地下水溶质运移解析法算法模板

合集下载

溶质运移理论水动力弥散数的计算方法

溶质运移理论水动力弥散数的计算方法

13
二、二维水动力弥散-瞬时投放示踪剂
实际中,仅用3组数组求出的参数具有一定随机 性甚至失去物理意义,故需要一些列C-t数据。可先 去掉不符合物理意义的数值,再将其余参数算术平均 值即可视作待求参数的近似值。如下表:
14
二、二维水动力弥散-瞬时投放示踪剂
2.直线图解法
(5-23)
15
一、二维水动力弥散-瞬时投放示踪剂
若观测孔位于x轴上,(5-23)可简化成
有 改写式子 令
可通过求u来求DL
(5-27)

(5-30)
综合(5-27)(5-30)
16
二、二维水动力弥散-瞬时投放示踪剂
通过证明可得出下式(过程略):
(5-32)

(5-32)写成
参数计算的具体步骤 1.从实测的C-t数据序列中找出Cm、tm值,当观测数据 较少时,可先作出C-t曲线后,从曲线上查出Cm、tm值 2.计算两组X、Y,绘在直角坐标系中,两轴比例一致, 17 再量取R
27
二、二维水动力弥散-瞬时投放示踪剂
28
二、二维水动力弥散-瞬时投放示踪剂
参数计算步骤:
(2)若流向不确定 计算方法改变,用(x1,y1)(x2,y2)两个观测孔
解得
29
二、二维水动力弥散-瞬时投放示踪剂
4.弥散晕面积求参法
前面已证
弥散晕为椭圆,圆心为(ut,0),以孔隙平均流速 向前移动,长轴a和短轴b之比 (4-68) 以浓度C为等值线的椭圆面积为
6
一、一维水动力弥散-连续注入示踪剂
1 2 故 DL x0.1587 x0.8413 8t
若固定x,在不同时刻测定 浓度C,如图,有
7

【MODFLOW】第二讲 地下水流-热-质(或污染物、示踪剂)迁移数学模型

【MODFLOW】第二讲 地下水流-热-质(或污染物、示踪剂)迁移数学模型

Dxx
C x
y
Dyy
C y
x
C
ux
y
C uy
I
基本方程
3.含水层中地热迁移规律控制方程
热对流扩散机理
c
T t
x
xx
T x
y
yy
T y
x
cw
wT
ux
y
cwwT uy
f
Fourier定律
基本方程 18
二、溶质运移数学模型:绪论
随着经济的快速发展,地下水被污染的程度日益严 重,并引起了人们的广泛关注,目前仍然存在很多问 题题,迫切需要解决:
在Dupuit 假定下,忽略垂向水流,可以导出潜水二维 流微分方程。考虑一底面边长为dx, dy的潜水含水层柱 体,计算侧向静流入量和垂向补给量,分别有:
X方向流入-流出
(vx (H
Z )y) |x
(vx (H
Z )y) |xx
(vx (H Z )y) x
|
x
y方向流入-流出
(vy (H
Z )x) |y
由于微观多孔介质中流 速分布的不均一而引起 的示踪剂(水质点)浓 度在地下水含水层中不 均匀分布的现象。
23
二、溶质运移数学模型
1、水动力弥散理论:机械弥散原因
1. 同一空隙中不同部位的流速分布不均匀 2. 不同空隙的流速大小不同 3. 固体骨架导致流速分布的不均匀
(1)
(2)
(3)
地下水质点运动速度的差异是产生水动力弥散的根本原因
x方向流出
( v ) | x (xx, y,z,t) yzt
9
一、地下水运动基本方程
3、三维流基本微分方程(续1)

地下水污染物迁移转化模型及数值解_Parts 3

地下水污染物迁移转化模型及数值解_Parts 3
地下水污染控制与修复——王明玉
有限差分与有限元数值解法的 主要差异: 主要差异: (1)网格刨分灵活性方面 (2)质量守恒方面
地下水污染控制与修复——王明玉
地下水模拟建模过程与方法
地下水污染控制与修复——王明玉
Introduction to Modeling Approaches
地下水污染控制与修复——王明玉
地下水污染控制与修复——王明玉
PRIMARY ISSUES OF CONCERN AT LARGE AND COMPLEX SITES
Data availability – How many sampling points are there? For how long? Data spatial distribution – Where are they located relative to the plume / source? Data quality / data management – Where is the data housed? Who uses it? Characterization and conceptualization of Site Conditions - How can they be represented conceptually?
地下水污染控制与修复——王明玉
National Academy of Sciences:
Thus, when models form the basis for decision-making, uncertainty will be an inescapable component of environmental management and regulation. A key consideration in any modeling process is whether the model has undergone sufficient development and testing to address the problem being analyzed in a sufficiently meaningful manner.

第三章 地下水中溶质迁移扩散理论

第三章 地下水中溶质迁移扩散理论
方程可以简化
C 2C 2C 2C n Dx 2 D y 2 Dz 2 t x y z C C C Vx Vy Vz S 2016/12/9 x y z
5
定解条件
某空间区域R及时间区间(0,T),考虑
的地下水动力弥散问题在这个时空区域 上确定;
2
2016/12/9
29
平面二维弥散方程解析解
2016/12/9
本章共75页-30
平面二维弥散方程解析解
2016/12/9
本章共75页-31
剖面二维弥散方程解析解

延伸长度较大的贮污库的渗漏属于这种模型。
库长为2L,r0相对较小
含水层厚度m相对较大 假定Vx和Vz固定不变
2016/12/9
2C 1 C 1 C 2 r r r K t x C (r 0, t 0) 0 C (r 0, t 0) C 0 C (r , t 0) 0
21
径向一维弥散方程解析解

稳定源:

数学模型和定解条件为:
2 C C q C D 2 n t r 2 rM r C (r 0, t 0) 0 C (r 0, t 0) C 0 C (r , t 0) 0

弥散带长度近似计算:
Dt Ld B n
C 1 C 0
2016/12/9
17
平面一维弥散方程解析解

暂时源:当污水只是暂时的(tp)侵入,其余 条件同稳定源,模型和条件可简化为:
2C C C n D 2 V x t x C ( x 0, t 0) 0 C ( x 0,0 t t p ) C0 C ( x 0 , t t ) 0 p C ( x , t 0) 0

地下水渗流基本方程及数学模型总结

地下水渗流基本方程及数学模型总结
p减少 有效应力增大会引起固体颗粒的压缩变形。固 体颗粒的压缩变形比多孔介质中空隙的变形小得多,通
常可忽略。
(二)含水层的状态方程

含水层弹性存储的概念: 弹性储存:当地下水水头(水压)降低(或升高)时, 含水层、弱透水层释放(或储存)地下水的性质。 含水层弹性存储的物理意义:

(承压含水层)弹性储存与(潜水)重力储存不同;
第一步:化简方程左端项: 当渗流满足达西定律,且取坐标与各向异性主轴方向一致,有:
H v x K xx x
H v y K yy y
H v z K zz z
( v x ) H H H ( K xx ) [ K xx (K xx )] x x x x x x x
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流的基本微 分方程的推导 二、地下水运动微分方程的各种形式 三、地下水运动数学模型的建立及求解
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流基本微分方程的推导 为反映含水层地下水运动的普遍规律,研究选定在各向 异性多孔介质中建立地下三维不稳定流动连续性方程。 水均衡的基本思想,对某一研究对象:
描述地下水运动的数学模型及解算方法二地下水运动微分方程的各种形式zzyyxxzzyyxx使潜水面边界处理的简单化直接近似地在微分方程中处理dsdh此时1潜水面比较平缓等水头面呈铅直水流基本水平可忽略渗流速度的垂直分量v2隔水底板水平铅垂剖面上各点的水头都相等各点的水力坡度和渗流速度都相等sin可以近似地用tg代替此即著名的dupuit假设
m d( )

m
1 d d ( )

第五节 溶质运移问题的简单解析解

第五节 溶质运移问题的简单解析解

第五节 溶质运移问题的简单解析解由第二节的对流弥散方程可知,溶质运移问题比地下水运动问题更复杂,更难求得解析解。

只有当含水层为均质各向同性,而且计算区域几何形状简单时,才有可能求得解析解。

下面介绍几种简单的解析解。

一. 一维问题简单的解析解实验室中的土柱试验就是一个简单的一维问题。

一个土柱中装满砂,用水饱和并且让水以固定的速度向下流动。

水中的示踪剂浓度为0。

试验开始时土柱上部换装示踪剂浓度为C 0的溶液,一直保持到试验结束。

如果不考虑吸附、化学反应和放射性衰变,取流向为x 轴,则对流弥散方程(6-91)简化为x c u xc D t c x L ∂∂-∂∂=∂∂22 (6-184) 初始条件00)0,(≥=x x c边界条件⎩⎨⎧≥=∞≥=00),(0),0(0t t c t c t c 该问题的解为(Ogata 和Banks ,1961):⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=)2()exp(22),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-185) 式中 )(e r f c—余误差函数; )e x p (—指数。

在天然情况下,一维运动往往出现在有一段平直的被污染的河流或渠道,河水渗漏补给地下水,地下水以固定速度u 作一维流动,如图6—25图6—25渠道渗漏作为一个线源引起的地下水污染Sauty (1980)求得该情况下的解为⎥⎥⎦⎥⎢⎢⎣⎢+--=)2()exp()2(2),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-186) (6—185)式和(6—186)式在第二项前面符号不同。

当Peclet 数Lx D xu Pe = 相当大时,上二式第二项比第一项小得多,故近似有)2(2),(0t D t u x erfc c t x c L x -=(6-187) 公式(6—187)适用10≥Pe 的情况。

溶质运移理论-(一)水动力弥散的基本概念与弥散方程-精选文档

溶质运移理论-(一)水动力弥散的基本概念与弥散方程-精选文档

Fick定律
8
五、流体参数
流体的密度
d m d m dm 1 dV dV dV 1 1
N N N
多相分流体速度
N N

组分流速






1 N
C C x ,y , z , 0 0 x ,y , z
初始条件确指原始状态;初始时刻可以任意选定,只要已知那一时 刻研究区各点的浓度即可。初始条件的如何选取,应该根据研究问 题的需要、资料状况及计算与模拟方法等因素确定。例如:t=0时向
某区域注入含示踪剂的水,若在此之前研究区D不含该示踪剂,则C
~
R 1 d
b
n
K d
只是用 R d 去除以水动力弥散系数 D 和流速u,由于Rd 1 ,因 ~ 1 此吸附作用产生的后果,相对于 D 和 u 均减小 R ,起到减缓
d
弥散的作用。所以把 R d 称为:减缓因子。
26
七、源汇项:抽水与注水
如果含水层当中有抽水或注水井,含水层中示踪剂
七、源汇项:吸附与解吸
在一定条件下,溶液中某些溶质在多孔介质的固相表 面产生吸附、解吸或者离子交换等物理化学作用。如果这 些溶质属于我们的研究对象,则这些作用的结果应该综合 到源汇项中,如果固相表面吸附示踪剂,视为汇,否则, 称为解吸,视为源,而离子交换即可视为汇也可视为源。

吸附
解吸 (源)
离子交换 (源、汇)
多相流体可混溶流体石油污染物在水体或含水层中的运移不可混溶流体不同性质溶体之间无明显的突变界不同性质溶体之间有明显的突变界惰性示踪剂理想示踪剂两种或不与地下水发生化学反应不与多孔介质发生反应天然示踪剂天然水中的环境同位素人工示踪剂离子化合物有机染料放射性同位素水动力弥散现象多孔介质中当存在两种或两种以上可混溶的流体时在流体运动作用下期间发生过渡带并使浓度区域平均化的现象水动力弥散分子扩散机械弥散由浓度高的方向向浓度底的方向运动趋于均一由于微观多孔介质中流速分布的不均一而引起的示踪剂水质点浓度在地下水含水层中不均匀分布的现象

地下水数值模拟02_地下水运动的数学模型

地下水数值模拟02_地下水运动的数学模型

2
H 0
n 2
——隔水边界
第三类边界条件 H aH b n
例:弱透水边界
K H Hn H 0 n m1 / K1
溶质运移问题的边界条件
第一类边界条件
c(x,
y, z,t) 1

c1(x,
y, z,t)
——给定浓度边界
第二类边界条件 c
Di, j x j ni 2 f2 (xi , t)
u(x, y, z,t) t0 0(x, y, z)
• 2、边界条件
第一类边界条件 u(x, y, z,t) 1 1(x, y, z,t)
第二类边界条件
u n
2
1(x, y, z,t)
第三类边界条件
u



u n
3
3x,
y, z,t
水流问题的边界条件
Reynolds数小于1~10
• 有些情况下,用液体压强表示更为方便
– 例如:油水两相流动
vx

K
H x
vy

K
H y
vz

K
H z
K g k
H z p
g

k p
vx



x
v y


k
p y
vz


k


K ( d
)
dhc
C

t

x
K( )
x


y
K
(

)
y


z
K (

地下水溶质运移第二章

地下水溶质运移第二章

解出浓度分布。对大多数实际溶质运移问题,如地下水
污染,因溶质浓度较小,都可认为属于这种情况。
2 2 海水入侵问题 2.2
海水和淡水很容易混合,它们之间的接触带由于水动力弥散 形成一个由咸水、高矿化水、逐步变为低矿化水的过渡带。如 过渡带的宽度很窄,和整个含水层厚度相比可忽略不计时,可 近似认为海水、淡水间存在 个突变界面;如过渡带很宽,则 近似认为海水、淡水间存在一个突变界面;如过渡带很宽,则 不能做突变界面处理。我国至今未发现这种过渡带很窄可以作 为突变界面处理的情况。 可混溶的对流—弥散模型
2、饱和带溶质运移模型 2.1 地下水水质和污染问题
对流——弥散方程中含有u,浓度分布依赖于流速的分布,而溶质 的浓度变化要影响液体的密度 粘度 密度和粘度的变化又影响u的分 的浓度变化要影响液体的密度、粘度。密度和粘度的变化又影响 布。都是未知函数。只能联立求解。
对流—弥散方程(运移方程)
c c ( Di , j ) (cui ) N t xi x j xi
(3 68) (3.68)
与一般运动方程不同之处: 多了一项反映由浓度差引起的自然对流。只有同时考虑: 水头梯度引起的流动; 由浓度差引起的自然对流 才能反映地下水的真实流向和海水迴流现象。单纯实际(实测) 水头等值线不反映地下水流向 为此,由 水头等值线不反映地下水流向。 为此 由(3.67) (3 67)定义转换水头
3) 集中参数型水质模型
如果只关心污染物随时间的变化而不是不同位置上污染程度的差别, 可考虑用黑箱模型或一个单元的模型来处理。此时浓度只是时间的函数, 与空间位置无关。
模型选择:
首先考虑的是模型是用的目的。如研究污染物的浓度分布,模 首先考虑的是模型是用的目的 如研究污染物的浓度分布 模 拟锋面推移过程,则浓度随空间位置的变化必须考虑,只能用分布 参数模型,以给出浓度的时空变化。集中参数模型比较粗糙,求出 的浓度不代表某一口井的溶质浓度,只是一个全局平均意义下的值。 其次考虑能够取得的数据的数量和质量。如资料不够,只能用 一个简单的模型。 第三要考虑计算工作量。 絶大部分水质问题采用分布参数模型。应尽量用对流 絶大部分水质问题采用分布参数模型 应尽量用对流—弥散模 型,因它比较符合实际。纯对流模型虽然回避了确定弥散系数的困 难,但损失了解的精度。且纯对流模型在计算量上的减少并不明显, 对现在的计算机来说也不重要 所以现在使用对流—弥散模型是 对现在的计算机来说也不重要。 必然趋势,实际情况也是如此。

地下水溶质运移常用解析解

地下水溶质运移常用解析解

地下水溶质运移常用解析解2013年9月目录1 一维迁移问题的解析解 (1)1.1 定浓度注入污染物的一维解析解 (1)1.2初始浓度不为零时定浓度注入污染物的一维解析解 (1)1.3含有一级化学反应问题时定浓度注入的一维解析解 (1)1.4短时注入污染物问题的一维解析解 (2)1.5瞬时注入污染物问题的一维解析解 (2)2 二维迁移问题的解析解 (3)2.1点源连续注入污染物问题的二维解析解 (3)2.2点源连续注入含有一级化学反应问题的二维解析解 (4)2.3点源瞬时注入的二维解析解 (4)2.4点源瞬时注入含有一级化学反应的二维解析解 (4)2.5面源连续注入的二维解析解 (5)2.6面源瞬时注入的二维解析解 (5)3三维迁移问题的解析解 (6)3.1点源瞬时注入的三维迁移问题解析解 (6)3.2立方体源瞬时注入的三维迁移问题的解析解 (6)3.3点源连续注入的三维迁移问题的解析解 (6)3.4 点线面体源下的三维迁移解析解库 (7)参考文献:《多孔介质污染物迁移动力学》,王洪涛,高等教育出版社,2008年3月第一版。

1 一维迁移问题的解析解1.1 定浓度注入污染物的一维解析解exp 2L c ux c erfc erfc D ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭式中:x —距注入点的距离;m ; t —时间,d ;C —t 时刻x 处的示踪剂浓度,mg/L ; C 0—注入的示踪剂浓度,mg/L ; u —水流速度,m/d ;D L —纵向弥散系数,m 2/d ; erfc ()—余误差函数。

1.2初始浓度不为零时定浓度注入污染物的一维解析解01exp 2i i L c c ux erfc erfc c c D ⎧⎫⎛⎫⎛⎫⎛⎫-⎪⎪=+⎨⎬ ⎪-⎝⎭⎪⎪⎩⎭式中:c i —初始时刻多孔介质中污染物浓度;mg/L ; 其余参数含义同上。

1.3含有一级化学反应问题时定浓度注入的一维解析解污染物在迁移的同时还发生衰变反应,且符合一级反应动力学过程,反应常数为λ,则:0()()exp exp 222L L c u w x u w x c erfc erfc D D ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫-+⎪⎪=+⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭w =式中参数含义同上。

地下水溶质运移数值法和解析法预测结果对比分析--以沾化电厂为例

地下水溶质运移数值法和解析法预测结果对比分析--以沾化电厂为例

地下水溶质运移数值法和解析法预测结果对比分析--以沾化电厂为例刘志涛;周群道;杨建华【摘要】At present, numerical method and analytical method are the methods most commonly used for solving groundwater problems. Although numerical method has been widely used for its wide applicability and higher simu-lation, the analytical method has been one of the first choice for its simple and easy to use. Taking Zhanhua power plant as an example, the pollution caused by long term and short term leakage of pollutants have been predicated in this paper. The application suitability of the analytical method in the study area has been discussed based on ana-lyzing the differences between the predictions results gained by using two methods. It will provide reference for the application of this method.%数值法和解析法是当前解决地下水流和溶质运移问题最常用的两种方法,虽然数值法以其广泛的适用性和较高的仿真性等优点取得了越来越普遍的应用,但解析法也以其简单易用等特点一直成为首选方法之一。

土壤溶质迁移求解思路

土壤溶质迁移求解思路

在土壤中,溶质分子扩散符合菲克定律,即ds m cJ D x∂=-∂式中ds J 为土壤中溶质分子扩撒通量,m D 是在土壤中分子扩散系数。

由于受土壤含水量、空隙弯曲度等因的影响,土壤中分子扩散系数比自由水中小。

一般把在土壤中溶质扩散系数表示为含水量的函数,而与土壤溶质浓度无关,即b m w D D ae θ=式中:由于土壤中存在着大小不一、形状各异的的空隙,水溶液在其中流动过程中,每个空隙中的流苏大小和方向各不相同,使溶液分散并扩大运移范围的现象称之为机械弥散。

机械弥散所引起俄溶质迁移通量表示为h h cJ D x∂=-∂式中h J 为土壤中溶质分子扩撒通量,h D 是在土壤中分子扩散系数。

通常机械弥散系数可以表示为空隙流速的函数,即nh D vλ=式中:λ是弥散度,n 是经验系数,v 是空隙平均水流速度。

一般认为机械弥散系数与平均空隙水流速度成一次方程正比,这样经验系数n =1,弥散度的大小取决于水分通量和溶质对流弥散通量的平均尺度大小,一般来说扰动土条件下,λ的值为0.5 到2cm 之间机械弥散和分子扩散作用在土壤中都引起溶质迁移,但因围观流速不以测量,弥散作用与扩散作用也很难区别,同时两者的所引起的溶质迁移通量表达式的形式基本相同。

所以在实际中长把两种作用联合考虑,并称之为水动力弥散。

同样把分子扩散系数和机械弥散系数叠加起来,称之为水动力弥散系数。

因此水动力弥散作用是个别分子在空袭中运动及所发生的一切物理和化学作用的宏观表现。

根据水动力弥散定义以及分子扩撒和机械弥散间的关系,可把水动力弥散引起的土壤溶质迁移通量表示为:lh lhcJ D x∂=-∂ 式中:lh J 是水动力弥散引起的溶质通量,lh D 水水动力弥散系数,nb lh w D D ae vθλ=+土壤水是土壤溶质迁移的载体,溶质可以随着土壤水分整体运动而迁移,这种迁移过程称之为对流。

由于对流作用引起的土壤溶质迁移通量与土壤水分通量和水溶液浓度与关,可表示为wc w J J c =式中:wc J 是对流引起的溶质通量,w J 是土壤水分通量。

1-7描述地下水运动的数学模型及其解法

1-7描述地下水运动的数学模型及其解法

2020/4/15
12
三、建立数学模型的实例
例1 潜水非稳定流方程
(Kh H ) (Kh H ) W H
x
x y
y
t
H c1 H(t)
H c2 z(t)(位置水头)
H c3 z(t() 渗出面)
H c4 hw (t() 定水头边界)
H n
c5 ( 0 隔水边界)
H (x, y,t) t0 (x, y)
➢区域的抽水井、注水井或疏干巷道也可作为 给定水头边界处理;
➢无限边界 H(x, y,t)
x2 y2
H
亦为第一类边界;
0
➢潜水面任一点的水位已知时,抽水井井壁水
位为一类边界。
2020/4/15
9
(2)第二类边界条件
当已知渗流区某部分边界上的流量分布时,称这 部分边界为第二类边界或给定流量边界。相应的边界 条件表示为:
(1)第一类边界条件
若在渗流区的某部分边界上各点在每一时刻的水头是已知
的,则称这部分边界为第一类边界或给定水头边界,常表
示为:
H(x, y, z,t) S1
1(x, y, z,t),
H (x, y,t) 1 2 (x, y,t),
(x, y, z) S1
(x, y) 1
分别表示在三维和 二维条件下边界上 2的020点/4/1在5 t时刻的水头
H
K n
s2
q (x, y, z,t), 1
(x, y, z) S2

T H n
2
q (x, 2
y,t), (x, y) 2
式中:n为边界 S2 或 2的外法线方向; q1和q2为已知函数,分别表示S2 上单位面积和 2上单位

溶质运移理论-(三)水动力弥散方程的解析解法-文档资料

溶质运移理论-(三)水动力弥散方程的解析解法-文档资料

23
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
求解思路:
初始浓度的分布视为沿x轴连续分布的瞬 时变强度点源,利用点源基本解积分求取
取浓度坐标与阶梯相重合,线源的坐标用x’表示,有
C表示示踪剂浓度,n为有效 孔隙率;ω 为砂柱横截面积
24
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
考虑与u等速的动坐标系,在位于x’处强度为 ' dm C n dx f 的瞬时点源作用下,任意点处的微分浓 度为:
对于式(4-11),令
8
一、基本解
(4-15)
代入(4-15)
讨论并计算得 代入得最终结果
9
一、基本解
(4-20)
空间瞬时点源的解
分析上式得 等浓度面为圆心位于原点处的球面; 浓度空间分布情况如图所示;
10
一、基本解
任何时刻处浓度最大值在原点 随时间增加,原点处浓度减少 由于

对于式
19

二、一维水动力弥散问题
此时有
简化成 采取动坐标,令 则
比静止流场多了一个对流项
,让坐标原点跟着流速一起前进
20
二、一维水动力弥散问题
将X、T反变换
21
二、一维水动力弥散问题
与正态分布密度函数对比
浓度曲线出现峰值的x坐标
曲线在点 ut处对称;
当x 时, C 0;
积分得
浓度与y、z无关,实质为一维弥散问题
17
一、基本解-有限空间(平面)问题
' y 对于边界简单的情况,可用反映法转化为无限空 间问题在叠加求解
,相当于水流问题中的隔水边界。假设点(x0,y0) 对半无限含水层中瞬时注入质量为m的示踪剂

地下水溶质运移解析法

地下水溶质运移解析法

地下水溶质运移解析法1、 应用条件求解复杂的水动力弥散方程定解问题非常困难,实际问题中多靠数值方法求解。

但可以用解析解对数值解法进行检验和比较,并用解析解去拟合观测资料以求得水动力弥散系数。

2、 预测模型(1) 一维稳定流动一维水动力弥散问题 1)一维无限长多孔介质柱体,示踪剂瞬时注入tD vt x L L e tD n w m t x C 4)(22/),(-=π (2-1)式中:x —距注入点的距离(m );t —时间(d );),(t x C —t 时刻x 处的示踪剂浓度(mg/L );m —注入的示踪剂质量(kg ); w —横截面面积(m 2);v —水流速度(m/d );n —有效孔隙度;L D —纵向弥散系数(m 2/d ); π—圆周率。

2)一维半无限长多孔介质柱体,一端为定浓度边界)2(21)2(21tD vt x erfc e t D vt x erfc C C L D vxL o L ++-= (2-2)式中:x —距注入点的距离(m );t —时间(d );C —t 时刻x 处的示踪剂浓度(mg/L ); o C —注入的示踪剂浓度(mg/L );v —水流速度(m/d ); L D —纵向弥散系数(m 2/d );()erfc —余误差函数(可查《水文地质手册》获得)。

(2) 一维稳定流动二维水动力弥散问题 1)瞬时注入示踪剂—平面瞬时点源]44)([224/),,(tD y t D vt x T L M T L etD D n M m t y x C +--=π (2-3)式中:x ,y —计算点处的位置坐标;t —时间(d );),,(t y x C —t 时刻点x ,y 处的示踪剂浓度(mg/L );M —承压含水层的厚度(m );M m —长度为M 的线源瞬时注入的示踪剂质量(kg );v —水流速度(m/d );n —有效孔隙度;L D —纵向弥散系数(m 2/d );T D —横向y 方向的弥散系数(m 2/d ); π—圆周率。

地下水溶质运移第六章

地下水溶质运移第六章

六、对流—弥散模型的应用六水质模研究的般程1、水质模型研究的一般过程2、地下水污染问题3、海水入侵问题与海水入侵中的阳离子交换问题4、咸水、卤水入侵问题5、非饱和带水分和养分联合运移模型水质模型研究的般过程1、水质模型研究的一般过程1)确定目的任务:最常见的问题有:地下水污染趋势的分析、预测,提出相应对策;地下水污染趋势的分析预测提出相应对策;估计废水排放和废物堆对地下水可能造成的污染;估计农药、化肥及污水灌溉对地下水可能造成的污染;研究人工回灌对地下水水质的影响;沿海地区海水入侵淡水含水层问题;咸水、卤水入侵问题,内陆地区咸水对水源地入侵可能性分析;核废料处置库的安全评价;尾矿库渗漏对地下水水质影响分析;地表水污染对地下水水质的影响等。

不同的问题会提出不同的任务,如:确定污染区范围,预防地下水或水源地进一步被污染;根据地下水水质及其发展趋势,指导新井布置;规定人工回灌水的水质标准;指导生活垃圾和工业废弃物堆放地、核废料处置库位置的选定;预计已被污染的含水层天然净化所需时间等。

确定滨海含水层、滨卤水体淡水含水层的开采强度和开采井的合理布局以避免海水入侵或咸水入侵的进一步扩展;为政府有关部门提供污染防治对策等。

目的、任务、研究区确定后,选定模拟的溶质,提出对结果的精度要求。

2 )野外调查和资料收集并确定模型确定相应的数值方法36th3)选择并确定模型,确定相应的数值方法4)现场试验布置长期观测网进行观测;进行必要的抽水试验、弥散试验。

5)编制程序、整理数据如二维对流——弥散模型需要输入下列数据:含水层的边界的形状、厚度、顶底板高程等;初始水头场、溶质初始浓度场(通过插值得到各结点的初始水头初始水头场溶质初始浓度场(通过插值得到各结点的初始水头和初始浓度);抽(注)水井的位置、流量和水质,河流和地表水体的位置、补给量和水质,污染源的位置、水质等;与相邻含水层及地表水之间的水力联系;各种水文地质参数孔隙度渗透系数贮水系数给水度各种水文地质参数(孔隙度、渗透系数、贮水系数、给水度、降水入渗系数、纵向弥散度、横向弥散度、分子扩散系数等)的估计值;水头和溶质浓度的长期观测资料;野外试验资料(包括试验期间的水头、水质的观测资料);有关水流模型、对流—弥散模型各类边界条件的资料等。

溶质运移理论-(二)水动力弥散系数-精品文档

溶质运移理论-(二)水动力弥散系数-精品文档
一般情况,应被考虑,表达式
二、实验研究:一维水动力弥散实验
在充满均质砂的砂柱中预先用不含示踪剂的 流体饱和,并将其控制在某个流速水平上, 在砂柱的一端引入定浓度示踪剂,以驱替原 有的不含示踪剂的液体,并在另一端测量示 踪剂浓度,或在中间插入若干个浓度传感器 测出流体的示踪剂浓度,
根据公式求出 D L
三、尺度效应-分形特征
基准尺度是研究区大小的尺度,一般用污染物运移到观 测孔的最大距离表示,或研究区的近似最大内径长度代 替。
三、尺度效应-分形特征
综合上述图表知纵向弥散度尺度效应的变化特征:
(1)数值模型所计算出的尺度效应较解析模型变弱了, 即由数值模型所得到的纵向弥散度随研究尺度增加而增 大的速度小于用解析模型所求出的值; (2)随着模型维数的增加,分维数减少,即随着维数的 增加纵向弥散度随尺度效应增加而增大的速度渐小; (3)利用解析模型和数值模型所求出的非孔隙介质中尺 度效应分维数与孔隙介质中相应的值不同
三、尺度效应
传统观点:
以典型单元体假定为前提,对于不同尺度的多孔介质, 在相应的典型单元体上定义弥散与渗透参数,得到一个 相对稳定的弥散度。随研究范围扩大,相应的典型单元 体增大,所计算出的弥散度增大。 缺点: (1)典型单元体不稳定,从宏观尺度到微观尺度连续 变化;
(2)典型单元体没有定量信息,为虚设量,无法具体 测量大小
15
二、实验研究:一维水动力弥散实验
确定横向弥散系数的试验:
三、尺度效应
多孔介质水动力弥散尺度效应:指空隙介质中弥散度 随溶质运移距离增加而增大的现象
具体表现: (1)野外弥散试验求出的弥散度远远大于室内试验 结果;4~5个数量级;
(2)同一含水层,溶质运移距离越大,计算的弥散 度越大;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档