联轴器系数
联轴器的螺栓扭矩计算公式
联轴器的螺栓扭矩计算公式联轴器是一种用于连接两个轴的装置,用于传递动力和扭矩。
在安装联轴器时,螺栓扭矩的计算是非常重要的,因为正确的扭矩可以确保联轴器的稳固连接,防止螺栓松动或断裂,从而保证设备的安全运行。
螺栓扭矩计算公式是用来确定联轴器螺栓需要施加的扭矩值,以确保螺栓能够承受联轴器传递的扭矩,并保持稳固的连接。
在计算螺栓扭矩时,需要考虑到联轴器的类型、尺寸、材料以及工作条件等因素。
首先,我们来看一下螺栓扭矩计算的基本公式:T = K D F。
其中,T为螺栓扭矩,单位为牛顿米(N·m);K为螺栓系数,取决于联轴器的类型和材料;D为螺栓的直径,单位为米(m);F为螺栓的摩擦力,单位为牛顿(N)。
在实际应用中,螺栓系数K是一个重要的参数,它反映了螺栓材料和连接方式对扭矩的影响。
一般来说,螺栓系数K可以通过实验或参考相关标准来确定。
对于不同类型和规格的联轴器,螺栓系数K也会有所不同。
螺栓的直径D是另一个需要考虑的参数,直径越大的螺栓通常能够承受更大的扭矩。
在计算螺栓扭矩时,需要根据联轴器的设计要求和工作条件来选择合适的螺栓直径。
螺栓的摩擦力F是指螺栓与联轴器之间的摩擦力,它会影响螺栓的紧固效果。
通常情况下,螺栓摩擦力可以通过螺栓的预紧力来计算,预紧力越大,则摩擦力也会越大。
除了上述基本公式外,还需要考虑到一些其他因素,如螺栓的材料、螺纹类型、螺栓的紧固方式等。
这些因素都会对螺栓扭矩的计算产生影响,需要在实际应用中进行综合考虑。
在进行螺栓扭矩计算时,还需要注意以下几点:1. 确定联轴器的工作条件,包括扭矩大小、转速、工作环境等因素。
2. 根据联轴器的类型和规格选择合适的螺栓系数K。
3. 根据联轴器的设计要求和工作条件选择合适的螺栓直径。
4. 确定螺栓的摩擦力,包括预紧力和摩擦系数等参数。
5. 根据实际情况进行综合考虑,调整螺栓扭矩的计算结果。
总之,螺栓扭矩的计算是联轴器安装中非常重要的一环,它直接关系到联轴器的安全运行和使用寿命。
万向联轴器的选择和校核资料
万向联轴器的选择和校核6.2.1选择万向联轴器万向联轴器可以用于传递两轴不在同一轴线上、两轴线存在较大夹角的情况。
它能实现两轴连续回转,可靠的传递转矩,结构较紧凑,传动效率很高。
为保证传动精度及可靠性,减速器和轧辊之间用万向联轴器连接。
十字轴式万向联轴器、滑块式万向联轴器为两种常用的万向联轴器。
1、十字轴式万向联轴器的优点:(1)联轴器用滚针轴承,传动效率较高,传动效率可达98.7%~99%,摩擦系数小,。
(2)由于滚动轴承的间隙较小,传动平稳,冲击和振动减小。
(3)在回转半径相同时,可传动大扭矩。
(4)耗油量少,可改善生产环境,维修保养费用减少。
(5)在空行程时,十字轴万向联轴器可减低到30~40dB ,比滑块万向联轴器低很多,满足低噪声要求。
(6)联轴器寿命为2年左右,减少了更换设备的费用。
2、计算转矩:十字轴万向联轴器应满足强度条件如下;na h n c T K K K TK T ≤=α(6.5)式中T —— 联轴器的理论转矩h K —— 轴承寿命系数,由[10]表41.4-25, h K =1.2 αK —— 联轴器轴间角系数,由[10]表41.4-26;αK =1.4n K —— 联轴器转速系数,由[10]表41.4-24; n K =1.1 aK —— 载荷性质系数,由[10]表41.4-9;aK =1c T —— 联轴器的计算转矩n T —— 联轴器的许用转矩n P 9550T η= (6.6)P —— 电机的额定功率,η —— 电机到减速器的输出轴的效率,η=0.850n —— 减速器输出轴的转速,6.1950980n ==由式(6.6得:错误!未找到引用源。
由文献[10]表41.4-10选择十字轴万向联轴器型号为SWP250D 型,其主要参数 如下表,表6.2 万向联轴器的参数考虑到联轴器中轴承易损,所以选择十字轴的轴承为剖分式,为方便更改轴承,将轴承压盖进行剖分,。
要用高强度的螺栓(力学性能能按GB3098.1中规定的10、9级)还有螺母(力学性能能按GB3098.2中规定的10级),用于联轴器各配件的连接);用预紧螺栓将两端法兰联接配件上,依靠法兰端面键来传递转矩。
联轴器的设计计算
联轴器的设计计算一、概述联轴器是用来连接两个轴相对旋转或平行位移的装置,可以传递扭矩和运动。
在机械传动系统中,联轴器的设计和计算非常重要,它决定了传动系统的可靠性、效率和寿命。
本文将介绍联轴器的设计和计算方法。
二、设计要求1.承受的扭矩:根据传动装置的要求和工作条件,确定联轴器需要承受的扭矩。
2.轴的直径和长度:根据传动装置的要求和工作条件,确定联轴器轴的直径和长度。
3.连接方式:根据传动装置的要求和工作条件,确定联轴器的连接方式,如齿轮联轴器、弹性联轴器等。
4.工作环境:根据传动装置的工作环境,选择适合的材料和润滑方式。
三、设计计算1.扭矩计算根据传动装置需要传递的扭矩和转速,可以计算出联轴器需要承受的扭矩。
扭矩的计算公式为:T=P/ω其中,T为扭矩(Nm),P为功率(W),ω为角速度(rad/s)。
2.轴的直径和长度计算联轴器轴的直径和长度需要根据承受的扭矩和材料的强度来确定。
根据承受的扭矩和材料的强度,可以计算出轴的直径。
轴的直径计算公式为:d = sqrt[(16 * T) / (π * p * τ)]其中,d为轴的直径(mm),T为扭矩(Nm),p为扭矩传递系数(一般取1.5-2.5),τ为材料的允许应力(MPa)。
根据联轴器的连接方式,可以确定联轴器轴的长度。
在齿轮联轴器中,联轴器轴的长度等于齿轮的轴向厚度。
在弹性联轴器中,联轴器轴的长度需要根据弹性材料的变形和弹性模量来确定。
3.运动计算根据传动装置的工作条件和联轴器的连接方式,可以计算出联轴器的转速和传动比。
在齿轮联轴器中,联轴器的转速和传动比等于齿轮的转速和齿比。
在弹性联轴器中,联轴器的转速和传动比需要根据弹性材料的变形和弹性模量来确定。
4.材料选择根据联轴器的工作环境和工作条件,选择适合的材料。
常用的材料有钢、铸铁、铜、铝等。
材料的选择要考虑到强度、刚性、耐磨性、耐腐蚀性等因素。
另外,根据工作环境和工作条件,选择适当的润滑方式,以减少磨损和摩擦。
联轴器的工作情况系数
联轴器的工作情况系数
在选用标准联轴器或设计专用联轴器时,要先求出联轴器实际需传递的扭矩。
对于标准
联轴器,每一型号都已定出了许用扭矩值,因此,选择型号时,联轴器实际需要传递的扭矩要小于所选联轴器的许用扭矩[T]。
联轴器实际需要传递的扭矩常用计算扭矩T0。
表示,它等于联轴器的理论扭矩T乘以工作情况系数K。
因此,上述条件可表示为:T0=KT。
工作情况系数是传动轴系载荷变化和工作环境等对联轴器实际需要传递扭矩的影响系数。
通常,其值与动力机和工作机的类型、工作条件、传动轴系的转动惯量等有关,同时也受联轴器本身结构的影响。
因此同一联轴器用在不同传动中,或不同联轴器用在同一传动中,工作情况系数值并不一定相同,而一般资料所荐的数据都是一个大概值。
对于重要的传动轴系,此系数最好通过计算传动轴系的动力特性来精确求得,或由测量运转时的最大扭矩来确定。
对于一般的传动轴系,此系数可以引用传动条件相似的运转经验或试验所得数据。
由于这种数据是在一定条件下由实际经验得到的,来源不同,数据也不完全一致。
钜人公司网站有丰富的资料可供选择和设计联轴器时参考。
应当指出,不能认为选取较大的工作情况系数,以采用较大尺寸的联轴器,就会得到较
高的传动性能和工作可靠性。
事实上,联轴器的尺寸和重量增大时,联轴器所联两轴及其所承受的载荷也增加。
如两轴相对位移量不变,加大联轴器的尺寸必然引起附加动载荷的增大.所以不一定有好的结果。
尤其是对于受变载荷的传动轴系,联轴器的重量直接影响到联轴器的动力特性。
对于受偶然冲击载荷的轴系,还是采用尺寸较小的安全联轴器比较好。
联轴器的选择和校核
联轴器的选择和校核联轴器的选择和校核联轴器是用来连接两轴的回转件,在传递运动和动力过程中,一起回转但不脱开的一种装置。
另外,联轴器还可能具有补偿两轴的相对位移、缓冲或者减振还有安全防护等功能。
根据联轴器的性能,可以分为刚性联轴器和挠性联轴器。
刚性联轴器或成固定式联轴器,不具有补偿性能,但有简单的结构,制造容易、不需维护、成本较低等特点,所以应用较广泛。
应根据使用要求和工作条件,确定所需联轴器的类型。
1. 选择联轴器类型时应该考虑以下几点:(1)机械的类型以及传动系统的配置情况。
(2)工作转速的高低以及由其引起的离心力的大小,比如平衡精度较高高的联轴器,一般用于高速传动轴。
(3)所需传动转矩的大小和性质以及对缓冲和减振方面的要求,包括在稳定工况下运转的最大转矩,转矩的时间特性。
(4)两轴的相对位移大小、方向。
当安装调整后,不能严格保证两轴精确对中,或两轴在工作时产生了较大的相对位移时,可选挠性联轴器。
(5)制造、安装、维护联轴器的成本,不仅要满足使用性能,也要装拆方便,成本较低、维护简单的联轴器。
(6)联轴器的可靠性,使用寿命和工作环境。
2、计算联轴器的计算转矩Tca受机器启动时的动载荷、出现在运转中的过载现象的影响,计算转矩按轴上的最大转矩。
计算计算转矩按照式子(6.1):TKTcaA =(6.1)PwT9550,n(6.2) 式中TN,mca——计算转矩,N,mT——公称转矩,r/minn——电机额定转速,KK,1.5AA——工作情况系数,参考[9]PKWw——电机的额定功率,由式(6.1)和(6.2)得;30T,9550,,1.5ca,438.52KN,m9803、联轴器型号的确定,,TT,Tcaca根据计算转矩、联轴器的类型,需要按照的条件进行选择, [T]为联n轴器的许用转矩;被连接轴的转速要求小于等于联轴器允许的最高转速。
齿式联轴器计算范文
齿式联轴器计算范文齿式联轴器广泛应用于各种机械装置中,可用于传递旋转运动和扭矩。
在设计和选择齿式联轴器时,需要进行一系列计算,以确保其满足机械系统的要求、工作可靠、寿命长。
本文将介绍齿式联轴器的基本原理、计算方法和注意事项。
一、齿式联轴器的基本原理二、齿式联轴器的计算方法1.计算传递扭矩T=P×60/(n₁×η)其中,T为传递扭矩,P为功率,n₁为主动轮的转速,η为传动效率。
2.计算主动轮的齿数主动轮的齿数可以通过以下公式来计算:Z₁=(2×T×K)/(d×P)其中,Z₁为主动轮的齿数,T为传递扭矩,K为安全系数,d为主动轮的标称直径,P为功率。
3.计算从动轮的齿数从动轮的齿数可以通过以下公式来计算:Z₂=(Z₁×n₁)/n₂其中,Z₁为主动轮的齿数,n₁为主动轮的转速,n₂为从动轮的转速。
4.计算齿轮的模数齿轮的模数可以通过以下公式来计算:m=K₁×(T/d)其中,m为齿轮的模数,K₁为计算系数,T为传递扭矩,d为齿轮的标称直径。
5.计算齿宽齿宽可以通过以下公式来计算:b=K₂×√(T/(q×m×σB))其中,b为齿宽,K₂为计算系数,T为传递扭矩,q为等效齿数,m为齿轮的模数,σB为允许弯曲应力。
6.确定齿式联轴器的类型和尺寸根据计算结果和实际需求,确定齿式联轴器的类型和尺寸。
常见的齿式联轴器类型有齿圈铰链联轴器、直柄齿式联轴器、弹性涡轮齿式联轴器等。
三、齿式联轴器的注意事项1.选择合适的安全系数安全系数是指齿式联轴器承载能力与实际运行时所需的扭矩之比。
选择合适的安全系数是确保齿式联轴器工作可靠的重要因素。
2.注意齿轮的材质和硬度齿轮的材质和硬度决定了其使用寿命和传递扭矩的能力。
根据实际需要选择合适的齿轮材质和硬度,以确保齿轮的使用寿命和传递能力满足要求。
3.进行齿轮的强度校核齿轮的强度校核是确认齿轮是否能承受工作载荷的重要步骤。
电机选型计算公式
附录1:根据负载条件选用电机电机轴上有两种负载,一种是转矩负载,另一种是惯量负载。
选用电机时,必须准确计算这些负载,以便确保满足如下条件:§(1). 当机床处于非切削工作状态时,在整个速度范围内负载转矩应小于电机的连续额定转矩。
如果在暂停或以非常低的速度运行时,由于摩擦系数增大,使得负载转矩增大并超过电机的额定转矩,电机有可能出现过热。
另一方面,在高速运行时,如果受粘滞性影响,而使转矩增大且超过额定转矩,由于不能获得足够的加速转矩,加速时间常数有可能大大增加。
§(2). 最大切削转矩所占时间(负载百分比即“ON ”时间)满足所期望的值。
§(3). 以希望的时间常数进行加速。
一般来说,负载转矩有助于减速,如果加速不成问题,以同一时间常数进行减速亦无问题。
加速检查按以下步骤进行。
(I)假设电机轴按照NC 或位控所确定的ACC/DEC 方式进行理想的运动来得到加速速率。
(II)用加速速率乘以总惯量(电机惯量+负载惯量)计算出加速转矩。
(III)将负载转矩(摩擦转矩)与加速转矩相加求得电机轴所需转矩。
(IV)需要确认,第(III)项中的转矩应小于电机的转矩(最大连续转矩),同时,小于伺服放大器电流限制回路所限制的转矩。
第(II)项中的加速转矩由下式来计算。
A.对于线性加速情况()()()T N t J J e N N t K e a m am l K t r M a s K t s as a =⨯⨯+-=-⋅-⎧⎨⎩⎫⎬⎭-⋅-⋅60211111π式中:T a : 加速转矩(Kg ·Cm )N M : 快速进给时的电机速度(rpm ) t a: 加速时间(sec ) J m: 电机惯量(Kg ·Cm ·S 2)J l : 负载惯量(Kg ·Cm ·S 2)N r: 加速转矩减小时的始点(不同于Nm)(rpm ) K s: 伺服位置环增益(Sec -1)B. 对于指数加减速情况图中:T N t J J m lm l 06021=⨯⨯+π()K K s ≠时,K t e e=1, a K K e s =T Na m =60()⨯⨯⨯+-211πa K J J a s m lN N a r m aa =-⎛⎝ ⎫⎭⎪-11K K s =时,()T N Ke J J a m e M l =⨯⨯+602π, 式中,e =2718. N N e N r m m =-⎛⎝ ⎫⎭⎪=110632.C.指令速度突加情况()T t J J a m s m l =⨯⨯+602π 式中,t K s s=1§(4). 快进频率:一般来讲,在正常切削加工中,此项不成问题,但对于特殊加工设备来说(如冲压、钻床、激光加工、包装机械等),要求频繁快速进给,此时,需要检查是否由于频繁加、减速而使电机过热。
机械式联轴器选用计算
a. 主动端激振
b. 从动端激振
TAmax≥TAiKAKVRKZKt………………………………………… (8)
TLmax≥TLiKLKVRKZKt………………………………………… (9)
3
JB/T 7511-1994
式中:TAi——主动端激振转矩,N·m;
TLi——从动端激振转矩,N·m;
KVR——共振系数,KVR≈
3. 10 频率系数 Kf 由于交变疲劳转矩频率的影响系数。
3. 11 放大系数 KV 在振动系统中采用弹性联轴器时,考虑激振转矩增大的系数。
3. 12 主动端冲击系数 KAS 主动端冲击转矩所产生的增大系数。
机械工业部 1994-10-25 批准
1995-10-01 实施
1
JB/T 7511-1994
KZ——起动系数(见表 4)。
以上计算适用于各种无扭转间隙联轴器。对于存在扭转间隙的联轴器,还需考虑由于振动、冲击
而产生的过载因素。
4. 4. 3 周期性交变载荷时
4. 4. 3. 1 迅速通过共振区
在工作转速内很快通过共振区时,仅出现较小的共振峰值。因此,在共振时的交变转矩可与联轴
器的最大转矩相比较。
式中:PW——驱动功率,kW; n——工作转速,r/min。
4. 3 联轴器的计算转矩计算
联轴器的计算转矩是由理论转矩和动力机系数、工况系数及其他有关系数计算而得,即:
式中:KW——动力机系数(见表 1); K——工况系数(见表 3);
TC=TKWKKZKt……………………………………………(3)
KZ——起动系数(见表 4); Kt——温度系数(见表 5)。 4. 4 挠性或弹性联轴器计算
GB 3931 机械式联轴器 名词术语 3 术语
电机、减速器、联轴器扭矩计算及电机功率与转速的关系
减速机扭矩计算公式:速比=电机输出转数÷减速机输出转数("速比"也称"传动比")1.知道电机功率和速比及使用系数,求减速机扭矩如下公式:减速机扭矩=9550×(电机功率÷电机端输入转数)×速比×使用系数(常用1.7)2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数联轴器扭矩公式:联轴器扭矩=9550×(电机功率÷减速器输出转数)×使用系数减速器输出转数:(减速器输出转数=电机端输入转数÷速比)电机功率和转速的关系:P=T×n/9550其中P是额定功率(KW) 、n 是额定转速(分/转) 、T是额定转矩(N.m)你没给速度,假设是3000rpm,那么电机T=9550XP/n=9550X11/3000=35N.m,35X减速比847=29645N.m输出扭矩。
三角带传动速比如何计算?传动装置:电机轴转速n1=960转/分,减速机入轴转速n2 =514转/分,电机用皮带轮d1=150mm ,求减速机皮带轮d2 =? 带轮速比i=?i=n1÷n2= 960÷514=1.87根据d1/d2=n2/n1d2=d1×n1÷n2 =150×960÷514=280㎜答:减速机皮带轮直径为:280毫米; 带轮速比为: 1.87。
1.减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等2.提供电机功率,级数(是4P、6P还是8P电机)3.减速机周围的环境温度(决定减速机的热功率的校核)4.减速机输出轴的径向力和轴向力的校核。
选用联轴器有关的系数(摘自JBT7511-94)
选用联轴器有关的系数(摘自JB/T7511-94)
选用联轴器时应考虑动力系数Kw:当选用扰性或弹性联轴器用于有冲击、振动和需要轴线补偿的工况时,应考虑启动系数Kz、温度系数Kt、放大系数Kv、冲击系数Ka等系数对系统的综合影响因素。
1、动力系数Kw
2、联轴器载荷类别
3、工况系数K
a.上表所列K值是传动系统在不同工作状态下的平均值,根据实际情况可适当增加
b.上表所列K值,其动力机为电动机和透平,若为其他动力机应考虑动力机系数Kw
c.在配有制动器的传动系统中,当制动器的理论转矩超过动力机的理论转矩
时,应根据制动器的理论转矩来计算选择联轴器
4、起动系数Kz
主动端起动频率Z,形成附加载荷,其影响以起动系数Kz表示,见下表
传动系统选用带非金属弹性材料(橡胶)联轴器时,应考虑在温度影响下橡胶弹性材料强度降低的因素,以温度系数Kt表示,见下表;温度t与联轴器的工作环境有关,在辐射热的作用下,尤其要考虑Kt的影响。
联轴器的选择
联轴器的选择常用联轴器大多已标准化或规格化,一般情况下只需正确选择联轴器的类型、确定联轴器的型号及尺寸。
必要时,可对其易损的薄弱环节进行负荷能力的校核计算,转速高时,还应验算其外缘的离心应力和弹性元件的变形,进行平衡检验等。
1、联轴器类型的选择选择联轴器类型时,应考虑:(1)所需传递转矩的大小和性质,对缓冲、减振功能的要求以及是否可能发生共振等。
(2)由制造和装配误差、轴受载和热膨胀变形以及部件之间的相对运动等引起两轴轴线的相对位移程度。
(3)许用的外形尺寸和安装方法,为了便于装配、调整和维修所必需的操作空间。
对于大型的联轴器,应能在轴不需作轴向移动的条件下实现装拆。
此外,还应考虑工作环境、使用寿命以及润滑和密封和经济性等条件,再参考各类联轴器特性,选择一种合用的联轴器类型。
2、联轴器型号、尺寸的确定对于已标准化和系列化的联轴器,选定合适类型后,可按转矩、轴直径和转速等确定联轴器的型号和结构尺寸。
联轴器的计算转矩:T ca=K A T式中:T为联轴器的名义转矩(N.m);T ca为联轴器的计算转矩(N.m);K A为工作情况系数,其值见表10-2(此系数也适用于离合器的选择)。
根据计算转矩、轴直径和转速等,由下面条件,可从有关手册中选取联轴器的型号和结构尺寸。
[T]Tcan式中:[T]为所选联轴器的许用转矩(N.m);n为被联接轴的转速(r/min);为所选联轴器允许的最高转速(r/min)。
多数情况下,每一型号的联轴器适用的轴径均有一个范围。
标准中已给出轴径的最大与最小值,或者给出适用直径的尺寸系列,被联接的两轴应在此范围之内。
一般情况下,被联接的两轴的直径是不同的,两个轴端的形状也可能不同。
表10-2 工作情况系数K A四、联轴器的选择算例例10-1 如图10-10所示,在电机与增压油泵用联轴器相联。
已知电机功率P =7.5kW ,转速n =960r/min,电机伸出轴端的直径d 1=38mm ,油泵轴的直径d 2=42mm ,选择联轴器型号。
联轴器的选型指南
联轴器的选型指南newmaker联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我过制订为国际和行标的联轴器有数十种,这些标准联轴器绝大多数是通用联轴器,每一种联轴器都有各自的特点和适合范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才自行设计联轴器。
标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。
在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。
设计人员在选用联轴器时应立足于从轴系传动的角度和需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。
一、选择联轴器应考虑的因素(一)动力机的机械特性动力机到工作机之间,通过一个或数个不同品种型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。
在机械传动中,动力机不外乎电动机、内燃机和气轮机。
由于动力机工作原理和机构不同,其机械特性差别较大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。
根据动力机的机械特性,将动力机分为四类。
见表 1 。
表1 动力机系数Kw动力机类别代号动力机名称动力机系数 Kw动力机类别代号动力机名称动力机系数 KwⅠ 电动机、透平 1.0 Ⅲ 二缸内燃机1.4Ⅱ 四缸及四缸以上内燃机 1.2 Ⅳ 单缸内燃机1.6动力机的机械特性对整个传动系统有一定的影响,不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数Kw ,选择适合于该系统的最佳联轴器。
动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。
固定的机械产品传动系统中的动力机大都是电动机,运行的机械产品传动系统(例如船舶、各种车辆等)中的动力机多为内燃机,当动力机为缸数不同的内燃机时,必须考虑扭振对传动系统的影响,这种影响因素与内燃机的缸数、各缸是否正常工作有关。
联轴器样本
波 纹 管 胀 套 联 轴 器 — — — — — — — — — — — — — — — — — — — —2 9
LK15系列 …………………………………………… 胀套膜片联轴器
Ⅰ 、 单 节 胀 套 膜 片 联 轴 器 — — — — — — — — — — — — — — — — — —3 0 Ⅱ 、 多 节 胀 套 膜 片 联 轴 器 — — — — — — — — — — — — — — — — — —3 1
工况系数表:
计算出电机的传动力矩T之后,结合下面所推荐的各工况系数表, 确定矫正系数K。
负载系数K1
恒负载 小变动负载 常变动负载 大变动负载
K1=1.0 K1=1.2 K1=1.7 K1=2.1
运转时间系数 K2
每 ≤2小时
天 ≤4小时
运 转
≤8小时
时 ≤16小时
间 ≤24小时
K2=0.07 K2=0.85 K2=1.00 K2=1.18 K2=1.28
3、键槽型:这种类型与定位螺丝固定型一样,是一种最传统的固定方式, 适合高扭矩的传动,为防止轴向滑动,通常与定位螺丝固定型、夹紧螺 丝固定型并用。
4、复合固定方式:在联轴器的固定中,采用两种固定方式来进行联接固定 称为复合固定方式。
LK1
系列 Ⅰ、定位螺丝固定平行式
特点
·一体成型的金属弹性联轴器 ·适用较小力矩的轴联接
·零回转间隙 ·弹性作用补偿径向、角向、轴向偏差 ·顺时针与逆时针回转特性完全相同
·定位螺丝固定
主体:铝合金材料
主体:不锈钢材料
选型举例:
□LK1 — □ - □□ - □□ d2轴径
联轴器的分类选型及参数尺寸
联轴器的分类选型及参数尺⼨联轴器⽤来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。
在⾼速重载的动⼒传动中,有些联轴器还有缓冲、减振和提⾼轴系动态性能的作⽤。
联轴器由两半部分组成,分别和主动轴和从动轴联接。
⼀般动⼒机⼤都借助于联轴器和⼯作机相联接。
⼀、联轴器的分类刚性联轴器(⽆补偿能⼒)挠性联轴器(有补偿能⼒):o⽆弹性元件o有弹性元件1.⽆弹性元件的挠性联轴器这类联轴器因具有挠性,故可补偿两轴的相对位移。
但因⽆弹性元件,故不能缓冲减振。
常⽤的有以下⼏种:凸缘联轴器(1)这是普通凸缘联轴器,采⽤铰制孔⽤螺拴联接,并靠铰制孔(对应铰制孔螺栓) 螺拴来对中,依靠螺拴的抗剪切能⼒传递扭矩。
凸缘联轴器(2)这是采⽤普通螺拴联接的凸缘联轴器,依靠两半联轴器结合⾯上摩擦⼒传递扭矩。
凸缘联轴器(3)这也是采⽤铰制孔⽤螺栓联接的凸缘联轴器,但半联轴器外缘有防护边, 这种结构主要保证联轴器运⾏时的安全性。
⼗字滑块联轴器⼗字滑块联轴器属于挠性联轴器;由两个端⾯上开有凹型槽的半联轴器和两⾯带有凸⽛的中间盘组成。
凸⽛可在凹槽中滑动,可以补偿安装及运转时两轴间的相对位移。
⼀般运⽤于转速n⼩于250r/min,轴的刚度较⼤,⽆剧烈冲击处。
滑块联轴器滑块联轴器是由两个带凹槽的半联轴器和⼀个⽅形滑块组成,滑块材料通常为夹布铰⽊制成。
由于中间滑块的质量较⼩,具有弹性,可使⽤于较⾼的转速。
结构简单、紧凑、适⽤于⼩功率、⾼转速⽽⽆剧烈冲击处。
万向联轴器⼗字轴式万向联轴器,由两个叉形接头、⼀个中间联接件和轴组成。
属于⼀个可动的联接,且允许两轴间有较⼤的夹⾓(夹⾓α可达35°-45°)。
结构紧凑、维护⽅便,⼴泛使⽤于汽车、多头钻床等机器的传动系统。
齿式联轴器齿形联轴器由两个带有内齿及凸缘的外套和两个带有外齿的内套筒组成。
依靠内外齿相啮合传递扭矩。
齿轮的齿廓曲线为渐开线,啮合⾓为20°。
联轴器型号的计算公式是
联轴器型号的计算公式是
首先,我们需要了解联轴器的基本参数。
联轴器的型号通常由其尺寸、扭矩和
转速等参数来确定。
常见的联轴器类型有齿轮联轴器、弹性联轴器、蜗轮联轴器等,它们在传递动力和扭矩时有不同的特点和计算方法。
对于齿轮联轴器来说,其型号的计算公式如下:
P = (9550 T) / (n m)。
其中,P为功率(千瓦),T为扭矩(牛顿·米),n为转速(转/分钟),m
为传动比。
通过这个公式,我们可以根据给定的扭矩、转速和传动比来计算出所需的功率,从而确定合适的齿轮联轴器型号。
而对于弹性联轴器来说,其型号的计算公式略有不同:
P = (9550 T) / (n K)。
其中,P为功率(千瓦),T为扭矩(牛顿·米),n为转速(转/分钟),K
为弹性联轴器的转矩容许系数。
通过这个公式,我们可以根据给定的扭矩、转速和转矩容许系数来计算出所需的功率,从而确定合适的弹性联轴器型号。
除了上述的计算公式外,还需要考虑一些其他因素,如工作环境、安装方式、
轴的对中精度等。
这些因素都会影响联轴器的选择和使用,因此在计算联轴器型号时需要综合考虑这些因素。
总的来说,联轴器型号的计算涉及到功率、扭矩、转速等多个参数,通过合适
的计算公式和综合考虑其他因素,可以确定出最适合的联轴器型号。
在工程设计中,选择合适的联轴器型号对于设备的正常运行和性能发挥至关重要,因此工程师需要对联轴器的计算方法和相关知识有所了解,以确保选择出最合适的联轴器型号。
misumi联轴器的补偿系数
MISUMI(日本)是一家提供高品质机械元件的企业,其生产的联轴器产品具有优异的性能和可靠性。
在MISUMI 联轴器中,补偿系数是一个重要参数,用于衡量联轴器在承受轴向、径向和角向误差时的补偿能力。
补偿系数(α)的计算公式如下:
α= (ΔL × Δθ)/ L
其中:
- ΔL:轴向位移(mm)
- Δθ:角向位移(°)
- L:联轴器的长度(mm)
补偿系数α用于确定联轴器在承受误差时的性能。
α值越大,联轴器的补偿能力越强。
MISUMI 联轴器产品系列中,不同型号的联轴器补偿系数可能会有所不同。
在选型时,根据实际应用场景和需求来选择合适的补偿系数。
联轴器端面间隙计算方法
联轴器端面间隙计算方法联轴器是一种用于连接旋转轴的装置,它可以传递力、扭矩和运动。
在联轴器的设计和制造过程中,端面间隙是一个非常重要的参数。
本文将详细介绍联轴器端面间隙的计算方法。
联轴器端面间隙是指联轴器两个相邻的端面之间的距离。
这个间隙的大小在联轴器的正常工作中起着至关重要的作用。
过大或过小的端面间隙都会对联轴器的性能和寿命产生负面影响。
因此,准确计算联轴器的端面间隙是非常重要的。
二、计算方法要计算联轴器的端面间隙,需要按照以下步骤进行操作:1. 确定联轴器类型:联轴器有很多不同的类型,如齿式联轴器、弹性联轴器、万向联轴器等。
不同类型的联轴器在计算端面间隙时有不同的方法和公式。
2. 确定联轴器尺寸:在计算端面间隙之前,需要知道联轴器的尺寸参数,如轴孔直径、齿轮模数、齿轮齿数等。
这些参数可以通过联轴器的设计图纸或产品手册来获取。
3. 根据公式计算端面间隙:不同类型的联轴器采用不同的计算公式。
以齿式联轴器为例,可以使用以下公式计算其端面间隙:端面间隙= K × (齿轮模数+ 齿轮齿数) / 2其中,K是一个系数,可以根据具体情况来确定。
不同的联轴器制造商可能有不同的建议值,一般在0.05到0.3之间。
4. 考虑工作条件进行修正:在实际应用中,联轴器会受到一些特定的工作条件的影响,如温度、扭矩、速度等。
这些条件可能导致端面间隙发生变化,需要进行修正。
修正的具体方法可以根据联轴器制造商提供的技术资料或经验公式来确定。
中间举例说明:为了更好地理解联轴器端面间隙计算方法,我们以一台电机和一台泵的联轴器为例进行说明。
假设电机的轴孔直径为30mm,齿轮模数为2,齿轮齿数为20。
根据步骤3中的公式,可以计算出该联轴器的端面间隙:端面间隙= K × (2 + 20) / 2假设选择的系数K为0.1,代入计算得:端面间隙= 0.1 × (2 + 20) / 2 = 1.1mm这样,我们就得到了这台联轴器的端面间隙为1.1mm。
联轴器系数
选用联轴器有关的系数(摘自JB/T7511-94)
选用联轴器时应考虑动力系数Kw:当选用扰性或弹性联轴器用于有冲击、振动和需要轴线补偿的工况时,应考虑启动系数Kz、温度系数Kt、放大系数Kv、冲击系数Ka等系数对系统的综合影响因素。
1、动力系数Kw
2、联轴器载荷类别
3、工况系数K
a.上表所列K值是传动系统在不同工作状态下的平均值,根据实际情况可适当增加
b.上表所列K值,其动力机为电动机和透平,若为其他动力机应考虑动力机系数Kw
c.在配有制动器的传动系统中,当制动器的理论转矩超过动力机的理论转矩
时,应根据制动器的理论转矩来计算选择联轴器
4、起动系数Kz
主动端起动频率Z,形成附加载荷,其影响以起动系数Kz表示,见下表
传动系统选用带非金属弹性材料(橡胶)联轴器时,应考虑在温度影响下橡胶弹性材料强度降低的因素,以温度系数Kt表示,见下表;温度t与联轴器的工作环境有关,在辐射热的作用下,尤其要考虑Kt的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选用联轴器有关的系数(摘自JB/T7511-94)
选用联轴器时应考虑动力系数Kw:当选用扰性或弹性联轴器用于有冲击、振动和需要轴线补偿的工况时,应考虑启动系数Kz、温度系数Kt、放大系数Kv、冲击系数Ka等系数对系统的综合影响因素。
1、动力系数Kw
2、联轴器载荷类别
3、工况系数K
a.上表所列K值是传动系统在不同工作状态下的平均值,根据实际情况可适当增加
b.上表所列K值,其动力机为电动机和透平,若为其他动力机应考虑动力机系数Kw
c.在配有制动器的传动系统中,当制动器的理论转矩超过动力机的理论转矩
时,应根据制动器的理论转矩来计算选择联轴器
4、起动系数Kz
主动端起动频率Z,形成附加载荷,其影响以起动系数Kz表示,见下表
传动系统选用带非金属弹性材料(橡胶)联轴器时,应考虑在温度影响下橡胶弹性材料强度降低的因素,以温度系数Kt表示,见下表;温度t与联轴器的工作环境有关,在辐射热的作用下,尤其要考虑Kt的影响。