自动控制原理实验 典型系统的时域响应和稳定性分析

合集下载

自动控制原理的实训报告

自动控制原理的实训报告

一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。

通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。

二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。

三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。

2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。

3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。

2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。

3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。

4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。

五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。

例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。

2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。

例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。

《自动控制原理》实验2(线性系统时域响应分析)

《自动控制原理》实验2(线性系统时域响应分析)

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

自动控制原理实验一 典型系统的时域响应和稳定性分析

自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中由图1-2,可以确地1-1中的参数。

T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

自动控制原理-线性系统的时域分析----典型环节的时域响应

自动控制原理-线性系统的时域分析----典型环节的时域响应
PC 机一台,TD-ACC+( 或TD-ACS)实验系统一套。
四、线路示图
模拟电路构成:如图2. 1-2 所示。
系统的开环增益为K=500KΩ/R,开环传递函数为:
五、内容步骤
1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。并确定各种状态下系统开环增益K 的取值及相应的电阻值R 。
六、数据处理
1、根轨迹图,如图2.1-3所示:
2、按模拟电路图2.1-2 接线并对每个
环节整定后,用示波器观察输入端与输出端
的时域响应曲线:
(1)调节R值,当系统等幅振荡时(如图
2.1-4所示),测得R的值为157.6kΩ,此时系统达临界稳定。
(2)调节R值,当R小于157.6kΩ时,系统发散的振荡,不稳定(如图2.1-5所示,R=135kΩ)。
3 .按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定;将2中的方波信号加至输入端。
4 .改变对象的开环增益,即改变电阻R 的值,用示波器的“CH1”和“CH2”表笔分别测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。
注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。
实 验 报 告
实验名称线性系统的时域分析----典型环节的时域响应

专业

姓名
学号
授课老师
预定时间
实验时间
实验台号
一、目的要求
1、根据对象的开环传函,做出根轨迹图。
2、掌握用根轨迹法分析系统的稳定性。
3、通过实际实验,来验证根轨迹方法。
二、原理简述
实验对象的结构框图:如图2. 1-1 所示。
三、仪器设备

自动控制原理实验 典型系统的时域响应和稳定性分析

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

《自动控制原理》第三章自动控制系统的时域分析和性能指标

《自动控制原理》第三章自动控制系统的时域分析和性能指标

i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2

自动控制原理实验 控制系统稳定性分析和时域响应分析

自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。

二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。

2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。

3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。

对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。

4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。

自动控制原理实验典型环节的时域响应

自动控制原理实验典型环节的时域响应

实验名称:典型环节的时域响应一、目的要求1、熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异分析原因。

3了解参数变化对典型环节动态特性的影响。

二、原理简述1、比例环节传递函数:Uo(s)/Ui(s)=K.2、积分环节传递函数:Uo(s)/Ui(s)=1/TS3、比例微分环节传递函数:Uo(s)/Ui(s)=K+1/TS4、惯性环节传递函数: Uo(s)/Ui(s)=K/(TS+1)5、比例微分环节传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)]6、比例积分微分环节传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS三、仪器设备PC机一台,TD-ACC(或TD-ACS)实验系统一套四、线路视图1、比例环节2、积分环节3、比例积分环节4、惯性环节5、比例微分环节6、比例积分微分环节五、内容步骤1、按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。

2、将信号源单元的“ST”端插针与“S”端插针用短路块短接,。

将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。

3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。

4、改变几组参数,重新观测结果。

5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。

观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

六、数据处理1、比例环节①R0=200K,R1=100K;②R0=200K,R1=200K;2、积分环节①R0=200K,C=1uF;②R0=200K,C=2uF;3、比例积分环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;4、惯性环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;5、比例微分环节①R0=R2=100K,R3=10K,C=1uF,R1=100K;②R0=R2=100K,R3=10K,C=1uF,R1=200K;6、比例积分微分环节①R2=R3=10K,R0=100K,C1=C2=1uF,R1=100K;②R2=R3=10K,R0=100K,C1=C2=1uF,R1=200K;七、分析讨论在误差允许的情况下,输出的结果与理论值相符。

自动控制原理第三章时域分析

自动控制原理第三章时域分析

工程上典型测试信号(输入函数)
时域函数:r(t) t 0 单位脉冲 单位阶跃 (t) 复域:F(s) r(t) 图形
o
1
1 S
1 S2
t t t t t
1
o
1(t )
单位速度 单位加速度
单位正弦
t
1 2 t 2
sin t
o o
1 S3
s2 2
o
3.2 一阶系统的瞬态响应
[提示]:上述几种典型响应有如下关系: 单位脉冲 函数响应
14
2.2.3 典型环节及其传递函数
1、比例环节(又叫放大环节)
R( s)
K
C ( s)
特 点:输出量按一定比例复现输入量,无滞后、失真现象。 运动方程: 传递函数: c(t)=Kr(t) K——放大系数,通常都是有量纲的。
G(s) C(s) K R(s)
比例环节又称为放大环节。k为放大系数。 实例:分压器,放大器,无间隙无变形齿轮传动等。
1
4S 2 c1 (t ) L C1 ( s ) =L S ( S 1 )( S 2 )
j
1 -1.33 -2 -1 -0.5 0
c(t) c1(t) 1 2et 3e2t

1.0
c2 (t) 1 0.5et 0.5e2t
-1 极点和零点分布图
积分
单位阶跃 函数响应
积分
单位斜坡 函数响应
积分
单位抛物线 函数响应
微分
微分
微分
分析系统特性究竟采用何种典型输入信号,取决于实际系 统在正常工作情况下最常见的输入信号形式。
当系统的输入具有突变性质时,可选择阶跃函数为典型输 入信号;当系统的输入是随时间增长变化时,可选择斜坡函数 为典型输入信号。

自动控制原理》实验2(线性系统时域响应分析

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB的调用语句:num=[0 0 25]; %定义分子多项式den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明title(‘Unit-step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text命令在图上的任何位置加标注。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。

2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。

三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。

实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。

三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。

三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

自动控制原理实验 典型系统的时域响应和稳定性分析

自动控制原理实验 典型系统的时域响应和稳定性分析

电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别:班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析所示。

1.2-1 (1) 结构框图:如图1.2-(2)对应的模拟电路图:如 1.2-2所示1.2-2图电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别:班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析所示。

1.2-3 结构框图:如图(1)电子科技大学中山学院学生实验报告课程名称:自动控制原理实验专业:机电工程学院系别:班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图1.2-3(2)模拟电路图:如图1.2-4 所示。

1.2-4(3理论分析系统的特征方程为:(4)实验内容:行列式为:Routh 判断得Routh 实验前由电子科技大学中山学院学生实验报告课程名称:自动控制原理实验系别:专业:机电工程学院班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步.将信号源单元的S”端插针与”端插针用“短路块”短接。

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法

判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式; 当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211>∆>=∆>=∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。

赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。

例;若已知系统的特征方程为0516188234=++++s s s s试判断系统是否稳定。

解:系统特征方程的各项系数均为正数。

根据特征方程,列写系统的赫尔维茨行列式。

5181016800518100168=∆由△得各阶子行列式;8690017281685181016801281811680884321>=∆=∆>==∆>==∆>==∆各阶子行列式都大于零,故系统稳定。

2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。

满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。

(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n----------B 、计算劳思表176131541213211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。

2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。

3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。

二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。

三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。

LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。

2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。

针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。

四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。

搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。

2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。

其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。

下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。

自动控制原理_线性系统时域响应分析

自动控制原理_线性系统时域响应分析

自动控制原理_线性系统时域响应分析1.线性系统时域响应概念线性系统是指其输入与输出之间存在线性关系的系统。

时域响应是指系统在时域上对不同输入信号的响应情况。

时域响应可以用系统的微分方程表示,也可以通过系统的冲激响应来表示。

2.常见的线性系统时域响应方法2.1零状态响应零状态响应是指系统在无初始条件下对输入信号的响应。

常用的分析方法有拉氏变换和复频域分析法。

拉氏变换法可以将微分方程转化为代数方程,从而得到系统的传递函数。

复频域分析法通过将时间域信号变换到复频域,进而进行频域分析。

2.2零输入响应零输入响应是指系统在只有初始条件而没有输入信号的情况下的响应。

常用分析方法有状态方程法和拉氏变换法。

状态方程法将系统表示为一组一阶微分方程的形式,通过求解状态方程可以得到系统的零输入响应。

拉氏变换法可以将初始条件转化为代数方程进行求解。

2.3总响应总响应是指系统在有输入信号和初始条件的情况下的响应。

常用分析方法有零输入响应法和零状态响应法。

零输入响应法通过去除输入信号的影响,只考虑系统的初始条件来求解系统的响应。

零状态响应法则相反,通过去除初始条件的影响,只考虑输入信号来求解系统的响应。

最后,将两者相加得到系统的总响应。

3.线性系统时域响应的应用线性系统时域响应的分析方法可以应用于各种实际工程问题中。

例如,可以通过时域响应分析来评估系统的稳定性、性能和抗干扰能力。

此外,时域响应分析也可以用于设计控制器和参数优化。

通过对系统的时域响应进行分析和改进,可以使得系统更加可靠、稳定和高效。

4.总结线性系统时域响应分析是自动控制原理中的重要内容,可以应用于各种实际工程问题中。

本文介绍了线性系统时域响应的概念、方法和应用。

时域响应的分析方法包括零状态响应、零输入响应和总响应分析,分别适用于不同的问题和要求。

了解和掌握线性系统时域响应分析方法对于设计和优化控制系统具有重要意义。

实验一典型环节的时域响应

实验一典型环节的时域响应

目录一、实验须知 0二、实验参考指南 (1)(一)模拟实验平台单元电路 (1)(二)虚拟仪器软件使用说明 (9)三、实验项目 (16)实验一典型环节的时域响应 (16)实验二典型系统的时域响应和稳定性分析 (22)实验三线性系统的根轨迹分析 (26)实验四线性系统的频率响应分析 (30)实验五线性系统的校正 (36)附录一对象整定的方法 (40)附录二模拟平台布局图 (41)一、实验须知1.实验中的设备、仪器、仪表都是国家财产,应该倍加爱护。

2.实验前一定做好预习,明确实验目的、内容,拟定好实验线路,操作步骤,并将这些内容写入预习报告,不写预习报告不准做实验。

3.实验准备就绪后,应该经指导老师检查无误后方可实验,不得擅自实验。

4.对于TD-ACC+系统来说,由于安装了高效开关电源,重新开启电源和上一次断开之间的时间应大于30s,因此不要过于频繁地开启设备电源。

若实验装置中有短路现象,系统电源将处于保护状态,并自动停止工作。

对于此种情况,应该立即将电源开关关闭,待短路故障排除后,重新开启电源开关就可。

5.实验中,同学之间应发扬团结、互助合作的集体主义思想,共同做好实验。

6.做完实验后,应将实验用的排线、锥线等收拾整齐,千万不要散乱地放在实验箱中,以免下次做实验引起短路。

做完实验后也应及时将箱盖合上,注意防尘,保持设备的整洁和完好。

7.实验结束后每位同学必须写出实验分析报告。

二、实验参考指南(一)模拟实验平台单元电路1.控制计算机扩展单元在做自动控制原理实验时,该单元不需要插控制计算机系统板,此时插座上各管脚没有实际意义,留作系统扩展用。

用户可根据需要选配i386EX 系统板或SST51 系统板,此时控制计算机单元的各信号线均具有实际意义,可支持基于80X86 的计算机控制技术或基于51 单片机的计算机控制技术实验教学,至于插座上的各管脚定义,在相应的系统板的用户手册中有详细的介绍。

2.信号源其原理见图2.1-1,图中画“○”的信号已以排针或锥孔引出,以下的各单元均如此。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学中山学院学生实验报告系别:机电工程学院专业:课程名称:自动控制原理实验
一、目的要求
1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备
PC机一台,TD—ACC教学实验系统一套
三、实验原理及内容
1.典型的二阶系统稳定性分析
(1) 结构框图:如图所示。


(2) 对应的模拟电路图:如图所示。


电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:
实验名称:实验时间:
学生成绩:教师签名:批改时间:
(3) 理论分析
系统开环传递函数为:
;开环增益:
(4) 实验内容
先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,
观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图,
系统闭环传递函数为:
其中自然振荡角频率:
2.典型的三阶系统稳定性分析
(1) 结构框图:如图所示。

电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:
实验名称:实验时间:
学生成绩:教师签名:批改时间:
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验
电子科技大学中山学院学生实验报告
系别:机电工程学院专业:课程名称:自动控制原理实验。

相关文档
最新文档