动态规划-例题众多-详细讲解演示课件.ppt

合集下载

动态规划例题讲解精品PPT课件

动态规划例题讲解精品PPT课件
动态规划例题讲解
山东师大附中
Preview
本节课主要通过几道例题,总揽NOIp中较 常见的动态规划模型,不会过多涉及优化 内容。
Preview
最长上升子序列 内存碎片 背包问题 最长公共子序列 石子合并
括号序列 决斗 三取方格数 选课 贪吃的九头龙
最长上升子序列
给出一个数列{a1,a2,...,an},要求你选出尽量 多的元素,使这些元素按其相对位置单调
完全背包问题
共有N种物品,每种物品有一定的重量w[i] 和一定的价值v[i],每种物品有无限个。现 在我们有一个最大载重量limit的包,问放入 哪些物品能使得总价值最高?
w[i]和v[i]均为整数,N<=100,limit<=10000
完全背包问题
fillchar(f,sizeof(f),0); for i:=1 to n do for j:= w[i] to limit do f[j] = max(f[j], f[j-w[i]]+v[i]); writeln(f[limit]);
1400
共有3件物品 重量分别为30/80/10 价值分别为300/1200/200 背包最大载重量为100
0/1背包问题
令f[i,j]表示考虑完前i项物品,并且当前背包 承重不大于j的情况下能获得的最大价值
f[i,j]=max( f[i-1,j], //不选第i项物品 f[i-1,j–w[i]]+v[i]) //选择第i项物品
2
插入a6后 -inf
1
插入a7后 -inf
1
插入a8后 -inf
1
插入a9后 -inf
1
inf
inf
inf
8

动态规划问题完整ppt

动态规划问题完整ppt
是动态决策问题的一种特殊形式; 其特点在于,它可以把一个n 维决策问题变换为几个一维最优化问题,从而一个一个地去解决。
产品的年产量g和投入生产的机器数量u 的关系为 找到不同时刻的最优决策以及整个过程的最优策略。
1 多阶段决策问题
1
g=g(u1)
精品课程《运筹学》
这时,机器的年完好率为a,即如果年初完好机器 的数量为u,到年终完好的机器就为au, 0<a<1。
3. 航天飞机飞行控制问题:由于航天飞机的运 动的环境是不断变化的,因此就要根据航天飞机飞 行在不同环境中的情况,不断地决定航天飞机的飞 行方向和速度(状态),使之能最省燃料和实现目 的(如软着落问题)。
不包含时间因素的静态决策问题(本质上是一次 决策问题)也可以适当地引入阶段的概念,作为多 阶段的决策问题用动态规划方法来解决。
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3
精品课பைடு நூலகம்《运筹学》
4
5
6
谢谢观看
精品课程《运筹学》
动态决策问题的特点: 系统所处的状态和时刻是进行决策的重要因
素; 即在系统发展的不同时刻(或阶段)根据系
统所处的状态,不断地做出决策; 找到不同时刻的最优决策以及整个过程的最
优策略。
精品课程《运筹学》
多阶段决策问题: 是动态决策问题的一种特殊形式; 在多阶段决策过程中,系统的动态过程可以按照 时间进程分为状态相互联系而又相互区别的各 个阶段;
每个阶段都要进行决策,目的是使整个过程的 决策达到最优效果。

《动态规划》课件

《动态规划》课件
《动态规划》ppt课 件
xx年xx月xx日
• 动态规划概述 • 动态规划的基本概念 • 动态规划的求解方法 • 动态规划的应用实例 • 动态规划的优化技巧 • 动态规划的总结与展望
目录
01
动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法。
特点
动态规划适用于具有重叠子问题和最 优子结构的问题,通过将问题分解为 子问题,可以找到最优解。
动态规划的适用范围
最优化问题
01
动态规划适用于解决最优化问题,如最大/最小化问题、决策问
题等。
子问题重叠
02
动态规划适用于子问题重叠的情况,即子问题之间存在共享状
态或参数。
递归关系
03
动态规划适用于具有递归关系的问题,可以通过递归方式求解
机器调度问题
总结词
动态规划可以应用于机器调度问题,以确定最优的调度方案,满足生产需求并降低成本 。
详细描述
机器调度问题是一个经典的优化问题,涉及到如何分配任务到机器上,以最小化成本或 最大化效率。通过动态规划,可以将机器调度问题分解为一系列子问题,如确定每个任 务的调度顺序、分配机器等,并逐个求解子问题的最优解,最终得到整个调度方案的最
VS
详细描述
记忆化搜索法是一种优化技术,通过存储 已解决的子问题的解,避免重复计算,提 高求解效率。这种方法适用于子问题数量 较少且相互独立的情况。
04
动态规划的应用实例
最短路径问题
总结词
通过动态规划解决最短路径问题,可以找到 从起点到终点的最短路径。
详细描述
在图论中,最短路径问题是一个经典的优化 问题,旨在找到从起点到终点之间的一条路 径,使得路径上的所有边的权重之和最小。 动态规划是一种有效的解决方法,通过将问 题分解为子问题并存储子问题的解,避免了 重复计算,提高了求解效率。

动态规划-例题众多-详细讲解61页PPT

动态规划-例题众多-详细讲解61页PPT
动态规划-例题众多-详细讲解
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块顿
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

动态规划讲解+例子ppt课件

动态规划讲解+例子ppt课件
航天飞机飞行控制问题:由于航天飞机的运动的环境是不断变化的,因此就要 根据航天飞机飞行在不同环境中的情况,不断地决定航天飞机的飞行方向和速 度(状态),使之能最省燃料和完成飞行任务(如软着陆)。
5
多阶段决策过程的特点:
• 根据过程的特性可以将过程按空间、时间等标志分为若干个互相联系又
互相区别的阶段。
6 6
E3
F1 4
G 3 F2
4
5
63
背包问题 有一个徒步旅行者,其可携带物品重量的限度为a 公斤,设有n 种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此 人应如何选择携带的物品(各几件),使所起作用(使用价值)最大?
物品
12…j…n
重量(公斤/件) a1 a2 … aj … an 每件使用价值 c1 c2 … cj … cn
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5 E
2
D2
8
112
2
B1
10
14
A
5
B2 610
1
4
13
B3
12 11
C1 3
9 6
C2 5
8
C3 10
D1 5
2
D2
解:整个计算过程分四个阶段,从最后一个阶段开始。
第四阶段(D →E): D 有两条路线到终点E 。
学习动态规划,我们首先要了解多阶段决策问题。
2
最短路径问题:给定一个交通网络图如下,其中两点之间的数字表示距离 (或运费),试求从A点到G点的最短距离(总运输费用最小)。

动态规划(完整)ppt课件

动态规划(完整)ppt课件

3
• Ⅲ --Ⅳ :
B1—C1—T
4
• Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T
7
• Ⅰ--Ⅱ--Ⅲ --Ⅳ:

Q—A2—B1—C1—T
11

Q--A3—B1—C1—T
11

Q--A3—B2—C2—T
11
最新版整理ppt
3
最短路径
11
4
7
A1
4
2
6
11
47
3 2
Q
A2
4
B1
1
4 76
3
C1
3
B2 3
最新版整理ppt
16
(4)策略和允许策略集合
策略(Policy)也叫决策序列.策略有全过程 策略和 k 部子策略之分,全过程策略是指具 有n 个阶段的全部过程,由依次进行的 n 个 阶段决策构成的决策序列,简称策略,表示
为 p1,n{x1,x2, ,xn}。从 k 阶段到第 n 阶段,
依次进行的阶段决策构成的决策序列称为 k
新分支的创立。
最新版整理ppt
6
• 动态规划将复杂的多阶段决策问题分解为 一系列简单的、离散的单阶段决策问题, 采用顺序求解方法, 通过解一系列小问题 达到求解整个问题目的;
• 动态规划的各个决策阶段不但要考虑本阶 段的决策目标, 还要兼顾整个决策过程的 整体目标, 从而实现整体最优决策.
最新版整理ppt
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理 §7.3 动态规划应用举例
最新版整理ppt
1
例 求解最短路问题
2
Q
4

《运筹学07动态规划》课件

《运筹学07动态规划》课件
组合动态规划:解决组合问题, 如旅行商问题、背包问题等
动态规划的应用场景
资源分配 问题:如 背包问题、 车辆路径 问题等
优化问题: 如最短路 径问题、 最大子数 组问题等
决策问题: 如股票买 卖问题、 投资组合 问题等
游戏问题: 如国际象 棋、围棋 等
生物信息 学:如基 因序列比 对、蛋白 质结构预 测等
优化策略的改进
动态规划的扩展:从线性规划到非 线性规划,从单阶段决策到多阶段 决策
优化策略的改进:引入并行计算, 提高计算效率
添加标题
添加标题
添加标题
添加标题
优化策略的改进:引入启发式算法, 如遗传算法、模拟退火算法等
优化策略的改进:引入智能优化算 法,如神经网络、深度学习等
动态规划与其他 算法的比较
感谢您的观看
汇报人:
动态规划的基本 思想:将问题分 解为更小的子问 题,并利用子问 题的解来求解原
问题
动态规划的步 骤:确定状态、 状态转移方程、 初始状态和边
界条件
动态规划的算 法实现:递归、 迭代、记忆化
搜索等
动态规划的应 用:背包问题、 最短路径问题、 资源分配问题

动态规划的经典 案例
最短路径问题
问题描述:在图中找到从起点到终点的最短路径 应用场景:交通网络、物流配送、电路设计等 解决方案:使用动态规划算法,通过状态转移方程求解 经典案例:旅行商问题、最短路径问题等
排班问题
问题描述:如何合理安排员工工作时间,使得员工满意度最高,同时满足 公司业务需求
动态规划方法:使用动态规划算法,通过状态转移方程和递归函数求解
状态转移方程:定义状态变量,表示员工在不同时间段的工作状态
递归函数:根据状态转移方程,递归求解最优解

《动态规划教学》课件

《动态规划教学》课件

动态规划的理论研究
要点一
动态规划算法的收敛性研究
深入探讨动态规划算法的收敛速度和收敛条件,为算法优 化提供理论支持。
要点二
动态规划的近似算法研究
研究近似动态规划算法,在保证一定精度下降低计算复杂 度,提高求解效率。
THANK YOU
缺点
01
空间复杂度高
动态规划通常需要存储所有子问题的解决方案,因此其空 间复杂度通常较高。对于大规模问题,可能需要大量的存 储空间,这可能导致算法在实际应用中受到限制。
02 03
可能陷入局部最优解
虽然动态规划有助于找到全局最优解,但在某些情况下, 它可能陷入局部最优解。这是因为动态规划通常从问题的 初始状态开始,逐步解决子问题,如果初始状态不是最优 的,则可能在整个过程中都围绕着一个非最优的解决方案 。
期权定价
动态规划可以用于期权定价模型,以更准确地预测期 权价格。
计算机科学
算法优化
动态规划可以用于优化算法,以提高计算效率和 准确性。
数据压缩
动态规划可以用于数据压缩算法,以更有效地压 缩和解压缩数据。
游戏开发
动态规划可以用于游戏开发和AI算法,以提高游 戏的可玩性和智能性。
生物信息学
基因序列比对
动态规划可以用于基因序列比对 ,以ห้องสมุดไป่ตู้定不同基因序列之间的相 似性和差异性。
蛋白质结构预测
动态规划可以用于预测蛋白质的 三维结构,以更好地理解蛋白质 的功能和作用机制。
进化树构建
动态规划可以用于构建进化树, 以更好地理解物种的进化关系和 演化历程。
05
动态规划的优缺点
优点
高效性
动态规划能够有效地解决最优化问题,特别是那些具有重叠子问题和最优子结构的问题。通过将问题分解为子问题并 存储它们的解决方案,动态规划避免了重复计算,从而大大提高了算法的效率。

动态规划专题完整ppt

动态规划专题完整ppt
then begin m:=s[c[k-1,j]]+v[c[k,i],c[k-1,j]]; d:=c[k-1,j]; end;
s[c[k,i]]:=m; { S[c[k,j] ] 记录第K个阶段的第J个结点到 终点的最短距离}
h[c[k,i]]:=d;{h[j]记录第j阶段最优路径经过的编号} end; end; writeln(s[n]);
三、动态规划中的几个概念
1、阶段
把解题的次序称为规划方向,把地位相同的结点称为一个 阶段。
2、状态
每一阶段的一个结点称为这个阶段的一个状态。如例1 中的第3阶段,有3个结点C1、C2、C3,称第3阶段有4种 状态,分别是C1、C2、C3。
3、状态转移方程 除边界外的任一阶段都得由其前面的阶段递推得到,这递
如:输入数据: N=7 4 3 2 1 4 4 t[i] 3 4 2 2 4 r[i] 输出 14 1 2+3 4+5 6+7
分析:
设F[i] 表示第i个人到第N个人买票所要的最小 时间。
F[i]=min{t[i]+f[i+1],r[i]+f[i+2] } (i=1,2,…,n-1)
F[n]=t[n] 目标是求f[1], 即所有歌迷总的买票时间的最小 值。
推的过程就表现出了阶段的动态演变。这种根据已有状态求得
未知状态的过程,我们称之为状态转移,状态转移的规则用数 学语言来描述,就称为状态转移方程。状态转移方程的形式多 样,如例1中的形式为G[i]=min{G[j]+ei,j},ei,j∈E。
例题2:排队买票问题
一场演唱会即将举行。现有N(0〈N<=200〉个歌迷 排队买票,一个人买一张,而售票处规定,一个人每次最 多只能买两张票。假设第i位歌迷买一张票需要时间Ti(1 〈=I〈=n〉,队伍中相邻的两位歌迷(第j个人和第j+1个 人)也可以由其中一个人买两张票,而另一位就可以不用 排队了,则这两位歌迷买两张票的时间变为Rj,假如 Rj<T(j)+T(j+1),则这样做就可以缩短后面歌迷等待的时间, 加快整个售票的进程。现给出N,Tj和Rj,求使每个人都买 到票的最短时间和方法。

动态规划专题讲义课件

动态规划专题讲义课件

VS
状态转移方程是动态规划中的重要概念,它描述了状态之间的转移关系。在求解问题时,通过状态转移方程可以将一个状态转移到另一个状态,从而逐步求解出问题的最优解。
状态转移方程的建立需要通过对问题进行深入分析,找出状态之间的依赖关系,并建立数学模型。在应用状态转移方程时,需要注意状态的初始状态和终止状态,以及状态转移过程中的约束条件。
02
动态规划的基本概念
最优化原理是动态规划的核心思想,它认为一个问题的最优解可以通过子问题的最优解来构建。在解决复杂问题时,将问题分解为若干个子问题,分别求解子问题的最优解,再利用子问题的最优解来求解原问题的最优解。
最优化原理的应用范围很广,包括计算机科学、运筹学、经济学等领域。通过将问题分解为子问题,可以降低问题的复杂度,提高求解效率。
自顶向下策略
自底向上策略
分支定界法:通过将问题分解为多个分支来解决问题,同时使用界限来排除不可能的解。与动态规划结合,可以更有效地处理具有大量状态和决策的问题。
THANK YOU
感谢各位观看
排班问题
如求解最优的排班方案,使得员工的工作计划合理且满足各种约束条件。
03
递推关系
建立子问题的解之间的递推关系,通过这种关系逐步求解更大规模的问题,直到达到原问题的解。
01
将原问题分解为子问题
将原问题分解为若干个子问题,这些子问题是原问题的较小规模或部分问题的解。
02
存储子问题的解
将已解决的子问题的解存储起来,以便在求解更大规模的问题时重复使用,避免重复计算。
03
动态规划的算法实现
状态空间法是动态规划的基本方法,通过构建状态转移方程来求解最优化问题。
状态转移方程描述了从状态转移至其他状态的过程,通过迭代更新状态变量的值,最终得到最优解。

《动态规划》课件

《动态规划》课件
《动态规划》PPT课件
动态规划(Dynamic Programming)是一种用来解决复杂问题的算法思想。
什么是动态规划
动态规划是一种将问题拆分成子问题并进行最优解比较的算法,常用于求解最优化问题。
问题模型
状态
将问题抽象成能够描述当前情况的状态。
目标
定义问题的目标,通常是最小化或最大化某 个指标。
经典面试题:爬楼梯问题
爬楼梯问题是指给定楼梯的阶数,求解爬到楼顶的不同方式的数量。
经典面试题:硬币找零问题
硬币找零问题是指给定一定面值的硬币和一个金额,找到凑出该金额的最少 硬币数。
经典面试题:最长回文子串问题
最长回文子串问题是指找到给定字符串中最长的回文子串。
实用案例:机器人找出路
机器人找出路是指给定一个迷宫,找到从起点到终点的路径。
决策
根据状态作出选择或决策。
转移方程
根据子问题的最优解推导出整体问题的最优 解。
最优子结构和重叠子问题
1 最优子结构
问题的最优解包含了子问题的最优解。
2 重叠子问题
子问题之间存在重复的计算,可以利用记 忆化存储中间结果来优化。
动态规划三部曲
1
定义状态
明确问题的状导转移方程
国王游戏问题
国王游戏问题是指在一个棋盘上放置国王,使得它们无法互相攻击。
编辑距离问题
编辑距离问题是指计算两个字符串之间转换的最小操作次数,包括插入、删 除和替换操作。
矩阵连乘问题
矩阵连乘问题是指给定一系列矩阵,找到最佳的乘法顺序,使得计算乘法的总次数最小。
最长递增子序列问题
最长递增子序列问题是指找到给定序列中最长的递增子序列的长度。
斐波那契数列问题

《动态规划算法》课件

《动态规划算法》课件
总结词
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

..........
15
拓展2:低价购买
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟
大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买
一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标
是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内
为这些子问题做索引 ,以便它们能够在表中更好的存储
与检索 (i.e., 数组array【】)
以自底向上的方法来填写这表格; 首先填写最小子问题 的解.
这就保证了当我们解决一个特殊的子问题时, 可以利 用比它更小的所有可利用的 子问题的解.
由于历史原因, 我们称这种方法为:
动态规划.
在上世纪40年代末 (计算机普及很少时),
棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为 不超过 20 的整数,并由键盘输入),同样马的位置坐标 是需要给出的(约定: C<>A,同时C<>B)。现在要求 你计算出卒从 A 点能够到达 B 点的路径的条数。 [输入]: 键盘输入
B点的坐标(n,m)以及对方马的坐标(X,Y){不用盘错} [输出]:
案被认为是相同的。
..........
16
拓展3:合唱队形 (vijis1098)
N位同学站成一排,音乐老师要请其中的(N-K)位同学出 列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依 次编号为1,2…,K,他们的身高分别为T1,T2,…,TK , 则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
动态规划
参与竞赛的同学应由竞争关系和独立关系 (你做你的,我干我的,程序和算法互相 保密,彼此津津乐道于对方的失败和自己 的成功)转向合作学习的关系(通过研讨 算法、集中编程、互测数据等互相合作的 方式完成学习任务)
..........
1
斐波纳契数列F(n)
F(n) =
1 F(n-1) + F(n-2)
遇到同样的问题时就可以直接引用,不必
重新求解。
..........
6
动态规划 解决问题的基本特征
1. 动态规划一般解决最值(最优,最 大,最小,最长……)问题;
2. 动态规划解决的问题一般是离散 的,可以分解(划分阶段)的;
3. 动态规划解决的问题必须包含最
优子结构,即可以由(n-1)的最
优推导出n的最优
if n = 0 or 1 if n > 1
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
..........
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
D(1,1)=a(1,1)
..........
21
拓展:栈(vijos 1122)
【问题背景】栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插 入删除操作的线性表。 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进 栈)。
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n 。 现在可以进行两种操作, 1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作) 2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。
输入的第一行是一个整数N(2<=N<=100),表示同学的总数。第一行有n 个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高( 厘米)。
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
最优秀的投资者可以购买最多4次股票,可行方案中的一种是:
日期 2 5 6 10
价格 69 68 64 62
输入
第1行: N (1 <= N <= 5000),股票发行天数
第2行: N个数,是每天的股票价格。
输出
输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231)
当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方
n-1
i
n
min
(1)第i个人的票自己买 (2)第i个人的票由第i-1个人买
步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
..........
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
一支股票每天的出售价(216范围内的正整数),你可以选择在哪些天购买这支股票。
每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买
次数。
这里是某支股票的价格清单:
日期 1 2 3 4 5 6 7 8 9 10 11 12
价格 68 69 54 64 68 64 70 67 78 62 98 87
步骤1:用F(i)表示第i项到最后一项最长不下降序列的长度的值;
步骤2:状态转移方程;
d[i]表示数列中第i项的值;
步骤3:以自底向上的
方法来计算最优解
..........
14
拓展1: 拦截导弹 (vijos1303)
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系 统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都 不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用 阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
13 7 9 16 38 24 37 18 44 19 21 22 63 15 对于下标i1=1,i2=4,i3=5,i4=9,i5=13,满足13<16<38<44<63,则存 在长度为5的不下降序列。 但是,我们看到还存在其他的不下降序列: i1=2,i2=3,i3=4,i4=8,i5=10, i6=11,i7=12,i8=13,满足:7<9<16<18<19<21<22<63,则存在长度 为8的不下降序列。 问题为:当b1,b2,…,bn给出之后,求出最长的不下降序列。
步骤1:用F(n)表示在斐波纳契数列中第n个数的值;
步骤2:状态转移方程:
F(n) =
1 F(n-1) + F(n-2)
if n = 0 or 1 if n > 1
步骤3:以自底向上的方法来计算最优解
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
样例输入
样例输出:
8
4
186 186 150 200 160 130 197 220 ..........
17
例题五. 马拦过河卒
[问题描述]: 如图,A 点有一个过河卒,需要走到目标 B 点。卒行走规则:
可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如 上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马 的控制点。例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。
..........
11
分析: 如果前i个人买票的最优买票方式一确定,
比如第i-1个人买一张票,则前i-1个人的
买票方式也一定是最优的。即问题的最
1 2

步骤1:用F(i)表示前i个人买票的最优方 式,即所需最短时间;现在要决定F(i)需要
n-2 考虑两种情况:
..........
5
最优子结构性质:问题的最优解包含着它 的子问题的最优解。即不管前面的策略如 何,此后的决策必须是基于当前状态(由 上一次决策产生)的最优决策。
重叠子问题:在用递归算法自顶向下解问
题时,每次产生的子问题并不总是新问题,
有些问题被反复计算多次。对每个子问题
只解一次,然后将其解保存起来,以后再
9 10
..........
10
例题三:排队买票问题
一场演唱会即将举行。现有n个歌迷排队买票, 一个人买一张,而售票处规定,一个人每次最多 只能买两张票。假设第i位歌迷买一张票需要时间 Ti(1≤i≤n),队伍中相邻的两位歌迷(第j个人和 第j+1个人)也可以由其中一个人买两张票,而另 一位就可以不用排队了,则这两位歌迷买两张票 的时间变为Rj,假如Rj<Tj+Tj+1,这样做就可以缩 短后面歌迷等待的时间,加快整个售票的进程。 现给出n, Tj和Rj,求使每个人都买到票的最短时间 和方法。
这些规划设计是与”列表“方法相关的.
..........
4
动态规划算法
算法思想 将待求解的问题分解成若干个子问题,并 存储子问题的解而避免计算重复的子问题, 并由子问题的解得到原问题的解。
动态规划算法通常用于求解具有某种最优 性质的问题。
动态规划算法的基本要素: 最优子结构性质和重叠子问题。
..........
7
解决问题的基本步骤
动态规划算法的4个步骤: 1. 刻画最优解的结构特性. (一维,二维, 三维数组) 2. 递归的定义最优解. (状态转移方程) 3. 以自底向上的方法来计算最优解. 4. 从计算得到的解来构造一个最优解.
相关文档
最新文档