八年级上册分式专题讲义
新人教版数学八年级上册教案分式全章复习专题讲解
![新人教版数学八年级上册教案分式全章复习专题讲解](https://img.taocdn.com/s3/m/6f403d4033d4b14e8424685e.png)
abc abck 3
1 k3
。即原式=
1 或原式=-
8
1。
4、整体代换法 ? :在计算代数 ? 式求值问题 ? 时,有时可采用 ? 整体代
入法 ? ——即将条件等 ? 式(或变形后的 ? 条件式)整体代入求 ? 值,见例 4、
例 5。
第 2页共 2页
例 4、已知 1 1 1 , 1 1 1 , 1 1 1 ,求 abc 的值。
求代 ? 数式不易化 ? 简变形,当把代数式 ? 的分子、分母颠倒后 ? ,变形就容
易? 了,这样的问题 ? 通常采用倒 ? 数法(把分子、分母倒过来 ? )求值,见
例 1。
例 1、已知 x2
x x
1
7 ,求 x4
x2 x2
的值。
1
解:∵ x2
x x
1
2
7 ,∴ x≠ 0,∴ x x 1
x
1 ,即 x 1
既? 突出了代数 ? 式的运算、变换的基础 ? 知识和基本 ? 技能,又注重了数 ?
学的思想方 ? 法,在历年考试 ? 中是必考的 ? 重点内容之 ? 一,若能根据特 ?
点灵活选择 ? 解法,将会收到事 ? 半功倍的效 ? 果。
1、约分求值:分母或分子 ? 是多项式时 ? ,先把分子、分母因式分 ? 解后
到化繁为 ? 简。若一次性全 ? 面通分,计算量将非 ? 常大。我们在解题 ? 时既
要看到 ? 局部特征,又要有全面 ? 考虑。
计算: 1
1x
1 1x
2 1 x2
4 1 x4
解:原式
=
1
2 x2
2 1 x2
4 1 x4
4 1 x4
4 1 x4
8 1 x8
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册
![第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册](https://img.taocdn.com/s3/m/74f35aba0875f46527d3240c844769eae009a3ec.png)
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
八年级上册《分式》知识点归纳与总结上课讲义
![八年级上册《分式》知识点归纳与总结上课讲义](https://img.taocdn.com/s3/m/01d48969aeaad1f346933f8a.png)
八年级上册《分式》知识点归纳与总结主讲 王老师一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B 0≠)⑦分式值为-1:分子分母值互为相反数(A+B=0,0B ≠)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
第15章 分式的计算与化简求值 人教版八年级上册数学讲义
![第15章 分式的计算与化简求值 人教版八年级上册数学讲义](https://img.taocdn.com/s3/m/9d7c27ec2dc58bd63186bceb19e8b8f67c1cef6f.png)
第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。
八年级数学上册分式知识点
![八年级数学上册分式知识点](https://img.taocdn.com/s3/m/1ecad25b974bcf84b9d528ea81c758f5f61f299b.png)
八年级数学上册分式知识点在八年级数学上册中,学生将开始学习分式的概念和相关知识。
分式在数学中起着重要的作用,并广泛应用于各种实际问题的解决中。
下面将详细介绍八年级数学上册中与分式相关的知识点。
一、分式的定义和表示方式分式是指用横线将两个数连接起来形成的表达式,上面的数被称为分子,下面的数被称为分母。
分式的形式通常表示为a/b,其中a为整数,b为非零整数。
例如,2/3、5/4等都是分式的表示形式。
在分式中,分子和分母之间用分数线表示,分子位于分数线的上方,分母位于分数线的下方。
二、分式的基本性质1. 分式的值:分式所表示的值等于分子除以分母的结果。
例如,对于分式2/3,它的值为2除以3,即2/3。
2. 分式的约分与通分:分子和分母可以同时除以一个相同的非零数,使得分子和分母没有公约数,这个过程称为约分。
通分是指将两个或多个分式的分母变为相同的方式。
例如,分式1/4和1/2的通分结果为1/4和2/4,它们的分母相同。
3. 分式的乘法和除法:两个分式相乘时,分子乘以分子,分母乘以分母,得到的结果为新的分式。
例如,计算1/4乘以2/3,得到的结果为1/6。
当进行两个分式的除法运算时,将除法运算转化为乘法运算,将除法运算转化为乘法运算的倒数。
例如,计算1/4除以2/3,可以转化为1/4乘以3/2,结果为1/8。
4. 分式的加法和减法:两个分式相加时,需要找到它们的通分形式,然后将分子相加,分母保持不变。
例如,计算1/4加上1/2,通分得到2/8加上4/8,结果为6/8,可以约分为3/4。
当进行两个分式的减法运算时,同样需要找到它们的通分形式,然后将分子相减,分母保持不变。
例如,计算1/2减去1/4,通分得到2/4减去1/4,结果为1/4。
三、分式在实际问题中的应用分式在解决实际问题中起着重要的作用,在日常生活和学习中都有广泛的应用。
1. 分享物品:当多个人要平分一件物品时,可以使用分式来表示每个人得到的份额。
八上分式知识点总结
![八上分式知识点总结](https://img.taocdn.com/s3/m/b4533fed294ac850ad02de80d4d8d15abe2300b1.png)
八上分式知识点总结一、分式的定义1. 分式的基本概念分式是由分子和分母组成的数学式,通常表示为a/b的形式,其中a为分子,b为分母,a和b都是整数且b不等于0。
2. 分式的类型在分式中,分母不为1的分式称为真分式;分子大于或等于分母的分式称为假分式;分母为1的分式称为整式。
二、分式的化简分式的化简是指将分式的分子和分母约分为最简形式的过程。
分式化简的方法包括约分、通分、提公因式等。
1. 约分当分子和分母有公约数时,可以将其约去最大公约数,使分式化简为最简形式。
2. 通分对于两个分式,如果它们的分母不同,可以通过通分的方法将它们的分母变为相同的数,然后进行运算。
3. 提公因式当分式的分子和分母都是多项式时,可以通过提取公因式的方法将分式化简为最简形式。
三、分式的加减乘除1. 分式的加减分式的加减可以通过通分后合并分子的方法,先将分母变为相同的数,再将分子相加或相减得到最终结果。
2. 分式的乘法分式的乘法可以通过分子相乘、分母相乘的方法,将两个分式相乘得到最终结果。
3. 分式的除法分式的除法可以通过分子乘除、分母乘除的方法,将两个分式相除得到最终结果。
四、分式的应用1. 分式在数轴上的表示分式可以表示在数轴上的一个点或一个数值,例如1/2表示在数轴上的0点和1点之间的1/2处。
2. 分式的应用分式在代数方程中有着广泛的应用,可以表示未知数的比例关系或者部分和总和的关系,解决实际问题。
以上就是八年级分式的知识点总结,分式是数学中的一个重要概念,掌握分式的知识对于学习代数和解决实际问题具有重要的意义。
希望同学们能够认真学习和掌握分式的相关知识,提高数学应用能力。
八年级上册数学分式讲解
![八年级上册数学分式讲解](https://img.taocdn.com/s3/m/02fd6b62eef9aef8941ea76e58fafab068dc447f.png)
八年级上册数学分式讲解一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,并且B中含有字母,那么式子(A)/(B)叫做分式。
例如(x + 1)/(x),(1)/(x - y)等都是分式。
- 整式和分式统称为有理式。
整式是单项式和多项式的统称,像3x,x^2+2x + 1等是整式,而分式是分母中含有字母的式子。
2. 分式有意义的条件。
- 分式的分母不能为0。
例如对于分式(1)/(x),当x = 0时,分式无意义;当x≠0时,分式有意义。
- 对于分式(x+1)/(x - 2),要使其有意义,则x-2≠0,即x≠2。
二、分式的基本性质。
1. 性质内容。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
- 例如:(2)/(3)=(2× 2)/(3× 2)=(4)/(6),对于分式(x)/(x + 1),(x)/(x + 1)=(x×2)/((x + 1)× 2)=(2x)/(2x+2)(x≠ - 1)。
2. 约分。
- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
- 步骤:- 首先找出分子分母的公因式。
例如对于分式frac{6x^2y}{9xy^2},分子6x^2y = 2×3× x× x× y,分母9xy^2=3×3× x× y× y,公因式为3xy。
- 然后将分子分母同时除以公因式,得到frac{6x^2y}{9xy^2}=(2x)/(3y)。
3. 通分。
- 定义:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
- 步骤:- 先确定最简公分母。
初中数学 人教版八年级上册分式的化简 求值 与证明讲义
![初中数学 人教版八年级上册分式的化简 求值 与证明讲义](https://img.taocdn.com/s3/m/52fe297fdd36a32d737581a5.png)
分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。
八年级上册数学第十五章 分式 知识点总结
![八年级上册数学第十五章 分式 知识点总结](https://img.taocdn.com/s3/m/f26f666b842458fb770bf78a6529647d272834b0.png)
b 第十五章 分式一、知识框架 :二、知识概念:1. 分式:形如 A , A 、B 是整式, B 中含有字母且 B 不等于 0 的整式叫做分式.其中 A 叫做分式的分B子, B 叫做分式的分母.2. 分式有意义的条件:分母不等于 0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变.4. 约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分.5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: a ± b = a ± b c c c⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a ± c = ad ± cbb d bd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: a ⨯ c = ac b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为: a ÷ c = a ⨯ d = ad b d b c bc⎛ a ⎫n⑸分式的乘方法则:分子、分母分别乘方.用字母表示为: ⎪ ⎝ ⎭ = a nb n8. 整数指数幂:b ⑴ a m ⨯ a n = a m +n ( m 、n 是正整数)⑵(a m )n= a mn ( m 、n 是正整数) ⑶(ab )n= a n b n ( n 是正整数)⑷ a m ÷ a n = a m -n ( a ≠ 0 , m 、n 是正整数, m > n )⎛ a ⎫n ⑸ ⎪ ⎝ ⎭ a n b n ( n 是正整数) ⑹ a -n = 1 an ( a ≠ 0 ,n 是正整数) 9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10. 分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化 为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).=。
八年级数学上册分式混合运算(讲义及答案)(人教版)
![八年级数学上册分式混合运算(讲义及答案)(人教版)](https://img.taocdn.com/s3/m/f91c326b0b4c2e3f57276365.png)
②
1
③
ab
当 a=1, b=1 时,原式 =1.
④
以上过程有两处错误,第一次出错在第
______步(填写序号) ,原因:
____________________________________________;_
还有第 _______步出错(填写序号) ,原因:
__________________________________________________._
x 2; 2x
11
x
(2) x1 x1
2x2
; 2
(3) 1
4 a2 4
a; a2
第1页 共7页
(4) a 3a 4 1 1 ;
a3
a2
(5) x 1 3
x2 4x 4 ;
x1
x1
(6) a a
1 1
a a2 2a 1
1. a
2. 化简求值:
第2页 共7页
(1)先化简,再求值:
x2 1 1 x x2 2x 1 x 1
请你写出此题的正确解答过程.
4. 课堂上,王老师出了这样一道题:
已知 x
2 015
5
3 ,求代数式
x2 2x 1 x2 1
1 x 3 的值. x1
小明觉得直接代入计算太复杂了, 同学小刚帮他解决了问题, 并解释说:“结
果与 x 无关”.解答过程如下:
第5页 共7页
x ,其中 x=3. x1
( 2)先化简,再求值:
b2 a2
a2 ab
a 2 1, b 2 1.
2ab b2 a
a
1 1 ,其中 ab
( 3)先化简分式 x
精品 八年级数学上册 分式同步讲义 分式的综合运算练习题
![精品 八年级数学上册 分式同步讲义 分式的综合运算练习题](https://img.taocdn.com/s3/m/73a74b7f01f69e31433294aa.png)
分式的综合运算
知识点: 分式的乘法公式: 分式的除法公式: 最简分式:
1 a =
1 a n =
分式乘方公式: 分式通分定义: 根据分式的基本性质, 把几个异分母的分式分别化成与原来的分式相等的同分母的分式, 叫做分式的通分。 (2)通分的关键是确定几个分式的公分母。 (3)取各分母所有因式的最高次幂的积作公分母,这样的公分母,叫做最简公分母。 确定公分母时应注意: (1)系数取 ; (2)字母或因式取 。 (3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面; (4)分母是多项式时一般需先 . 异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减.用式子表示为:
八年级数学上册 同步讲义
17.计算下列各题:
4 2ab 3 ÷ 6a 3c (1)
2
3
c2d
b3
2 b
2 (2) a 1
a2 a 2 4a 4 2 2 a 4 a 2a 1 a 1
(3)
x 2 xy xy ( x y) 2 2 x xy y xy
1 c
1 a
1 c
1 a
1 b
第 2 页 共 6 页Fra bibliotek八年级数学上册 同步讲义
课堂练习: 1.下列分式,对于任意的 x 值总有意义的是( A. x 5 x 2 1 B. x 1
x2 1
)
2 C. x 1 8x
D. 2 x
3x 2
2.已知分式 ( x 1)( x 3) 有意义,则 x 的取值为( ( x 1)( x 3) A.x≠-1 B.x≠3
人教版数学 八年级上 第十五章 《分式》精品讲义
![人教版数学 八年级上 第十五章 《分式》精品讲义](https://img.taocdn.com/s3/m/9861e745dd88d0d232d46a5e.png)
所以 x2 y2 z2 0. yz zx xy
【解读策略】 条件分式的求值,如需把已知条件或所示条件分式变形,必 须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现 了整体的数学思想和转化的数学思想.
所以 (x
xyz y)( y z)(x
z)
2k k 3k 3k 4k 5k
6k 3 60k 3
1 10
.
例6 已知 x a, z c, 且 abc o ,求 a b c 的值.
yz xy
a 1 b1 c 1
解: 由已知得 1 y z , ax
所以 1 1 y z 1 x y z , 即 a 1 x y z ,
同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分
子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性
质化为最简形式.
专题 2 有关求分式值的问题
【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化
简,然后将字母的值代入,求出分式的值.但对于分式的求值问题,却没有直接给
知识网络结构图
分式的概念
分式的概念 分式的意义、无意义的条件
分式的值为 0 的条件
分式的基本性质
分式的基本性质 分式的约分
分式的通分
分式的乘法规则
分式的除法规则
分式
同分母分式的加减法法则
分式的运算 分式的加减法法则
异分母分式的加减法法则
运算性质
负正数指数幂
科学记数法
公式方程的概念
解分式方程的步骤
分式方程 分式方程中使最简公分母为 0 的解
人教版-数学-八年级上册-《分式》精品讲义
![人教版-数学-八年级上册-《分式》精品讲义](https://img.taocdn.com/s3/m/9cdf1ea6fc4ffe473268ab6b.png)
第十五章分式本章小结小结1 本章概述本章在已学过的分数的基础上引入了分式的概述,用类比的方法探究分式的基本性质,在熟练掌握分式的基本性质的基础上,会进行分式的约分、通分和分式的加、减、乘、除、乖方运算,会解可化为一元一次方程的分式方程,会检验分式方程的根.小结2 本章学习重难点【本章重点】了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会会方程是刻画现实世界的一个有效的数学模型;会解简单的可化为一元一次方程的分式方程.【本章难点】应用分式方程解决实际问题.小结3 中考透视本章内容在中考中主要考查判断分式有无意义,分式值为零的条件的应用,用分式基本性质进行变形,分式运算及分式的化简求值,常与实际问题结合起来命题,题型以解答题为主.知识网络结构图分式的概念分式的概念 分式的意义、无意义的条件分式的值为0的条件分式的基本性质分式的基本性质 分式的约分 分式的通分 分式的乘法规则分式的除法规则分式 同分母分式的加减法法则分式的运算 分式的加减法法则异分母分式的加减法法则运算性质负正数指数幂科学记数法公式方程的概念 解分式方程的步骤分式方程 分式方程中使最简公分母为0的解列分式方程应用题的步骤专题总结及应用一、识性专题专题1 分式基本性质的应用【专题解读】分式的基本性质是分式的化简、计算的主要依据.只有掌握好分式的基本性质,才能更好地解决问题.例1 化简(1)2610xy x ; (2) 21xy yx --; 解:(1)26233.10255xy x y yx x x x==(2)2(1)1(1)(1)1xy y y x yx x x x --==-+-+. 【解题策略】化简一个分式时,主要是根据分式的基本性质,把分式的分子与分母同时除以它们的公因式,当分式的分子或分母是多项式时,能分解因式的一定要分解因式.例2 计算2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪---+⎭⎭⎝⎝ 解:2312212422a a a a ⎛⎛⎫⎫+÷-⎪⎪---+⎭⎭⎝⎝3(2)122(2)2(2)(2)(2)(2)(2)(2)(2)(2)3186(2)(2)(2)(2)3.a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤++-=+÷-⎢⎥⎢⎥+-+-+-+-⎣⎦⎣⎦++=÷+-+-= 【解题策略】异分母分式相加减,先根据分式的基本性质进行通分,转化为同分母分式,再进行相加减.在通分时,先确定最简公分母,然后将各分式的分子、分母都乘以分母与最简公分母所差的因式.运算的结果应根据分式的基本性质化为最简形式.专题2 有关求分式值的问题【专题解读】对于一个分式,如果给出其中字母的值,可以先将分式进行化简,然后将字母的值代入,求出分式的值.但对于分式的求值问题,却没有直接给出其中字母的值,而只是给出其中的字母所满足的条件,这样的问题复杂,需根据其转点采用相应的方法.例3 已知13x x+=,求2421x x x -+的值.解: 因为0x ≠,所以用2x 除所求分式的分子、分母. 原式22221111113361()21x x x x====--++--. 例4 已知22230x xy y --=,且x y ≠-,求2x x y x y--的值.解: 因为22230x xy y --=, 所以()(23)0,x y x y +-=所以0x y +=或230x y +=,又因为x y ≠-,所以0x y +≠,所以230x y -=,所以2,3y x = 所以223.2727323333x x x x x x x x x y x x yx x ====------- 例5 已知345,x y y z z x ==+++求()()()xyzx y y z x z +++的值. 解: 设3451,x y y z z x k===+++ 则3,4,5,x y k y z k z x k +=+=+= 解得x =2k ,y =k ,z =3k ,所以332361()()(3456010xyz k k k k x y y z x z k k k k ===+++).例6 已知,,x z a c y z x y ==++且abc o ≠,求111a b c a b c +++++的值. 解: 由已知得1,y za x+= 所以111,y z x y z a x x ++++=+=即1a x y z a x+++=, 所以1a xa x y z=+++, 同理,,11b y c z b x y z c x y z==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z++++=++==+++++++++++. 例7 已知1,x y zy z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 解: 因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++) 即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y ++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y +++++=+++++ 所以2220.x y z y z z x x y++=+++ 【解读策略】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.例8 已知,345x y z==求23x y x y z +-+的值. 分析 根据已知条件,可把,,x y z 用含有一个字母的代数式表示出来,再分别代入到所求式子中化简即可.解: 设,345x y zk ===则3,4,5x k y k z k ===. 所以34773324351010x y k k k x zy z k k k k ++===-+-⨯+⨯.【解题策略】 当代数式中的字母的比值是常数时,一般情况下都采用这种方法求分式的值.例9 已知,a b b c a c k c a b +++===求21kk +的值. 分析 只要求出k 的值就可以了,由已知条件可得,,,a b ck b c ak a c bk +=+=+=将这三个等式可加后得到2()()a b c k a b c ++=++,再通过讨论得到k 的值.解: 由已知到,,a b ck b c ak a c bk +=+=+=.三式相加得2()(),a b c k a b c ++=++即(2)()0k a b c -++=, 所以20k -=,或0a b c ++=. 即2k =,或0a b c ++=.当0a b c ++=时,a b c +=-,此时1,a bc+=-即1k =-. 所以2k =,或1k =-. 当2k =时,2222;1215k k ==++ 当1k =-时,22111(1)12k k -==-+-+. 【解题策略】在得到2()(),a b c k a b c ++=++时,因为a b c ++可以等于零,所以两边不能同时除以a b c ++,否则分丢解,应进行整理,用分解因式来解决.例10 已知111,a b a b +=+求b a a b+的值. 分析 观察已知条件和所示的分式,可将它们分别进行整理,从中得到某种关系,然后求值.解: 由111,a b a b +=+得1,a b ab a b+=+ 所以2(),a b ab +=即22a b ab +=-.所以221b a a b aba b ab ab+-+===-. 例11 已知14x x+=,求下列各式的值. (1)221x x+; (2)2421x x x ++. 分析 观察(1)和已知条件可知,将已知等式两边分别平方再整理,即可求出(1)的值;对于(2),直接求值很困难,根据其特点和已知条件,能够求出其倒数的值,这样便可求出(2)的值.解: (1)因为14x x +=,所以2214x x ⎛⎫+= ⎪⎝⎭.即221216x x ++=.所以22114x x+=. (2)4242222222111114115x x x x x x x x x x ++=++=++=+=, 所以2421115x x x =++.32430a -⨯+=专题3 与增根有关的问题 例12 如果方程11322xx x-+=--有增根, 那么增根是 . 分析 因为增根是使分式的分母为零的根,由分母20x -=或20x -=可得2x =.所以增根是2x =.答案: 2x =例13 若关于x 的方程2403x x ax -+=-有增根, 则a 的值为 ( ) A.13 B. –11 C. 9 D.3分析 因为所给的关于x 的方程有增根,即有30x -=, 所以增根是3x =.而3x =一定是整式240x x a -+=的根, 将其代入得32430a -⨯+=,所以3x =.答案: D例14 a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 分析 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.解: 方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x +=- 整理得(1)10a x -=-. 当a = 1 时,方程无解. 当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 . 所以当4a =-或a = 6原方程会产生增根. 专题4 利用分式方程解应用题【专题探究】 列分式方程解应用题不同于列整式方程解应用题.检验时,不仅要检验所得的解是否为分式方程的解,还要检验此解是否符合题意.例15 在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息.信息1:甲班共捐款300 元, 乙班共挡捐款232 元. 信息2: 乙班平均每人捐款钱数是甲班平均每人捐款钱数的45. 信息3 : 甲班比乙班多2人.请根据以上三条信息,求出甲班平均每人捐款多少元. 解: 设甲班平均每人捐款x 元,则乙班平均每人捐款45x 元. 根据题意, 得300232245x x =+,解这个方程得5x =. 经体验,5x =是原方程解.例16 (08·山西) 某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第二批进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少?(2)若商店销售这两批书包,每个售价都是120元,全部售出生,商店共盈利多少元? 分析 设第一反批购进书包的单价为x 元,则第二批购进的书包的单价为(4)x +,第一批购进书包2000x 个,第二批购进书包63004x +个.解: 设第一批购进书包的单价为x 元. 依题意,得2000630034x x ⨯=+, 整理,得20(4)21x x +=, 解得80x =. 答: 第一批购进书包的单价为80元. 解法1: (2)20006300(12080)(12084)1000270037008084⨯-+⨯-=+=(元). 答: 商店共盈利3700元. 解法2 :2000(13)120(20006300)120008300370080⨯+⨯-+=-=(元) 答: 商店共盈利3700元. 二、规律方法专题专题5 分式运算的常用讨巧(1)顺序可加法.有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很烦琐.如果先把两个分式相加减,把所提结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法,当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法.对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n=-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法.有些分式的分子.、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.例17 化简324 11241111x x x x x x+++-+++解: 原式=33 222422411242241111111 x x x x x x x x x x x x x x+-+++=++-+++-++ 2233322444343474482(1)2(1)444(1)(1)1114(1)4(1)8.(1)(1)1x x x x x x xx x x x xx x x x xx x x++-=+=+-++-+++-==-+-例18 计算422aa-++.解:原式24(2)(2)41222 a a aa a a-+-=+=++++2(2)(2)422a a aa a+-+==++例19 计算3211x x x x +-+-. 解:原式3232(1)(1)1111x x x x x x x x x x -++=++-=---- 331111x x x x --==---.例20 计算1111.(1)(1)(2)(2)(3)(2005)(2006)a a a a a a a a +++++++++++解: 原式111111111122320052006a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+--++-⎪ ⎪⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭⎝⎭21111111111223200520061120062006(2006)(2006)2006.2006a a a a a a a a a a a a a a a a a a=---+-++-+++++++=-++=-++=+【解题策略】要注意裂项法解分式是,常用分式111(1)1n n n n =-++.例21 计算22221111.23243x x x x x x x x x +--+++++++ 解: 原式22221111322143x x x x x x x x ⎛⎫⎛⎫=-+-⎪ ⎪+++++++⎝⎭⎝⎭2222221111(1)(1)(2)(1)(1)(3)(2)(3)(1)(1)(2)(1)(3)22(1)(2)(1)(3)2(1)(3)2(2)(1)(2)(3)2(263).(1)(2)(3)x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥++++++⎣⎦⎣⎦+-+-+=+++++=++++++++=+++++=+++ 例22已知x =求2111.242x x x +-+-- 解: 原式222111(2)(2)122444x x x x x x x --+=-+=++---- 222413444x x x --=+=---.当x =原式2== 例23 计算22223652.3256x x x x x x x x ++++-++++ 解: 原式2244113256x x x x ⎛⎫⎛⎫=+-- ⎪ ⎪++++⎝⎭⎝⎭ 2244325644(1)(2)(2)(3)4(3)4(1)(1)(2)(3)(2)(3)(1)816(1)(2)(3)8.(1)(3)x x x x x x x x x x x x x x x x x x x x x x =+++++=+++++++=++++++++=+++=++ 例24 已知271x x x =-+,求2421x x x ++的值. 解: 因为 271x x x =-+,所以0a ≠,所以 2117x x x -+=,即187x x +=, 所以 242222111151149x x x x x x x ++⎛⎫=++=+-= ⎪⎝⎭所以 24215149x x x =++. 【解题策略】在求代数式的值时,有时所给条件或所求代数式不易化简变形,当把代数式的分子、分母颠倒后,变形就容易了,这样的问题通常采用倒数法(把分子、分母倒过来)求值.例25 已知2510x x -+=和0x ≠,求441x x +的值. 解: 由2510x x -+= 和0x ≠ ,提15x x+=, 所以24242112x x x x ⎛⎫+=+- ⎪⎝⎭ 2222122(52)2527x x ⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--=【解题策略】 若能对分式进行熟练的变形运用,可给解题带来极大的方便.例26 已知,b c c a a b a b c +++==求()()()abc a b b c c a +++的值. 解: 设b c c a a b k a b c+++===, 所以,,b c ak c a bk a b ck +=+=+=所以,b c c a a b ak bk ck +++++=++所以2()(),()(2)0,a b c k a b c a b c k ++=++++-=即2k =或()0,a b c ++=当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-.即所求代数式等于18或1-. 【解题策略】当已知条件以此等式出现时,可用设k 法求解.例27 已知111111111,,,6915a b b c a c +=+=+=求abc ab bc ac++的值. 解:因为 111111111,,,6915a b b c a c +=+=+= 各式可加得1111112,6915a b c ⎛⎫++⨯=++⎪⎝⎭ 所以11131180a b c ++=, 所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b÷===++++÷++ 例28 若4360,27,x y z x y z --=+-求232232522310x y z x y z----的值. 分析 消元法首选方法,即把其中一个未知数视为常量.解:以x, y 为主元,将已知两等式化为所以原式222222592413293410z z z z z z⨯+⨯-==-⨯-⨯-. 三、思想方法专题专题6 整体思想【专题解读】在进行分式运算时要重视括号的作用,即在计算时括号内的部分是一个整体,另外在分式的运算以及解方程时要注意符号的作用.例29 (08·宜滨) 请先将下列代数式化简,再选择一个你喜欢又使原式有意义和数代入求值.21111121a a a a a -⎛⎫-÷ ⎪---+⎝⎭分析 先化简,再代入使10a -≠的数a 求值.436,27,x y z x y z -=+=所以3,2,x y y z ==解原式22111(1)(1)111(1)1a a a a a a a a a --⎛⎫-÷=+=- ⎪--+-⎝⎭. 取10a =,则原式= 9 .【解题策略】将1化为11a a --进行减法运算,计算时要注意分子1a -是一个整体.。
八年级上册第十五章-分式知识梳理
![八年级上册第十五章-分式知识梳理](https://img.taocdn.com/s3/m/d2f308da58fafab068dc02a4.png)
八年级数学第十五章--分式知识梳理知识点一、分式1、一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子 叫做分式。
分式 中,A 叫做分子,B 叫做分母。
2、分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式 才有意义。
3、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
即: 其中A,B,C 是整式。
4、根据分式的基本性质,把一个分式的分子与分母的公因式约分,叫做分式的约分。
经过约分后的分式,分子与分母没有公因式的分式,叫做最简分式。
5、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
6、通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母知识点二、分式的运算7、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母即 8、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即 9、分式乘方要把分子、分母分别乘方。
即 10、同分母分式相加减,分母不变,把分子相加减。
即 cb ac b c a ±=± 11、异分母分式相加减,先通分,变为同分母的分式,再加减。
即 12、一般地,当n 是正整数时,B A B A B A CB C A B A ⋅⋅=)0(≠÷÷=C C B C A B A db c a d c b a ⋅⋅=⋅cb d acd b a d c b a ⋅⋅=⨯=÷n n n b a b a =⎪⎭⎫ ⎝⎛bdbc ad bd bc bd ad d c b a +=±=±)0(1≠=-a a a n n nn b a a b )(=-)(知识点三、分式方程13、分母中含有未知数的方程叫做分式方程14、解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母。
人教版八年级上册 第15章 分式 讲义
![人教版八年级上册 第15章 分式 讲义](https://img.taocdn.com/s3/m/6eeb7500fab069dc5122017a.png)
分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开. 与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
一、分式的基本概念【例1】 在下列代数式中,哪些是分式?哪些是整式?【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A.1个 B.1个 C.1个 D.1个练习: 下列代数式中:yx y x y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: . 二、分式有意义的条件【例3】 求下列分式有意义的条件:【例4】 ⑴x 为何值时,分式1111x++有意义? ⑵要使分式241312a a a -++没有意义,求a 的值. 【例5】 x 为何值时,分式1122x ++有意义? x 为何值时,分式1122x x+-+有意义? 【例6】 若分式25011250x x-++有意义,则x ;若分式25011250x x-++无意义,则x ; 【例7】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ; ⑵ 若分式216(3)(4)x x x --+无意义,则x ; 练习:当x 有何值时,下列分式有意义1、(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)xx 11- 2、要使分式23x x -有意义,则x 须满足的条件为 .3、若33a a -有意义,则33a a -( ). A. 无意义 B. 有意义 C. 值为0 D. 以上答案都不对4、x 为何值时,分式29113x x-++有意义? 三、分式值为零的条件【例8】 当x 为何值时,下列分式的值为0? ⑸2231x x x +-- ⑹2242x x x-+ (7)4|1|5+--x x (8)223(1)(2)x x x x --++ 【例9】 如果分式2321x x x -+-的值是零,那么x 的取值是 . 【例10】 x 为何值时,分式29113x x-++分式值为零? 练习:1、若分式41x x +-的值为0,则x 的值为 . 2、当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x (4)562522+--x x x(5)213x x -+ (6)2656x x x --- (7)221634x x x -+- (8)288x x + (9)2225(5)x x -- (10)(8)(1)1x x x -+- 四、关于分式方程的增根与无解它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下: 解方程2344222+=---x x x x解方程22321++-=+-xx x x . 例3若方程32x x --=2m x-无解,则m=——. (1)当a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根 (2)若将此题“会产生增根”改为“无解”,即:a 为何值时,关于x 的方程223242ax x x x +=--+无解? 练习: 1、当k 为何值时,方程x x k x --=-133会出现增根? 2、已知分式方程3312x ax x +++=有增根,求a 的值。
八年级数学分式讲义
![八年级数学分式讲义](https://img.taocdn.com/s3/m/e55572a35fbfc77da369b125.png)
八年级数学分式讲义 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式一、从分数到分式:(1).分式定义:一般地,形如A B的式子叫做分式,其中A 和B 均为整式,B 中含有字母。
整式和分式称为有理式。
注意:判断代数式是否是分式时不需要化简。
例:下列各式πa ,11x +,15x y +,22a b a b --,23x -,0•中,是分式的有___ ________;是整式的有_____ ______;是有理式的有___ ______.练习:1.下列各式:①312-x ;②x x 22;③21x ;④πv .其中分式有 。
2.在代数式m 1,41,xy y x 22,y x +2,32a a +中,分式的个数是 。
(2)分式有意义的条件:分母不等于0.例:下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-. 练习:1.当___________________时,分式)2)(1(--x x x 有意义. 2.当____________________时,分式2)2(--x x x 无意义. 3.当m____________时,分式m m 4127-+有意义. 4.下列各式中,不论字母x 取何值时分式都有意义的是( ) A.121+x B.15.01+x C.231x x - D.12352++x x 5.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 7.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±8.应用题:一项工程,甲队独做需a 天完成,乙队独做需b 天完成,问甲、乙两队合作,需________天完成.(3)分式的值为0:分子等于0,分母不等于0例:1.当x=____________时,分式x xx -2的值为0,2.当x _______时,分式2212x x x -+-的值为零.3.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负.4.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++练习:1.分式24xx -,当x _______时,分式有意义;当x _______时,分式的值为零.2.若分式34922+--x x x 的值为零,则x 的值为3.当m =________时,分式2(1)(3)32m m m m ---+的值为零.4.若分式23x x -的值为负,则x 的取值是( )A.x <3且x≠0B.x >3C.x <3D.x >-3且x≠05.分式31x ax +-中,当x a =-时,下列结论正确的是( )A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零;D .若13a ≠时,分式的值为零6.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++7.已知123x y x -=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.8.若分式212xx -+的值是正数、负数、0时,求x 的取值范围.9.已知34=y x ,求2222532253yxy x y xy x -++-的值. 10.已知13x y 1-=,求5352x xy y x xy y +---的值.二、分式的基本性质:分式的分子或分母同时乘以或除以一个不等于0的整式,分式的值不变。
八年级上数学-专题讲义-分式与分式方程综合
![八年级上数学-专题讲义-分式与分式方程综合](https://img.taocdn.com/s3/m/a3d0eab4f111f18583d05ae8.png)
分式与分式方程综合利用方程,不等式,双变量关系式,最值等 对信息综合分析能力的考察 例:(18年八上)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成。
(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工。
已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成。
当施工费用最低时,甲、乙各施工了多少个月?熟悉期末考试中应用题的考察方式和目的,进一步培养利用方程,不等式,双变量关系式,最值综合分析的能力。
给约束解的条件,求参数受到的约束(通常是求参数范围)例:(18年八上期末改)若关于X 的分式方程 k+2x−1=3的解为非负数,则k 的取值范围为针对练:关于X 的分式方程xx x k 41312+-=-+ (1)若方程的解为非负数,则正整数K 的值为 ____________; (2) 若方程的解为整数,则k 的取值为________ .回顾·提问教学目标微专题1之分类讨论例:对于两个不相等的实数a,b ,我们规定{}b a Min ,表示a,b 中的较小值,若a,b 相等时,则任取其一,如:{}1-4,1-=Min ,则方程{}131,1-=+-+x x x Min 的解为_____________变式:对于三个实数a,b,c,我们规定MMM {a,b,c }表示将a,b,c 三个数由小到大排列,处于中间位置的数,如Mid{2,3,4}=3 ,Mid{2,2,4}=2,按照这个规定方程 Mid {x,1−x,x+9}x=2 的解是_______之代数变形技巧例:已知x −1x =a, 则2x 24−x 2+4x 4=__________ (用含a 的代数式表示结果)针对练:已知x +1x =3,则______232242=+-x x x ; _______3532242=+-x x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册分式专题讲义一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式.例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0中,是分式的有______个二、 分式有意义的条件是分母不为零:(B ≠0) 分式没有意义的条件是分母等于零.( B=0 )分式值为零的条件分子为零且分母不为零.( B ≠0且A=0,即分子零分母不零 )例1.下列分式,当x 取何值时有意义.(1)2132x x ++ (2)2323x x +-练习1.当x______时,分式2134x x +-无意义,当x_______时,分式2212x x x -+-的值为零.练习2.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x +中考链接:(2007昆明,10,3分)当x ≠________时,分式13x -有意义. (2014昆明,12,3分)要使分式101-x 有意义,则x 的取值范围是 .三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变.(C ≠0) (C ≠0)四、分式的通分和约分:关键是因式分解 分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.如果一个分式中没有可约的因式,则为最简分式.步骤:把分式分子分母因式分解,然后约去分子与分母的公因式.注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂.②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分.分式的通分定义:根据分式的基本性质,把几个异分母的分式分别化成同分母分式(分式值不变).步骤:分式的通分最主要的步骤是最简公分母的确定.最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.确定最简公分母的一般步骤: ①取各分母系数的最小公倍数;②单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; ③相同字母(或含有字母的式子)的幂的因式取指数最大的; ④保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取; 注意:分式的分母为多项式时,一般应先因式分解.C B CA B A ⋅⋅=C B C A B A ÷÷=例1.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有 个.练习1.约分:(1)22699x x x ++- (2)2232m m m m -+-练习2.通分:(1)26x ab ,29y a bc(2)2121a a a -++,261a -例2.已知1x -1y =3,求5352x xy yx xy y+---的值.五、分式的运算分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.分式乘方法则:分式乘方要把分子、分母分别乘方.bcad c d b a d c b a =⋅=÷分式的加减法则:同分母的分式相加减,分母不变,把分子相加减.异分母的分式相加减,先通分,变为同分母分式,然后再加减.c b a c b c a +=± bd bc ad bd bc bd ad d c b a +=±=± 混合运算:运算顺序和以前一样.能用运算率简算的可用运算率简算.bd ac d c b a =⋅n nn ba b a =)(例1.当分式211x --21x +-11x -的值等于零时,则x=_________.练习1.已知a+b=3,ab=1,则a b +ba的值等于_______.例2.计算:222x x x +--2144x x x --+练习2.计算:21x x --x-1练习3.先化简,再求值:3a a --263a a a +-+3a,其中a=32练习4.计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2练习5.计算a-b+22b a b+得( )A .22a b b a b -++B .a+bC .22a b a b ++D .a-b中考链接:(2009昆明,17改编,6分)化简,求值:x 6)1x 11x 1(x 3x 3÷+--⋅+,其中x =23(2010昆明,12,3分)化简:1(1)1a a -÷=+(2011昆明,13,3分)计算:2()ab a ba ab a b++÷--错误!未找到引用源。
=(2014昆明,17,5分)先化简,再求值:1)11(22-⋅+a a a ,其中3=a(2015昆明,12,3分)计算:=---+222223b a ab a b a六、任何一个不等于零的数的零次幂等于1,即 :a 0=1( a ≠0 )当n 为正整数时,n naa1=-( a ≠0 ) 例1.计算:10123)326(34--⎪⎭⎫⎝⎛⋅-⋅-例2.若25102=x ,则x -10等于( )A.51-B.51C.501D.6251练习1.若31=+-a a ,则22-+a a 等于( ) A. 9 B. 1 C. 7 D. 11中考链接:(2009昆明,16,5分) (2009×2008-1)0+(-2)-1(2010昆明,16,5分) 1021()320104-----+(2011昆明, 16,5分)1020111()1)(1)2--+-(2012昆明, 3,3分) 判断正误:B.236-=- D.01=4(2013昆明,15,5分)计算:︒-+-+--30sin 2)31()1()12(120130(2014昆明,15,5分)计算:︒-+-+-45cos 221)3(|2|10)(π(2015昆明,15,5分)计算:()()2201521619-⎪⎭⎫ ⎝⎛---+-+π七、正整数指数幂运算性质也可以推广到整数指数幂(m,n 是整数)(1)同底数的幂的乘法:nm nma a a +=⋅;(2)幂的乘方:mnn m a a =)(;(3)积的乘方:n n nb a ab =)(;(4)同底数的幂的除法:n m n ma a a -=÷( a ≠0);(5)商的乘方:n nn ba b a =)((b ≠0);(2009昆明,5,3分) 判断正误: D .(-nm)2=n 2m 2(2010昆明,7,3分) 判断正误: D .2236()(0)a a a=≠八、科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.1、用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n .2、用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0).例1.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,3000000用科学记数法表示是___________.练习1.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示0.000000052为_________.九、分式方程:分母中含未知数的方程——分式方程1、解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整 式方程.2、解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因 此分式方程一定要验根.3、解分式方程的步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去.(4)写出原方程的根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根. 4、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的 解是原分式方程的解;否则,这个解不是原分式方程的解.例1.解方程 (1)623-=x x (2)1613122-=-++x x x (3)01152=+-+x x (4)x x x 38741836---=-中考链接:(2009昆明,12,3分)分式方程 2x -3+1=0的解是 .(2011昆明,17,3分)解方程:31122x x+=--错误!未找到引用源。
十、分式应用题(一)步骤(1)审:分析题意,找出研究对象,建立等量关系;(2)设:选择恰当的未知数,注意单位;(3)列:根据等量关系正确列出方程;(4)解:认真仔细;(5)检:不要忘记检验;(6)答:不要忘记(二)应用题的几种类型:1、工程问题基本公式:工作量=工作时间×工作效率.没有明确的工作总量时另工作总量为1例1.某车间加工1200个零件后,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?练习1.某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?例2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?中考链接:(2010昆明,23,7分)去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米?(2015昆明,21,6分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路米;(2)求原计划每小时抢修道路多少米.2、行程问题基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题、顺水逆水问题等。