烯有一定程度的缺陷。
并且总的来说烃基链的长度不同,对于最终剥离的效果而言,也是不尽相同的,(3)电化学法对于第三种方法来说,其原理是电解原理,电解液选择的是离子液体,离子液体会根据电解原理使得这里面的阴离子、阳离子移动到相对应的电极。
并且可以进一步作为电极材料也就是石墨的表面,在电场力的作用下,移动到相对应的石墨的表面的阴离子、阳离子就会产生点化学剥离。
由于这种方法,是借用的电化学知识,非常适合批量的生产,但是在进行电化学剥离的时候,石墨的表面的阴离子、阳离子会伴随着发生额外氧化还原反应发生,从而影响石墨烯的质量。
2008 年,Liu 等[11]分别采用4种离子液体([C8MIm]PF6、[C8MIm]BF4、[C8MIm]Cl、[C4MIm]PF6) 和水的混合液作为电解质,根据上面的原理,进而进一步得到了功能化的石墨烯,其厚度大约是1.1 nm,并且该功能化的石墨烯可以溶解在二甲基甲酰胺等极性非质子溶剂。
Singh 等[12]研究学者,选用16V的电压,在二铂一石墨材料的三电极体系下,电解液选择的是上面所描述的[S222]Tf2N,利用上面所描述的原理,使得石墨铅笔材料的电极产生对应的剥离反应,进而得到我们所需要的石墨烯。
Zeng 等[13]在微观层面,模拟电化学的剥离反应,使得石墨烯片侧边的解离,得到了本文所需要的碳纳米颗粒。
第三种方法获得的石墨烯,得到的石墨烯片是人为可以控制的,可以控制其尺寸以及外观形状一致,并且得到的石墨烯片的比容量可以进一步加大,这一种方法得到的石墨烯更加适合应用在电池方面。
1.2.3石墨烯的功能化改性为了进一步拓展石墨烯的功能,有必要对其功能进行改进,一方面是共价键改性,这一方面又可以具体划分为氧化共价键改性、加成共价键改性和原位接枝聚合共价键改性,用的最多的是氧化共价键改性方法,该方法具体的原理是石墨烯遇到强氧化物的时候,会反应形成羧基等官能团,并且强酸会使得石墨烯的化学结构破坏,使得原本的六边形变成五边形或七边形环,这样使得原本的电热等方面性能下降。
改进方法就是可以表面堆叠大π键,并且这一方法也受到越来越多的人的关注。
(1)共价键改性以共价键改性获得的材料稳定一些,相应的性能就会差一点,对所使用的离子液体来说,那些只要是参与共价键合的,不是阴离子就是阳离子,也可能有其他作用,如起氧化或剥离作用等。
Yang 等[14]研究学者通过对于石墨烯片分散性的研究,发表了一种新的分散到聚合物里的策略。
该方法利用化学中的亲核开环反应来对于石墨烯的功能化进行实施,其中用到的液体就是1-3-胺丙基-3-甲基咪唑溴盐([NH2C3MIm]Br)。
该亲核开环反应的原理就是,增加静电斥力,达到增加石墨烯不同层的间距,一般是从9.6到14.9Å,继而达到了增强石墨烯稳定性和分散性的能力。
Bhunia 等[15]研究学者同样使用1-3-胺丙基-3-甲基咪唑溴盐得到了不会挥发的记忆装置。
Fan 等[16]研究学者为了研究共价键改性,结合前面所用到的电化学法,选择1-丁基-3-甲基咪唑四氟硼酸盐([C4MIm)]BF4)、1-丁基-3-甲基咪唑六氟磷酸盐([C4MIm)]BF6)和1-己基-3-甲基咪唑双(三氟甲磺酰基)酰亚胺盐([C6MIm]Tf2N)作为其中用来点解的溶液。
然后给与相应的10V的电压,对于石墨棒就行电解,离子液体会根据电解原理使得这里面的阴离子、阳离子移动到相对应的电极。
并且可以进一步作为电极材料也就是石墨的表面,在电场力的作用下,移动到相对应的石墨的表面的阴离子、阳离子就会产生点化学剥离,得到了功能化石墨烯。
(2)非共价键改性石墨烯除了有共价键形式也可以以非共价键组合成复合材料。
以非共价键组合成复合材料中,通过协同作用,提高以非共价键组合成复合材料的某些性能。
与前者相比,后者只有π-π作用以等,石墨烯的各种性质不会受到共价键形式的影响。
王赟[17]首创性的用[C4MIm]BF6对天然石墨进行操作,接着使用水热合成法,对于石墨烯表面原位进行操作,从而达到了生长钛酸锂(LTO)的目的,也就得到了LTO/石墨烯形式的纳米复合材料。
Xiao 等[18]研究学者以1-丁基-3-甲基咪唑氯化钠和胆酸钠为原料,通过离子交换反应合成了新型离子液体1-丁基-3-甲基咪唑胆酸盐。
在超声波作用下,石墨烯在白介素存在下发生剥落,得到稳定的水分散体,透射电子显微镜和拉曼光谱表明,稳定的石墨烯片材仅存在少量(<5)层。
此外,利用IL-G固定贵金属纳米粒子(Pt、Pd、Ru、Rh等),得到了一系列金属尺寸<=2nm、尺寸分布非常窄的石墨烯金属(G-M)复合材料。
所得G-M在芳烃加氢反应中表现出优异的催化性能。
Choi 等[19]研究学者演示了通过电化学自组装的分层结构的MnO2 /离子液体还原的氧化石墨烯(IL-RGO)纳米复合材料的合成。
用光谱方法研究了MnO2/IL-RGO纳米复合材料的结构及其形成机理,并与电化学行为进行了关联。
1.3 碳纳米管1.3.1 碳纳米管的种类、结构与性质由碳元素所组成的中空管状结构叫做碳纳米管[20] ,这种管可以被看成是多层或者单层石墨片(石墨六边形网格平面)沿手性矢量卷绕而成的中空的、无缝的微管。
这种管的轴向尺寸以微米量级为单位,径向尺寸以纳米量级为单位。
碳管两端碳原子的五边形封顶是一种特殊结构的一维量子材料。
它主要是由碳原子(呈六边形排列)构成的数层到数十层的同轴圆管。
每个碳纳米管侧壁上的碳原子都会与相邻的三个碳原子连接并形成六角型网格结构,然后经过SP2杂化轨道最终形成很多高度离域化的π电子. 这种结构性能决定了CNTs拥有良好的导电性,因此电子就能够通过CNTs 侧壁的共轭大π键实现高速传递。
另一方面,也因为较强的分子间作用力,碳纳米管之间容易聚集形成管束,也就导致他们在溶剂介质很难分散从而影响了对碳纳米管性质的研究和开发。
1.3.2 碳纳米管的制备方法根据使用原理的不同CNTs 的制备方法可分为:气相沉积法、激光蒸发法、电弧放电法、(CVD 法)等,下面就是关于上述几种方法的简单介绍。
(1)电弧放电法因为受到富勒烯这种生产工艺的启发,最早开发出来并且用于制造碳纳米管这种工艺的方法就是通过电弧放电,而这一工艺也对碳纳米管的发展具有重大意义。
要生产碳纳米管,首先不仅需要在真空放电室中加入惰性气体,还要在石墨电极之间放电产生电弧,这样,在碳原子的作用和催化下,这些结构就会在内部进行重组然后在阴极产生碳纳米管。
而通过改变催化剂的配方或者种类,或者改变气体的配比,将会极大地影响碳纳米管的形态和它的生产率。