第6章-讲义-代谢总论与生物氧化

合集下载

关于新陈代谢总论和生物氧化课件

关于新陈代谢总论和生物氧化课件
1、能量代谢:指伴随着生物体内的物质代谢 而发生的一系列能量转变。
遵循热力学定律(第一和第二定律) G= H-T S [G:(实际)自由能变化; H总
热能变化; T S总体熵变化。]
当G<0时,体系的反应自发进行(放能); 当G>0时,在补充自由能时可以进行(吸能) G=0时,体系处于平衡状态。
18
c) 烯醇式磷酸化合物
COOH O CO PO CH2 O
磷酸烯醇式丙酮酸 14.8千卡/摩尔
19
② 氮磷键型
O
NH
PO
C NH O
N CH3
C H 2C O O H
O
NH
PO
C NH O
N CH3 NH2
C H2C H2C H2C HC O O H
磷酸肌酸
磷酸精氨酸
10.3千卡/摩尔
7.7千卡/摩尔
三、高能化合物与ATP作用
1、高能化合物:在生物化学反应中,随水解反应或 集团转移反应能够放出大量自由能的化学化合物 (高能磷酸化合物(~P)、硫酯型高能化合物、 甲硫型高能化合物)。
高能磷酸化合物:磷氧型+磷氮型 p205(表8-1)
Fig. 2. The two-dimensional stick model of the adenosine phosphate family of molecules, showing the atom and bond arrangement.
关于新陈代谢总论 和生物氧化
8.0 概论
1、新陈代谢(metabolism)的概念: 新陈代谢是生物与外界环境进行物质交换与能量交
换的全过程。它包括生物体内所发生的一切合成(同化 作用,耗能)和分解(异化作用,放能)作用。

第六章 新陈代谢总论与生物氧化

第六章 新陈代谢总论与生物氧化

第六章新陈代谢总论与生物氧化一、解释名词1.生物氧化:2.有氧呼吸与无氧呼吸:3.呼吸链4.氧化磷酸化5. P/O比6.末端氧化酶二、是非题:1.物质在空气中燃烧和在体内的生物氧化的化学本质是完全相同的。

2.生物界NADH呼吸链应用最广。

3.当一个体系的熵值减少到最小时该体系处于热力学平衡状态。

4.在生物氧化体系内,电子受体不一定是氧,只要它具有比电子供体较正的E0′时呼吸作用就能进行。

5.各种细胞色素组分,在电子传递体系中都有相同的功能。

6.呼吸链中氧化还原电位跨度最大的一步是在细胞色素aa3-O2之间。

7.呼吸链细胞色素氧化酶的血红素辅基Fe原子只形成5个配位键,另一个配位键的功能是与O2结合。

8.解偶联剂的作用是解开电子传递和磷酸化的偶联关系,并不影响ATP的形成。

9.鱼藤酮不阻止苹果酸氧化过程中形成的NADH+H+通过呼吸链生成ATP10.寡霉素对氧消耗的抑制作用可被2,4-二硝基苯酚解除。

11.6—磷酸葡萄糖含有高能磷酸基团,所以它是高能化合物。

12.从低等单细胞生物到最高等的人类,能量的释放、贮存和利用都以ATP为中心。

13.ATP虽然含有大量的自由能,但它并不是能量的贮存形式。

14.ATP在高能化合物中占有特殊地位,它起着共同的中间体的作用。

15.有机物的自由能决定于其本身所含基团的能量,一般是越稳定越不活泼的化学键常具有较高的自由能。

16.磷酸肌酸是ATP高能磷酸基的贮存库,因为磷酸肌酸只能通过这唯一的形式转移其磷酸基团。

三、填空题1.生物体内形成ATP的方式有:⑴__________________、⑵___________________和⑶________________________。

2.代谢物在细胞内的生物氧化与在体外燃烧的主要区别是、和。

3.生物氧化主要通过代谢物的反应实现的,H2O是通过形成的。

4.化学反应过程中,自由能的变化与平衡常数有密切的关系,ΔG0′=。

6.在氧化还原反应中,自由能的变化与氧化还原势有密切的关系,ΔG0=。

第六章代谢总论和生物氧化

第六章代谢总论和生物氧化

COOCH NH3+
CH2
CH2 H3C S+ A
2021年1月11日星期一
38
2)ATP的特殊作用 1)细胞内放能反应、需能反应的化学偶联剂 2)磷酸基转移的作用 Glc进入血液中,磷酸化(唯一出路) G-6-P Glc的一种活化形式 已糖激酶催化:Glc+ATP→G-6-P+ADP。 3一磷酸甘油:甘油活化形式,参与脂肪合成 甘油激酶:甘油+ATP→3一磷酸甘油+ADP
(脂、多糖、蛋白质、核酸等) 需要能量:ATP
电子载体(NADH、NADPH和FADH2)
2021年1月11日星期一
16
(六)生物体内能量代谢的基本规律
能量代谢 伴随着生物体的物质代谢所发生的一系列的 能量转变
热力学第一定律:能量守恒 热力学第二定律:任何一种物理或化学的过程都自发地趋
向于增加体系与环境的总熵
2.代谢研究的主要内容: 1).营养物质的摄入 2).营养物质的消化和降解:由大分子形成小分子 3).由小分子物质合成自身需要的各种生物分子 4).提供和储存生命活动所需要的能量
2021年1月11日星期一
6
(二)代谢作用的特点 1、中间代谢极强的顺序性 2、条件温和,酶催化 3、自我调节 4、代谢中每一步反应都涉及到物质和能量
R-CHNH2-COOH R-CH2NH2 + CO2
HH
H
H
OH OH
2021年1月11日星期一
34
c、烯醇式磷酸化合物
COOH O CO P CH2 O
O 磷酸烯醇式丙酮酸 14.8千卡/摩尔
2021年1月11日星期一
35
(2)氮磷键型
储存能量

生物化学 代谢总论与生物氧化

生物化学 代谢总论与生物氧化
磷 酸 基 团 转 移 能 12 10 3-磷酸甘 油酸磷酸 8 6 4 2 0 磷酸肌酸(磷酸基团储备物)
~P ~P ATP
~P
~P
~P
6-磷酸葡萄糖 3-磷酸甘油
二 生物氧化
二、生物氧化
有机物质(糖、脂肪和蛋白质)在生
物细胞内进行氧化分解而生成CO2和H2O
并释放出能量的过程称为生物氧化。 生物氧化通常需要消耗氧,所以又称
O NH C N NH CH3
肌酸磷酸
O
O NH
P O
P O NH2
C NH O N CH3 CH2CH2CH2CHCOOH
磷酸精氨酸
CH2COOH
这两种高能化合物在生物体内起储存能量的作用。
3-磷酸腺苷-5’-磷酰硫酸
硫酯键型
酰基辅酶A
O SCoA
R C
甲硫键型
COO CH CH2 CH2 H3C S
(3) 水的生成方式是代谢物脱下的H与O结合
产生的。 (4) CO2的生成方式是有机酸脱羧产生的。
生物氧化的内容
(1)细胞如何在酶的催化下将有机化合物中的C变 成CO2—CO2如何形成? • 脱羧反应
(2)在酶的作用下细胞怎样利用分子氧将有机化 合物中的H氧化成H2O—H2O如何形成? • 电子传递链 (3)当有机物被氧化成CO2和H2O时,释放的能量怎 样转化成ATP—能量如何产生? • 底物水平磷酸化 • 氧化磷酸化
分解代谢与合成代谢
生物小分子合成大分子 • •
合成代谢 •
需要能量
能量代谢
新陈代谢

• •
释放能量
分解代谢
生物大分子分解成小分子
物 质 代 谢
新陈代谢的共同特点

(推荐)陈代谢总论和生物氧化

(推荐)陈代谢总论和生物氧化
“中间代谢”
指物质在细胞中的合成和分解过程,不涉及营养物质的 消化吸收与代谢产物的排泄。
8.1 新陈代谢总论
一、新陈代谢的研究方法 1.活体内与活体外实验 (1)in vivo(体内实验) 在正常生理条件 下,在神经、体液等调节机制下的 整体代谢情况。
1904年 Knoop Ф (CH2)nCOOH 狗 ФCOOH ,ФCH2COOH
3.代谢途径阻断等方法 用抗代谢物或酶的抑制剂来阻抑中间代谢的某
一环节,观察这些反应被抑制或改变以后的结果, 以推测代谢情况。
利用患代谢障碍病的病人或动物进行代谢研究
AB
停止 C DEF
排出体外
4. 突变体研究法 基因突变
酶的缺失
相应产物的缺失或酶作用底物的堆积
鉴别代谢途径的酶及中间代谢物
二、生物体内能量代谢的基本规律
这两种高能化合物在生物体内起储存能量的作用。
20
③ 硫酯键型
O R C SCoA
酰基辅酶A
NH2
N
N
O
OS O-
O
OP O-
NN OCH2 O
HH
H
H
OH OH
3‘-磷酸腺苷-5’-磷酸硫酸
21
④ 甲硫键型
S-腺苷甲硫氨酸
COO-
CH
N
H
+ 3
CH2
CH2 H 3C S + A
22
2、ATP的作用
三、高能化合物与ATP作用
1、高能化合物:在生物化学反应中,随水解反应或 集团转移反应能够放出大量自由能的化学化合物 (高能磷酸化合物(~P)、硫酯型高能化合物、 甲硫型高能化合物)。
高能磷酸化合物:磷氧型+磷氮型 p205(表8-1)

第6章代谢总论与生物氧化

第6章代谢总论与生物氧化

磷氧型高能磷酸化合物:
(1)烯醇式磷酸化合物(例)
- 61.9 kJ/mol
第6章代谢总论与生物氧化
(2)酰基磷酸化合物(例)
- 42.3 kJ/mol
第6章代谢总论与生物氧化
(3)焦磷酸化合物(例)
焦磷酸 - 28.84 kJ/mol
ATP(三磷酸腺苷) - 30.5 kJ/mol
第6章代谢总论与生物氧化
肌酸磷酸 激酶
第6章代谢总论与生物氧化
第6章代谢总论与生物氧化
第二节 生物氧化
——有机物质在细胞内的氧化作用。又称组织呼 吸或细胞呼吸。
★在整个生物氧化过程中,有机物质最终被 氧化成CO2和H2O,并释放出能量形成ATP。 一、 生物氧化的特点 (一)氧化还原的本质——电子转移
电子转移的主要形式:
2. 能量逐步释放,部分存于ATP中。 3. 分为线粒体氧第化6章体代谢总系论与和生物非氧化线粒体氧化体系。
二、 生物氧化中CO2的生成
生物体内CO2的生成来源于有机物转变为含 羧基化合物的脱羧作用。
(1) 直接脱羧
丙酮酸脱羧酶
CH3CCOOH
O 丙酮酸
(α-脱羧)
CH3CHO + CO2
HOOCC H2C COOH
磷氮型高能磷酸化合物:
- 43.1 kJ/mol 第6章代谢总论与生物氧化
非磷酸高能化合物: (1) 硫酯键型高能化合物 (例)
乙酰辅酶A 第6–章代3谢1总.4论与k生J物/m氧化ol
(2) 甲硫型高能化合物 (例)
– 41.8 kJ/mol
第6章代谢总论与生物氧化
ATP的特殊作用
NH2
N
O 草酰乙酸
丙酮酸羧化酶 ( β -脱羧)

生物化学:第6章 新陈代谢总论与生物氧化

生物化学:第6章 新陈代谢总论与生物氧化

第6章新陈代谢总论与生物氧化 (Biological Oxidation)6 新陈代谢总论与生物氧化小分子 大分子合成代谢(同化作用)需要能量释放能量分解代谢(异化作用)大分子 小分子物质代谢能量代谢新陈代谢信息交换6.1 新陈代谢总论新陈代谢的概念及内涵6.1.1 新陈代谢的研究方法1,活体内(in vivo)和活体外实验(in vitro)2,同位素示踪法3,代谢途径阻断法4,突变体研究法6.1.2 生物体内能量代谢的基本规律1、自由能的概念(1)热力学第一定理: 能量守恒。

(1) 热力学第二定理:自发过程是向着能量分散 程度(熵,S)增大的方向进行。

(3) 自由能:在恒温恒压下,体系可以用来对环境 作功的那部分能量。

(4)自由能变化的公式:△G=△H- T△S△G<0 反应自发△G>0 需要能力才能向正反应进行△G=0 反应处于平衡状态6.1.2 生物体内能量代谢的基本规律2、反应标准自由能的变化及其与平衡常数的关系(1)标准自由能: G o′自由能与标准自由能△G = △G o′+ RTln[C][D]/[B][A]当△G = 0时, △G o′= -2.303RTlgK′标准自由能的可加性6.1.2 生物体内能量代谢的基本规律3、氧化还原电位(1)E:在氧化还原反应中,自由能的变化与反应物供出或得到电子的趋势成比例,这种趋势用数字表示,即为氧化还原电位.(2)E、E o与E o′(3)E o′的含义——其值越小表示所带电子越多,还原能力越强△G o′= -nF △E o ′△E o ′>0,表示反应能自发进行4、氧化还原电位与自由能的关系检流计盐桥ZnSO 4CuSO 4e+-负极反应: Zn - 2e =Zn 2+ E 0 Zn 2+/ Zn = - 0.76V 正极反应: Cu 2++2e= Cu E 0 Cu 2+/ Cu =+ 0.34V ΔE 0 = E 0正极-E 0负极=+0.34V -(-0.76V)=+1.10V6.1.2 生物体内能量代谢的基本规律2、 ATP 是生物细胞内能量代谢的偶联剂ATP + H 2O ADP +Pi 释放能量30.5kJ/mol ADP + Pi ATP 吸收能量30.5kJ/molATP ——最常见的高能磷酸化合物,具有高能磷酸基团,能量通货。

代谢总论和生物氧化培训课件

代谢总论和生物氧化培训课件
代谢总论和生物氧化
新陈代谢
能量代谢 物质代谢
合成代谢 (同化作用)
分解代谢 (异化作用)
生长旺盛时: 合成代谢分解代谢
成长的生物: 合成代谢分解代谢
衰老或饥饿代:谢总合论和成生代物氧谢化 分解代谢
2
物质代谢
糖、脂、蛋白质及核酸等类物质在细胞内发 生酶促转化的途径及调控机理,包括细胞自身 旧分子的分解和新分子的合成。
和高等植物。
异养生物(Heterotrophs):不能利用大气中的
CO2,必须从环境中获得相对复杂的有机碳分 子如葡萄糖,如高等动物和多数微生物。
代谢总论和生物氧化
8
第二节 中间代谢的实验研究方法
1. 研究材料:
单细胞生物,多细胞生物,病毒与噬菌体
2. 研究水平:
体内研究(in vivo):用生物体、组织器官或微
能量代谢
研究光能或化学能在细胞中向生物能(ATP) 转化的原理和过程,以及生命活动对能量的利用 。
代谢总论和生物氧化
3
合成代谢
合成代谢也称生物合成,小、简单的前体物 质形成更大、更复杂的分子,如脂、多糖、蛋 白质和核酸等。
分解代谢
分解代谢是代谢作用的分解过程,是有机 物(糖、脂和蛋白质)被转化为更小、更简单 的终产物(如乳酸、CO2和NH3等)的过程。
14
4. 测定特征性酶
每条代谢途径都有其特征性酶,它的存在 就表明该代谢途径存在。
糖代谢途径的特征性酶:
EMP途径:醛缩酶 HMP途径:6-磷酸葡萄糖酸脱氢酶 TCA循环:柠檬酸合成酶
代谢总论和生物氧化
15
第三节 生物氧化 Biological Oxidation
一、概念
物质在体内的氧化分解过程,主要是糖、脂 、蛋白质等在体内分解时逐步释放能量、最终 生成二氧化碳和水的过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱氢酶
氧化酶
MH2 M
氧化型
还原型
递氢体 NAD+,NADP+, FMN,FAD,COQ
还原型(2H)
递电子体 Cyt b, c1, c, aa3
氧化型
2e
½ O2 O2- H2O
2H+
(一)呼吸链
1、概念
代谢物上的氢原子被脱氢酶激活脱落后, 经一系列传递体,最后(将质子和电子)传 递给氧而生成水的全部体系,称呼吸链 (respiratory chain)。此体系也称电子传递 体系或电子传递链(electron transfer chain)。
~
O O -P -O
~
O HO-P-O-CH2
-O
N O
N -H
N
H
OH OH
ATP是生物细胞内能量代谢的偶联剂
作用:是能量的携带者或传递者,而非贮存者, 是能量货币
ATP + H2O → ADP + Pi 其ΔG0′= - 30.51kJ/mo1;
当ADP + Pi → ATP时, 也需吸收30.51kJ/mol的自由能 磷酸肌酸(脊椎动物)和磷酸精氨酸(无脊椎动 物)是能量的贮存形式
由于参与这一系列催化作用的酶和辅酶 及中间传递体在膜(原核细胞膜、真核线粒 体内膜)上一个接一个地构成了链状反应, 故常将这种形式的氧化过程称为呼吸链。
ATP合成酶
外膜 膜间隙
基质
琥珀 延胡索 酸酸
化学势差
电势差
内碱
质子驱动力 推动ATP合

内负
内 膜
在电子传递过程中释放出大量的自由能, 使ADP磷酸化生成ATP,这是生物合成ATP的 基本途径之一。
二、 生物氧化中CO2的生成 生物体内CO2的生成来源于有机物转变为含
羧基化合物的脱羧作用。
(1) 直接脱羧
丙酮酸脱羧酶
CH3CCOOH
O 丙酮酸
(α-脱羧)
CH3CHO + CO2
HOOCC H2C COOH
O 草酰乙酸
丙酮酸羧化酶 ( β -脱羧)
CH3CCOOH + CO2 O
(2)氧化脱羧:在脱羧过程中伴随着氧化(脱氢)
ATP(三磷酸腺苷) - 30.5 kJ/mol
磷氮型高能磷酸化合物:
- 43.1 kJ/mol
非磷酸高能化合物: (1) 硫酯键型高能化合物 (例)
乙酰辅酶A – 31.4 kJ/mol
(2) 甲硫型高能化合物 (例)
– 41.8 kJ/mol
ATP的特殊作用
NH2
N
-
O O-P -O
肌酸磷酸 激酶
第二节 生物氧化
——有机物质在细胞内的氧化作用。又称组织呼 吸或细胞呼吸。
★在整个生物氧化过程中,有机物质最终被 氧化成CO2和H2O,并释放出能量形成ATP。 一、 生物氧化的特点 (一)氧化还原的本质——电子转移
电子转移的主要形式:
1. 直接的电子转移
Fe2+ + Cu2+ ↔ Fe3+ + Cu+
第6章--代谢总论与生物氧化
精品jing
易水寒江雪敬奉
第一节 新陈代谢总论
一、 新陈代谢的概念
新陈代谢
生物小分子合成为 生物大分子 合成代谢 (同化作用)
需要能量 释放能量
能量 代谢
物质代谢
分解代谢 (异化作用) 生物大分子分解为
生物小分子
新陈代谢的共同特点:
1. 由酶催化,反应条件温和。 2. 诸多反应有严格的顺序,彼此协调。 3. 对周围环境高度适应。
该类酶均为不需氧脱氢酶,即不以氧为直接 受氢体。在这类酶的作用下,代谢物脱下的氢被 其辅酶接受而转变为NADH或NADPH;当有受H 体存在时, NADH或NADPH上的H可被脱下而氧 化为NAD+或NADP+。所以它既是一种脱氢酶,也是一
种还原酶。
还原
氧化
(2) 黄素脱氢酶类--以FMN或FAD为辅基的 脱氢酶类
实际上,生物体中能量获得的本质正是氢 的氧化。
2、呼吸链种类 根据代谢物上脱下的氢的初始受体不同,
在具有线粒体的生物中,典型的呼吸链有2种: NADH呼吸链:绝大部分分解代谢的脱氢 氧化反应通过此呼吸链完成
FADH2呼吸链:只能催化某些代谢物脱 氢, 不能使NADH或NADPH脱氢
3、呼吸链的组成 (1)烟(尼克)酰胺脱氢酶类--以NAD+或 NADP+为辅酶的脱氢酶,已知的有200多种
二、 新陈代谢的研究方法 1. 活体内(in vivo)与活体外实验(in vitro) 2. 同位素示踪法 3. 代谢途径阻断法 4. 遗传缺欠症及动物模型等方法
三、 生物体内能量代谢的基本规律 自由能:生物体(或恒温恒压)用以作功的能 量。在没有作功条件时,自由能转变为热能丧 失。
熵:混乱度或无序性,是一种无用的能。
2. 氢原子的转移
AH2 + B ↔ A + BH2
3. 有机还原剂直接加氧
( H ↔ H+ + e )
RH + O2 + 2H+ + 2e ↔ ROH + H2O
(二)生物氧化的特点
1. 在细胞内,于体温、近于中性的含水环境中 由酶催化。
2. 能量逐步释放,部分存于ATP中。 3. 分为线粒体氧化体系和非线粒体氧化体系。
该类酶也属不需氧脱氢酶,催化代谢物脱下
一对H原子,使FMN或FAD还原为FMNH2ADP+ 更强的 氧化剂。
ΔG = ΔH - TΔS
对于 A + B ←→ C + D ΔG°= - 2.303 RT lgK K = [C][D] / [A][B]
四、 高能化合物与ATP的作用
一般将水解时能够释放21 kJ /mol(5kCal/mol) 以上自由能(G′< -21 kJ / mol)的化合物称为 高能化合物。
烯醇磷酸化合物
高能化合物
磷酸化合物
磷氧型 磷氮型
酰基磷酸化合物 焦磷酸化合物
硫酯键化合物
非磷酸化合物
甲硫键化合物
磷氧型高能磷酸化合物:
(1)烯醇式磷酸化合物(例)
- 61.9 kJ/mol
(2)酰基磷酸化合物(例)
- 42.3 kJ/mol
(3)焦磷酸化合物(例)
焦磷酸 - 28.84 kJ/mol
NADP+ NADPH + H+
HOOCCH2CHOHCOOH
苹果酸
CH3CCOOH + CO2 O
三、生物氧化中 H2O 的生成 生物氧化作用主要是通过脱氢反应来实现的。
代谢物脱下的氢经生物氧化作用和吸入的氧结 合生成水。
在生物氧化中,碳的氧化和氢的氧化是非同步 进行的。
生物体主要以脱氢酶、传递体及氧化酶组成生 物氧化体系,以促进水的生成。
相关文档
最新文档