平方根与立方根试题

合集下载

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(5)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(5)

章节测试题1.【答题】若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10【答案】D【分析】先根据平方根、立方根的定义分别求出a,b的值,然后即可求a+b的值.【解答】解:∵a2=(-5)2,b3=(-5)3,∴a=±5,b=-5,∴a+b=0或-10选D.2.【答题】下列计算正确的是()A. =0.5B. =C. =1D. -=-【答案】C【分析】直接利用立方根的定义分析得出答案【解答】解: A. ≠0.5,故A错误;B. =,故B错误;C. =1,正确;D.-=,故D错误.选C.3.【答题】下列结论正确的是( )A. 64的立方根是±4B. -没有立方根C. 立方根等于本身的数是0D. =-【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解: A.64的立方根是4,故A错误;B.-的立方根是,故B错误;C.立方根等于本身的数是0和±1,故C错误;D. =-=-6,正确.选D.4.【答题】等于( )A. 2B. 2C. -D. -2【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解:=-2选D.5.【答题】计算的正确结果是( )A. 7B. -7C. ±7D. 无意义【答案】B【分析】直接利用立方根的定义分析得出答案【解答】解:选B.6.【答题】下列说法正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 一个数的立方根比这个数平方根小C. 如果一个数有立方根,那么它一定有平方根D. 与互为相反数【答案】D【分析】利用立方根的定义判断即可得到结果.【解答】解:A、一个数的立方根只有一个,故错误;B、0的平方根和立方根均为0,故错误;C、负数具有立方根,却不具有平方根,故错误;D、由于-a与a互为相反数,故a的立方根与-a的立方根互为相反数,故正确. 选D.7.【答题】的平方根是______,的平方根是______,-343的立方根是______,的平方根是______.【答案】±3, ±2,-7,±4;【分析】根据平方根以及立方根的定义即可求解.【解答】解:=9,9的平方根是±3;=4,4的平方根是±2;-343的立方根是-7;,16的平方根是±4故答案为:±3,±2,-7, ±48.【答题】已知(x-1)3=8,则x的值是______.【答案】3【分析】根据立方根的定义可以计算出结果.【解答】由题意知(x-1)是8的立方根,所以x-1=2,即x=39.【答题】=______..【答案】5【分析】根据立方根的定义即可求解.【解答】因为53=125,所以=5,故答案为5.10.【答题】若一个数的平方根是,则这个数的立方根是______.【答案】4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】∵一个数的平方根是,∴这个数是64,∴这个数的立方根是4,即.11.【答题】若和都是5的立方根,则b-a=______.【答案】-5【分析】由于若和都是5的立方根,由此可以得到关于a、b的方程组,解之即可求出结果.【解答】∵和都是5的立方根,∴2b+1=3,a-1=5,∴b=1,a=6,∴b-a=1-6=-5.12.【答题】-8的立方根是______,的算术平方根是______.【答案】-2,3【分析】根据算术平方根以及立方根的定义即可求解.【解答】因为(-2)3=-8,所以-8的立方根是-2;因为=9,=3,所以的算术平方根是3,故答案为(1)-2,(2)313.【答题】当x<7时,=______.【答案】x-7【分析】根据立方根的意义,一个正数的立方根是正数,一个负数的立方根为负,0的立方根为0【解答】由题意可知当x<7时,=x-7故答案为:x-714.【答题】若,则x=______;,则x=______,若,则x=______.【答案】5,6,-4【分析】根据立方根的意义求解.【解答】根据立方根的意义,由53=125,可知x=5;由,则x=6;由若,求得x=-4.故答案为:5;6;-4.15.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.16.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.17.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.18.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-219.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.20.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-343。

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)

章节测试题1.【答题】下列说法中,不正确的是().A. 3是的算术平方根B. ±3是平方根C. -3是的算术平方根D. -3是的立方根【答案】C【分析】根据算术平方根、平方根、立方根的定义判断即可.【解答】A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.选C.2.【答题】下列计算正确的是()A. B.C. D.【答案】C【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、,选项错误;B、,选项错误;,选项正确;D、,选项错误;选C.3.【答题】下列各式中,正确的是()A. B. =4 C. D.【答案】C【分析】本题考查了平方根和立方根.【解答】A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.选C.4.【答题】8的平方根和立方根分别是()A. 8和4B. 和2C. 和8D. 和2【答案】D【分析】根据平方根和立方根定义求出即可.【解答】解:8的平方根和立方根分别是±和2.5.【答题】65.下列说法正确是A. -2没有立方根B. 8的立方根是±2C. -27的立方根是-3D. 立方根等于本身的数只有0和1 【答案】C【分析】本题考查了立方根.【解答】G根据立方根的性质,易得C.6.【答题】下列语句正确的是()A. 的平方根是±2B. 36的平方根是6C. 的立方根是D. 的立方根是2【答案】D【分析】本题考查了平方根和立方根.【解答】选项A,的平方根是±;选项B,36的平方根是±6;选项C,的立方根是;选项D,的立方根是2,选D.7.【答题】下列说法中,正确的是()A. B. 64的立方根是±4C. 6平方根是D. 0.01的算术平方根是0.1【分析】本题考查了平方根和立方根.【解答】A.=3,故错误;B. 64的立方根是4,故错误;C. 6的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;选D.8.【答题】下列说法中正确的有()①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了平方根和立方根.【解答】①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.9.【答题】下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-3【分析】本题考查了平方根和立方根.【解答】A. 的平方根是,正确;B. -9是81的一个平方根,正确;C. 0.2的是0.04算术平方根,错误;D. -27的立方根是-3,正确选C.10.【答题】-27的立方根与的平方根之和是()A. 0B. 6C. 0或-6D. -12或6【答案】C【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±3,所以-27的立方根与的平方根之和是-3+3=0或-3-3=-6.选:C.11.【答题】下列计算正确的是A.B.C.D.【答案】D【分析】本题考查了平方根和立方根.【解答】A、,故该项错误;B、,故该项错误;C、,故该项错误;D、,故该项正确.选D.12.【答题】下列说法正确的是()A. 3是9的立方根B. 3是(-3)2的算术平方根C. (-2)2的平方根是2D. 8的平方根是±4【答案】B【分析】根据算术平方根,平方根,立方根的概念,逐一判断.【解答】A.∵33=27,∴3是27的立方根,本选项错误;B. (-3)2=9,3是9的算术平方根,本选项正确;C. (-2)2=4,4的平方根为±2,本选项错误;D. 8的平方根是,本选项错误.13.【答题】下列各式正确的是().A. B.C. D.【答案】A【分析】本题考查了平方根和立方根.【解答】∵,则B错;,则C;,则D错,选A.14.【答题】-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或-4 【答案】D【分析】本题考查了平方根和立方根.【解答】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.选D.15.【答题】下列说法错误的是()A. 1是1的算术平方根B.C. -27的立方根是-3D.【分析】本题考查了平方根和立方根.【解答】A、因为12=1,所以1是1的算术平方根,故此选项正确;B、=7,故此选项正确;C、(-3)3=-27,所以-27的立方根是-3,故此选项正确;D、=12,故此选项错误.选D.16.【答题】下列计算正确的是().A. B.C. D.【答案】D【分析】本题考查了平方根和立方根.【解答】项.错误;项.,错误;项.错误;.选.17.【答题】下列各式计算正确的是()A. =-9B. =±5C. =-1D. (-)2=-2【答案】C【分析】本题考查了平方根和立方根.【解答】A.=9,故该选项错误;B. =5,故该选项错误;C. =-1,正确;D. (-)2=2,故该选项错误.选C.18.【答题】64的立方根是()A. ±4B. 4C. -4D. 16【答案】B【分析】本题考查了立方根.【解答】∵43=64∴64的立方根是4.选B.19.【答题】使用某种电子计算器求+的近似值,其按键顺序正确的是()A. 8+2ndF6=B. 8+2ndF6=C. 8+6=D. 8+6=【答案】A【分析】本题考查了平方根和立方根.【解答】根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.20.【答题】若x2=25,则x=______;若,则x=______;若,则x=______;若x3=-216,则x=______;若=3,则x=______;若,则x=______.【答案】±5,18,,-6,27,-27【分析】本题考查了平方根和立方根.【解答】分别利用立方根和算术平方根的定义求解即可.解:∵x2=25,∴x=±5;∵,∴x=42+2=18;∵,∴x=()2=;∵x3=-216,∴x=-6;∵,∴x=33=27;∵,∴x=(-3)3=-27.故答案为:±5,18,,-6,27,-27.。

八年级数学上册 平方根立方根实数练习题 试题

八年级数学上册 平方根立方根实数练习题  试题

轧东卡州北占业市传业学校平方根、立方根、实数练习题一、选择题1.正方形的边长为a ,面积为S ,那么〔 〕A.S =a = C.a =.a S =±2、算术平方根等于它本身的数〔 〕A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个;3、以下说法正确的选项是〔 〕A .a 的平方根是±a ;B .a 的算术平方根是a ; C .a 的算术立方根3a ;D .-a 的立方根是-3a .4、如果a 、b 两数在数轴上的位置如下列图,那么()2b a +的算术平方根是〔 〕;A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ; 5、如果-()21x -有平方根,那么x 的值是〔 〕A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;6.如果一个自然数的算术平方根是n ,那么下一个自然数的算术平方根是〔 〕A 、n+1;B 、2n +1;CD。

7.①假设aa是无理数;③假设a是有理数;④假设aA.①④ B.②③C.③ D.④ 8. 当01a <<,以下关系式成立的是〔 〕a . -1. 0b .. 1.a >a > a <a <a <a > a >a <9. 以下各式中,不正确的选项是〔 〕> <>5=- 10.假设a<0,那么a a 22等于〔 〕A 、21B 、21-C 、±21 D 、0 二、填空题11.计算:412=___;3833-=___;1.4的绝对值等于 .12.当x ___时,代数式2x+6的值没有平方根;13.381264273292531+-+= ; 14.假设0|2|1=-++y x ,那么x+y= ; 15.立方根是-8的数是___,64的立方根是____。

16.如果x 、y 满足|2|+++x y x =0,那么x= ,y=___;17、如果a 的算术平方根和算术立方根相等,那么a 等于 ;18.假设12112--+-=x x y ,那么x y的值为 19.通过计算不难知道:322322=,833833=,15441544=,那么按此规律,下一个式子是___;三、解答题20、a 、b 满足5-a +2a -5=b+4,求ab 的值21、.计算:40083321633⨯--- 36662101010++-22120123-22.A=x 3x y ++的算术平方根,B=2x y -2x y +的立方根,试求B -A 的立方根. 23、:3+-y x 与1-+y x 互为相反数,求x+y 的算术平方根 24、51|3a-b-7|+32-+b a =0求(b+a)a 的平方根。

八年级数学上册平方根与立方根(2)达标检测(AB卷,)华东师大

八年级数学上册平方根与立方根(2)达标检测(AB卷,)华东师大

第11章数的开方第一节平方根与立方根A卷基础达标课堂达标·练基础题组一求立方根1。

-64的立方根是()A。

4 B.-4 C。

±4 D.【解析】选B。

因为(—4)3=—64,所以—64的立方根是-4。

2。

若—=,则a的值是( )A.B。

-C。

± D.-【解析】选B。

因为—=—,所以a=-.3。

的立方根是。

【解析】因为=8,23=8,所以的立方根是2。

答案:24。

求下列各数的立方根。

(1)(-2)9。

(2)—26. (3)—343。

(4)0.064。

【解题指南】求一个数的立方根,可以将这个数化简,先判断出被开方数的符号,从而确定其立方根的符号。

最后求出立方根.【解析】(1)(—2)9=-512,因为(-8)3=-512,所以(-2)9的立方根是—8.即=—8。

(2)-26=-64,因为(—4)3=—64,所以(—2)6的立方根是—4。

即=-4.(3)因为—73=—343,所以—343的立方根是-7。

即=-7.(4)因为0.43=0.064,所以0。

064的立方根是0。

4。

即=0。

4。

5.求下列各式中的x:(1)(2x-1)3=-1331。

(2)(2x+10)3=-27。

【解析】(1)2x—1==—11,所以x=—5。

(2)2x+10=,所以2x+10=-3,所以x=-.题组二立方根的应用1.已知甲、乙两个立方体,甲的体积是乙体积的8倍,则甲的棱长是乙的棱长的( )A.8倍B。

2倍 C.512倍D 。

倍【解析】选B。

设乙的体积为x,则甲的体积为8x,甲的棱长为=2,乙的棱长为,所以甲的棱长是乙的棱长的2倍.2。

一个正方体的体积为64,则这个正方体的棱长的平方根为( )A。

±4 B.4 C.±2 D.2【解析】选C.棱长==4,4的平方根为±2。

【知识归纳】平方根与立方根的区别与联系平方根立方根区别被开方数非负数任何数结果正数有两个互为相反数的平方根,负数没有平方根正数的立方根为正数,负数的立方根为负数根指数根指数是2,可以省略不写根指数是3,不能省略联系都与相应的乘方运算互为逆运算0的平方根与立方根都等于03.李老师外出旅行时买回了一颗珍珠球,经测量,该珍珠球的体积为7。

北师大版八年级数学上册 2 3立方根 自主达标测试题 (Word版含答案)

北师大版八年级数学上册 2 3立方根 自主达标测试题 (Word版含答案)

北师大版八年级数学上册《2.3立方根》自主达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列说法正确的是()A.0的立方根和平方根都是0B.1的平方根和立方根都是1C.﹣1的平方根和立方根都是﹣1D.0.01是0.1的平方根2.下列说法中,正确的是()A.﹣32=9B.|﹣3|=﹣3C.=﹣4D.=±3 3.若一个正方体的体积是8,则它的棱长是()A.±2B.2C.2D.44.已知一个数x的两个平方根是3a+2和2﹣5a,则数x的立方根是()A.4B.±4C.8D.±85.有个数值转换器,程序原理如图.当输入m=27时,输出n的值等于()A.3B.C.D.6.下列各式:①=±3;②;③=0.6;④±=±5;⑤=﹣2;⑥=﹣3.其中正确的有()A.2个B.3个C.4个D.5个7.﹣64的立方根与的平方根之和是()A.﹣7B.5C.﹣13或5D.﹣1或﹣7 8.已知一列实数:﹣1,,,﹣2,,,⋯⋯则第2021个数是()A.B.C.D.2021二.填空题(共8小题,满分40分)9.﹣的立方根是.10.的算术平方根是;=,3的平方根是;的立方根是.11.若a的算术平方根为4,2b+4的立方根为2,c是平方根等于本身的数,则a+2b+c的值为.12.一个正方体的体积扩大为原来的8倍,则它的棱长扩大为原来的倍.13.已知,则=.14.若,则x与y的数量关系为.15.的平方根是;若,则x=;若,则x=.16.已知5x﹣2的立方根是﹣3,则x+69的算术平方根是.三.解答题(共6小题,满分40分)17.解方程:(1)=﹣4(2)12(2﹣x)2=24318.已知+=0,求的值.19.已知a+3和2a﹣15是某正数的两个平方根,b的立方根是﹣2,c算术平方根是其本身,求2a+b﹣3c的值.20.已知正数x的两个不同的平方根分别是a+3和2a﹣15,且=4.求x﹣2y+2的值.21.一个底面为25cm×16cm的长方体玻璃容器中装满水,现将一部分水倒入一个正方体铁桶中,当铁桶装满时,玻璃容器中的水面下降了20cm,求正方体铁桶的棱长.22.(1)填表:a0.0000010.001110001000000(2)根据你发现的规律填空:①已知,则=,=.②已知=0.07696,则=.参考答案一.选择题(共8小题,满分40分)1.解:A.0的立方根是0,0的平方根也是0,因此选项A符合题意;B.1的平方根是±1,1的立方根是1,因此选项B不符合题意;C.由于负数没有平方根,因此选项C不符合题意;D.0.1是0.01的一个平方根,因此选项D不符合题意;故选:A.2.解:A、﹣32=﹣9,故A错误,不符合题意;B、|﹣3|=3,故B错误,不符合题意;C、=﹣4,故C正确,符合题意;D、=3,故D错误,不符合题意;故选:C.3.解:设正方体的棱长为a,则:a==2.故选:B.4.解:∵一个数x的两个平方根是3a+2和2﹣5a,∴3a+2+2﹣5a=0,解得:a=2,则x=(3×2+2)2=64,∴64的立方根是4.故选:A.5.解:当m=27时,∴=3,由于3是有理数,所以继续取立方根,∴此时是无理数,输出n=,故选:C.6.解:∵=3,,=0.6,±=±5,=2,=﹣3,∴语句①,③,⑤表述不正确,语句②,④,⑥表述正确,故选:B.7.解:﹣64的立方根是﹣4,的平方根,即9的平方根为±3,﹣4+3=﹣1,﹣4+(﹣3)=﹣7,所以结果为﹣1或﹣7,故选:D.8.解:由题意得,该组数据中第3n个数是,第3n+1个数是﹣(3n+1),第3n+2个数是,∵2021÷3=673…2,∴第2021个数是,故选:A.二.填空题(共8小题,满分40分)9.解:因为(﹣)3=﹣,所以﹣的立方根是﹣,故答案为:﹣.10.解:∵=9,9的算术平方根是3,∴的算术平方根是3;=﹣2,3的平方根是±;的立方根是=.故答案为3;﹣2;±;.11.解:因为a的算术平方根为4,所以a=16;因为2b+4的立方根为2,所以2b+4=8,所以b=2,因为c是平方根等于本身的数,所以c=0;所以a=16,b=2,c=0.所以a+2b+c=16+2×2+0=20.故答案为:20.12.解:设正方体的棱长为a,∴正方体的体积为a3,∴正方体的体积扩大为原来的8倍后,体积为8a3,∴此时棱长为2a,即它的棱长扩大为原来的2倍,故答案为:2.13.解:∵a2=81,∴a=±9.∵=﹣2,∴b=﹣8.∵b﹣a≥0,∴a=﹣9,b=﹣8.∴==1.故答案为:1.14.解:∵+=0,∴=﹣∴=,∴x=﹣y,∴x+y=0,故答案为:x+y=0.15.解:∵=3,(±)2=3,∴的平方根是,∵=﹣,∴若,则x=﹣,∵63=216,∴=6,∴|x|=216,∴x=±216,故答案为:,﹣,±216.16.解:∵5x﹣2的立方根是﹣3,∴5x﹣2=﹣27,解得:x=﹣5,∴x+69=﹣5+69=64,∴x+69的算术平方根是8;故答案为:8.三.解答题(共6小题,满分40分)17.解:(1)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1;(2)12(2﹣x)2=243,(2﹣x)2=,2﹣x=±,x=或x=﹣.18.解:∵+=0,∴1﹣2x=﹣(3y﹣1),∴2x=3y,∴=.19.解:∵某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2.c算术平方根是其本身∴a+3+2a﹣15=0,b=﹣8,c=0或1,解得a=4.当a=4,b=﹣8,c=0,2a+b﹣3c=8﹣8﹣0=0;当a=4,b=﹣8,c=1,2a+b﹣3c=8﹣8﹣3=﹣3.20.解:∵x的两个不同的平方根分别是a+3和2a﹣15,∴a+3+2a﹣15=0,解之,得a=4,∴x=(a+3)2=49,∵=4,∴49+y﹣2=64,解之,得y=17,即x=49,y=17,∴x﹣2y+2=49﹣2×17+2=49﹣34+2=17.21.解:设正方体的棱长为xcm,根据题意得:x3=25×16×20,解得:x=20.则正方体的棱长为20cm.22.解:(1)=0.01;=0.1,=1,=10,=100,(2)①已知,则=14.42,=0.1442;②已知=0.07696,则=0.7696.故答案为:14.42,0.1442,0.7696.。

平方根与立方根的综合应用试题

平方根与立方根的综合应用试题

平方根与立方根的综合运用平方根和立方根的区别与联系:个数叫做例题1 的立方根是( ) A. -8B. -4C. -2D. 不存在解析:先根据算术平方根的定义求出,再根据立方根的定义进行计算。

答案:解:∵-=-8,∴-的立方根是-2。

故选C 。

点拨:本题考查了立方根的定义、算术平方根的定义,先化简-是解题的关键。

例题2 (高淳一模)在①2的平方根是;②2的平方根是±;③2的立方根是;④2的立方根是±中,正确的结论有几个( )A. 1个B. 2个C. 3个D. 4个解析:根据立方根、平方根的定义分别求出2的平方根与立方根,则可求得答案。

答案:解:∵2的平方根是±,2的立方根是,∴②③正确,①④错误;∴正确的结论有2个。

故选B。

点拨:此题主要考查了平方根与立方根的定义和性质。

注意熟记定义是解此题的关键。

满分训练判断下列各式是否正确成立。

(1)=2(2)=3•(3)=4(4)=5判断完以后,你有什么体会?你能否得到更一般的结论?若能,请写出你的一般结论。

解析:经过对上述式子的计算,可得出式子均正确,故可得出结论为=n。

答案:解:能。

由已知(1)=2(2)=3•(3)=4(4)=5经观察发现,上述的等式均满足这样的规律:=n,故推广后可得=n。

点拨:本题要求学生具有一定的观察能力和总结规律的能力。

1. 如果一个有理数的平方根和立方根相同,那么这个数是()A. ±1B. 0C. 1D. 0和12. 如果是数a的立方根,-是b的一个平方根,则a10×(-b)9等于()A. 2B. -2C. 1D. 13. 要使,则a 的取值范围是( )A. 4a ≥B. 4a ≤C. 4a =D. 任意数4. 下列说法:(1)1的平方根是1;(2)-1的平方根是-1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根。

其中正确的有( )A. 1个B. 2个C. 3个D. 4个5.(黄冈)下列说法中正确的是( )A.是一个无理数B. 函数的自变量x 的取值范围是x >1C. 8的立方根是±2D. 若点P (-2,a )和点Q (b ,-3)关于x 轴对称,则a +b 的值为5 6. 一个自然数a 的算术平方根为x ,则a +1的立方根是( ) A.B.C.D.7. 若一个数的平方根为±8,则这个数的立方根为____________。

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)

章节测试题1.【答题】的平方根是______.【答案】【分析】本题考查了平方根.【解答】=3,本题实际上就是求3的平方根.2.【答题】计算:.【答案】2【分析】如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.【解答】故答案为:3.【答题】的平方根是______.【答案】±3【分析】根据平方根的定义解答即可.【解答】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.4.【答题】______.【答案】4【分析】本题考查了算术平方根.【解答】∵42=16,∴16的算术平方根是4,即=4.故答案为:4.5.【答题】7的平方根是______.【答案】【分析】本题考查了平方根.【解答】∵,∴7的平方根是,故答案为:.6.【答题】化简:=______.【答案】3【分析】本题考查了平方根.【解答】=|-3|=-(-3)=3.故答案是:3.7.【题文】已知-(b-2)=0,求b a的值.【答案】【分析】由平方根的性质,把原式变形为,根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b的值.【解答】由,得,根据非负数的性质得1+a=0,2-b=0,解得a=-1,b=2,所以b a=2-1=8.【题文】已知一个正数的两个平方根分别为2a+5和3a-15.(1)求这个正数;(2)请估算30a的算术平方根在哪两个连续整数之间.【答案】(1)81(2)7和8之间【分析】本题考查了平方根与算术平方根.【解答】(1)由题意得2a+5+3a-15=0,解得a=2.故所求的正数是(2a+5)2=(2×2+5)2=81.(2)∵a=2,∴30a=60.∵49<60<64,∴,即.9.【题文】已知的算术平方根是3,的平方根是,是的整数部分,求的平方根.【答案】【分析】先根据算术平方根及平方根的定义得出关于的方程组,求出的值,再估算出的取值范围求出c的值,代入所求代数式进行计算即可.【解答】∵2a−1的算术平方根是3,3a+b−1的平方根是±4,∴解得∵9<13<16,∴,∴的整数部分是3,即c=3,∴原式.6的平方根是.10.【题文】若2a-5和a+8是一个正数的平方根,那么这个正数是多少?.【答案】这个正数为441或49【分析】直接利用平方根的定义分析得出答案.【解答】由题可知:①当2a-5=a+8时,解得:a=13,那么a+8=21,∴正数为441;②当2a-5+a+8=0时,解得:a=-1,那么a+8=7,∴正数为49.∴这个正数为441或49.11.【题文】若正数m的平方根是5a+1和a-19,求m的值及m的平方根.【答案】m=256,m的平方根是±16.【分析】根据数m的平方根是5a+1和a-19,可知5a+1和a-19互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.【解答】由题可得(5a+1)+(a-19)=0,解得a=3,则m=(5a+1)2=162=256,所以m的平方根是±16.12.【题文】求下列各式中的值:(1);(2)【答案】(1);(2)【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】(1)方程整理得:x2=4,开方得:x=±2;(2)方程整理得:(x-3)3=,开立方得:x-3=,解得:x=.13.【题文】(1)计算|-5|+-32+.(2)求的值:【答案】(1)-1(2)±2【分析】(1)理解绝对值,算术平方根,乘方,立方根的意义;(2)把常数项移到方程的右边,用平方根的意义求解.【解答】解:(1)原式=5+4-9-1=-1;(2)4x2=16,所以x²=4,所以x=±2.14.【题文】已知,的平分根是,是的整数部分,求:(1)求的值;(2)的平方根.【答案】(1)a=5,b=2,c=7(2)【分析】(1)先根据算术平方根及平方根的定义得出关于a、b的方程,求出a、b的值,再估算出的取值范围求出c的值即可;(2)把(1)中的a、b、c的值代入进行计算即可得.【解答】(1)∵,的平分根是,∴2a-1=32,3a+b-1=(±4)2,∴a=5,b=2,∵7<<8,是的整数部分,∴c=7;(2)∵a=5,b=2,c=7,∴a+2b+c=16,16的平方根是±4,即的平方根是±4.15.【题文】先阅读下列材料,再回答相应的问题若与同时成立,则x的值应是多少?有下面的解题过程:由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,所以.问题:已知,求的值.【答案】【分析】根据阅读的解题过程,可类比求解即可求出x、y的值,代入求解即可.【解答】由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,,所以,y=2,代入即可得==.16.【题文】若正数M的两个平方根是和,试求和M的值.【答案】a=2,M=9【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,可列方程求解.【解答】因为正数M的两个平方根是和所以3a-3+2a-7=0解得a=2所以M=(3a-3)2=32=9.17.【题文】求的值,.【答案】x=0或x=-4【分析】根据平方根的意义,先两边同除以4,再直接开平方即可.【解答】(x+2)2=4x+2=±2解得x=0或x=4.18.【题文】(1)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根;(2)若2a-4与3a+1是同一个正数的平方根,求a的值.【答案】(1)±3;(2)a=1【分析】(1)利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a与b 的值,确定出的值,即可确定出平方根.(2)与是同一个正数的平方根,即可求出的值.【解答】(1)由题意得2a−1=9,3a+b−1=16,解得:a=5,b=2,则a+2b=9,则9的平方根为3或−3;(2)∵与是同一个正数的平方根,19.【题文】求x的值:4(x+1)2=64【答案】x=3或x=-5.【分析】直接开方法即可求出的值.【解答】或或20.【题文】计算下列各题:(1)(2)【答案】(1)-12;(2)-8【分析】(1)注意运算的顺序,先算乘除,后算加减;(2)注意-32与(-3)2的区别,-32=-9,(-3)2=9;负数得绝对值等于它的相反数,即;表示16的算术平方根,即.【解答】(1)原式=-10-2=-12(2)原式=-9+5-4=-8。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

七年级数学下册第6章实数平方根和立方根复习测试题

七年级数学下册第6章实数平方根和立方根复习测试题

3 a 七年级下册第 6 章实数( 6.1 平方根和 6.2 立方根复习测试题)第一部分知识点填空并加强背诵一、算术平方根一般地,如果的等于a,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为读作“根号a”,a 叫做.规定:0 的算术平方根是0. 也就是,在等式x 2 =a (x≥0)中,规定x = a 。

理解:x 2 =a (x≥0)<—> xa 是x 的平方x 的平方是a x 是a 的算术平方根 a 的算术平方根是x二、平方根1.平方根的定义:如果的平方等于a,那么这个数x 就叫做a 的.即:如果,那么x 叫做a的.理解:x 2 =a <—> x =a 是x 的平方x 的平方是a x 是a 的平方根 a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。

3.平方与开平方:±3 的平方等于9,9 的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数 a 的正的平方根可用表示,也是 a 的算术平方根;正数 a 的负的平方根可用 -表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。

2.一个数a 的立方根,记作,读作:“三次根号a ”,其中a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。

理解:x3 =a <—>a 是x 的立方x 的立方是a x 是a 的立方根 a 的立方根是x3.一个正数有一个正的立方根;0 有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)

初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)

章节测试题1.【题文】求下列各数的立方根:(1);(2)-10-6;【答案】(1)(2)-10-2【分析】(1)直接利用立方根的定义求出即可;(2)直接利用立方根的定义求出即可.【解答】(1),∵,所以的立方根是;(2)∵,所以的立方根是.2.【题文】求下列各数的立方根:(1)-125;(2)0.027;(3)(53)2.【答案】(1)-5;(2)0.3;(3)25【分析】根据立方根的意义,如果一个数x的立方等于a,即x的三次方等于a (x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根.【解答】(1)∵(-5)3=-125∴-125的立方根为-5;(2)∵0.33=0.027∴0.027的立方根为0.3(3)∵(53)2=(52)3∴(53)2立方根为52=25.3.【题文】请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.【答案】(1)魔方的棱长6cm;(2)长方体纸盒的长为10cm.【分析】(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.【解答】(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6,答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,6y2=600,y2=100,y=10,答:该长方体纸盒的长为10cm.4.【题文】如果一个正数x的两个平方根分别为a+1和a-5.(1)求a和x的值;(2)求7x+1的立方根.【答案】(1)x=9(2)【分析】(1)根据一个正数的两个平方根互为相反数,得出以为未知数的方程,求解即可求出的值,结合可求出的值;(2)先求出的值,再根据立方根的定义求解即可.【解答】(1)由题意,得解得所以因为的平方根是,所以(2)因为所以的立方根为5.【题文】已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4cm.【分析】一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程,解方程即可求解.【解答】设截去的每个小正方体的棱长是xcm,则由题意得,解得x=4.答:截去的每个小正方体的棱长是4厘米.6.【题文】已知x-2的平方根是±2,2x+y+7的立方根是3,求的平方根.【答案】±10【分析】先运用立方根和平方根的定义求出x与y的值,再求出的平方根.【解答】∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=4,2x+y+7=27,解得x=6,y=8,∴==100,∴的平方根是±10.7.【题文】计算:(1)(2)36(x-3)2-25=0(3)(x+5)3=-27.【答案】(1)0;(2)x1=,x2=;(3)x=-8.【分析】(1)首先化简各数,进而计算得出答案;(2)直接利用平方根的定义得出答案;(3)直接利用立方根的定义得出答案.【解答】(1)原式=2+2+=0;(2)36(x-3)2-25=0则(x-3)2=,故x-3=±,解得:x1=,x2=;(3)(x+5)3=-27x+5=-3,解得:x=-8.8.【题文】(1)求x的值:(1-x)3=-27;(2)计算:【答案】(1)x=4;(2)4【分析】(1)利用乘方概念解方程.(2)利用开平方,开立方计算.【解答】(1)(1-x)3=-27,1-x=3,x=4.(2)=2+1+1=4.9.【题文】若(2a-4)2和互为相反数,求a b的平方根与立方根.【答案】平方根是±2,立方根是2.【分析】根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b 的值.【解答】∵(2a-4)2和互为相反数,∴(2a-4)2+=0,∴2a-4=0,b-3=0,解得a=2,b=3,所以a b=23=8,∴a b的平方根是±2,立方根是2.10.【题文】已知第一个正方体玩具的棱长是6cm,第二个正方体玩具的体积要比第一个玩具的体积大127cm,试求第二个正方体玩具的棱长.【答案】第二个正方形玩具的棱长为7cm【分析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm3第二个正方体的棱长为:=7cm.11.【题文】已知3a+b-1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.【答案】±2【分析】根据立方根与算术平方根的定义得到3a+b-1=27,2a+1=25,则可计算出a=12,b=-8,然后计算a+b后利用平方根的定义求解.【解答】根据题意得3a+b-1=27,2a+1=25,解得a=12,b=-8,所以a+b=12-8=4,而4的平方根为±=±2,所以a+b的平方根为±2.12.【题文】已知2a-1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【答案】±4【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b+9=27,然后解方程求出a、b的值即可.【解答】解:由已知得,2a-1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±413.【题文】已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)3a-b+c的平方根是±4.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2.∵c是的整数部分,∴c=3;(2)当a=5,b=2,c=3时,3a-b+c=16,3a-b+c的平方根是±4.14.【题文】计算:(1)(2)【答案】(1)8;(2)【分析】(1)根据算术平方根和立方根的定义解答即可;(2)根据绝对值的意义和平方根的性质化简计算即可.【解答】(1)原式=10-2=8;(2)原式.15.【题文】计算:().().【答案】(1)–2;(2)【分析】此题涉及平方根、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】()原式.()原式.16.【题文】(1);(2).【答案】(1)-3;(2)3.【分析】(1)直接利用算术平方根定义分析得出答案;(2)直接利用立方根的性质化简得出答案.【解答】(1)=2+5-10=-3;(2)==3.17.【题文】已知3a-2的平方根是±5,4a-2b-8的算术平方根是4,求a+3b的立方根.【答案】3【分析】根据题意可以求得a、b的值,再求a+3b的立方根即可.【解答】∵3a-2的平方根是±5,∴3a-2=25,解得a=9.∵4a-2b-8的算术平方根是4,∴36-2b-8=16,解得b=6,∴a+3b=9+3×6=27.∴a+3b的立方根为3.18.【题文】已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.【答案】2【分析】根据平方根与算术平方根的定义得到3a-b-2=16,2a-1=9,则可计算出a=5,b=1,然后计算a+b后利用立方根的定义求解.【解答】∵2a-1的平方根是±3∴a=5∵3a-b+2的算术平方根是4,a=5∴b=1∴a+3b=8∴a+3b的立方根是219.【题文】计算:(1);(2).【答案】0.3,【分析】本题考查了立方根.【解答】(1).(2).20.【题文】若与(6-27)2互为相反数,求的立方根.【答案】【分析】本题考查了平方根和立方根.【解答】根据题意,得:a+8=0,b-27=0,解得:a=-8,b=27,所以.。

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1.(安徽四十二中中铁国际城校区初一期中)计算16的平方根为()A.4±B.2±C.4 D.2±练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A.12±B.12-C.12D.116练习1.(六安市裕安中学初一期中)16的算术平方根是_____.练习2.(·北京初二期中)16的算术平方根是。

例3.(·安徽初一期中)81的平方根是_________;364的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3x a=,那么x叫做a的立方根.记作:.2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是()A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( ) A .8的立方根是2 B .﹣8的立方根是﹣2 C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)8-的立方根是__________.例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1) 求a ,b ,c 的值;(2)求3a b c -+的平方根.练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,a≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为()A.4±B.2±C.4 D.B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.3B.81C.3±D.81±C解:9的平方根是3±.故选:C.例2.(2017·阜阳市第九中学初一期中)14的算术平方根是( )A .12± B .12-C .12D .116C本题解析: ∵211()24=, ∴14的算术平方根为12+,故选C.练习1 _____. 2,4的算术平方根是2,2.练习2.(·北京初二期中)16的算术平方根是 。

人教版七年级数学下册核心考点专题题型归纳04 平方根、立方根以及实数 (原卷版)

人教版七年级数学下册核心考点专题题型归纳04 平方根、立方根以及实数 (原卷版)

专题04 平方根、立方根以及实数【思维导图】◎考点题型1 求一个数的算术平方根例.(江苏·南师附中树人学校八年级期末)10的算术平方根是()A.10B C.D.10变式1.(江苏·扬州市江都区实验初级中学八年级阶段练习)下列说法正确的是() A.5-是25的平方根B.4±是16的算术平方根C.2是-4的算术平方根D.1的平方根是它本身)变式2.(江苏·A.3B.9±C.9-D.9变式3.(海南鑫源高级中学八年级期中)下列各数中,没有算术平方根的是( ) A .0.1 B .9 C .3(1)- D .0◎考点题型2 利用算术平方根的非负性解题例.(福建泉港·八年级期末)若实数x ,y 满足30x -=.则以x ,y 的值为两边长的等腰三角形的周长是( )A .9B .12C .15D .12或15变式1.(广东·40b -=,那么a b -=( )A .1B .-1C .-3D .-5变式2.(江苏兴化·八年级期中)已知实数x ,y 满足30x -,则以x ,y 的值为两边长的等腰三角形的周长为( )A .12B .15C .18D .12或15变式3.(云南·普洱市思茅区第四中学七年级期中)若1x -互为相反数,则xy 的值为( )A .6-B .5-C .5D .6◎考点题型3 估计算术平方根的取值范围例.(福建· )A .在1~2之间B .在2~3之间C .在3~4之间D .在4~5之间变式1.(安徽包河·最接近的整数是( )A .3B .4C .5D .7变式2.(重庆巴蜀中学一模)估计2的值应在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间变式3的运算结果应在哪两个连续自然数之间( ) A .1和2 B .2和3 C .3和4 D .4和5◎考点题型4 求算术平方根的整数部分和小数部分 2geti例.(北京朝阳·七年级期末)将边长分别1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长最接近整数( )A .4B .3C .1D .0变式.(北京·中考真题)已知2222431849,441936,452025,462116====.若n 为整数且1n n <<+,则n 的值为( )A .43B .44C .45D .46◎考点题型5 平方根的概念理解例.(山东·枣庄市台儿庄区教育局教研室八年级期中)下列说法错误的是( )A .1的平方根是±1B .1-的立方根是1-C .2的平方根D .3-变式1.(海南海口·八年级期中)下列说法正确的是( )A ±5B .﹣42的平方根是±4C .64的立方根是±4D )2=2变式2.(湖南·衡阳市华新实验中学八年级期中) 下列说法不正确的是( )A .3-是9的一个平方根B 8的立方根C .36的平方根是6±D .16的平方根是4变式3.(海南华侨中学八年级期中)下列说法中,其中不正确的是( )A .4的算术平方根是2B .2的一个平方根C .()21-的立方根是 1 D◎考点题型6 求一个数的平方根例.(江苏省无锡市经开区2021-2022学年八年级上学期期末数学试题)下列各式中,正确的是( )A .4± B 3=± C 3= D 4=-变式1.(广东大埔·八年级期末)9的平方根是( )A .3B .3±C .3-D .2±变式2.(四川巴中·八年级期末)下列说法正确的是( )A .1的平方根是1B .(﹣4)2的算术平方根是4C±3 D 是最简二次根式变式3(重庆万州·八年级期末)下列等式正确的是( ).A 8=±B .8=C .8±D 4=±◎考点题型7 求代数式的平方根例.(2019·浙江杭州·九年级)已知()24a -,则-a b 的平方根是( )A B C .D .变式1.(2019·河南兰考·八年级阶段练习)在实数范围内,|100|0b -=,则a 与b 的积的算术平方根是( )A .0B .10C .10-D .10±变式2.(2020·贵州·贵阳市白云区第九中学八年级阶段练习)若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A .2B .4C .±2D .±4变式3.(2019·河南·南阳市第三中学八年级阶段练习)若3m =,代数式3m ( ) A .7 B .11 C .7- D .9±◎考点题型8 已知一个数的平方根,求这个数例.(全国·八年级)已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .2变式1.(江苏·江阴市璜塘中学八年级阶段练习)如果一个正数a 的两个不同平方根是2x -2和6-3x ,则这个正数a 的值为( )A .4B .6C .12D .36变式2.(全国·八年级课时练习)若21x +和7x -是一个正数的平方根,则这个正数为( ) A .25 B .225 C .25或225 D .25±变式3.(湖南·长沙市北雅中学七年级阶段练习)一个正数的两个平方根分别是21a -与2a -+,则这个正数是( )A .1-B .3C .9D .3-◎考点题型9 利用平方根解方程例.(四川绵阳·七年级期末)已知2(23)4x -=,则x 的所有取值的和为( )A .0B .2C .52D .3变式1.(安徽无为·七年级期中)物体自由下落时,下落距离h (单位:米)可用公式25h t =来估算,其中t (t >0单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,落入谷底前不与其他物体接触,则该篮球掉落到谷底需要的时间为( )A .2秒B .4秒C .16秒D .20秒变式2.(辽宁连山·九年级期末)方程x 2-9=0的解是( )A .x 1=3,x 2=-3B .x =0C .x 1=x 2=3D .x 1=x 2=-3变式3.(全国·九年级单元测试)若2(22)x +=,则x 的值是( )A4 B 2 C 2+2 D 2或2◎考点题型10 立方根的概念理解例.(重庆实验外国语学校七年级期末)下列运算中,正确的是( )A 2=B 2=-C .33=D 3=变式1.(贵州六盘水·八年级阶段练习)平方根和立方根都等于它本身的数是( ) A .±1 B .1 C .0 D .﹣1变式2.(浙江·九年级专题练习)下列各式中,错误的是( )A .B .(a ﹣b )2=(b ﹣a )2C .|﹣a |=aD .2a =变式3.(云南·昆明市实验中学七年级期中)下列计算正确的是( )A 2-B 3±C 3=-D .5=◎考点题型11 求一个数的立方根例.(福建洛江·八年级期末)−8 的立方根是( )A .−2B .2C .±D .64变式1.(广西港口·七年级期中)下列语句正确的是( )A .8的立方根是2B .﹣3是27的立方根C .125216的立方根是±56 D .(﹣1)2的立方根是﹣1变式2.(辽宁凌海·x ,27-的立方根是y ,则2x y -的值为( )A .7B .11C .1-或7D .11或5-变式3.(山东·( )A .28.72B .0.2872C .13.33D .0.1333◎考点题型12 已知一个数的立方根,求这个数例.(江西新余· 2.938 6.329=,=( ) A .632.9 B .293.8 C .2938 D .6329变式1.(河北· 6.882≈,68.82,则x 的值约为( )A .326000B .32600C .3.26D .0.326变式2.(甘肃·平川区四中七年级期中)已知x =6,y 3=-8,且0x y +<,则xy =( ) A .-8 B .-4 C .12 D .-12变式3.(2019·广东·佛山市南海区大沥镇许海初级中学八年级阶段练习)a+3的算术平方根是3,b-2的立方根是2, )A B .C .±6 D .6◎考点题型13 算术平方根和立方根的综合应用例.(山东薛城·八年级期中)已知x 为实数,=0,则x 2+x ﹣3的算术平方根为( )A .3B .2C .3和﹣3D .2和﹣2变式1.(2020·甘肃·武威第九中学七年级期中)若a,b ,则a+b 的值是( )A .4B .4或0C .6或2D .6变式2.(2020·河北·3270b -=,那么6()a b +的立方根是( )A .-1B .1C .3D .7变式3.(广东·连南瑶族自治县教师发展中心八年级期中)实数a ,b 在数轴上对应的点的位置如图||a b +化简的结果( )A .2a b +B .bC .2a b -D .3b◎考点题型14 无理数的概念理解例.(广东揭东·,2272π中无理数有( ) A .4个 B .3个 C .2个 D .1个变式1.(河南·郑州市第三中学八年级期末)下列各数:(每相邻两个3之间依次多一个1),2π,13无理数有( ) A .1个 B .2个C .3个D .4个 变式2.(湖南·株洲市天元区雷打石学校八年级期末)下列各数是无理数的是( )AB C .π D .227变式3.(江苏江都·2,72π-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个◎考点题型15 实数的概念理解例.(全国·七年级课时练习)下列命题:①无理数都是实数;②实数都是无理数;③无限小数都是无理数:④带根号的数都是无理数;⑤不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4变式1.(福建·厦门双十中学八年级阶段练习)已知实数,m n 满足20n -=,则m n +的值为( )A .2B .1-C .1D .3变式2.(浙江·九年级专题练习)下列说法其中错误的个数( )①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③16的平方根是4±,用式子表示4=±;④负数没有立方根;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0. A .0 B .1 C .2 D .3变式3.(全国·七年级期末)下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根◎考点题型16 实数的分类例.(甘肃兰州·八年级期中)下列说法不正确的是( )A .有理数和无理数统称为实数B .实数是由正实数和负实数组成C .无限循环小数是有理数D .实数和数轴上的点一一对应变式1.(湖南·衡阳市华新实验中学八年级期中) 下列说法正确的是( )A .定理是真命题B .真命题是定理C .实数包括正实数和负实数D .无理数是实际不存在的数变式2.(广东普宁·八年级期中)下面说法中,正确的是( )A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和0变式3.(山东牡丹·八年级阶段练习)下列说法正确的是( ).A .实数分为正实数和负实数B .无理数与数轴上的点一一对应C .2-是4的平方根D .两个无理数的和一定是无理数◎考点题型17 实数的性质例.(江苏江阴·1的相反数是( )A .1+B .1C .1-+D .1-变式1.(2020·浙江省开化县第三初级中学七年级期中)下列说法正确的是( ) A .绝对值等于它本身的数一定是正数B .一个数的相反数一定比它本身小C .负数没有立方根D .实数与数轴上的点一一对应变式2.(2020·全国·八年级单元测试)化简3|的结果正确的是( )A 3B .3C 3D .3变式3.(全国·七年级单元测试)下列各组数中互为相反数的一组是( )A .2与12B .|2|-C .-2D .2◎考点题型18 实数与数轴例.(浙江海曙·七年级期末)如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )A B .1 C D 2变式1.(重庆市实验学校八年级期中)如图,点C 所表示的数是( )A B C .1D 变式2.(北京·八年级期中)如图,数轴上的点A 表示的数是1-,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A.2.8 B .C .1 D .1变式3.(上海市罗南中学七年级期中)如图,数轴上点A 表示的数可能是( )A B C D◎考点题型19 实数的大小比较例.(重庆·忠县花桥镇初级中学校九年级期中)在实数4-,0,3-,2-中,最小的数是( ) A .4- B .0 C .3- D .2-变式1.(浙江北仑·223,0,7--中,最小的是( )A B .3- C .0 D .227-变式2.(河南郑州·九年级期末)在实数|﹣3.14|,﹣3,﹣π中,最小的数是( )A B.﹣3C.|﹣3.14|D.﹣π变式3.(广东阳山·八年级期末)在﹣3,0,2,,最小的数是()A.B.﹣3C.0D.2◎考点题型20 程序设计与实数运算例.(山东张店·二模)在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A.点A B.点B C.点C D.点D变式1.(全国·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.2C D.变式2.(全国·七年级期中)按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B.C.3D.±3变式3(2020·福建惠安·八年级期中)有一个数值转换器,流程如下:当输入的x为256时,输出的y是()AB.CD◎考点题型21 新定义下的实数运算例.(河南南召·九年级期末)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n -mn -3n ,如:1※2=12×2-1×2-3×2=-6.则(-2))A.B.-C.D.变式1.(广西·南宁二中七年级期末)规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是( ).A .10- B .6- C .6 D .8变式2.(北京市第六十六中学七年级期中)a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为( ) A .1- B .7 C .7- D .1变式3.(贵州六盘水·九年级期中)对于任意实数a ,b ,定义一种新运算“☆”如下:22()()a b a a b a b ab b a b ⎧+≥=⎨+<⎩☆,若236m =☆,则实数m 等于( ) A .8.5 B .4 C .4或 4.5- D .4或 4.5-或8.5◎考点题型22 与实数运算的规律题例.(辽宁·阜新市第一中学七年级期中)如图五个正方形中各有四个数,各正方形中的四个数之间都有相同的规律,根据此规律,可推测出m 的值为( )A .0B .1C .4D .8变式1.(福建·厦门市集美区乐安中学八年级阶段练习)如图是一个按某种规律排列的数阵,根据数阵排列的规律,第2021行从左向右数第2020个数是( )A .2020B .2021 CD变式2.(湖南·雨花外国语学校八年级开学考试)观察下列运算(x ﹣1)(x +1)=x 2﹣1(x ﹣1)(x 2+x +1)=x 3﹣1(x ﹣1)(x 3+x 2+x +1)=x 4﹣1我们发现规律:(x ﹣1)(xn ﹣1+xn ﹣2+…+x 2+x +1)=xn ﹣1(n 为正整数):利用这个公式计算:32021+32020+…+33+32+3=( )A .32022﹣1B .2022312-C .2022312+D .2022332- 变式3.(辽宁连山·七年级期中)如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .216B .147C .130D .442。

6.2 立方根100题(含解析)

6.2 立方根100题(含解析)

绝密★启用前一、单选题1)A.2 B.﹣2 C.D.±2【答案】C【解析】【分析】利用立方根定义计算即可求出值.【详解】=2,2的平方根是.故选C.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解答本题的关键.2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是()A.①②③B.①②④C.②③④D.①③④【答案】B【解析】【分析】根据立方根的定义和性质解答即可.【详解】解:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.【点睛】本题考查立方根,熟练掌握立方根的定义和性质是解题的关键.3.立方根等于它本身的有( )A.0,1 B.-1,0,1 C.0, D.1【答案】B【分析】根据立方根性质可知,立方根等于它本身的实数0、1或-1. 【详解】解:∵立方根等于它本身的实数0、1或-1. 故选B . 【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.有理数-8的立方根为( ) A .-2 B .2C .±2D .±4【答案】A 【分析】利用立方根定义计算即可得到结果. 【详解】解:有理数-8 故选A . 【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.比较2 )A .2<<B .2<<C .2<D 2<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小. 【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<< 故选C . 【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键. 6.下列计算正确的是( )A .3=-B =C 6±D .【答案】D 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【详解】解:3=,故此选项错误;=6=,故此选项错误;D.0.6=-,正确. 故选D . 【点睛】此题主要考查了平方根和算术平方根的性质以及立方根的性质,正确掌握相关性质是解题关键.7的结果是 ( )A .±B .C .±3D .3【答案】D 【解析】∵33=27,3=.故选D . 8.64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A考点:立方根.9.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C .有意义时,0x ≤D .0.1的平方根是0.01±【答案】C 【详解】>0,故A 不正确; 根据一个数的平方为非负数,可知a≥0,故不正确; 根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确; 根据一个数的平方等于a ,那么这个数就是a 的平方根,故不正确. 故选C10.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9【答案】B 【分析】的近似值即可作出判断. 【详解】2.646≈,∴最接近的是2.6, 故选B . 【点睛】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.11.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间D .7 cm ~8 cm 之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.12.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【答案】B【详解】解:-1的绝对值是1,2 的倒数是12,-2的相反数是2,1的立方根是1,-1和7的平均数是3,错一个,减去20分,得分是80,故选:B【点睛】本题考查绝对值,倒数,相反数,立方根,平均数.13.下列结论正确的是( )A.64的立方根是4±B.18-没有立方根C.立方根等于本身的的数是0 D=【答案】D【解析】选项A,64的立方根是±4;选项B,18-的立方根是12-;选项C,立方根等于本身的的数是0和±1;选项D,正确,故选D.14.下列说法正确的是()A.-64的立方根是4 B.9的平方根是±3C.4的算术平方根是16 D.0.1的立方根是0.001【答案】B【解析】【分析】依据立方根、平方根和算术平方根的性质求解即可.【详解】A.−64的立方根是−4,故A错误;B.9的平方根是±3,故B正确;C.4的算术平方根是2,故C错误;D.0.1是0.001的立方根,故D错误.故选B.【点睛】考查平方根,算术平方根以及立方根,掌握它们的概念是解题的关键.15.的值是()A.1 B.﹣1 C.3 D.﹣3【答案】B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B . 【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,16=0.1738 1.738,则a 的值为( ) A .0.528 B .0.0528 C .0.00528 D .0.000528【答案】C 【分析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案 【详解】0.528= 1.738= , ∴a=0.00528, 故选C. 【点睛】此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.17.下列语句:① 4 ② 2± ③ 平方根等于本身的数是0和1 ④ )个A .1B .2C .3D .4【答案】A 【解析】试题分析:①4=,的算术平方根为2,故错误;B 2==,故错误;③、平方根等于本身的数只有0,故错误;④22==,=故正确,则本题选A .18.下列计算正确的是( )A ±3B 2C 3D =【答案】B 【分析】根据算术平方根与立方根的定义即可求出答案. 【详解】解:(A )原式=3,故A 错误; (B )原式=﹣2,故B 正确;(C3,故C错误;(D D错误;故选B.【点睛】本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键. 19.下列各组数中互为相反数的是()A.-2B.-2C.2与()2D.|【答案】A【解析】选项A. -2=2,选项B. -2=-2,选项C. 2与(2=2,选项,故选A.20.(2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7【答案】D【分析】利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.【详解】∵(2=9,9的平方根x=±3,y=4,∴x+y=7或1.故答案为7或1.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.21.下列说法正确的是( )A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D .负数没有立方根 【答案】B 【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或±1 ; C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.22.下列说法中,不正确的是( )A .10B .2-是4的一个平方根C .49的平方根是23D .0.01的算术平方根是0.1 【答案】C 【分析】根据立方根,平方根和算术平方根的定义,即可解答. 【详解】解:A. 10,正确; B. -2是4的一个平方根,正确; C.49的平方根是±23,故错误; D. 0.01的算术平方根是0.1,正确. 故选C . 【点睛】本题考查了平方根和算术平方根,立方根,解决本题的关键是熟记立方根,平方根和算术平方根的定义.23.下列各式正确的是( )A .0.6=±B 3=±C 3=D 2=-【答案】A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 24.下列计算中,错误的是( )A .B 34=-C 112=D .25=- 【答案】D 【解析】试题解析:A.正确. B.正确. C.正确.D.22.55⎛⎫=--= ⎪⎝⎭ 故错误. 故选D.25.若一个数的平方根是±8,那么这个数的立方根是( ) A .2 B .±4 C .4 D .±2【答案】C 【解析】 【分析】根据平方根定义,先求这个数,再求这个数的立方根. 【详解】若一个数的平方根是±8,那么这个数是82=64,4=. 故选:C 【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义. 26.下列各组数中互为相反数的一组是( )A .2--B .-4与C .与D .【答案】C 【解析】 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【详解】A、-|-2|=-2,故A错误;B、-4=B错误;C、C正确;D、不是相反数,故D错误;故选C.【点睛】本题考查了相反数,利用了相反数的意义.27.()A.2 B.-2 C.±2 D.不存在【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】∵-2的立方等于-8,∴-8的立方根等于-2,=-.2=--=.∴(2)2故选A.【点睛】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.28,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y . 29.下列说法正确的是( )A .4的平方根是±2B .8的立方根是±2C 2=±D 2=-【答案】A 【解析】解:A .4的平方根是±2,故本选项正确; B .8的立方根是2,故本选项错误;C =2,故本选项错误;D =2,故本选项错误; 故选A .点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.30.下列等式正确的是( )A .712=± B .32=-C .3=-D .4=【答案】D 【分析】原式各项利用立方根及算术平方根定义计算即可得到结果. 【详解】A 、原式=712,错误; B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D、原式=4,正确,故选D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.31的立方根是( )A.-1 B.0 C.1 D.±1【答案】C【解析】【详解】,=1,故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.32.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;5=-⑤一定是负数A.1个B.2个C.3个D.4个【答案】B【分析】根据平方根、立方根的定义进行判断即可得.【详解】①负数没有平方根,但负数有立方根,正确;②一个数的立方根等于它本身,则这个数是0或1或-1,故错误;=,故错误;5,3的平方根是⑤当a=0时,,故错误;综上,正确的有2个,故选B.【点睛】本题考查了平方根、立方根的定义,熟练掌握相关的定义是解题的关键.33)A.2 B.±2 C D.【答案】C【分析】的值,再继续求所求数的算术平方根即可.【详解】,而2,故选C.【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.34)A.±2 B.±4 C.4 D.2【答案】D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.35.若a是(﹣3)2( )A.﹣3 B C D.3或﹣3【答案】C【解析】分析:由于a是(﹣3)2的平方根,则根据平方根的定义即可求得a的值,进而求得代数式的值.详解:∵a是(﹣3)2的平方根,∴a=±3,C.点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.36.8的相反数的立方根是()A.2 B.12C.﹣2 D.12【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.37时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10-1)C.D-1【答案】B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”1. 为了使该结果的整数部分不为零,再将该结果的101. 这样,位于原来显示的结果左端的数字消失小数点向右移动一位,即计算)了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.101的值.根据以上分析,为了满足要求,应该在这个计算器中计算)故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.38的立方根是()A.2 B. 2 C.8 D.-8【答案】A【解析】=8,然后根据立方根的意义,求得其立方根为2. 故选A.39的值约为( )A.3.049 B.3.050C.3.051 D.3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B.40.下列命题中正确的是()(1)0.027的立方根是0.3;(2(3)如果a是b的立方根,那么ab≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A .(1)(3)B .(2)(4)C .(1)(4)D .(3)(4)【答案】A 【解析】根据立方根的概念和性质,可知0.027的立方根为0.3,故(1)正确;根据一个负数的立方根为负数,故(2)不正确;如果a 是b 的立方根,那么ab≥0(a 、b 同号),故(3)正确;一个数的平方根与其立方根相同,则这个数是0,故(4)错误. 故选:A.点睛:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.(a 不等于0)如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根,我们把正的平方根叫a 的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根. 41.下列计算正确的是( ) A.﹣4 B4C﹣4D﹣4【答案】D 【解析】试题分析:根据二次根式的意义,可知被开方数为非负数,因此A 不正确;根据算术平方根是平方根中带正号的,故B{0aa a ==-(0)(0)(0)a a a =><,故C ,故D 正确. 故选D二、解答题42.已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根. 【答案】4【解析】试题分析:根据正数的平方根有两个,且互为相反数,得出a-3+2a+15=0,求出a,再根据b的立方根是-2,求出b,再求-2a-b的算术平方根.解:由题意得a-3+2a+15=0,解得a=-4,由b的立方根是-2,得b=(-2)3=-8.则-2a-b=-2×(-4)-(-8)=16,则-2a-b的算术平方根是4.43.计算下列各题:(1(2.【答案】(1)1 (2)11 4 -【解析】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -44.已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c 的平方根.【答案】±4.【解析】【分析】根据题意分别求得a,b,c的值,然后代入式子求解即可.【详解】解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c ﹣3的平方根是±2, ∴c ﹣3=4,即c=7; ∴a+b+c=0+9+7=16, 则a+b+c 的平方根是±4. 【点睛】本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键. 45.求出下列x 的值: (1)4x 2﹣81=0; (2)8(x+1)3=27.【答案】(1)92x =±.(2)12x =【分析】(1)先整理成x 2=a ,直接开平方法解方程即可; (2)先整理成x 3=a 的形式,再直接开立方解方程即可. 【详解】解:(1)24x 810-=,∴2814x =, 9x 2∴=±;(2)()38x 127+=, ∴327(1)8x +=, ∴312x +=, ∴12x =【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.46.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.【解析】 【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根. 【详解】∵x ﹣2的一个平方根是﹣2,∴x ﹣2=4,解得:x =6. ∵2x +y ﹣1的立方根是3,∴2x +y ﹣1=27.∵x =6,∴y =16,∴x +y =22,∴x +y .即x +y 【点睛】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.47.已知某正数的平方根是2a ﹣7和a+4,b ﹣12的立方根为﹣2. (1)求a 、b 的值; (2)求a+b 的平方根.【答案】(1)1a =,4b =;(2)【解析】试题分析:利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据平方根的定义求出+a b 的平方根.试题解析:(1)由题意得,2a −7+a +4=0, 解得:a =1, b −12=−8, 解得:b =4; (2)a +b =5,a +b 的平方根为48.已知x 的两个不同的平方根分别是a +3和2a -15,且 4=,求x ,y的值.【答案】x=49,y=17 【解析】试题分析:根据平方根的性质,一个正数平方根有两个,它们互为相反数,因此可列方程求出a 的值,然后根据立方根的意义,求出y 的值. 试题解析:∵x 的两个不同的平方根分别是a +3和2a -15 ∴a +3+2a -15=0解之,得a =4∴x =(a +3)2=494=∴49+y -2=64解之,得y =1749.已知 2x-y 的平方根为 ±3, -2是 y 的立方根,求 -4xy 的平方根.【答案】±4 【解析】试题分析:首先根据平方根和立方根的性质列出关于x 和y 的二元一次方程组,从而得出x 和y 的值,然后求出-4xy 的平方根.试题解析:根据题意得:298x y y -=⎧⎨=-⎩ , 解得:128x y ⎧=⎪⎨⎪=-⎩, 则-4xy=16 ,∴4==±.点睛:本题主要考查的是平方根和立方根的性质,属于简答题型.正数的平方根有两个,他们互为相反数;零的平方根为零;负数没有平方根;每个数的立方根只有一个,正数有一个正的立方根,负数有一个负的立方根.立方根等于本身的数有0和±1;平方根等于本身的数只有0;算术平方根等于本身的数为0和1.50.计算:201811--【答案】【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式15123=-++-=.点睛:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.51.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是252.已知m M =是m 3+的算术平方根,2m 4n N -=n 2-的立方根,求:M N -的值的平方根.【答案】2【详解】解:因为m M =是m+3的算术平方根,2m 4n N -=n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.53.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【答案】(1)魔方的棱长6cm ;(2)长方体纸盒的长为10cm .【解析】试题分析:(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.试题解析:(1)设魔方的棱长为xcm ,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .54.解方程:()2116(2)9x -= ()3227(1)640x +-=.【答案】()11114x =,254x =,()123x =. 【解析】分析:(1)根据平方根的定义进行计算即可;(2)根据立方根的定义进行计算即可.详解:(1)(x ﹣2)2=916,x ﹣2=±34,x =±34+2,x 1=114,x 2=54; (2)(x +1)3=6427 x +1=43 x =43﹣1=13. 点睛:本题考查了立方根和平方根,掌握平方根和立方根的定义是解题的关键.55.已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4 cm.【解析】试题分析:于个正方体的体积是1000cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm 3,设截得的每个小正方体的棱长xcm ,根据已知条件可以列出方程,解方程即可求解.试题解析:设截去的每个小正方体的棱长是xcm ,则由题意得310008488x -=,解得x =4.答:截去的每个小正方体的棱长是4厘米.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.56.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.【答案】±2.【解析】由一个数的平方根互为相反数,有a+3+2a﹣15=0,可求出a值,又b的立方根是﹣2,可求出b值,然后代入求出答案.解:∵一个数的平方根互为相反数,∴a+3+2a﹣15=0,解得:a=4,又b的立方根是﹣2,∴b=﹣8,∴﹣b﹣a=4,其平方根为:±2,即﹣b﹣a的平方根为±2.57.已知M2m n+=m+3的算术平方根,N2m=是n﹣2的立方根.求(n﹣m)2008.【答案】1【解析】【分析】由于算术平方根的根指数为2,立方根的根指数为3,由此可以列出关于m、n的方程组,解方程组求出m和n,进而代入所求代数式求解即可.【详解】∵M2m n+=m+3的算术平方根,N2m=n﹣2的立方根,∴2m+n﹣3=2,2m﹣n=3,∴m=2,n=1,∴(n﹣m)2008=1.【点睛】本题考查了算术平方根、立方根的定义.解决本题的关键是利用根的指数知识得到未知字母的值.58.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a ﹣c+2的值.【答案】7【分析】根据算术平方根的定义,平方根的定义,立方根的定义,求出a、b、c的值,然后代入求解即可.【详解】解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.【点睛】此题主要考查了算术平方根,平方根,立方根,熟记概念并列式求出a、b、c的值是解题关键.59.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值是解题关键.60.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若1的值.【答案】(1)成立;(2)-1【解析】【试题分析】举例:8和-8的立方根分别为2和-2. 2和-2互为相反数,则8和-8也互为相反数;(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.【试题解析】(1)8和-8的立方根分别为2和-2;2和-2互为相反数,则8和-8也互为相反数(举例符合题意即可),成立.(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.故答案为-1.【方法点睛】本题目是一道关于立方根的拓展题目,根据立方根互为相反数得到这两个数互为相反数;反之也成立.运用了从特殊的到一般的数学思想.61.已知2a 一1的平方根是531a b ±+-,的立方根是4,求210a b ++的平方根.【答案】 ±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a 、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a 一1的平方根是±5,3a+b ﹣1的立方根是4,∴2a ﹣1=25,3a+b ﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为(或±)62.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1) a=﹣10;(2) 4-x的立方根是﹣5【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.63.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.【答案】a-b的平方根是±4.【解析】分析:根据算术平方根和立方根的定义得出2a-1=9,3a+b+4=8,求出a、b的值,求出3a+b=4,根据平方根定义求出即可.详解:∵2a-1的算术平方根是3,3a+b+4的立方根是2,∴2a-1=9,3a+b+4=8,解得a=5,b=-11,∴a-b=16,∴a-b的平方根是±4.点睛:本题考查了算术平方根和立方根的定义、平方根定义等知识点,能理解平方根、立方根、算术平方根定义是解此题的关键.64.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3 900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?【答案】(1)0.9h (2)9.7km【解析】【分析】(1)根据t 2=3900d ,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=3900d ,其中t=1h 是雷雨的时间,开立方,可得答案. 【详解】(1)当d =9时,则t 2=3900d ,因此t 0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则3900d =12,因此d 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.65.已知x+12平方根是2x+y ﹣6的立方根是2,求3xy 的算术平方根.【答案】6.【分析】由题意可知:x+12=13,2x+y ﹣6=8,分别求出x ,y 的值即可求出3xy 的值.【详解】由题意可知:x+12=13,2x+y ﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为6【点睛】本题考查了平方根和立方根的综合.66.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.【答案】(1)a=2,b=3(2)±4 【分析】(1)根据算术平方根与立方根定义得出5a ﹣1=32,3a+b ﹣1=23,解之求得a 、b 的值;。

(完整版)平方根与立方根测试题

(完整版)平方根与立方根测试题

平方根与立方根测试题时间:120分 满分:150分一、选择(每题2分,共40分)1.若a x =2,则( )A 、x>0B 、x≥0C 、a>0D 、a≥02.一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定 3.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.若a≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a | 5.若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>1 6.若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+17.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D 、0 8.若x-5能开偶次方,则x 的取值范围是( ) A 、x≥0 B 、x>5 C 、x≥5 D 、x≤59.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有( )A 、 0个B 、1个C 、2个D 、3个 10.若一个数的平方根与它的立方根完全相同,则这个数是()A 、 1B 、 -1C 、 0D 、±1, 011.若x使(x-1)2=4成立,则x的值是( )A 、3B 、-1C 、3或-1D 、±212.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D.13a 有( ).A 、0个B 、1个C 、无数个D 、以上都不对 14.下列说法中正确的是( ).A 、若0a <0< B 、x 是实数,且2x a =,则0a >C有意义时,0x ≤ D 、0.1的平方根是0.01± 15.若一个数的平方根是8±,则这个数的立方根是( ).A 、2B 、±2C 、4D 、±416.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A 、0B 、-10C 、0或-10D 、0或±10 17.若10m -<<,且n =,则m 、n 的大小关系是( ).A 、m n >B 、m n <C 、m n =D 、不能确定 18.27-).A 、0B 、6C 、-12或6D 、0或-619.若a ,b满足2|(2)0b +-=,则ab 等于( ).A 、2B 、12 C 、-2 D 、-1220.下列各式中无论x 为任何数都没有意义的是( ).ABCD二、填空(每题2分,共34分)21的平方根是 ,35±是 的平方根.22.在下列各数中0,254,21a +,31()3--,2(5)--,222x x ++,|1|a -,||1a -方根的个数是 个.23. 144的算术平方根是 ,16的平方根是 ; 24.327= , 64-的立方根是 ; 25.7的平方根为 ,21.1= ;26.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 27.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 28.当x= 时,13-x 有意义;当x= 时,325+x 有意义;29.若164=x ,则x= ;若813=n ,则n= ;30.若3x x =,则x= ;若x x -=2,则x ;31.若0|2|1=-++y x ,则x+y= ;32.计算:381264273292531+-+= ; 33.代数式3-的最大值为 ,这是,a b 的关系是 .3435=-,则x =,若6=,则x = .354k =-,则k 的值为 .36.若1n n <<+,1m m <<+,其中m 、n 为整数,则m n += .37.若m 的平方根是51a +和19a -,则m = .三、解答题(共76分)38、(40分)解方程:0324)1(2=--x (2) 125-8x3=0(3 ) 264(3)90x --= (4) 2(41)225x -=(5 )31(1)802x -+= ( 6 )3125(2)343x -=-(7)|1 (8(9(1039.(6互为相反数,求代数式12xy+的值.40.(6分)已知ax=M的立方根,y=x的相反数,且37M a=-,请你求出x的平方根.41.(6分)若y=,求2x y+的值.42.(64=,且2(21)0y x-++=,求x y z++的值.43.(6分)已知:x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.44.(6分)若12112--+-=xxy,求x y的值。

算术平方根--平方根--立方根测试题

算术平方根--平方根--立方根测试题

算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。

(完整版)平方根立方根测试题(精选)

(完整版)平方根立方根测试题(精选)

一、填空题。

(每空1分,共33分)1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________;8.若一个数的平方根是8±,则这个数的立方根是 ;9.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;10.21++a 的最小值是________,此时a 的取值是________.11.12+x 的算术平方根是2,则x =________.12.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.13、比较大小:2______3; 6_____214、9的算术平方根是 ,3的平方根是 ,0的平方根是 ,2的平方根是 。

15、-1的立方根是 ,1/27的立方根是 ,9的立方根是 。

2)4(-=______,16、2的相反数是_______,整数部分是_______,小数部分是_______,-63 的绝对值是______。

二、选择题。

(每题2分,共20分)17.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 18.2)3(-的值是( ). A .3- B .3 C .9- D .919.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(- D .11.120.计算3825-的结果是( ). A.3 B.7 C.-3 D.-7 21.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a22.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .323.下列说法中不正确的是( )A .9的算术平方根是3B . 4的平方根是±2C .27的立方根是±3D .立方根等于-1的实数是-124.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-125、在下列各数中是无理数的有( )-0.333…,4 ,5,-∏ ,3 ∏ ,3.1415,2.010101…(相邻两个1之间有1个0,)A 、3个B 、4个C 、5个D 、6个26、下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数C 、无限小数是无理数D 、无限小数是分数四、求下列各式的值 (每题3分,共15分)(1)44.1 (2)-027.03 (3) 649 (5)41613+-27、一正方形的面积为10厘米,求以这个正方形的边为半径的圆的面积(保留π)?28、一水管每6秒钟水的流量为3140立方厘米,一分钟后能注满一个半径为多大的圆柱形的容器。

八年级数学平方根与立方根试题

八年级数学平方根与立方根试题

初二数学平方根与立方根华东师大版制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。

【本讲教育信息】一. 教学内容:平方根与立方根[学习目的]1. 掌握平方根,算术平方根的概念及符号表示,能进展方的简单运算。

2. 理解立方根的概念及符号表示,能进展开立方运算。

[知识内容]一. 平方根假如正方形的面积为25cm 2,求这个正方形的边长容易知道,正方形的边长是5cm 。

这个问题本质上就是要找一个数,使这个数的平方等于25。

1. 平方根:假如一个数的平方等于a ,那么这个数叫做a 的平方根。

在上述问题中,因为5252=,所以5是25的一个平方根,又因为()-==552522,所以-5也是25的一个平方根。

这就是说,25的平方根有两个:5与-5。

试一试:〔1〕144的平方根是什么?〔2〕0的平方根是什么?〔3〕425的平方根是什么? 〔4〕-4有没有平方根?为什么?总结:一个正数假如有平方根,那么必定有两个,它们互为相反数,假如我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。

2. 算术平方根正数a 的正的平方根,叫做a 的算术平方根,记a ,读做“根号a 〞;另一个平方根是它的相反数,即-a 。

因此正数a 的平方根可以记为±a ,a 称为被开方数。

因为0的平方等于0,而其它任何数的平方都不等于0,所以0的平方根只有一个,就是0,即0=0。

3. 方求一个非负数的平方根的运算,叫做方。

将一个正数方,关键是找出它的一个算术平方根。

例如:100的算术平方根是10010=,100的平方根是±±10010=。

二、立方根现有一只体积为216cm 3的正方体纸盒,它的每一条棱长是多少?要解答这个问题,本质上就是要找一个 数,这个数的立方等于216。

容易验证,62163=。

所以立方体的棱长应为6cm 。

1. 立方根假如一个数的立方等于a ,那么这个数就叫a 的立方根。

平方根与立方根(人教版)(含答案)

平方根与立方根(人教版)(含答案)
C.2 D.3
答案:C
解题思路:
3.1415926和0.2是有限小数, 是分数, 0.7, 3,
因此它们都是有理数; 为无理数, 且 为无理数.
故选C.
试题难度:三颗星知识点:无理数的概念
16.下列说法正确的是( )
A.一个数的平方根有两个B.有理数与数轴上的点一一对应
C.两个无理数的和不一定是无理数D.绝对值最小的实数不存在
3.平方根等于它本身的数是______,立方根等于它本身的数是______.空格上依次填写正确的是( )
A.±1和0,1和0 B.1和0,±1和0
C.0,±1和0 D.0,±1
答案:
解题思路:
1的平方根是±1,0的平方根是0,所以平方根等于它本身的只有0;
1的立方根是1,0的立方根是0,-1的立方根是-1,
A.8 B.-8
C.8或-8 D.4或-4
答案:C
解题思路:
4的平方根为2或-2,因此这个数为2或-2,2的立方为8,-2的立方为-8.
故选C.
试题难度:三颗星知识点:平方根
10.-27的立方根与 的平方根之和为( )
A.0 B.6
C.0或-6 D.0或6
答案:C
解题思路:
-27的立方根是-3, ,9的平方根为±3,-3与±3的和为0或-6,
A. B.
C. D.
答案:D
解题思路:
因为 , , ,…,
可以发现一个数如果扩大100倍,那么它的算术平方根扩大10倍,
由于20是0.2的100倍,所以 .
故选D.
试题难度:三颗星知识点:平方根
13.若 ,则( )
A.a>1 B.a<1
C.a≧1 D.a≦1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根试题
一 选择
1、若a x =2,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
2、一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定
3、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、b a ±=
D 、a b =
4、若a ≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a | 5、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>1 6、若n 为正整数,则121+-n 等于( )
A 、-1
B 、1
C 、±1
D 、2n+1
7、若a<0,则a
a 22
等于( )
A 、
21 B 、2
1
- C 、±21 D 、0 8、若x-5能开偶次方,则x 的取值范围是( )
A 、x ≥0
B 、x>5
C 、x ≥5
D 、x ≤5
9下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()
A , 0个
B ,1个
C ,2个
D ,3个 10若一个数的平方根与它的立方根完全相同,则这个数是()
A , 1
B , -1
C , 0
D ,±1, 0 11,若x使(x-1)2=4成立,则x的值是( )
A ,3
B ,-1
C ,3或-1
D ,±2
12.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D
.13
a 有( ).A .0个 B .1个 C .无数个 D .以上都不对
14.下列说法中正确的是( ).
A .若0a <
0 B .x 是实数,且2x a =,则0a > C
有意义时,0x ≤ D .0.1的平方根是0.01± 15.若一个数的平方根是8±,则这个数的立方根是( ).
A .2
B .±2
C .4
D .±4
16.若22
(5)a =-,33
(5)b =-,则a b +的所有可能值为( ).
A .0
B .-10
C .0或-10
D .0或±10 17.若10m -<<
,且n =
,则m 、n 的大小关系是( ).
A .m n >
B .m n <
C .m n =
D .不能确定 18.27-
).
A .0
B .6
C .-12或6
D .0或-6
19.若a ,b
满足2
|(2)0b +-=,则ab 等于( ).
A .2
B .
12 C .-2 D .-1
2
20.下列各式中无论x 为任何数都没有意义的是( ).
A .
二,填空
1
的平方根是 ,35
±是 的平方根. 2.在下列各数中0,
254
,21a +,31()3--,2(5)--,2
22x x ++,|1|a -,||1a -
个数是 个.
3. 144的算术平方根是 ,16的平方根是 ;
4、327= , 64-的立方根是 ;
5、7的平方根为 ,21.1= ;
6、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;
7、平方数是它本身的数是 ;平方数是它的相反数的数是 ;
8、当x= 时,13-x 有意义;当x= 时,3
25+x 有意义; 9、若164=x ,则x= ;若813=n ,则n= ;
10、若3x x =,则x= ;若x x -=2
,则x ;
11、计算:
381264
27
3292531+-+= ;
12
3
5
=-
,则x =
,若6=,则x = . 13
4k =-,则k 的值为 .
三,解答题
1、(1)0324)1(2
=--x (2) 125-8x3=0
(3 ) 264(3)90x --= (4) 2
(41)225x -=
(5 ) 31(1)802
x -+= ( 6 ) 3
125(2)343x -=-
(7)
|1 (8
(9)
÷(10)
2
互为相反数,求代数式12x
y
+的值.
3
.已知a x =M
的立方根,y =
是x 的相反数,且37M a =-,请你求出x 的平方根.
4
4=
,且2
(21)0y x -++
=,求x y z ++的值.
5.已知:x-2的平方根是±2, 2x+y+7的立方根是3,求x2+y2的平方根.。

相关文档
最新文档