人教版七年级数学上册知识点与易错题汇总8

合集下载

人教版七年级上册数学易错题集及解析

人教版七年级上册数学易错题集及解析

人教版七年级上册数学易错题集及解析有理数类型一:正数和负数1.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升考点:正数和负数。

分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解答:解:表示互为相反意义的量:足球比赛胜5场与负5场.故选A点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.此题的难点在“增产10吨粮食与减产﹣10吨粮食”在这一点上要理解“﹣”就是减产的意思.变式1:2.下列具有相反意义的量是()A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为﹣3℃D.盈利3万元与支出2万元考点:正数和负数。

分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:A、前进与后退,具有相反意义,但没有量.故错误;B、正确;C、升高与降低是具有相反意义的量,气温为﹣3℃只表示某一时刻的温度,故错误;D、盈利与亏损是具有相反意义的量.与支出2万元不具有相反意义,故错误.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.类型二:有理数1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数考点:有理数。

分析:按照有理数的分类判断:有理数.解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.变式:2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个考点:有理数。

人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)

人教版七年级数学上册知识点整理(完整版)人教版七年级数学上册知识点整理(完整版)第一章有理数一、正数和负数(一)正数:大于0的数。

(二)0的意义1、0既不是正数,也不是负数,0是正数和负数的分界。

2、“0”不仅表示没有,还可以表示某种量的基准。

(三)负数:在正数前面加上符号“﹣”(负)的数。

(四)用正数和负数表示具有相反意义的量1、含义①具有相反意义②具有数量2、通常我们把其中一种意义的量规定为正,用正数表示,那么与它具有相反意义的量就可以用负数表示;例:若规定收入1000元记作+1000元,则支出300元记作-300元。

若规定前进10米记作+10米,则后退5米记作-5米。

注:用正数、负数表示具有相反意义的量时,究竟哪一种意义的量为正是可以任意选择的,但习惯上把“前进、上升、收入、盈利”等规定为正,而把“后退、下降、支出、亏损”等规定为负。

二、有理数(一)分类及有关概念1、根据有理数的定义分有理数整数正整数统称为整数(根据整数的奇偶性)奇数1、3、5、7、9……排列用整数和分数统称为有理数03、5、7、9、11……排列用2n+1负整数偶数(2n )分数(有限小数和无限循环小数也属于分数)正分数正分数和负分数统称分数负分数2、根据有理数的性质分有理数正有理数正整数正分数0负有理数负整数负分数3、数集:把一类数放在一起,就组成了一个集合,简称数集;每个集合最后的省略符号“”表示填入的数只是集合的一部分。

(二)数轴1、概念:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示;但数轴上的点不都表示有理数。

3、一般的,设a是一个正数,表示数a的点在原点的右边,与原点的距离为a个单位长度;表示数﹣a的点在原点的左侧,与原点的距离为a个单位长度。

(三)相反数1、概念:只有符号不同的两个数叫做相反数。

2、几何意义:在数轴上位于原点两侧且到原点距离相等的两个点所表示的数互为相反数。

人教版初一上册数学易错点和难点总结

人教版初一上册数学易错点和难点总结

高中数学作为初中数学的延伸,承上启下,在学习过程中往往会遇到一些易错点和困难点。

在人教版初一上册的数学教材中,也有一些常见的易错点和难点,下面将针对这些内容进行总结和回顾,帮助学生更好地理解和掌握这些知识。

一、整数在初一上册的数学教材中,整数是一个重要的内容。

易错点主要集中在整数的加减法、乘除法以及应用题中。

在加减法中,学生往往容易出现负数的运算错误,尤其是对负数的理解和运用不够熟练。

在乘除法中,学生常常出现忽略符号、计算错误的情况。

在应用题中,对于正负数的理解和运用也是一个困难点。

二、分数分数是初中数学中的一个基础知识点,但在实际运用中常常出现错误。

易错点主要包括分数的加减乘除、分数的化简和扩展、分数在应用题中的运用等。

学生往往在运算中出现符号忽略、计算错误,对于分数的化简和扩展也缺乏深入的理解。

三、代数方程在初一上册的数学教材中,代数方程也是一个难点内容。

易错点主要包括一元一次方程的解法、方程的应用题以及方程与图形的联系等。

学生往往对于方程的解法和应用题中的参数化不够熟练,对于方程与图形的联系也缺乏深入的理解。

四、几何几何是初中数学中的一个重要内容,但在初一上册的教材中,也存在一些易错点和难点。

主要包括角的性质、相似三角形、平行线和相交线等内容。

学生往往在运用角的性质和相似三角形的知识时出现错误,对于平行线和相交线的性质也理解不够深入。

初一上册数学教材中存在着一些易错点和难点,但只要学生能够认真总结和回顾这些知识,勤加练习,相信一定能够克服这些困难,更好地掌握数学知识。

希望同学们能够在学习中坚持不懈,勇敢面对困难,不断提高自己的数学水平。

高中数学作为初中数学的延伸,承上启下,是学生学习数学的关键阶段之一。

在学习高中数学的过程中,学生往往会遇到更加复杂的数学内容和问题,因此对初中数学知识的掌握和理解尤为重要。

在人教版初一上册的数学教材中,整数、分数、代数方程和几何是一些常见的易错点和难点。

一、整数在高中数学中,整数的运算不仅仅局限于加减乘除,还涉及到整数的乘方、开方、整数的分数指数和分数根等。

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。

人教版七年级数学上册易考易错题集

人教版七年级数学上册易考易错题集

七年级数学上册易考易错题1 让学生回忆本学期所学内容哪些知识在运用时较容易出错并列举例子。

2要求学生能够在所举易错例子中找出错误原因并能写出正确答案3加强学生学会发现问题和解决问题的能力同时培养学生多积累多总结的习惯教学过程一确定有效数字时容易忽略0而出错。

例1 近似数0.40350有几个有效数字?常见错解近似数0.40350 有3个有效数字分别是4,3,5错解分析正确答案二应用乘法分配律时运算符号出错例2 计算(-48)*(1-1/12+3/4)常见错解原式=-48-4+36=-16错解分析正确答案三违背有理数的运算顺序出错例3 计算-4-(-12)÷(-3)常见错解原式=-4+12÷(-3)=8÷(-3)=-8/3错解分析正确答案四对乘方的意义理解不透而出错例4 计算-2^2-50÷(-5)^2-1常见错解原式=4-50÷25-1=4-2-1=1错解分析正确答案五错用运算律而出错例五计算12÷(1/2-1/4+1/6)常见错解原式=12÷1/2-12÷1/4+12÷1/6=24-48+72=48错解分析正确答案六确定单项式的系数和次数出错例六单项式-2a^2b∏/3的系数是__次数是__常见错解-2/3,4次错解分析正确答案七同类项的概念把握不准而出错例七判断下列各项是否是同类项-x^2y与 3yx^2 (2)2^3 与 x^3常见错解(1)不是(2)是错解分析正确答案八去括号法则理解不透而出错例八计算 3x-[x-2(x-y)]常见错解1原式=3x-(x-2x-2y)=3x-x+2x-2y=4x-2y常见错解2原式=3x-(x-2x+y)=3x-(-x+y)=3x+x-y=2x-y 错解分析正确答案九移项没变号而出错例九解方程 2x-3=x+4常见错解 2x-x=4-3X=1错解分析正确答案十去括号没变号而出错例10 解方程2*(x-3)-3*(x+1)=6常见错解 2x-3-3x+3=62x-3x=6-x=6X=-6错解分析正确答案十一去分母时出错例11 解方程(4-x)/3=1-(x-3)/5常见错解1 5*(4-x)=1-3*(x-3)20-5x=1-3x+9-5x+3x=1+9-20-2x=-10X==5常见错解2 5*(4-x)=15-3x-920-5x=15-3x-9-5x+3x=15-9-20-2x=-14X=7错解分析正确答案随堂练习(1)近似数0.302050有几个有效数字?(2)计算(-48)*(1-1/6+3/4)(3)计算-6-(-24)÷(-3)(4)计算-3^2-50÷(-5)^2-1(5)计算2÷(1/2-1/4+1/6)(6)单项式(-3ab^3)/5的系数和次数分别是什么(7)判断下列各组十分是同类项(1)-3a^2b 与 10ba^2 (2) 3^2与 x^2(8)计算3a-[a-2(a-b)]+b(9)解方程 3x-3=x+1(10)解方程 3(x-3)-2(2x-1)=6(11)解方程 (4-x)/3=(x-3)/5-1小结我们这节课有什么收获?。

人教版七年级数学上册学生重点、难点必学常识

人教版七年级数学上册学生重点、难点必学常识

人教版七年级数学上册学生重点、难点必学常识1.有理数:1) 任何能写成 p/q (p,q为整数且p≠0) 形式的数都是有理数,整数和分数都属于有理数。

注意:有理数不一定是正数或负数;-a不一定是负数,+a 也不一定是正数;π不是有理数。

正整数、正分数、零、负分数、负整数都属于有理数。

2) 有理数可以分为两类:①零和正有理数;②负有理数。

正有理数包括正整数和正分数;负有理数包括负整数和负分数。

3) 注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4) 自然数等于正整数;a>0 等价于 a 是正数;a<0 等价于a 是负数;a≥0 等价于 a 是正数或零;a≤0 等价于 a 是负数或零。

2.数轴:数轴是一条直线,规定了原点、正方向和单位长度。

3.相反数:1) 只有符号不同的两个数,其中一个是另一个的相反数;0 的相反数还是 0.2) 注意:a-b+c 的相反数是 -a+b-c;a-b 的相反数是 b-a;a+b 的相反数是 -a-b。

3) 相反数的和为 0 等价于 a+b=0 等价于 a、b 互为相反数。

4) 相反数的商为 -1.5) 相反数的绝对值相等。

4.绝对值:1) 正数的绝对值等于它本身,0 的绝对值是 0,负数的绝对值等于它的相反数。

注意:绝对值的意义是数轴上表示某数的点离开原点的距离。

a>0 时,|a|=a;a≤0 时,|a|=-a。

2) 绝对值可以表示为:|a|=a (a≥0) 或 |a|=-a (a<0)。

3) a/|a|=1 等价于 a>0;a/|a|=-1 等价于 a<0.4) |a| 是重要的非负数,即|a|≥0.5.有理数比大小:1) 正数永远比负数大,负数永远比正数小。

2) 正数大于一切负数。

3) 两个负数比较,绝对值大的反而小。

4) 数轴上的两个数,右边的数总比左边的数大。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

七年级数学知识点易错题

七年级数学知识点易错题

七年级数学知识点易错题数学是需要不断练习和积累的科目,随着学习的深入和知识点的增加,很多同学在一些容易出错的知识点上总是会出现错误。

本文总结了七年级数学中一些容易出错的知识点及易错题,帮助同学们更好地掌握这些知识点。

一、比例1.比例的性质如果两个比例中,有一个项相等,那么这两个比例就是成比例的。

如果两个比例成比例,那么它们的交叉相乘相等。

2.常见比例的应用在同一比例中,各项的比值等于各对应量的比值。

如果两个量成比例,则可以用比例的交叉乘法求出另一个量。

易错题:1.相似三角形中,对应角相等,对应边成比例。

2.已知几何图形中各边的长度或者各角度的大小,可以用相似三角形或等比例关系求出几何图形中未知的边或角度。

二、图形的周长和面积1.图形的周长图形的周长是其所有边长的和,计量单位与边长的计量单位一致。

2.图形的面积在计算面积时,需要知道图形的形状以及边长、高、底边等参数。

易错题:1.计算圆的周长和面积应注意单位。

2.在计算长方形、正方形和三角形面积时,长和宽或底边和高必须使用相同的单位。

3.在计算梯形面积时,顶底边和高必须使用相同的单位。

三、代数式1.代数式的定义代数式是由数字和字母及运算符号组成的式子。

2.常见代数式的展开平方公式: $(a+b)^2 = a^2+2ab+b^2$因式分解: $ab+bc= b(a+c)$易错题:1.在运用代数式时要注意运算顺序,特别是加减乘除的计算优先级。

2.对代数式进行运算时,需要根据式子中字母的取值范围来判断结果的符号。

四、方程1.方程式的基本概念方程是用变量和常数等表示真实事物的式子。

方程中至少有一个变量。

2.方程的应用方程在生活和科学研究中应用广泛,可以帮助我们解决各种实际问题。

易错题:1.在解方程的过程中,需要确定变量的取值范围,判断所求解的结果是否合法。

2.在解一元一次方程时,需要注意分母不能为零。

五、数据分析1.平均数与中位数平均数:把一组数据的各项数据求和后再除以数据个数。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教版七年级数学上册知识点与易错题汇总

人教版七年级数学上册知识点与易错题汇总

精品基础教育教学资料,仅供参考,需要可下载使用!七年级数学(上)易错题及解析(1)(认真分析,找出易错原因)1、近两年,国际市场黄金价格涨幅较大,中国银行推出“金御鼎”的理财产品,即以黄金为投资产品,投资者从黄金价格的上涨中赚取利润.上周五黄金的收盘价为280元/克,下表是本周星期一至星期五黄金价格的变化情况.(注:星期一至星期五开市,星期六、星期日休市)问:(1)本周星期三黄金的收盘价是多少?(2)本周黄金收盘时的最高价、最低价分别是多少?(3)上周,小王以周五的收盘价280元/克买入黄金1000克,已知买入与卖出时均需支付成交金额的千分之五的交易费,卖出黄金时需支付成交金额的千分之三的印花税.本周,小王以周五的收盘价全部卖出黄金1000克,他的收益情况如何?考点:有理数的混合运算;正数和负数.专题:应用题;经济问题.分析:根据上表和题意可列表解答:解:(1)280+(+7)+(+5)+(-3)=289(元/克)(2)最高价是292元/克;最低价是283元/克(3)291×1000×(1-5‰-3‰)-280×1000×(1+5‰)=7272(元)答:赚了7272元.(若分步列式,计算正确,可酌情给分)点评:本题考查有理数的混合运算.解决本题的关键是理解题意,根据题意写出算式.2、每袋大米的标准重量为50千克,10袋大米称重记录如图所示.(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?(2)10袋大米的总重量是多少千克?考点:正数和负数;有理数的加法.专题:应用题;图表型.分析:(1)由题意可知每袋大米的标准重量为50千克,超过标准重量的记为正数,不足的记为负数,然后相加即可;(2)由题(1)可知10袋大米总计超过5.4千克,然后用10×50+5.4千克即可.解答:解:(1)与标准重量比较,10袋大米总计超过1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1=5.4千克;(2)10袋大米的总重量是50×10+5.4=505.4千克.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量3、小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是15;。

人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册知识点归纳总结及典型试题汇总本章主要介绍有理数的概念和运算。

有理数可以用数轴来认识和理解,同时也可以将这些概念串在一起。

在具体运算时,需要注意运算法则、运算律、运算顺序和近似计算。

1.有理数是可以写成 p/q 形式的数,其中 p 和 q 都是整数且 p 不等于 0.有理数包括正整数、正分数、整数、零、负整数和负分数。

需要注意的是,1、-1 和 0 是三个特殊的有理数,它们将数轴上的数分成四个区域,每个区域的数有其自己的特性。

2.数轴是一条直线,规定了三个要素。

3.相反数是指符号相反的两个数,它们的和为 0,商为 -1.需要注意的是,a-b+c 的相反数是-a+b-c,a-b 的相反数是b-a,a+b 的相反数是 -a-b。

4.绝对值是非负数,正数的绝对值等于它本身,负数的绝对值等于它的相反数。

绝对值的意义是数轴上表示某数的点离开原点的距离。

如果两个数互为相反数,则它们的绝对值相等。

5.在比较有理数的大小时,正数永远大于负数,两个负数比较时,绝对值大的反而小。

在数轴上,右边的数总比左边的数大。

例如,-1,-2,+1,+4 表示与标准质量的差,绝对值越小,越接近标准。

6.乘积为 1 的两个数互为倒数。

如果 ab=1,则 a 和 b 互为倒数;如果 ab=-1,则 a 和 b 互为负倒数。

需要注意的是,有些数没有倒数。

1.单项式是由数字或字母乘积组成的式子,如果只有一个数字或字母,也可以称为单项式。

多项式则是由几个单项式相加组成的式子。

2.在单项式中,数字因数称为单项式的系数(要包括符号),所有字母指数的和称为单项式的次数(只与字母有关)。

在多项式中,所含单项式的个数称为多项式的项数,而最高次项的次数则称为多项式的次数。

3.整式是指由单项式相加或相减组成的代数式,而多项式是整式的一种特殊情况。

4.同类项是指含有相同字母并且相同字母的指数的项,与系数和字母的排列顺序无关。

合并同类项的法则是将同类项的系数相加,而字母和字母的指数不变。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版初中数学七年级上册高频易错点

人教版初中数学七年级上册高频易错点

一、数轴及其应用1.1 数轴上的数与实数数轴是以零点为原点、正数为正方向、负数为负方向的一条直线,用来表示实数。

1.2 实数的比较与运算实数在数轴上的比较和运算是初中数学中的基础知识,常见易错点包括大小比较、绝对值、加减乘除等运算。

1.3 数轴的趋势图数轴的趋势图在初中数学中的应用较为广泛,学生容易混淆正负数的趋势以及趋势的变化规律。

二、代数方程与不等式2.1 一元一次方程代数方程中的一元一次方程是初中数学中的重要内容,包括方程的解法、方程的应用等易错点。

2.2 一元一次不等式不等式在初中数学中的地位与方程并列,学生容易在不等式的符号变化、解集表示等方面出现错误。

2.3 含有绝对值的不等式含有绝对值的不等式的解法相对复杂,学生在绝对值符号转化、不等式求解等方面常出现错误。

三、数学三角形与相似3.1 三角形的性质与判定三角形的性质与判定是初中数学中的重点知识,学生在理解与运用三角形各种性质时常出现混淆。

3.2 直角三角形的性质与判定直角三角形是数学三角形中的特殊情况,学生在理解直角三角形的性质和判定时易错点较多。

3.3 相似三角形相似三角形在初中数学中有着重要作用,学生在判定相似三角形和利用相似三角形解决问题时常出现错误。

四、平面图形的性质与计算4.1 点、线、角的基本概念平面图形的基本要素是点、线和角,学生在理解这些基本概念时常出现混淆。

4.2 四边形的性质与计算四边形是初中数学中的重点内容,学生在理解四边形的性质和计算四边形的面积等方面容易出现错误。

4.3 圆的性质与计算圆是平面图形中的特殊情况,学生在理解圆的性质、计算圆的面积和周长等方面常出现误解。

五、统计图及其分析5.1 直方图直方图是统计学中的常见图表,学生在读懂直方图、分析直方图时容易出现偏差。

5.2 条形图条形图也是统计学中的重要图表,学生在比较和分析条形图时常出现理解上的错误。

5.3 线形图线形图在初中数学中的应用较为广泛,学生在分析线形图的趋势和变化规律时易出现偏差。

人教版七年级初一数学上册【重难点知识】汇总

人教版七年级初一数学上册【重难点知识】汇总

人教版七年级数学上册【重难点知识】汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

3、相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。

1.概念负数: 在正数前面加上负号“—”的数叫做负数。

注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。

(不是带“—”号的数都是负数, 而是在正数前加“—”的数。

)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。

有理数: 整数和分数统称有理数。

1.概念整数: 正整数、0、负整数统称为整数。

分数: 正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。

2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。

三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。

三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。

3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。

(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。

2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。

四、相反数两个符号: 符号相同是正数, 符号不同是负数。

3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。

人教版七年级上册数学知识点总结(优秀3篇)

人教版七年级上册数学知识点总结(优秀3篇)

人教版七年级上册数学知识点总结(优秀3篇)人教版七年级上册数学知识点总结篇一整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的。

指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

人教版七年级上册数学知识点总结篇二①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数某个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

人教版七年级上册数学知识点总结篇三数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

数a的绝对值记作|a|。

正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

或绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|0比较两个负数的大小,绝对值大的反而小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上)易错题及解析(6)(认真分析,找出易错原因)34如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.考点:角平分线的定义.专题:计算题.分析:本题是有公共定点的两个直角三角形问题,通过图形可知∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,同时∠AOC+∠BOC+∠BOD+∠BOC=180°,可以通过角平分线性质求解.解答:解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故答案为135.点评:本题是角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角.35如图,O是角的顶点,请用三种不同的方法表示这个角考点:角的概念.分析:根据角的表示方法可知:三种不同的方法为∠A0B,∠1,∠O.解答:解:∠A0B,∠1,∠O.点评:主要考查了角的表示方法.主要有:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.36 我县初三数学模拟考试定在2011年5月5日早上8:30开始,此时时钟的时针与分针的夹角为度.考点:钟面角.专题:计算题.分析:钟表表盘上有12个大格,每一个大格的夹角为30度,再利用钟表表盘的特征解答.解答:解:8:30,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8:30分针与时针的夹角是2.5×30°=75°.故答案为75.点评:本题考查了钟面角的计算,考查的知识点:钟表上12个数字,每相邻两个数字之间的夹角为30°.37 (2005•荆门)钟表上12时15分钟时,时针与分针的夹角为()A.90°B.82.5°C.67.5°D.60°考点:钟面角.专题:计算题.分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角90°-7.5°=82.5°.故选B.38如图,O 是直线AD 上一点,射线OC 、OE 分别是∠AOB ,∠BOD 的平分线,若∠AOC=30°,则∠BOE= .考点:角的计算;角平分线的定义.专题:计算题.分析:利用角平分线的定义,两角互补和是180°,很容易求出所求角的度数.解答:解:由题意知:∠AOB=2∠AOC=60°∵∠AOB+∠BOD=180°∴∠BOD=120°∴∠BOE=21∠BOD=60°. 故答案为60°.39如图,已知∠AOE=140°,∠COD=30°,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,求∠AOB 的度数.考点:角平分线的定义;角的计算.分析:根据角平分线的定义求得∠COB+∠DOC=70°;然后由已知条件和图示求得∠AOB=∠BOC=40°.解答:解:∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∴∠COB+∠DOC=21∠AOE=21×140°=70°; 又∵∠COD=30°,∴∠AOB=∠BOC=40°.点评:本题考查了角平分线的定义、角的计算.此题属于基础题,只要找准角与角间的和差关系,即可求得正确答案. 40如图,已知∠AOB=16°,∠AOE=100°,OB 平分∠AOC ,OD 平分∠COE 。

()1求∠DOC 的度数。

()2若以点O 为观测中心,OA为正东方向,射线OD在什么方向上?射线OE 在什么方向上?41用如图所示的曲尺形框框(有三个方向),可以套住下表中的三个数,设被框住的三个数中最小的数为a .(1)用含a 的式子表示这三个数的和;(2)若这三个数的和是48,求a 的值.考点:列代数式;代数式求值.专题:应用题.分析:(1)注意三种不同的框圈住的三个数之间的大小关系,要分三种情况进行分析;(2)根据三种不同的结果列方程求解,求得的数必须是整数,否则应舍去.解答:解:(1)设被第一个框框住的三个数中最小的数为a ,则a+a+1+a+7=3a+8;设被第二个框框住的三个数中最小的数为a ,则a+a+7+a+8=3a+15;设被第三个框框住的三个数中最小的数为a ,则a+a+1+a+8=3a+9.(2)设被第一个框框住的三个数的和是48,则3a+8=48,解得a=340,显然和题意不合. 设被第二个框框住的三个数的和是48,则3a+15=48,解得a=11,符合题意.设被第三个框框住的三个数的和是48,则3a+9=48,解得a=13,符合题意.∴a 的值为11或13.点评:能够正确找到圈住的三个数之间的关系.解决问题的关键是读懂题意,找到所求的量的等量关系.从所给材料中分析数据得出规律是应该具备的基本数学能力.42 已知∠AOB=160°,∠COE=80°,OF 平分∠AOE .(1)如图1,若∠COF=14°,则∠BOE= ;若∠COF=n°,则∠BOE= ,∠BOE 与∠COF 的数量关系为 ;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,(1)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE 的内部是否存在一条射线OD ,使得∠BOD 为直角,且∠DOF=3∠DOE ?若存在,请求出∠COF 的度数;若不存在,请说明理由.专题:计算题.分析:(1)由OF 平分∠AOE 得到∠AOE=2∠EOF ,利用∠AOE=∠AOB-∠BOE ,得2∠EOF=∠AOB-∠BOE ,则2(∠COE-∠COF )=∠AOB-∠BOE ,把∠AOB=160°,∠COE=80°代入•即可得到∠BOE=2∠COF ,这样可分别计算出∠COF=14°或n°时,∠BOE 的度数;(2)与(1)的推理一样.(3)设∠AOF=∠EOF=2x ,由∠DOF=3∠DOE ,得∠DOE=x ,而∠BOD 为直角,2x+2x+x+90°=160°,解出x=14°,则∠BOE=90°+x=104°,于是∠COF=21×104°=52°(满足∠COF+∠FOE=∠COE=80°). 解答:解:(1)∵∠AOE=∠AOB-∠BOE ,而OF 平分∠AOE ,∴∠AOE=2∠EOF ,∴2∠EOF=∠AOB-∠BOE ,∴2(∠COE-∠COF )=∠AOB-∠BOE ,而∠AOB=160°,∠COE=80°,∴160°-2∠COF=160°-∠BOE ,∴∠BOE=2∠COF ,当∠COF=14°时,∠BOE=28°;当∠COF=n°时,∠BOE=2n°,故答案为28°;2n°;∠BOE=2∠COF .(2)∠BOE=2∠COF 仍然成立.理由如下:解答:解:(1)(8844.43-5200)÷100×(-0.6)≈-22℃,-22+(-5)=-27℃;(2)[-5-(-17)]÷0.6×100=2000(米),5200+2000=7200(米).答:峰顶的温度为-27℃,A 处的海拔高度为7200米.点评:本题考查了有理数的混合运算在实际中的应用.注意认真审题,抓住关键词列出算式.44 如图,动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A 、B 的速度比是1:4 (速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(2)若A 、B 两点分别从(1)中标出的位置同时向数轴负方向运动,问经过几秒种,原点恰好处在两个动点的正中间?考点:一元一次方程的应用.专题:行程问题.分析:(1)设动点A 的速度是x 单位长度/秒,那么动点B 的速度是4x 单位长度/秒,然后根据3秒后,两点相距15个单位长度即可列出方程解决问题;(2)设x 秒时,原点恰好处在两个动点的正中间,那么A 运动的长度为x ,B 运动的长度为4x ,然后根据(1)的结果和已知条件即可列出方程解题.解答:解:(1)设动点A 的速度是x 单位长度/秒,根据题意得3(x+4x )=15∴15x=15解得:x=1,则4x=4.答:动点A 的速度是1单位长度/秒,动点B 的速度是4单位长度/秒;标出A ,B 点如图,;(2)设x 秒时,原点恰好处在两个动点的正中间,根据题意得:3+x=12-4x∴5x=9∴x=59 答:59秒时,原点恰好处在两个动点的正中间.45 已知圆柱形瓶A(底面半径2.5厘米,高18厘米)内装满水,圆柱形瓶B(底面半径3cm,高10cm)内没有水,现将A瓶中的水倒入B瓶中,问能否完全装下?若装不下,那么A瓶内还有水多高?若未能装满,那么B瓶内水面离杯口的距离是多少?2.5*2.5*3.14*18=353.25(立方厘米)3*3*3.14*10=282.6(立方厘米)353.25大于282.6 所以装不下(353.25-282.6)/(2.5*2.5*3.14)=3.6(厘米)分析:(1)方案一根据表格数据知道买一件A商品需付款90(1-30%),一件B商品需付款100(1-15%),由此即可求出买A商品30件,B商品90件所需要的付款,由于买A商品30件,B商品90件,已经超过120件,所以按方案二付款应该返利20%,由此也可求出付款数;(2)若购买总数没有超过100时,很明显应该按方案一购买;若购买总数超过100时,利用两种购买方式进行比较可以得到结论.解答:解:(1)方案一付款:30×90×(1-30%)+90×100×(1-15%)=9540元;方案二付款:(30×90+90×100)×(1-20%)=9360元,∵9540>9360,9540-9360=180元,∴选用方案二更划算,能便宜180元;(2)依题意得:x+2x+1=100,解得:x=33,当总件数不足100,即x<33时,只能选择方案一的优惠方式;当总件数达到或超过100,即x≥33时,方案一需付款:90(1-30%)x+100(1-15%)(2x+1)=233x+85,方案二需付款:[90x+100(2x+1)](1-20%)=232x+80,因为(233x+85)-(232x+80)=x+5>0.所以选方案二优惠更大.47 已知线段AB的长为10cm,C是直线AB上一动点,M是线段AC的中点,N是线段BC的中点.(1)若点C恰好为线段AB上一点,则MN= cm;(2)猜想线段MN与线段AB长度的关系,即MN= AB,并说明理由.考点:两点间的距离.专题:计算题.分析:(1)因为点C恰好为线段AB上一点,(2)分三种情况当C在线段AB上时,当C在线段AB的延长线上时,当C在线段BA的延长线上时,进行推论说明.48 某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是15千米/时.(人上下车的时间不记)49 某人型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300元仍按9折优惠,超过部分按8折优惠;小美第一次购物用了94.5元,第二次购物用了282.8元.(1)小美第一次购物的原价为多少元?(2)小美第二次购物的原价为多少元?考点:一元一次方程的应用.专题:应用题;分类讨论.分析:(1)根据题意及购物在小于100元,大于等于100且小于300元,大于等于300三种情况考虑小美的购物价格.(2)首先设小美第二次购物的原价为x元,再比较282.8元与300×9折的大小,判定出小美第二次购物第三种购物的情况.套用(x-300)×0.8+300×0.9=282.8,解得x的值即为所求.解答:解:(1)因为100×0.9=90<94.5<100,所以小美第一次购物分两种情况:情况1:小美第一次购物没有优惠,故原价为94.5元;(1分)情况2:小美第一次购物原价超过100元,则第一次购物原价为:94.5÷0.9=105(元)(3分)答:小美第一次购物原价为94.5元或105元(4分)(2)设小美第二次购物的原价为x元∵300×0.9=270<282.8∴小美第二次购物超过300元(5分)则(x-300)×0.8+300×0.9=282.8(7分)解得:x=316(9分)答:小美第二次购物的原价为316元.(10分)点评:本题考查一元一次方程的应用,解决本题主要是根据小美的购物钱数确定出符合三种情况中的那一种,进而求出原价.50 阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.考点:尾数特征;有理数的乘方.专题:规律型.分析:(1)此题不难发现:2n的个位数字是2,4,8,6四个一循环,所以99÷4=24…3,则299的个位数字是8;9n的个位数字是9,1两个一循环,所以99÷2=49…1,则999的个位数字是9.(2)分别找出22010和32010和92010的个位数字,然后个位数字相加所得个位数字就是22010+32010+92010的个位数字.(3)分别找出92010和22010和32010的个位数字,然后个位数字相减所得个位数字就是92010-22010-32010的个位数字,注意不够借位再减.解答:解:(1)由21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,不难发现2的正整数幂的个位数字以2、4、8、6为一个周期循环出现,由此可以得到:因为299=24×24+3,所以299的个位数字与23的个位数字相同,应为8.不难发现9的正整数幂的个位数字以9、1为一个周期循环出现,由此可以得到:因为999=92×49+1,所以999的个位数字与91的个位数字相同,应为9.(2)因为22010=24×502+2,所以22010的个位数字与22的个位数字相同,应为4;因为32010=34×502+2,所以32010的个位数字与32的个位数字相同,应为9;因为92010=92×1005,所以92009的个位数字与92的个位数字相同,应为1.∴4+9+1=14.∴22010+32010+92010的个位数字为4;(3)92010-22010-32010的个位数字为21-4-9=-8.点评:此题主要是考查乘方的尾数特征,解题关键是发现个位数字的循环规律平面内两两相交的6条直线,其交点个数最少为个,最多为个.考点:直线、射线、线段.专题:规律型.分析:由题意可得6条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出答案.解答:解:根据题意可得:6条直线相交于一点时交点最少,此时交点为1个;任意两直线相交都产生一个交点时交点最多,点评:本题考查直线的交点问题,难度不大,注意掌握直线相交于一点时交点最少,任意三条直线不过同一点交点最多.51小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…(3)当n≥3时,设∠A n-1A n C n-1的度数为a,∠A n+1A n C n-1的角平分线A n N与A n C n构成的角的度数为β,那么a与β之间的等量关系是α-β=45°,请说明理由.(提示:可以借助下面的局部示意图)考点:角的计算;等腰三角形的性质.专题:规律型.分析:利用角的和差关系计算,注意52 如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm,求线段MN 的长.考点:比较线段的长短.专题:计算题.分析:根据AC :CD :DB=1:2:3,可设三条线段的长分53 用一张正方形的纸制作成一个无盖的长方体盒子,设这个正方形的边长为a ,这个无盖的长方体盒子高为h .(只考虑如图所示,在正方形的四个角上各减去一个大小相同的正方形的情况.)(1)若a=6cm ,h=2cm ,求这个无盖长方体盒子的容积;(2)用含a 和h 的代数式表示这个无盖长方体盒子的容积;(3)某学习小组合作探究发现:当h=61a 时,折成的长方体盒子容积最大.试用这一结论计算当a=18cm 时这个无盖长方体盒子的最大容积.考点:列代数式;代数式求值.分析:(1)根据a=6cm ,h=2cm ,即可得出容积(6-4)2×2,得出答案即可;(2)因为剪去的小正方形边长为hcm ,那么无盖的长方体底面也为一个正方形,其边长为(a-2h ),即可列出方程解题.(3)根据(2)中所求得出当a=18 cm 时,h= 61a =3,得出最值即可. 解答:解:(1)容积(6-4)2×2=8 cm 3;(2)容积为h (a-2h )2 cm 3;54 已知甲乙两个商店练习本的标价都是每本1元。

相关文档
最新文档