定理2-5(牛顿法平方收敛性
牛顿法及其收敛性
⽜顿法及其收敛性⽬录0. 引论在⼯程中,很多的问题都可以归结为求解⼀组偏微分⽅程。
描述如下:在某⼀个区域Ω中,物理量u =u 1,u 2,⋯,u n 满⾜⼀组控制⽅程,并且在边界上满⾜若⼲条件:控制⽅程利⽤两个微分算⼦来表⽰A (u ),B (u )。
A (u )=A 1(u )=0A 2(u )=0⋮∈ΩB (u )=B 1(u )=0B 2(u )=0⋮∈∂Ω以上的问题,只有在求解域⽐较简单,控制⽅程形式⽐较特殊的时候才能求出解析表达,⼀般情况下,⼯程问题中的求解域是⽐较复杂的,控制⽅程往往是⾼阶⾮线性的,这个时候,只能借助于数值求解。
偏微分⽅程的数值解法,常见的有有限元法,有限差分法,有限体积法等。
这些数值解法的基本思想是⽤有限的⾃由度插值逼近真实解。
不管哪⼀种数值⽅式,偏微分⽅程系统离散之后,形成的是常微分⽅程组或者代数⽅程组。
在⼯程中,对于时间维度往往是特别对待的,含有时间项的问题称为⾮定常问题,也叫瞬态问题,这类问题在空间离散之后,形成的是关于时间的常微分⽅程,然后利⽤⼀些推进求解的⽅法,将时间维度离散,转换成纯粹的代数⽅程。
⽽控制⽅程不含时间项的问题称为稳态问题,对于稳态问题,将控制⽅程在空间离散之后,形成代数⽅程组。
可见,不论是那种问题,最后求解的是代数⽅程组。
因此,如何准确⾼效的求解代数⽅程组就显得⾄关重要。
这⼀部分的内容在数值分析⾥⾯有详细的介绍,对于⼯程师来说,⼀般不必去了解⾥⾯艰深的理论,但是,每⼀种求解⽅法的适⽤范围,求解速度,收敛性等重要特征,最好还是要了解。
这样才能在使⽤的时候不⾄迷茫。
代数⽅程组可以简记为如下的形式:F (u )=b还可以表⽰成为⽮量的形式:Au =b当系数矩阵A 与变量u 的取值没有关系时,问题是线性的,否在,是⾮线性问题。
众所周知,⾮线性问题的求解是困难的!!常⽤的线性⽅程组求解⽅法有:直接法⾼斯消去法、矩阵三⾓分解法(直接分解法、平⽅根⽅法、追赶法)迭代法雅可⽐迭代、⾼斯-赛德尔迭代、超松弛法、块迭代法、共轭梯度法、最速下降法常⽤的⾮线性⽅程组的求解⽅法有:迭代法⼆分法、不动点迭代、⽜顿法、简化⽜顿法、⽜顿下⼭法、弦截法、抛物线法{{多变量不动点迭代法、⽜顿法这⾥主要介绍⽜顿法的⼀些特性。
数值分析论文 (8)
牛顿迭代法及其应用[摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。
分别讨论了单根情形和重根情形,给出了实例应用。
最后给出了离散牛顿法的具体做法。
[关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。
1.牛顿法及其收敛性求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即,ξ在x与之间忽略余项,则得方程的近似右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即(2.4.1)称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与x轴交点为,作为的新近似,如图1所示图1关于牛顿法收敛性有以下的局部收敛定理.定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且(2.4.2)证明由式(2.4.1)知迭代函数,,,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕.定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论.例1用牛顿法求方程的根.,牛顿迭代为取即为根的近似,它表明牛顿法收敛很快.例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得(2.4.3)这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当时有即,而对任意,也可验证,即从k=1开始,且所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3)中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛.在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到=1.732 051,具有7位有效数字.求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。
计算方法实验指导书
第一章 绪论一、主要要求通过实验,认真理解和体会数值计算的稳定性、精确性与步长的关系。
二、主要结果回顾:1、算法:电子计算机实质上只会做加、减、乘、除等算术运算和一些逻辑运算,由这些基本运算及运算顺序规定构成的解题步骤,称为算法.它可以用框图、算法语言、数学语言或自然语言来描述。
用计算机算法语言描述的算法称为计算机程序。
(如c —语言程序,c++语言程序,Matlab 语言程序等)。
2、最有效的算法:应该运算量少,应用范围广,需用存储单元少,逻辑结构简单,便于编写计算机程序,而且计算结果可靠。
3、算法的稳定性:一个算法如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是数值稳定的,否则称此算法为不稳定的。
换句话说:若误差传播是可控制的,则称此算法是数值稳定的,否则称此算法为不稳定的。
4、控制误差传播的几个原则: 1)防止相近的两数相减; 2)防止大数吃小数;3)防止接近零的数做除数;4)要控制舍入误差的累积和传播;5)简化计算步骤,减小运算次数,避免误差积累。
三、数值计算实验(以下实验都需利用Matlab 软件来完成) 实验1.1(体会数值计算精度与步长关系的实验)实验目的:数值计算中误差是不可避免的,要求通过本实验初步认识数值分析中两个重要概念:截断误差和舍入误差,并认真体会误差对计算结果的影响。
问题提出:设一元函数f :R →R ,则f 在x 0的导数定义为:hx f h x f x f h )()(lim)('0000-+=→实验内容:根据不同的步长可设计两种算法,计算f 在x 0处的导数。
计算一阶导数的算法有两种:hx f h x f x f )()()('000-+≈(1)hh x f h x f x f 2)()()('000--+≈(2)请给出几个计算高阶导数的近似算法,并完成如下工作: 1、对同样的h ,比较(1)式和(2)式的计算结果;2、针对计算高阶导数的算法,比较h 取不同值时(1)式和(2)式的计算结果。
非线性方程的求根方法
取 x0=0,
3 xk xk 3 xk 1 xk 2 3 xk 1
(k = 0, 1, · · · · · )
y x1 x2 x3 x0 x
y=x3 – x – 3
Newton迭代法陷入死循环的另一个例子
f’<0, f”>0
f’>0, f”>0
f’>0, f”<0
f’<0, f”<0
牛顿迭代法的收敛域问题:
用牛顿迭代法求解复数方程 z3 – 1 = 0,该方程在复 平面上三个根分别是 z1 = 1
1 3 z2 i 2 2
1 3 z3 i 2 2
选择中心位于坐标原点,边长 为2的正方形内的任意点作初始 值,进行迭代,把收敛到三个 根的初值分为三类,并分别标 上不同颜色(例如红、黄、 蓝)。对充分多的初始点进行 实验,绘出牛顿迭代法对该方 程的收敛域彩色图。
牛顿法的计算步骤: 1)给出初始近似值x0,及精度 2)计算:按迭代公式
f ( x0 ) x0 x1 f ( x 0 )
计算出x1 3)若 x1 x0 ,则转向4);否则 x1 x0 转向2) 4)输出满足精度的根x1,结束
例2.5 用牛顿法解方程 x=e–x
在 x0=0.5 附近的根。
由定理2.5知牛顿迭代公式具有局部收敛性。
由定理2.6知 Newton迭代法至少平方收敛。因此用 Newton法求单根的收敛速度是较快的。
[ f ( x )]2 f ( x ) f ( x ) f ( x ) f ( x ) 2[ f ( x )]2 f ( x ) ( x ) [ f ( x )]3
x1 x*
f ( x1 ) x2 x1 ( x1 x0 ) f ( x1 ) f ( x0 ) xk 1 f ( xk ) xk ( x k x k 1 ) f ( x k ) f ( x k 1 ) ( k =1,2,· · · · · · ·)
Newton法的局部收敛性
另外也可能不收敛, 或者不是收敛到离初值最近的根. 当然, 对于三次 函数, 除了个别点, 牛迭总是收敛到某个根的, 因为初值远离原点时由 于函数的单调性, 总会被拉回"局部".
事实上在复平面上三次函数的根的牛迭收敛行为是个著名的分形 ...足 见全局收敛性的复杂.
定义6.2
设迭代过程xk 1 ( xk )收敛于方程x ( x)的根x*, 如果迭代误差ek xk x*当k 时成立下列渐近关系式 ek 1 C (C 0为常数) p ek
具体来说
局部收敛性有如下定理 1.设已知 f(x) = 0 有根 a, f(x) 充分光滑(各阶导数存在且连续). 2.若 f'(a) != 0(单重零点), 则初值取在 a 的某个邻域内时, 迭代法 x[n+1] = x[n] - f(x[n])/f'(x[n]) 得到的序列 x[n] 总收敛到 a, 且收敛速度至少是 二阶的. 3.若 f'(a) == 0(多重零点), 则初值取在 a 的某个邻域内时, 收敛速度是 一阶的.
则称该迭代过程是p阶收敛的。特别地,p=1时称为线性收敛,p>1时 称为超线性收敛,p=2时称为平方收敛。
定理6.3
对于迭代过程xk 1 ( xk ), 如果 ( p ) ( x) 在所求根x*的邻近连续,并且
' * '' * ( p 1) ( x* ) 0, ( x ) ( x ) ... ( p) * ( x ) 0, 则该迭代过程在点x*邻近是p阶收敛的.
记 g(x)=x-f(x)/f'(x), 其中"某个邻域"可由 |g'(x)|<1 的区间确定, 但是 g'(a)==0, 所以这样的邻域总是能取到的. 说收敛速度是 r 阶指的是: 存在 r 及常数 c 使 lim_{n->\inf} |x[n+1]a|/|x[n]-a|^r = c 至于牛顿迭代法的全局收敛性, 一般的数值分析书都没有详细叙述, 而 只是举一些例子. 因为牛迭是否收敛依赖于函数是否"单调", 一些"曲折"大的函数就可能 使迭代法不收敛了.
牛顿迭代法收敛条件
牛顿迭代法收敛条件牛顿迭代法是数值计算的一种重要的技术,是一种利用牛顿迭代法求解非线性方程组的有效方法。
牛顿迭代法的实现不仅要求计算出一个收敛的迭代结果,还要通过特定条件来证明这个收敛结果。
考虑到这项技术的重要性,它的收敛条件也受到了广泛的关注与研究。
一、牛顿迭代法收敛性的定义在计算机科学和应用中,牛顿迭代法是一种迭代方法,用于计算方程组的解,其中包括非线性方程组。
求解这类方程组的迭代计算不是在停止点处终止,而是要求迭代收敛的条件,这就是收敛性的定义。
收敛性是指在迭代计算过程中,特定的算法和条件下迭代序列必须向某个点收敛,而不是把它的值无限接近某一值,或者只在特定的时间段内能收敛,而不是收敛到特定点。
二、牛顿迭代法收敛性的判定牛顿迭代法收敛性的判定分为两种,一是函数收敛条件,二是牛顿迭代法本身的收敛条件。
1.函数收敛条件牛顿迭代法收敛的函数收敛条件要求函数在一定范围内的变化率不能无限逼近某个值,即认为一个函数在某一范围内的值收敛了,收敛的标准是函数在收敛范围内的变化率小于某一阈值。
2.牛顿迭代法本身的收敛条件牛顿迭代法本身的收敛条件就是给定一个序列,该序列必须在一定条件下收敛,这个条件是这些给定的序列必须严格满足强半正定矩阵上的平方和半正定矩阵性质,以及有足够多的解。
三、牛顿迭代法收敛性的应用1.牛顿迭代法在求解非线性方程的应用牛顿迭代法在计算机科学和应用中用于求解非线性方程组的解,其特点是快速收敛、算法简单、可以实现精确的解等。
当特定的非线性方程组的求解要求接近精确解时,利用牛顿迭代法可以获得满足收敛性要求的精确解。
2.牛顿迭代法在最优化问题中的应用牛顿迭代法也是用于解决最优化问题的一种有效方法,如求解最小化最大化目标函数,求解最优化问题的极小值或极大值等。
与传统最优化算法相比,牛顿迭代法具有计算快、收敛性强等优点,经常被用于解决最优化问题,从而获得较为精确的最优解。
3.牛顿迭代法在深度学习算法的应用牛顿迭代法在深度学习算法中也有重要的应用,例如误差反向传播算法(Error Back propagation, EBP)中就采用了牛顿迭代法。
第二节_牛顿迭代法
2 3 xk
2 f ( x) 3 x
k 0,1, 2,
4、牛顿迭代法的局部收敛性定理 设 x* 为方程 f (x) = 0的根,在包含x*的某个开区间内 f ( x) 连 B ( x *) [ x , x ], f ( x ) 0 续,且 ,则存在 x* 的邻域 使得任取初值 x0 B ( x*),由牛顿迭代法产生的序列xk 以不 低于二阶的收敛速度收敛于x*.
标即为 xk 1 。 y
( x0 , f ( x0 ))
x* x2 x x0 1
x
例2.5:写出求 a (a 0) 的牛顿迭代格式;写出求 a (a 0) 的牛顿迭代格式,要求公式中既无开方运算,又无除法运算。
2 f ( x ) x a 0 (a 0) 的正根 f ( x) 2x 解: 等价于求方程
f ( x ) f ( x0 ) f ( x0 )( x x0 ) f ( ) ( x x 0 ) 2 , 2!
在 x0 和 x 之间
* 取 x x ,可将 (x* x0)2 看成高阶小量,则有:
0 f ( x*) f ( x0 ) f ( x0 )( x * x0 )
lim x n 注意到ξn 在xn 及x*之间,及 n
x n1 x* x n x*
2
x*
,故
f" ( n ) f " ( x* ) * 2 f ' ( xn ) 2 f' ( x )
0(二阶收敛)若 f "( x* ) 0 0(大于二阶收敛)若 f "( x* ) 0
Newton迭代公式是一种特殊的不动点迭代,其 迭代函数为: f ( x) ( x) x f '( x )
牛顿法及其收敛性课件
以上两式相除得
xk 1 xk 1 xk C x C k C . C
2
据此反复递推有
xk 1 xk 1 x0 C x C 0 C C .
2k
(4.6)
记
q x0 x0 C , C
整理(4.6)式,得
为克服这两个缺点,通常可用下述方法.
(1) 简化牛顿法,也称平行弦法.
xk 1 xk Cf ( xk )
其迭代公式为 (4.7)
C 0,1 ,.
迭代函数 ( x) x Cf ( x).
若在根 x * 附近成立 ( x) 1 Cf ( x) 1 ,即取 0 Cf ( x) 2,则迭代法(4.7)局部收敛.
x 3 x 1 0.
(4.8)
在 x 1.5 附近的一个根 x *. 设取迭代初值 x0 1.5,用牛顿法公式
xk 1
3 xk xk 1 xk 2 3 xk 1
(4.9)
x3 1.32472.
计算得
x1 1.34783, x2 1.32520,
迭代3次得到的结果 x3 有6位有效数字.
( x)
( x x*) g ( x) , mg ( x) ( x x*) g ( x)
故 x *是 ( x) 0 的单根.
对它用牛顿法,其迭代函数为
17
( x) x
( x) f ( x) f ( x) x . 2 ( x) [ f ( x)] f ( x) f ( x)
8
xk
C 2 C
q2
k
1 q
2k
.
对任意 x0 0,总有 q 1,故由上式推知,当 k 时 xk C ,即迭代过程恒收敛. 例8 解 求 115 .
第5章4节牛顿法
二是初始近似 x0 只在根 x *附近才能保证收敛,如
x0 给的不合适可能不收敛.
为克服这两个缺点,通常可用下述方法.
13
牛顿下山法. 牛顿法收敛性依赖初值 x0 的选取.
如果 x0 偏离所求根 x *较远,则牛顿法可能发散.
解 取初值 x0 10,对 按牛顿迭代公式迭代3 C 115 次 便得到精度为
10 6
2 3 4
的结果
1 C ( xk ). 2 xk
12
(见表5-6).
xk 1
3
牛顿下山法
牛顿法的优点是收敛快,缺点一是每步迭代要计算
f ( xk )及 f ( xk ) ,计算量较大且有时 f ( xk ) 计算较困难,
2
10
再讨论全局收敛性 1)当C>1时,f(x)=x2-C在[1,C]上满足全 局收敛性定理5,迭代法在[1,C]上全局收 敛。 2)当C<1时, f(x)=x2-C在[C,1]上满足全局 收敛性定理5,迭代法在[C,1]上全局收敛。
11
例8
求 115 .
表5 6 计算结果 k 0 1 xk 10 10.750000 10.723837 10.723805 10.723805
于是方程 f ( x) 0 可近似地表示为
f ( xk ) f ( xk )( x xk ) 0.
1
这是个线性方程,记其根为 xk 1 , 则 xk 1 的计算公式为
xk 1 xk f ( xk ) f ( xk ) ( k 0,1, ),
这就是牛顿(Newton)法. 牛顿法的几何解释. 方程 f ( x) 0 的根 x *可解释为 曲线 y f ( x) 与 x轴的交点的横坐标 (图5-3). 图5-3
牛顿迭代法收敛定理
关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。
在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。
牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。
近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。
牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。
方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。
由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。
即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。
详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。
该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。
设x n 是方程解x *的近似,迭代格式)()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。
牛顿迭代法收敛定理
关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。
在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。
牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。
近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。
牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。
方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达x 1。
即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。
详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。
该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。
设x n 是方程解x *的近似,迭代格式 )()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。
牛顿发现的数学定理
艾萨克·牛顿(Isaac Newton)是17世纪英国的一位伟大科学家,他在物理学、数学和天文学等多个领域都有重要的贡献。
在数学方面,牛顿发现了一些重要的定理和概念,其中包括:
1. 牛顿-莱布尼茨公式:这是微积分学中的一个基本定理,它建立了微分和积分之间的关系。
牛顿和德国数学家戈特弗里德·莱布尼茨(Gottfried Wilhelm Leibniz)各自独立发现了这一公式,它现在被称为牛顿-莱布尼茨公式。
2. 二项式定理:这是代数学中的一个重要定理,它描述了二项式的幂的展开。
牛顿在他的著作《流数术与无穷级数》(Methodus Fluxionum et Serierum Infinitarum)中详细阐述了这一定理。
3. 牛顿法(牛顿-拉弗森方法):这是一种在实数域和复数域中近似求解方程的方法。
它利用了函数的导数信息来逼近方程的根。
4. 牛顿不等式:这是数学分析中关于级数收敛性的一系列不等式,它提供了判断级数收敛性的一个重要准则。
5. 牛顿的数论工作:牛顿还对数论做出了贡献,包括对素数分布的研究和对数论中一些基本定理的证明。
牛顿的这些数学发现对后世产生了深远的影响,特别是在微积分的发展史上,牛顿的工作为现代微积分学奠定了基础。
电力系统稳态实验报告
电力系统稳态潮流计算上机实验报告一、问题如下图所示的电力系统网络,分别用牛顿拉夫逊法、PQ解耦法、高斯赛德尔法、保留非线性法计算该电力系统的潮流。
发电机的参数如下,*表示任意值负荷参数如下,如上图所示的电力系统,可以看出,节点1、2、3是PQ节点,节点4是PV节点,而将节点5作为平衡节点。
根据问题所需,采用牛顿拉夫逊法、PQ解耦法、高斯赛德尔法、保留非线性法,通过对每次修正量的收敛判据的判断,得出整个电力系统的潮流,并分析这四种方法的收敛速度等等。
算法分析1.牛顿拉夫逊法节点5为平衡节点,不参加整个的迭代过程,节点1、2、3为PQ节点,节点4为PV 节点,计算修正方程中各量,进而得到修正量,判断修正量是否收敛,如果不收敛,迭代继续,如果收敛,算出PQ节点的电压幅值以及电压相角,得出PV节点的无功量以及电压相角,得出平衡节点的输出功率。
潮流方程的直角坐标形式,()()∑∑∈∈++-=ij j ij j ij i ij j ij j ij i i e B f G f f B e G e P()()∑∑∈∈+--=ij j ij j ij i ij j ij j ij i i e B f G e f B e G f Q直角坐标形式的修正方程式,11112n n n m n m -----∆⎡⎤⎡⎤∆⎡⎤⎢⎥⎢⎥∆=-⎢⎥⎢⎥⎢⎥∆⎣⎦⎢⎥⎢⎥∆⎣⎦⎣⎦PHN e Q M L f UR S修正方程式中的各量值的计算,()()][∑∑∈∈++--=∆ij j ij j ij i ij j ij j ij i is i e B f G f f B e G e p P()()][∑∑∈∈+---=∆ij j ij j ij i ij j ij j ij i is i e B f G e f B e G f Q Q)(2222i i is i f e U U +-=∆Jacobi 矩阵的元素计算,()()()ij i ij i i ijij j ij j ii i ii i jj iB e G f j i Q M G f B e B e G f j i e ∈-⎧≠∂∆⎪==⎨++-=∂⎪⎩∑()()()ij i ij i i ijij j ij j ii i ii i jj iG e B f j i Q L G e B f G e B f j i f ∈+⎧≠∂∆⎪==⎨--++=∂⎪⎩∑)()(202i j i j e e U R ijij i =≠⎩⎨⎧-=∂∆∂=)()(202i j i j f f U S ijij i =≠⎩⎨⎧-=∂∆∂=牛顿拉夫逊法潮流计算的流程图如下,2.PQ 解耦法如同牛顿拉夫逊法,快速解耦法的前提是,输电线路的阻抗要比电阻大得多,并且输电线路两端的电压相角相差不大,此时可利用PQ 快速解耦法,来计算整个电力系统网络的潮流。
叙述牛顿迭代法平方收敛的条件
叙述牛顿迭代法平方收敛的条件
一、收敛条件:
1、全局收敛性是指初值在定义域内任取时算法是否收敛,若收敛其速度如何,收敛到哪个根。
具体来说。
2、局部收敛性有如下定理
设已知f(x)=0有根a,f(x)充分光滑(各阶导数存在且连续)。
若f'(a)!=0(单重零点),则初值取在a的某个邻域内时,迭代法x[n+1]=x[n]-f(x[n])/f'(x[n])得到的序列x[n]总收敛到a,且收敛速度至少是二阶的。
若f'(a)==0(多重零点),则初值取在a的某个邻域内时,收敛速度是一阶的。
记g(x)=x-f(x)/f'(x),其中“某个邻域”可由|g'(x)|。
二、牛顿迭代法的简单介绍:
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程
f(x)=0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性
收敛。
另外该方法广泛用于计算机编程中。
牛顿法
又因
(x*) f (x*) ,
f (x*)
k x*)2
f (x*) . 2 f (x*)
例7 用牛顿法解方程
xex 1 0.
解 这里牛顿公式为
xk 1
xk
xk e xk 1 xk
,
取迭代初值 x0 ,0.迭5 代结果列于表7-5中.
解 先求出三种方法的迭代公式:
(1) 牛顿法
xk 1
xk
xk2 2 . 4 xk
18
(2) 用(4.13)式
xk 1
xk
xk2 2 . 2 xk
(3) 用(4.14)式
xk 1
xk
xk
( xk2 2) xk2 2
.
取初值 x0 ,1.5计算结果如表7-7.
表7 7 三种方法数值结果
k xk
0
0.5
开始值,用弦截法求得的结果见表7-8,
比较例7牛顿法的计算结果可以看出, 1
0.6
弦截法的收敛速度也是相当快的.
2
0.56532
7
以上两式相除得
xk 1 xk 1
C C
xk xk
2
C C
.
据此反复递推有
xk 1 xk 1
C C
x0 x0
2k
C C
.
记
q x0 C , x0 C
整理(4.6)式,得
(4.6)
8
q 2k xk C 2 C 1 q2k .
对任意 x0,总0有 ,q故由1上式推知,当 时 xk ,C即迭代过程恒收敛.
x即4 为 的x *近似. 一般情况只要能使条件(4.10)成立,
则可得到
lim
牛顿迭代法.
牛顿迭代法李保洋数学科学学院信息与计算科学学号:060424067指导老师:苏孟龙摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较.关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学;九章算术;Duffing方程;非线性方程;收敛速度;渐进性0 引言:迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法.迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况:(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制.(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败.所以利用迭代算法解决问题,需要做好以下三个方面的工作:1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量.2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成.3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件.1牛顿迭代法:牛顿迭代法(Newton method)又称为牛顿-拉夫逊方法(Newton-Rapfson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难甚至不可能,从而寻找方程的近似根就显得特别重要.方法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根.牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛性,而且该法还可以用来求方程的重根、复根.另外该方法广泛用于计算机编程中:解非线性方程()0f x =的牛顿(Newton )法是把非线性的方程线性化的一种近似方法.把()f x 的0x 点附近展开泰勒(Taylor )级()()()()()()''20'00002!f x f x f x f x x fx x x =+-+-+;取其线性部分作为非线性方程()0f x =的近似方程,则有:()()()'0000f x f x x x +-=;设()'00f x ≠,则其解为:()()0'100f x x x f x =-;再把()f x 在1x 附近展开泰勒(Taylor )级数,也取其现行部分作为()0f x =的近似方程.若()'10f x ≠,则得:()()1'211f x x x f x =-;这样,得到牛顿(Newton )法的一个迭代序列:()()'1n n n n f x x x fx +=-;牛顿迭代有十分明显的几何意义,如图所示:当选取初值0x 以后,过()()00,x f x 做()f x 的切线,其切线方程为:()()()'000y f x f x x x -=-;求此切线方程和x 轴的交点,即得:()()'1000x x f x f x =-;牛顿法正因为有这一明显的几何意义,所以也叫切线法. 例:用牛顿法求下面方程的根()32210200f x x x x =++-=; 解:因()'23410f x x x =++,所以迭代公式为:()()3221210203410n n x x x x x x x +=-++-++;选取01x =计算结果列表:从结果可以看出,牛顿法的收敛是很快的,5x 误差1510-.但用牛顿法计算工作量比较大,因每次计算迭代除了计算函数值外还要计算微商值.为此我们提出了简化牛顿法:其公式为()()'10n n n x x f x f x +=-;用上面的公式计算,不再需要每步重新计算微商值,所以计算量小一些,但收敛也要慢一些.为了避免计算导数还可以采用差商代导数的方案:()()()()111n n n n n n n f x x x x x f x f x +--=---;关于牛顿迭代的收敛有下面结果:如果()f x 在零点附近存在连续的二阶微商,ξ是()f x 的一重零点,且初始0x 充分接近于ξ,那么牛顿迭代是收敛的,且有()()()2'''1/2n n x f f x ξξξξ+-≈•-;这表明牛顿法是二阶收敛的(平方收敛的).最后考虑()f x 是多项式的特殊情况,此时()f x ,()'f x 在某个x 值,比如x c =时的计算可用综合除法.设 ()111n n n n f x ax a x a x a +-=+++,除以x c -,得商()q x ,余r :()()()f x q x x c r =-+; (1) 其中:()120121n n n n q x b x b x b x b ----=++++;()n r b f c ==;比较(1)式两边k x 的系数便知这些k b 可以按下表进行:这一过程其实就是秦九韶算法,计算多项式值的嵌套算法:()()()()121n n f c aa c a c c a c a -=+++++;每个括号的值就是这里的0n b b .至于导数的计算,注意到(1)式可得:()()()()''f x q x q x x c =+-;于是:()()'f c q c =;因此再对0n b b 进行上述过程,或者再用一次秦九韶算法即可.2一种修正的牛顿迭代法:给出了牛顿迭代法的一种修正形式,并证明了当1/2r ≠时修正的牛顿迭代法是二阶收敛的,当参数1/2r =时是三阶收敛的,数值实验表明,与经典牛顿迭代法相比,该修正牛顿迭代法具有一定的优势.众所周知,数值求解非线性方程()0f x =的根的方法很多.经典的牛顿迭代法是非线性方程组求根的一个基本方法,它二次收敛到单根,线性收敛到重根.牛顿法因收敛速度快而得到广泛应用,也倍受学者的重视,近年来很多文献中提出各种改进的牛顿方法.文献[8]中利用Newton 迭代法和微分中值定理“中值点”的渐进性,提出了一种多点迭代法.设()f x 满足下述条件:()[]2,f x c a b ∈,()()0f a f b <; ()'0f x ≠, ()''f x 在[,]a b 上保号. (A)根据微分中值定理,存在(,)a b ξ∈,使得:()()()'f b f a f b a ξ-=-,而1lim 2b a a b a ξ→-=-.因此,当b 与a 的距离无限接近时有:()12a b a ξ≈+-.也就是说,在区间(,)a b 不甚大时,中值点ξ一定在其渐近位置 ()12a b a ξ≈+-附近,并随区间变小而趋于其渐近位置.图所示迭代法构造图本方案基于上述考虑,给出一种通过迭代点选取另一个点,利用两个点进行迭代求近似根的新方法.这种方法虽然在迭代中又只利用了一个其它点,但其计算精度却相当高,它的某一种特殊情形恰是通常的Newton 迭代法.为了更加直观起见,我们通过几何直观图来构造这种迭代法.设()f x 满足条件(A ),当选定初值0x(仅要求()()"00f x f x ⋅>),如图所示,作交点的切线交x 轴于B ()()00'0,0f x x f x ⎛⎫- ⎪ ⎪⎝⎭,AQ 线段的斜率为:()()()()()000'0000'0f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭.由微分中值定理知,存在()()000'0,f x x x f x ξ⎛⎫∈- ⎪ ⎪⎝⎭使得:()()()()()()000'0'0000'0f x f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭;而()()()()0000''0012f x f x x x f x f x ξ⎛⎫≈-+- ⎪ ⎪⎝⎭,因此,我们取数1,12r ⎛⎫∈ ⎪⎝⎭,在点()()()()()()0000''001,1f x f x P x r f x r f x f x ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭作切线PC ,图中AD 平行于PC .即用点P 的导数()()()0'0'01f x f x r f x ⎛⎫-- ⎪ ⎪⎝⎭代替点A 的导数,而仍用点A 的迭代格式得到点D 的坐标()()()()00'00'0,01f x D x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫⎪-- ⎪ ⎪⎝⎭⎝⎭;重复上述过程,得到多点迭代公式()()()()1''1k k k k k k f x x x f x f x r f x +=-⎛⎫-- ⎪⎝⎭; (2)其中[,]k x a b ∈,1,2,3,k =.下面我们对上述事实,从理论上加以严格证明.定理 设()f x 满足条件(A ),则由多点迭代公式(1)产生的序列{n x }必收敛于[,]a b 上的唯一a ,这里[],n x a b ∈,()0f a =.证明 函数()f x 在上连续,由连续函数根的存在定理,从()()0f a f b <知道()f x 在[],a b 上根存在,又由条件()'0f x ≠及()''f x 保号知道,()'f x 在[],a b 上不变号,故()f x 在[],a b 上是单调函数,因此()f x 在[],a b 上根a 存在且唯一.由定理条件曲线()y f x =可有如下四种不同情况:(1) ()()()"0,0,0f a f b f x <>>,则()'f x 单调上升,()()''0f a f b >; (2) ()()()"0,0,0f a f b f x <>>,则()'f x 单调下降,()()''0f a f b >;(3) ()()()"0,0,0f a f b f x ><>,则()'f x 单调上升, ()()''0f a f b <; (4) ()()()"0,0,0f a f b f x ><<,则()'f x 单调下降,()()''0f a f b <. 通过对自变量的变号或对函数的变号可将四种情况归结为一种情况,所以我们只需对情况(一)证明迭代过程(1)收敛就可以了.若初值[]0,,,n x a b x a ∈>所以()00f x >,故有()()()()0100'00'01f x x x x f x f x r f x =-<⎛⎫-- ⎪⎝⎭;()()()()()()()()()()()()()()()''0001000'''000000'''000111f x f a f x a f x a x x x x f x f x f x f x r f x r f x r f x f x f x ξξ+--=-=-=-⎛⎫⎛⎫⎛⎫------ ⎪⎪⎪⎝⎭⎝⎭⎝⎭;一方面,()0.a x ξ∈,且()()'00f x f x a =-.下证()()()()0''0'01f x f x f x r f x ⎛⎫<-- ⎪ ⎪⎝⎭.若()()()()0''0'01f x f x f x r f x ⎛⎫>-- ⎪ ⎪⎝⎭,由()'f x 的单调性有,x ,()()()00'01f x x r f x ξ--<,又因为()()()()()0000''001f x f x x r x f x f x -->-,因此有()()()0''0'0f x f x f f x ξ⎛⎫-< ⎪ ⎪⎝⎭,与Newton 迭代法的收敛性矛盾.由(一)的假设及()()()()0''0'01f x f f x r f x ξ⎛⎫<-- ⎪ ⎪⎝⎭可得: ()()()()()()'01000'00'01f x a x x x x a a f x f x r f x ξ-=->-=⎛⎫-- ⎪⎝⎭;一般地,若n x a =,同样可以证明由式(2)得到的1n x +满足1n n a x x +<<.所以由式(1)产生的迭代序列{n x }单调下降且有下界.依极限理论必有极限.对式(2)两边取极限,由极限理论可以求得()'0f a =.再由()'0f x ≠,[],n x a b ∈,可知函数方程()0f x =在[],a b 上的根是唯一的,因此有'a a =.当1r =时,式(2)即为Newton 迭代公式.本文给出的这种多点迭代方法不仅可以被广泛应用于方程的近似求根,更重要的是它为人们提供了一种新的迭代思想,拓宽人们在方程近似求根方面的思路.例 计算()3250f x x x =--=在(2,3)区间内的一个实根.我们已知()0f x =有一个精确到十二位有效数字的实根 2.09455148154a =. 取03x =,以Newton 迭代法计算(记作1n x ),取03x =, 12r =以式(1)计算(记作2n x ),其结果列表如表1.行三次迭代就已得满足精度要求的值了,而Newton 迭代法需迭代5次才可得到满足精度要求的值.式(2)可以被广泛应用,特别是编成数学软件后,用计算机求解方程近似根效果会更加显著.3另外一种牛顿迭代法的修正:Newton 迭代法是方程求根的一种简单而直观的近似方法,但在实际运用中,我们常常觉察到,这种方法仅仅是利用了迭代点及该点的导数值,而没有充分利用其他点及其导数值.是否存在可利用的点,这些点我们应怎样确定.文[1]给出了一种方法,但这种方法求根的关键在适当地选取0x 和r 或n r .选取不适当,就会出现某次迭代的值不是迭代序列中的值.因此,我们会问这些值特别是0x 能否不依靠人为选取,而通过迭代点来选取,本文将利用Newton 迭代法和微分中值定理“中值点”的渐近性,来寻找除迭代点以外的可利用点,给出一种多点迭代方法.设()f x 满足下述条件:()[]()()2,,0f x c a b f a f b ∈<;()()'''0,f x f x ≠在[],a b 上保号. (A)根据微分中值定理,存在(),a b ξ∈,使得()()()'f b f a f b a ξ-=-而1lim 2b a a b a ξ→-=-.因此,当b 与a 的距离无限接近时有:()12a b a ξ≈+-.也就是说,在区间(),a b 不甚大时,中值点ξ一定在其渐近位置()12a b a ξ≈+-附近,并随区间变小而趋于其渐近位置.本方案基于上述考虑,给出一种通过迭代点选取另一个点,利用两个点进行迭代求近似根的新方法.设()f x 满足下列条件(A):(1) ()f x 在区间在区间[],a b 上存在二阶导数; (2) ()'f x 在[],a b 上不等于零; (3) ()''f x 在[],a b 上不变号; (4) ()()0f a f b <;为了更为直观,我们通过几何直观图来构造多点迭代法.设()f x 满足条件(A),当选定初值0x (仅要求()()''00f x f x >),如图所示:做A 点的切线交X 轴于B ()()00'0,0f x x f x ⎛⎫- ⎪ ⎪⎝⎭,AQ 线段的斜率为:()()()()()000'0000'0f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭;由微分中值定理知,存在()()000'0,f x x x f x ξ⎛⎫∈- ⎪ ⎪⎝⎭使得: ()()()()()()000'0'0000'0f x f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭;而()()()()0000''0012f x f x x x f x f x ξ⎛⎫≈-+- ⎪ ⎪⎝⎭,因此,我们取数1,12r ⎛⎫∈ ⎪⎝⎭,在点()()()()()()0000''001,1f x f x P x r f x r f x f x ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭作切线PC ,图中AD 平行于PC .即用点P 的导数()()()0'0'01f x f x r f x ⎛⎫-- ⎪ ⎪⎝⎭代替点A 的导数,而仍用点A 的迭代格式得到点D 的坐标()()()()00'0',01k k f x D x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫ ⎪-- ⎪ ⎪⎝⎭⎝⎭; (3)主要对(3)式的分子()k f x 用()k f x 与()()()()''1k k k k k f x f x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫⎪-- ⎪ ⎪⎝⎭⎝⎭的和代替,这样就得到新的迭代公式:()()()()()()()()''1''11k k k k k k k k k k k f x f x f x f x f x r f x x x f x f x r f x +⎛⎫ ⎪⎪+-⎪⎛⎫ ⎪-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫-- ⎪⎝⎭; (4) 如果令 ()()()()'1k k f x u x x r f x =--;()()()1'k k k kf x x w x x f u +==-;则: ()()111'k k k f x x x f u x -+-++⎛⎫⎪⎝⎭=-; 从而可知(4)式中迭代函数为:()()()()()()'f w x x w x f w x Φ=-;引理1[5] 对于迭代公式()1k k x x +=Φ,如果p Φ在所求的根*x 的邻近连续并且:()()()()1'*''**0p x x k x +Φ=Φ==Φ=,()()*0px Φ≠,则该公式在*x 的邻近是p 阶收敛的.定理1 设方程()f x 的根为*x ,函数()f x 在*x 的的邻域内有至少四阶连续导数,且()'0f x ≠,则迭代公式(4)在的*x 邻近至少是三阶收敛的.证明 迭代公式(4)的迭代函数为:()()()()()()'f w x x w x f w x Φ=-,其中()()()'k k k f x w x x f u =-,由于方程()f x 的根为*x 所以()*0f x =,从而可知()**w x x =,()'*0w x =;()()()()()()'*'*''*3''*f x u x w x f u x =对()x Φ求导数得:()()()()()()()()()()()()()()()'''''"''''*2''0f w x w x f u x f w x f u x u x x w x x f u x -Φ=-⇒Φ=; 同理可得:()()()()()()'"'"*''*''*0x x x w x w x Φ=Φ⇒Φ=-=.由引理知迭代公式(4)在*x 邻近至少是三阶收敛的.引理2([4]) 假设函数()f x 在区间[],a b 上存在二阶导数,且满足下列条件(1) ()'f x 在[],a b 上不等于零;(2) ()''f x 在[],a b 上不变号;(3) ()()0f a f b <;(4) 设[],x a b ∈,且满足条件()()"0f x f x >;则由Newton 迭代法()()'10n n n x x f x f x +=-得到的序列{}n x 收敛于()0f x =的惟一根*x .定理2 假设函数()f x 在区间[],a b 上存在二阶导数,且满足下列条件(1) ()'f x 在[],a b 上不等于零;(2) ()''f x 在[],a b 上不变号;(3) ()()0f a f b <;(4) 设[],x a b ∈,且满足条件()()"0f x f x >.则由多点迭代公式(4)得到的序列{}n x 收敛于()0f x =的惟一根*x .证明 函数()f x 在[],a b 上连续,由连续函数根的存在定理,从()()0f a f b <知道()f x 在[],a b 上根存在,又由条件()'0f x ≠及()"f x 的保号性知道,()'f x 在[],a b 上不变号,故()f x 在[],a b 上是单调函数,因此()f x 在[],a b 上的根*x 存在且惟一. 由定理条件,曲线()y f x =可有如下四种不同情况:(a) ()()()"0,0,0f a f b f x <>>,则()'f x 单调上升,()()''0f b f a ≥>;(b) ()()()"0,0,0f a f b f x <><,则()'f x 单调下降,()()''0f a f b ≥>;(c) ()()()"0,0,0f a f b f x ><>,则()'f x 单调上升,()()''0f a f b ≥<;(d) ()()()"0,0,0f a f b f x ><<,则()'f x 单调下降,()()''0f b f a ≥<.通过对自变量的变号或对函数的变号可以将四种情况归结为一种情况,所以我们只需对其中一种情况证明迭代过程(4)是收敛的就可以了.下面仅就情况(a)证明定理2,其余情况的证明类似.对情况(a)来说此时()0f x =在[],a b 上的根存在且惟一,且()f x 在[],a b 上单调递增.首先证明,对任何初始近似()*,x x b ∈,由迭代公式(4)求出的逐次近似k x 都属于()*,x b ,并且单调递减. 事实上,由引理2的证明我们可知,只要()()()()()*'1,k k k k f x u x x r x b f x =--∈,就有()*1,k x x b -+∈,即()1k k k x u x x -+<<,再由(3)式得11k k x x -++<,另一方面(3)式可化为: ()()()()()()()()()*''1*****11111'''1k k k k k k k k k f x f x f f x x x x x x x x x x f u x f u x f u x ξξ-+----+++++⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=--=---=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 其中()()**11,,k k x x x u x ξ-+⎛⎫∈⊂ ⎪⎝⎭.由()'f x 单调递增且()'0f x >知()()()''1k f f u x ξ<,故*10k x x -+->因而由(4)式产生的序列{}n x 单调递减并有下界,故lim n n x →∞存在.设lim n n x x -→∞=,(4)式两边当k →∞时求极限得: ()()_____'_'____'_'101f x f x f x f x f x r f x x x f x f x r f x ⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪⎛⎫⎝⎭ ⎪+- ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-- ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭; ()()_____'_'__'_'11f x f x f x f x f x r f x f x f x r f x ⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪⎛⎫⎝⎭ ⎪+- ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-- ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭; 可知 ()_____'_'01f x f x f x f x f x r f x ⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪⎛⎫⎝⎭ ⎪+-= ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-- ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()()___*__'_',,1f x x x x b f x f x r f x ⎛⎫ ⎪⎝⎭-∈⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,()f x 在[],a b 上单调递增,且()*0f x =所以:()_____'_'0,01f x f x f x f x f x r f x ⎛⎫ ⎪ ⎪ ⎪⎛⎫ ⎪ ⎪⎛⎫⎝⎭ ⎪=-= ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-- ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;因此得:*x x -=. 本方法代方法比Newton 和文[4]的迭代法的收敛速度明显要快,而且对于1,12r ⎡⎤∈⎢⎥⎣⎦,r 越大效果越差!对于例1,用MATLAB 程序运算格式(4),当12r <时,在*0k x x →=之前迭代格式会产生负值.所以,格式(4)的收敛速度和r 的选取有关. 对于定理2中的四个条件,在MATLAB 中通过简单的程序即可验证.4 中国古代算法盈不足术与牛顿迭代算法的比较:首先介绍 盈不足术 九章算术中的第七章是盈不足术,这是求解方程的一种最古老的方法.为了说明该方法的基本思想,我们考虑该章的第一个例子:今有共买物,人出8,盈3;人出7,不足4,问人数、物价各几何?其求解过程为(见图1):(1) 把出率(8)和(7)放在第一行;(2) 把盈数(3)和不足数(4)放置在出率下面;(3) 计算维积(交差积)得(32)和(21),得和为(53);(4) 盈减去不足数为431-=;(5) 从而得物价为53531=; 用现代数学的观点,盈不足术可表示为:设1x 和2x 为两个近似物价,1R 和2R 分别表示为盈或不足数,则物价为:211212x R x R x R R -=-;人数为1212R R y x x +=-;正如白尚恕[7]指出的那样,在隋唐(581~618年AD )盈不足术在中东被广泛流传,最早的阿拉伯算术书是由al-Khowarizmi 在公元825年写的,英文中的算术一词(algorithm)来自他的名字,他应该对九章算术和其他古代中国巨著很了解,并把盈不足术称为中国方法.Khitai 指China ,类似的写法有Khatai ,Chatayn ,Chataain 等等.普遍认为中国算法是通过古代著名的意大利数学家Leonardo Fibonacci(1170?~1250?年)传给西方的,据记载Fibonacci 随他父亲周游了埃及、西西里、希腊和叙利亚,这次周游使他接触了东方和阿拉伯的计算方法.在1202年,即他回家后不久他就出版了著名的《算经Liber Abaci 》.该书也介绍了盈不足术,并把这种方法称为中国规则,这个名字来自中东,在那里中国算法称为Hisabl-Chatin ,里Chation 指China 该书中的一些例子和算法和中国古代数学巨著完全一样.如在4世纪的孙子算经:今有物不知其数,三三数之胜二,五五数之胜三,七七数之胜二,问物几何?该问题的解题方法就是数论中的中国余数定理:在Fibonacci 的《算经》中阿拉伯语DeRegulisel-Chatavn 被译成拉丁文DuarumFalsdrumPosicionumRegula 所以在西方这种方法被称作双假定方法,这实际上是九章算术中的盈不足术,即中国算法,它起源于中国是毫无疑问的,这正如钱宝琮[8]指出的那样可惜的是很多西方人认为这种方法起源于印度,并被阿拉伯人所掌握所以本作者强烈建议把双假设法改称为中国算法或中国方法.中国算法与牛顿迭代算法考虑方程()'0f x =设12,x x 为方程的两个近似解,于是我们得残量()1f x 和()2f x 应用中国算法,我们可得()()()()2112312x f x x f x x f x f x -=-; (5) 在九章算术中给出了在下列情况下的一些不等式:(1)双盈,即()10f x >和()20f x >(2)双亏,即()10f x <和()20f x <;(3)一盈一亏,即()()120f x f x ⋅<;上述算法可以根据不等式的性质确定更合适的两个数()12,x x 或()23,x x ,再进行计算定更精确的近似解,为了与牛顿迭代算法比较,我们把(5)写成如下形式:()()()()()()()()2112112311212x f x x f x f x x x x x f x f x f x f x --==---; 如果引入导数()'1f x ,它定义为()()()12'112f x f x f x x x -=-;那么我们马上可得:()()11'1f x x x f x =-; 这就是著名的牛顿迭代法,当两个近似值1x 和2x 位于真解的两侧时,即()()120f x f x ⋅<,中国算法比牛顿迭代算法具有很大的优势,牛顿迭代算法可以更进一步的优化发展,可参考文献[10,11].中国算法的改进:中国算法可以看成是通过两个近似解的线性近似方法,见图2为了提高中国算法的精度,我们用三点()123,,x x x ,而不用两点()12,x x ,用抛物线拟合该曲线,我们得近似解为:()()()()()()123213321121321233231x f f x f f x f f x f f f f f f f f f f f f =++------; 式中()i i f f x =;综合概述:迭代算法是一种用途非常广泛的方法,本文不仅介绍了这个方法很好的诠释这个方法, 而且做了牛顿迭代法的两种修正,更做了牛顿迭和与中国古代算法的比较,不仅试读者更好理解了这个方法,更开阔了读者的视野,使读者更能留下研究的空间.参考文献:[1] 徐萃薇,孙绳武.计算方法引论(第三版)[M].北京:高等教育出版社,2007.[2] 龙爱芳.避免二阶导数计算的迭代法[J].浙江工业大学学报,2005, 33(5):602~604.[3] 李庆扬,王能超.数值分析[M].武汉:华中科技大学出版社,1986.[4] 张新东,王秋华.避免二阶导数计算的Newton迭代法的一个改进[J].山东大学学报,2007,42(7):72~76.[5] 何吉欢.盈不足术与牛顿迭代算法的比较[J].应用数学和力学,2002,23(12):1256~1259.[6] 王晓峰.一种修正的牛顿迭代法[J],2010,33(1)长春理工大学学报,178~179.[7] 白尚恕.九章算术注释[M].北京:科学出版社,1983.[8] 钱宝琮.中国数学史[M].北京:科学出版社,1992.[9] 陈新一.一种多点迭代方法[J].甘肃教育学报(自然科学版),2001,15(1):13~16.[10]HeJi-huan.Improvement of Newton interation menthod [J].International Journal of Nonlinear Science and Numerical Simulation 2000,1(3):239~240.[11]HeJi-huan.Newton-like iteration menthod for solving algebraice quations[J]. Communication NumSimulation,1998,3(2):106~109Newton iterationLI Bao YangMathematical Sciences Information and Computing Science NO:060424067Instructor :SU MenglongSummary:In the 17th century,Newton introduced a method of solve equations approximately in real number domain and complex domain,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the Iterative Method is A Direct Method or as A Solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" is belong to approximate iterative methods. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; the comparison of the Chinese ancient algorithm---Yingbuzu Method and Newton Iterative Algorithms. Keywords: Newton Iterative Algorithm; approximate solution; order of convergence; numerical experimentation; Arithmetic in Nine Section ; Duffing Equation; Nonlinear equations; Convergence rate; Progressive。
牛顿二项式定理的证明及其应用
吴英,李传文,沈红梅
兰州大学数学与统计学院,甘肃兰州(730000) 摘 要:本文将二元的牛顿二项式定理借助于换元法转化为一元的形式,并且应用泰勒定理 及其马克劳林级数的相关知识对其进行了证明,然后再次利用换元及乘法运算进行整理,就 完整的给出了牛顿二项式定理的证明;最后给出了该定理在计算平方根精度方面的应用。 关键词:牛顿二项式,泰勒定理,泰勒级数,马克劳林级数,二项式系数 中图分类号:O174.14
∑ (x −
y)α
=
∞ k =0
(−1)α
−
k
⎜⎜⎝⎛αk
⎟⎟⎠⎞
x
k
yα
−
k
-3-
当α 为正整数 n 时,
∑ ∑ ∑ (x +
y)n
=
∞ k =0
⎜⎜⎝⎛
n k
⎟⎟⎠⎞
x
k
y
n−
k
=
k
n =
0
⎜⎜⎝⎛
n k
⎟⎟⎠⎞x
k
y
n
−
k
+
k
∞ =n
+1
⎜⎜⎝⎛
,所以在 −1 < z < 1上,有
(1+ z)α = 1+ α z + α (α −1) z2 +L + α (α −1)L(α − n +1) zn +L
1!
2!
n!
令 z = x 代入上式,得 y
(1+ x )α = 1+ α x + α (α −1) ( x )2 +L + α (α −1)L(α − n +1) ( x )n +L
牛顿迭代法解读
牛顿迭代法李保洋数学科学学院信息与计算科学学号:060424067指导老师:苏孟龙摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较.关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学;九章算术;Duffing方程;非线性方程;收敛速度;渐进性0 引言:迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法.迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况:(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制.(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败.所以利用迭代算法解决问题,需要做好以下三个方面的工作:1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量.2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成.3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件.1牛顿迭代法:yxO x * x 1x 0牛顿迭代法(Newton method)又称为牛顿-拉夫逊方法(Newton-Rapfson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.多数方程不存在求根公式,因此求精确根非常困难甚至不可能,从而寻找方程的近似根就显得特别重要.方法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根.牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛性,而且该法还可以用来求方程的重根、复根.另外该方法广泛用于计算机编程中:解非线性方程()0f x =的牛顿(Newton )法是把非线性的方程线性化的一种近似方法.把()f x 的0x 点附近展开泰勒(Taylor )级()()()()()()''20'00002!f x f x f x f x x fx x x =+-+-+;取其线性部分作为非线性方程()0f x =的近似方程,则有:()()()'0000f x f x x x +-=;设()'00f x ≠,则其解为:()()0'100f x x x f x =-;再把()f x 在1x 附近展开泰勒(Taylor )级数,也取其现行部分作为()0f x =的近似方程.若()'10f x ≠,则得:()()1'211f x x x f x =-;这样,得到牛顿(Newton )法的一个迭代序列:()()'1n n n n f x x x fx +=-;牛顿迭代有十分明显的几何意义,如图所示:当选取初值0x 以后,过()()00,x f x 做()f x 的切线,其切线方程为:()()()'000y f x f x x x -=-;求此切线方程和x 轴的交点,即得:()()'1000x x f x f x=-; 牛顿法正因为有这一明显的几何意义,所以也叫切线法.例:用牛顿法求下面方程的根()32210200f x x x x =++-=; 解:因()'23410f x x x =++,所以迭代公式为:()()3221210203410n n x x x x x x x +=-++-++;选取01x =计算结果列表: N 牛顿法 弦位法 抛物线法 0 1111 1.411764705882353 1.500000000000000 1.5000000000000002 1.369336470588235 1.354430379746836 1.2500000000000003 1.368808188617532 1.368270259654687 1.3685358577213674 1.369808107821375 1.368810350393887 1.368807906820180 5 1.368808107821373 1.368808107472217 1.3688081078216816 1.368808107821373 1.368808107821373 1.368808107821373 71.3688081078213731.368808107821373从结果可以看出,牛顿法的收敛是很快的,5x 误差1510-.但用牛顿法计算工作量比较大,因每次计算迭代除了计算函数值外还要计算微商值.为此我们提出了简化牛顿法:其公式为()()'10n n n x x f x f x +=-;用上面的公式计算,不再需要每步重新计算微商值,所以计算量小一些,但收敛也要慢一些.为了避免计算导数还可以采用差商代导数的方案:()()()()111n n n n n n n f x x x x x f x f x +--=---;关于牛顿迭代的收敛有下面结果:如果()f x 在零点附近存在连续的二阶微商,ξ是()f x 的一重零点,且初始0x 充分接近于ξ,那么牛顿迭代是收敛的,且有()()()2'''1/2n n x f f x ξξξξ+-≈∙-;这表明牛顿法是二阶收敛的(平方收敛的).最后考虑()f x 是多项式的特殊情况,此时()f x ,()'f x 在某个x 值,比如x c =时的计算可用综合除法.设 ()111n n n n f x ax a x a x a +-=+++,除以x c -,得商()q x ,余r : ()()()f x q x xc r =-+;(1) 其中:()120121n n n n q x b x b x b x b ----=++++;()n r b f c ==;比较(1)式两边k x 的系数便知这些k b 可以按下表进行:0a 1a 2a 1n a -n a0b c 1b c 2n b c -1n b c -00b a = 110b a b c =+221b a b c =+112n n n b a b c ---=+ 1n n n b a b c -=+这一过程其实就是秦九韶算法,计算多项式值的嵌套算法:()()()()121n n f c aa c a c c a c a -=+++++;每个括号的值就是这里的0n b b .至于导数的计算,注意到(1)式可得:()()()()''f x q x q x x c =+-;于是:()()'f c q c =;因此再对0n b b 进行上述过程,或者再用一次秦九韶算法即可.2一种修正的牛顿迭代法:给出了牛顿迭代法的一种修正形式,并证明了当1/2r ≠时修正的牛顿迭代法是二阶收敛的,当参数1/2r =时是三阶收敛的,数值实验表明,与经典牛顿迭代法相比,该修正牛顿迭代法具有一定的优势.众所周知,数值求解非线性方程()0f x =的根的方法很多.经典的牛顿迭代法是非线性方程组求根的一个基本方法,它二次收敛到单根,线性收敛到重根.牛顿法因收敛速度快而得到广泛应用,也倍受学者的重视,近年来很多文献中提出各种改进的牛顿方法.文献[8]中利用Newton 迭代法和微分中值定理“中值点”的渐进性,提出了一种多点迭代法.设()f x 满足下述条件:()[]2,f x c a b ∈,()()0f a f b <; ()'0f x ≠, ()''f x 在[,]a b 上保号. (A)根据微分中值定理,存在(,)a b ξ∈,使得:()()()'f b f a f b aξ-=-,而1l im2b a a b a ξ→-=-. 因此,当b 与a 的距离无限接近时有:()12a b a ξ≈+-.也就是说,在区间(,)a b 不甚大时,中值点ξ一定在其渐近位置 ()12a b a ξ≈+-附近,并随区间变小而趋于其渐近位置.图所示迭代法构造图本方案基于上述考虑,给出一种通过迭代点选取另一个点,利用两个点进行迭代求近似根的新方法.这种方法虽然在迭代中又只利用了一个其它点,但其计算精度却相当高,它的某一种特殊情形恰是通常的Newton 迭代法.为了更加直观起见,我们通过几何直观图来构造这种迭代法.设()f x 满足条件(A ),当选定初值0x(仅要求()()"00f x f x ⋅>),如图所示,作交点的切线交x 轴于B ()()00'0,0f x x f x ⎛⎫- ⎪ ⎪⎝⎭,AQ 线段的斜率为:()()()()()000'0000'0f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭. 由微分中值定理知,存在()()000'0,f x x x f x ξ⎛⎫∈- ⎪ ⎪⎝⎭使得:()()()()()()000'0'0000'0f x f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭;而()()()()0000''0012f x f x x x f x f x ξ⎛⎫≈-+- ⎪ ⎪⎝⎭,因此,我们取数1,12r ⎛⎫∈ ⎪⎝⎭,在点()()()()()()0000''001,1f x f x P x r f x r f x f x ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭作切线PC ,图中AD 平行于PC .即用点P 的导数()()()0'0'01f x f x r f x ⎛⎫-- ⎪ ⎪⎝⎭代替点A 的导数,而仍用点A 的迭代格式得到点D 的坐标()()()()00'00'0,01f x D x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫⎪-- ⎪ ⎪⎝⎭⎝⎭;重复上述过程,得到多点迭代公式()()()()1''1k k k k k k f x x x f x f x r f x +=-⎛⎫-- ⎪⎝⎭; (2)其中[,]k x a b ∈,1,2,3,k =.下面我们对上述事实,从理论上加以严格证明.定理 设()f x 满足条件(A ),则由多点迭代公式(1)产生的序列{n x }必收敛于[,]a b 上的唯一a ,这里[],n x a b ∈,()0f a =.证明 函数()f x 在上连续,由连续函数根的存在定理,从()()0f a f b <知道()f x 在[],a b 上根存在,又由条件()'0f x ≠及()''f x 保号知道,()'f x 在[],a b 上不变号,故()f x 在[],a b 上是单调函数,因此()f x 在[],a b 上根a 存在且唯一.由定理条件曲线()y f x =可有如下四种不同情况:(1) ()()()"0,0,0f a f b f x <>>,则()'f x 单调上升,()()''0f a f b >; (2) ()()()"0,0,0f a f b f x <>>,则()'f x 单调下降,()()''0f a f b >;(3) ()()()"0,0,0f a f b f x ><>,则()'f x 单调上升, ()()''0f a f b <; (4) ()()()"0,0,0f a f b f x ><<,则()'f x 单调下降,()()''0f a f b <. 通过对自变量的变号或对函数的变号可将四种情况归结为一种情况,所以我们只需对情况(一)证明迭代过程(1)收敛就可以了.若初值[]0,,,n x a b x a ∈>所以()00f x >,故有()()()()0100'00'01f x x x x f x f x r f x =-<⎛⎫-- ⎪⎝⎭;()()()()()()()()()()()()()()()''0001000'''000000'''000111f x f a f x a f x a x x x x f x f x f x f x r f x r f x r f x f x f x ξξ+--=-=-=-⎛⎫⎛⎫⎛⎫------ ⎪⎪⎪⎝⎭⎝⎭⎝⎭;一方面,()0.a x ξ∈,且()()'00f x f x a =-.下证()()()()0''0'01f x f x f x r f x ⎛⎫<-- ⎪ ⎪⎝⎭.若()()()()0''0'01f x f x f x r f x ⎛⎫>-- ⎪ ⎪⎝⎭,由()'f x 的单调性有,x ,()()()00'01f x x r f x ξ--<,又因为()()()()()0000''001f x f x x r x f x f x -->-,因此有()()()0''0'0f x f x f f x ξ⎛⎫-< ⎪ ⎪⎝⎭,与Newton 迭代法的收敛性矛盾. 由(一)的假设及()()()()0''0'01f x f f x r f x ξ⎛⎫<-- ⎪ ⎪⎝⎭可得: ()()()()()()'01000'00'01f x a x x x x a a f x f x r f x ξ-=->-=⎛⎫-- ⎪⎝⎭;一般地,若n x a =,同样可以证明由式(2)得到的1n x +满足1n n a x x +<<.所以由式(1)产生的迭代序列{n x }单调下降且有下界.依极限理论必有极限.对式(2)两边取极限,由极限理论可以求得()'0f a =.再由()'0f x ≠,[],n x a b ∈,可知函数方程()0f x =在[],a b 上的根是唯一的,因此有'a a =.当1r =时,式(2)即为Newton 迭代公式.本文给出的这种多点迭代方法不仅可以被广泛应用于方程的近似求根,更重要的是它为人们提供了一种新的迭代思想,拓宽人们在方程近似求根方面的思路.例 计算()3250f x x x =--=在(2,3)区间内的一个实根.我们已知()0f x =有一个精确到十二位有效数字的实根 2.09455148154a =. 取03x =,以Newton 迭代法计算(记作1n x ),取03x =, 12r =以式(1)计算(记作2n x ),其结果列表如表1. 表1 计算结果: 迭代次数N1n x 2nx 0 1 2 3 4 53 2.36 2.095136037 2.094551674 2.94551482 32.18468446 2.094726304 2.094551482 从这个数值例子,我们可以看出,式(2)比Newton 迭代法的收敛速度快得多,只进行三次迭代就已得满足精度要求的值了,而Newton 迭代法需迭代5次才可得到满足精度要求的值.式(2)可以被广泛应用,特别是编成数学软件后,用计算机求解方程近似根效果会更加显著.3另外一种牛顿迭代法的修正:Newton 迭代法是方程求根的一种简单而直观的近似方法,但在实际运用中,我们常常觉察到,这种方法仅仅是利用了迭代点及该点的导数值,而没有充分利用其他点及其导数值.是否存在可利用的点,这些点我们应怎样确定.文[1]给出了一种方法,但这种方法求根的关键在适当地选取0x 和r 或n r .选取不适当,就会出现某次迭代的值不是迭代序列中的值.因此,我们会问这些值特别是0x 能否不依靠人为选取,而通过迭代点来选取,本文将利用Newton 迭代法和微分中值定理“中值点”的渐近性,来寻找除迭代点以外的可利用点,给出一种多点迭代方法.设()f x 满足下述条件:()[]()()2,,0f x c a b f a f b ∈<;()()'''0,f x f x ≠在[],a b 上保号. (A)根据微分中值定理,存在(),a b ξ∈,使得()()()'f b f a f b aξ-=-而1lim2b a a b a ξ→-=-.因此,当b 与a 的距离无限接近时有:()12a b a ξ≈+-.也就是说,在区间(),a b 不甚大时,中值点ξ一定在其渐近位置()12a b a ξ≈+-附近,并随区间变小而趋于其渐近位置.本方案基于上述考虑,给出一种通过迭代点选取另一个点,利用两个点进行迭代求近似根的新方法.设()f x 满足下列条件(A):(1) ()f x 在区间在区间[],a b 上存在二阶导数; (2) ()'f x 在[],a b 上不等于零; (3) ()''f x 在[],a b 上不变号; (4) ()()0f a f b <;为了更为直观,我们通过几何直观图来构造多点迭代法.设()f x 满足条件(A),当选定初值0x (仅要求()()''00f x f x >),如图所示:做A 点的切线交X 轴于B ()()00'0,0f x x f x ⎛⎫- ⎪ ⎪⎝⎭,AQ 线段的斜率为:()()()()()000'0000'0f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭⎛⎫-- ⎪⎝⎭;由微分中值定理知,存在()()000'0,f x x x f x ξ⎛⎫∈- ⎪ ⎪⎝⎭使得: ()()()()()()000'0'0000'0f x f x f x f x f x f x x x f x ⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭;而()()()()0000''0012f x f x x x f x f x ξ⎛⎫≈-+- ⎪ ⎪⎝⎭,因此,我们取数1,12r ⎛⎫∈ ⎪⎝⎭,在点()()()()()()0000''001,1f x f x P x r f x r f x f x ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭作切线PC ,图中AD 平行于PC .即用点P 的导数()()()0'0'01f x f x r f x ⎛⎫-- ⎪ ⎪⎝⎭代替点A 的导数,而仍用点A 的迭代格式得到点D 的坐标()()()()00'0',01k k f x D x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫ ⎪-- ⎪ ⎪⎝⎭⎝⎭; (3)主要对(3)式的分子()k f x 用()k f x 与()()()()''1k k k k k f x f x f x f x r f x ⎛⎫ ⎪⎪- ⎪⎛⎫⎪-- ⎪ ⎪⎝⎭⎝⎭的和代替,这样就得到新的迭代公式:()()()()()()()()''1''11k k k k k k k k k k k f x f x f x f x f x r f x x x f x f x r f x +⎛⎫ ⎪⎪+-⎪⎛⎫ ⎪-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫-- ⎪⎝⎭; (4) 如果令 ()()()()'1k k f x u x x r f x =--;()()()1'k k k kf x x w x x f u +==-;则: ()()111'k k k f x x x f u x -+-++⎛⎫⎪⎝⎭=-; 从而可知(4)式中迭代函数为:()()()()()()'f w x x w x f w x Φ=-;引理1[5] 对于迭代公式()1k k x x +=Φ,如果p Φ在所求的根*x 的邻近连续并且:()()()()1'*''**0p x x k x +Φ=Φ==Φ=,()()*0p x Φ≠,则该公式在*x 的邻近是p 阶收敛的.定理1 设方程()f x 的根为*x ,函数()f x 在*x 的的邻域内有至少四阶连续导数,且()'0f x ≠,则迭代公式(4)在的*x 邻近至少是三阶收敛的. 证明 迭代公式(4)的迭代函数为:()()()()()()'f w x x w x f w x Φ=-,其中()()()'k k k f x w x x f u =-,由于方程()f x 的根为*x 所以()*0f x =,从而可知()**w x x =,()'*0w x =;()()()()()()'*'*''*3''*f x u x w x f u x =对()x Φ求导数得:()()()()()()()()()()()()()()()'''''"''''*2''0f w x w x f u x f w x f u x u x x w x x f u x -Φ=-⇒Φ=;同理可得:()()()()()()'"'"*''*''*0x x x w x w x Φ=Φ⇒Φ=-=. 由引理知迭代公式(4)在*x 邻近至少是三阶收敛的.引理2([4]) 假设函数()f x 在区间[],a b 上存在二阶导数,且满足下列条件 (1) ()'f x 在[],a b 上不等于零; (2) ()''f x 在[],a b 上不变号; (3) ()()0f a f b <;(4) 设[],x a b ∈,且满足条件()()"0f x f x >;则由Newton 迭代法()()'10n n n x x f x f x +=-得到的序列{}n x 收敛于()0f x =的惟一根*x .定理2 假设函数()f x 在区间[],a b 上存在二阶导数,且满足下列条件 (1) ()'f x 在[],a b 上不等于零; (2) ()''f x 在[],a b 上不变号;(3) ()()0f a f b <;(4) 设[],x a b ∈,且满足条件()()"0f x f x >.则由多点迭代公式(4)得到的序列{}n x 收敛于()0f x =的惟一根*x .证明 函数()f x 在[],a b 上连续,由连续函数根的存在定理,从()()0f a f b <知道()f x 在[],a b 上根存在,又由条件()'0f x ≠及()"f x 的保号性知道,()'f x 在[],a b 上不变号,故()f x 在[],a b 上是单调函数,因此()f x 在[],a b 上的根*x 存在且惟一. 由定理条件,曲线()y f x =可有如下四种不同情况:(a) ()()()"0,0,0f a f b f x <>>,则()'f x 单调上升,()()''0f b f a ≥>; (b) ()()()"0,0,0f a f b f x <><,则()'f x 单调下降,()()''0f a f b ≥>; (c) ()()()"0,0,0f a f b f x ><>,则()'f x 单调上升,()()''0f a f b ≥<; (d) ()()()"0,0,0f a f b f x ><<,则()'f x 单调下降,()()''0f b f a ≥<. 通过对自变量的变号或对函数的变号可以将四种情况归结为一种情况,所以我们只需对其中一种情况证明迭代过程(4)是收敛的就可以了.下面仅就情况(a)证明定理2,其余情况的证明类似.对情况(a)来说此时()0f x =在[],a b 上的根存在且惟一,且()f x 在[],a b 上单调递增.首先证明,对任何初始近似()*,x x b ∈,由迭代公式(4)求出的逐次近似k x 都属于()*,x b ,并且单调递减. 事实上,由引理2的证明我们可知,只要()()()()()*'1,k k k k f x u x x r x b f x =--∈,就有()*1,k x x b -+∈,即()1k k k x u x x -+<<,再由(3)式得11k k x x -++<,另一方面(3)式可化为:()()()()()()()()()*''1*****11111'''1k k k k k k k k k f x f x f f x x x x x x x x x x f u x f u x f u x ξξ-+----+++++⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭-=--=---=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 其中()()**11,,k k x x x u x ξ-+⎛⎫∈⊂ ⎪⎝⎭.由()'f x 单调递增且()'0f x >知()()()''1k f f u x ξ<,故*10k x x -+->因而由(4)式产生的序列{}n x 单调递减并有下界,故lim n n x →∞存在.设lim n n x x -→∞=,(4)式两边当k →∞时求极限得:()()_____'_'____'_'101f x f x f x f x f x r f x x x f x f x r f x ⎛⎫ ⎪ ⎪⎪⎛⎫⎪ ⎪⎛⎫⎝⎭ ⎪+- ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪⎪⎝⎭ ⎪--⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭; ()()_____'_'__'_'11f x f x f x f x f x r f x f x f x r f x ⎛⎫⎪ ⎪⎪⎛⎫⎪ ⎪⎛⎫⎝⎭ ⎪+- ⎪⎛⎫⎛⎫⎝⎭ ⎪ ⎪ ⎪⎪⎝⎭ ⎪--⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭; 可知 ()_____'_'01f x f x f x f x f x r f x ⎛⎫⎪ ⎪⎪⎛⎫⎪ ⎪⎛⎫⎝⎭ ⎪+-= ⎪⎛⎫⎛⎫⎝⎭⎪ ⎪ ⎪⎪⎝⎭ ⎪--⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()()___*__'_',,1f x x x x b f x f x r f x ⎛⎫⎪⎝⎭-∈⎛⎫⎛⎫ ⎪ ⎪⎝⎭ ⎪--⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭,()f x 在[],a b 上单调递增,且()*0f x =所以:()_____'_'0,01f x f x f x f x f x r f x ⎛⎫ ⎪ ⎪⎪⎛⎫⎪ ⎪⎛⎫⎝⎭ ⎪=-= ⎪⎛⎫⎛⎫⎝⎭⎪ ⎪ ⎪⎪⎝⎭ ⎪--⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;因此得:*x x -=. 本方法代方法比Newton 和文[4]的迭代法的收敛速度明显要快,而且对于1,12r ⎡⎤∈⎢⎥⎣⎦,r 越大效果越差!对于例1,用MATLAB 程序运算格式(4),当12r <时,在*0k x x →=之前迭代格式会产生负值.所以,格式(4)的收敛速度和r 的选取有关. 对于定理2中的四个条件,在MATLAB 中通过简单的程序即可验证.4 中国古代算法盈不足术与牛顿迭代算法的比较:首先介绍 盈不足术 九章算术中的第七章是盈不足术,这是求解方程的一种最古老的方法.为了说明该方法的基本思想,我们考虑该章的第一个例子:今有共买物,人出8,盈3;人出7,不足4,问人数、物价各几何? 其求解过程为(见图1):(1) 把出率(8)和(7)放在第一行;(2) 把盈数(3)和不足数(4)放置在出率下面;(3) 计算维积(交差积)得(32)和(21),得和为(53); (4) 盈减去不足数为431-=; (5) 从而得物价为53531=;用现代数学的观点,盈不足术可表示为:设1x 和2x 为两个近似物价,1R 和2R 分别表示为盈或不足数,则物价为:211212x R x R x R R -=-;人数为1212R R y x x +=-;正如白尚恕[7]指出的那样,在隋唐(581~618年AD )盈不足术在中东被广泛流传,最早的阿拉伯算术书是由al-Khowarizmi 在公元825年写的,英文中的算术一词(algorithm)来自他的名字,他应该对九章算术和其他古代中国巨著很了解,并把盈不足术称为中国方法.Khitai 指China ,类似的写法有Khatai ,Chatayn ,Chataain 等等.普遍认为中国算法是通过古代著名的意大利数学家Leonardo Fibonacci(1170?~1250?年)传给西方的,据记载Fibonacci 随他父亲周游了埃及、西西里、希腊和叙利亚,这次周游使他接触了东方和阿拉伯的计算方法.在1202年,即他回家后不久他就出版了著名的《算经Liber Abaci 》.该书也介绍了盈不足术,并把这种方法称为中国规则,这个名字来自中东,在那里中国算法称为Hisabl-Chatin ,里Chation 指China 该书中的一些例子和算法和中国古代数学巨著完全一样.如在4世纪的孙子算经:今有物不知其数,三三数之胜二,五五数之胜三,七七数之胜二,问物几何?该问题的解题方法就是数论中的中国余数定理:在Fibonacci 的《算经》中阿拉伯语DeRegulisel-Chatavn 被译成拉丁文DuarumFalsdrumPosicionumRegula 所以在西方这种方法被称作双假定方法,这实际上是九章算术中的盈不足术,即中国算法,它起源于中国是毫无疑问的,这正如钱宝琮[8]指出的那样可惜的是很多西方人认为这种方法起源于印度,并被阿拉伯人所掌握所以本作者强烈建议把双假设法改称为中国算法或中国方法.中国算法与牛顿迭代算法考虑方程()'0f x =设12,x x 为方程的两个近似解,于是我们得残量()1f x 和()2f x 应用中国算法,我们可得()()()()2112312x f x x f x x f x f x -=-; (5) 在九章算术中给出了在下列情况下的一些不等式: (1)双盈,即()10f x >和()20f x > (2)双亏,即()10f x <和()20f x <; (3)一盈一亏,即()()120f x f x ⋅<;上述算法可以根据不等式的性质确定更合适的两个数()12,x x 或()23,x x ,再进行计算定更精确的近似解,为了与牛顿迭代算法比较,我们把(5)写成如下形式:()()()()()()()()2112112311212x f x x f x f x x x x xf x f x f x f x --==---; 如果引入导数()'1f x ,它定义为()()()12'112f x f x f x x x -=-;那么我们马上可得:()()11'1f x x x f x =-; 这就是著名的牛顿迭代法,当两个近似值1x 和2x 位于真解的两侧时,即()()120f x f x ⋅<,中国算法比牛顿迭代算法具有很大的优势,牛顿迭代算法可以更进一步的优化发展,可参考文献[10,11].中国算法的改进:中国算法可以看成是通过两个近似解的线性近似方法,见图2为了提高中国算法的精度,我们用三点()123,,x x x ,而不用两点()12,x x ,用抛物线拟合该曲线,我们得近似解为:()()()()()()123213321121321233231x f f x f f x f f x f f f f f f f f f f f f =++------;式中()i i f f x =; 综合概述:迭代算法是一种用途非常广泛的方法,本文不仅介绍了这个方法很好的诠释这个方法, 而且做了牛顿迭代法的两种修正,更做了牛顿迭和与中国古代算法的比较,不仅试读者更好理解了这个方法,更开阔了读者的视野,使读者更能留下研究的空间.参考文献:[1] 徐萃薇,孙绳武.计算方法引论(第三版)[M].北京:高等教育出版社,2007.[2] 龙爱芳.避免二阶导数计算的迭代法[J].浙江工业大学学报,2005, 33(5):602~604.[3] 李庆扬,王能超.数值分析[M].武汉:华中科技大学出版社,1986.[4] 张新东,王秋华.避免二阶导数计算的Newton迭代法的一个改进[J].山东大学学报,2007,42(7):72~76.[5] 何吉欢.盈不足术与牛顿迭代算法的比较[J].应用数学和力学,2002,23(12):1256~1259.[6] 王晓峰.一种修正的牛顿迭代法[J],2010,33(1)长春理工大学学报,178~179.[7] 白尚恕.九章算术注释[M].北京:科学出版社,1983.[8] 钱宝琮.中国数学史[M].北京:科学出版社,1992.[9] 陈新一.一种多点迭代方法[J].甘肃教育学报(自然科学版),2001,15(1):13~16.[10]HeJi-huan.Improvement of Newton interation menthod [J].International Journal of Nonlinear Science and Numerical Simulation 2000,1(3):239~240.[11]HeJi-huan.Newton-like iteration menthod for solving algebraice quations[J]. Communication NumSimulation,1998,3(2):106~109Newton iterationLI Bao YangMathematical Sciences Information and Computing Science NO:060424067Instructor :SU MenglongSummary:In the 17th century,Newton introduced a method of solve equations approximately in real number domain and complex domain,that is Newton Iteration,a process of recursion new value constantly with the old value of variable. Correspond with the Iterative Method is A Direct Method or as A Solution,that is a one-time problem solving. Iteration is divided into exact iterative and approximate iterative. "Newton Iterative Method" is belong to approximate iterative methods. This article mainly focuses on the Newton Iteration. The main contents of this article include the discovery,evolution and amendment process of this methods; an improve of avoiding calculating Newton Iteration with second-order derivative; the comparison of the Chinese ancient algorithm---Yingbuzu Method and Newton Iterative Algorithms. Keywords: Newton Iterative Algorithm; approximate solution; order of convergence; numerical experimentation; Arithmetic in Nine Section ; Duffing Equation; Nonlinear equations; Convergence rate; Progressive。
解变分不等式的简单牛顿法的收敛性
解变分不等式的简单牛顿法的收敛性周彪;李素兰【摘要】牛顿法作为求解变分不等式问题的一个重要方法,它的收敛性一直是各位学者研究的一个核心问题.当变分不等式中的函数F在B(x0,ρ)内满足γ-条件时,证明了由牛顿法产生的迭代点列是适定的,而且解的序列可以被构造出来的{tn}序列控制收敛到一个变分不等式的最优解.考虑到F在B (x0,ρ)内满足γ-条件这个区域性条件给进一步的研究带来了困难,因此引入了解析函数,给出了F是解析函数条件下的牛顿法的收敛性结果.数值实验表明算法是有效的.【期刊名称】《浙江工业大学学报》【年(卷),期】2016(044)004【总页数】5页(P461-465)【关键词】牛顿法;变分不等式;γ-条件;半局部收敛;解析函数【作者】周彪;李素兰【作者单位】浙江工业大学理学院,浙江杭州310023;浙江工业大学理学院,浙江杭州310023【正文语种】中文【中图分类】O224变分不等式(Variational inequality)首先由Hartman和Stampacchia[1]在1966年提出,最初是用来研究偏微分方程的,它在数学、工程、物理和经济等领域有着广泛的应用背景.作为非线性互补问题的推广,它的提出统一了优化问题和均衡问题的研究,并且在数学领域中作为大量数学问题实际求解的统一框架.实际生活中的许多问题都可以归结为(或松弛成)一个凸优化问题,而凸优化的一阶必要性条件就是一个单调变分不等式.因此用变分不等式研究凸优化的求解问题,就像微积分中用导数求一元函数的极值,常常会带来很大的方便,这使得它成为数学规划中一个十分热门的研究课题[2-6].牛顿法作为求解变分不等式问题的一个重要方法,它的收敛性一直是各位学者研究的一个核心问题.其中关于半局部收敛最著名的结果就是Kantorovich在1948年提出的经典的Newton-Kantorovich理论[7],它给出了一个简单、清晰的准则以确保F在迭代起点x0满足一定的条件时牛顿迭代序列是二次收敛的,详尽可参见文献[8].Smale进一步将F的解析性代替Newton-Kantorovich理论中的二阶导数的条件,从而提出了著名的Smale点估计理论[9-10].王兴华教授[11]在Smale 点估计理论的基础上首次提出了Banach空间下满足γ-条件的非线性算子,并对文献[9]中的结论进行了推广.王金华教授[12]则在函数满足γ-条件的情况下,提出了一般的γ-理论和α-理论.笔者研究F在上满足γ-条件,由牛顿法产生的序列的收敛性.同时作为一个应用,提出了F在解析条件下的算法收敛性.随后的数值试验结果证明算法是有效的.1.1 符号说明1) Rn表示n维欧式向量空间,令Ω→Rn,F:Ω→Rn表示映射F的值域和定义域都是Rn的非空子集.2) ‖x‖:向量x的2-范数.3) ‖A‖:矩阵A的2-范数.4) B(x0,ρ)与分别表示以x0为原点,ρ为半径的开球和闭球:1.2 理论基础下面给出变分不等式的一般形式:给定一个Rn中的非空子集Ω和一个函数F:Ω→Rn,变分不等式问题记为VIP(Ω,F),是指求x*∈Ω,使得文献[13]中提到了很多数值解法,其中牛顿法是最重要的方法之一.牛顿法解函数F(x)=0时的一般迭代格式为而在求解变分不等式时,序列{xn}是由以下不等式的解产生的:假设已知迭代起点x0∈Ω,则x1的解为那么假设xn-1存在,则xn为的解.定义1 设Ω是Rn的一个非空的凸闭集,令ρ>0,γ>0,ργ<1.函数F:Ω→Rn 在Ω上二阶可微且存在一个x0∈Ω,F′(x0)-1存在,若不等式成立,则称F在上满足γ-条件.而F在上满足γ-条件这个区域性条件给进一步的研究带来了困难,而如果“F在x0的幂级数收敛球内解析”成立,则γ-条件这个区域性条件自动被满足[14].因此引进Smale的解析性条件.定义2 数学上如果一个函数在邻域内的每个点都能够展开成幂级数,且收敛半径大于零,则我们称函数在邻域内是解析的.2.1 γ-条件给定一个Rn中的非空子集Ω和一个函数F:Ω→Rn,变分不等式问题记为VIP(Ω,F)是指求x*∈Ω,使得牛顿法作为求解变分不等式(5)最重要的方法之一,在求解xn时文献[13]考虑的是F在xn-1处的一阶导数信息,将算法简化为每次迭代都只考虑F在x0处的一阶导数信息.故其迭代格式如下:假设已知迭代起点x0∈Ω,则x1的解为那么假设xn-1存在,则xn为的解.即xn为VIP(Ω,Fn-1)的一个解.记Fn-1(xn)∶=F(xn-1)+F′(x0)(xn-xn-1).王兴华和韩丹夫教授[15]通过引入函数改进了Smale点估计的结论.其中β>0,R满足此时若将式(8)中的函数L定义为则函数h(t)为h(t)并且定义了一个序列{tn}为tn+1t0=0,n=0,1,…其中h(t)满足式(9).备注1 已知是h(t)的一个零点[15],由式(8)显然可得引理1 假设A∈Rn×Rn是一个正定矩阵,x∈Rn,则有证明回顾矩阵2-范数的定义式中:λmax(ATA)为ATA的最大特征值;‖x‖为向量的2-范数.显然有‖Ax‖<‖A‖·‖x‖.假设λ1是A的最小特征值,则有‖A-1‖,故xTAx≥λ1‖x‖2,得证.定理1 令x0∈Ω,ρ>r1,假设F在∩Ω上满足γ-条件,且F′(x0)是正定的,设由改进后的牛顿法式(7)迭代产生的x1有‖x1-x0‖<β,则以x0为迭代起点的牛顿法序列{xn}是适定的,且对于所有的n,我们有且{xn}收敛到变分不等式的一个解x*.证明首先证明由牛顿法产生的序列{xn}是适定的:因为F′(x0)是正定的,那么显然Fn-1(x)是严格递增的.而Ω是Rn的一个非空的凸闭集,所以VIP(Ω,Fn-1)有一个唯一解xn.即如果F′(x0)是正定的,则由式(7)牛顿法产生的序列是有意义的[12]. 由定义可知‖x1-x0‖<β=t1-t0显然成立,从而当k=1时,式(11)成立.假设k=n-1成立,则xn满足‖xn-x0‖≤‖x n-xn-1‖+‖xn-1-xn-2‖+…+‖x1-x0‖≤(tn-tn-1)+(tn-1-tn-2)+…+(t1-t0)=tn<r1故.考虑xn和xn-1分别是VIP(Ω,Fn-1)和VIP(Ω,Fn)的解,即(xn+1-xn)TFn-1(xn)=(xn+1-xn)T·(F(xn-1)+F′(x0)(xn-xn-1))≥0(xn-xn+1)TFn(xn+1)=(xn-xn+1)T·(F(xn)+F′(x0)(xn+1-xn))≥0合并式(12,13),并移项得(xn-xn+1)TF′(x0)(xn-xn+1)≤(xn-xn+1)T[F(xn)-F(xn-1)-F′(x0)(xn-xn-1)]假设λ1是F′(x0)的最小特征值,则我们有‖F′(x0)-1‖,由引理1得(xn-xn+1)TF′(x0)(xn-xn+1)≥结合式(14,15),有(xn-xn+1)TF′(x0)·(xn-xn+1)≤(xn-xn+1)T[F(xn)-F(xn-1)-F′(x0)·(xn-xn-1)]移项化简得‖xn+1-xn‖≤‖F′(x0)-1‖‖F(xn)-F(xn-1)-F′(x0)(x n-xn-1)‖=‖F′(x0)-1‖‖F′(xn-1+t(xn-xn-1))-F′(x0)‖·‖xn-xn-1‖dt因为函数F在∩Ω上满足γ-条件,故结合式(4)得这意味着k=n时,式(11)成立,所以序列{xn}是一个柯西列,存在x*∈B(x0,r1)使得成立.此时(y-x*)T(F(x*)+F′(x0)(xn-xn-1))=(y-x*)T(F(x*))≥0成立,即{xn}收敛到变分不等式的一个解x*.得证.2.2 在解析函数上的应用以下我们假设函数F在上解析,F′(x0)-1存在.定义如果F′(x0)不可逆,则定义γ(F,x0)=∞.因此,若F′(x0)可逆,则由解析性得γ(F,x0)有界.以下引理说明当函数F是解析的,则F一定满足γ-条件.引理2 令x0∈Ω,γ∶=γ(F,x0).若,则F在上满足γ-条件[16].证明因为函数F是解析的,可以写成幂级数的形式为所以又因为F′(x0)可逆,结合(17)式得设.对两边同时乘以γ(x-x0),并相减,得移项得再结合(18)式得其中γ‖x-x0‖.得证.接下来,我们得到了一个关于函数F是解析函数的牛顿法序列收敛性的推论.推论1 令,假设F在上满足γ-条件,且F′(x0)是正定的,设由改进后的牛顿法式(7)迭代产生的x1有‖x1-x0‖<β,则以x0为迭代起点的牛顿法序列{xn}是适定的,且对于所有的n,我们有且{xn}收敛到变分不等式的一个解x*.证明由于,则由引理1可知F在∩Ω上一定满足γ-条件.故由定理1可知推论1成立.假设R2被赋予l2范数.令).定义[17]F:R2→R2,即通过简单计算,可得对于任意的是正定的.当时,F′(x0)满足γ-条件,故由式(7)产生的牛顿迭代序列,如1表所示.Table 1 The number of iterations and Numerical results of Newton算法在第14步趋于最优解x*=(0.92,0.92).说明牛顿算法是有效的.变分不等式作为非线性互补问题的推广,它在数学、工程、物理和经济等领域有着广泛的应用背景.这使得它成为数学规划中一个十分热门的研究课题.而牛顿法作为求解变分不等式问题的一个重要方法,关于它的收敛性研究一直是各位学者关心的一个问题.笔者将原始的求解变分不等式的牛顿迭代算法考虑的F在xn-1处的一阶导数信息进行改进,将算法简化为每次迭代都只考虑F在x0处的一阶导数信息,在理论上证明笔者提出的新算法是收敛的.即假设变分不等式中的函数F在内满足γ-条件,证明了由改进后的牛顿法产生的解是有效的,而且解的序列可以被构造出来的{tn}序列控制收敛到一个变分不等式的最优解.同时考虑到F在内满足γ-条件这个区域性条件给进一步的研究带来了困难,因此引入了解析函数,给出了F是解析函数条件下的牛顿法的收敛性.随后的数值实验表明算法是有效的.【相关文献】[1] HARTMAN P, STAMPACCHIA G. On some nonlinear slliptic differential functional equations[J]. Acta mathematica,1966,115:153-188.[2] FAROUQ N E. Pseudomonotone variational inequatlities: convergence of proximalmethods[J]. Journal of optimization theory and applications,2001,109(2):311-326.[3] SALMON G, NGUYEN V H,STRODIOT J J. Coupling the auxiliary problem principle and epiconvergence theory to solve general variational inequalities[J]. Journal of optimization theory and applications,2000,104(3):629-657.[4] PENG J M, FUKUSHIMA M. A hybrid Newton method for solving the variational inequalities problems via the d-gap functiona[J]. Mathmatical programming,1999,86:367-386.[5] WU J H. Long-step primal path-following algorithm for monotone variational inequalities problems[J]. Journal of optimization theory and applications,1998,99(2):509-531.[6] FAROUQ N E. Pseudomonotone variational inequalities: convergence of the auxiliary problem method[J]. Journal of optimization theory and applications,2001,111(2):305-326.[7] KANTOROVICH L V,AKILOV G P. Functional analtsis[M].Qxford:Pergamon,1982.[8] KANTOROVICH L V. Functional analysis and applied mathematics[J]. Uspekhi matematicheskikh nauk, 1948(3):89-185.[9] SMALE S. Newton’s method estimates from data at one point[M]. New York: Spring,1986:185-196.[10] SMALE S. Compexity theory and numerical analysis[J] Acta number,1997(6):523-551.[11] WANG X H, HAN D F. Criterion α and Newton’s method[J]. Applied mathematics-a journal of chinese universities,1997,19:96-105.[12] CHANG D C, WANG J H, YAO J C. Newto n’s method for variational inequality problems: Smale’s point estimate theory under the -condition[J]. Applicable analysis,2013(1):44-55.[13] FACCHINEI F, PANG J S. Finite-dimensioanl variation inequalities and complementarity problems[M]. New York: Springer-Verlag,2003.[14] 王兴华,韩丹夫.弱条件下的α判据和Newton法[J].计算数学,1997(2):103-112.[15] WANG X H. Convergence of Newton’s method and inverse function theorem in banach space[J]. Mathematics of computation,1999,68(1):169-186.[16] WANG X H. Convergence of Newton's method and uniqueness of the solution of equations in Banach space[J]. IMA journal of numberical analysis,2000(20):123-134. [17] 鲍吉锋.平衡问题和优化问题若干算法的收敛性分析[D].杭州:浙江大学,2013.。