第4章 机械振动 湘潭大学 大学物理 期末复习
大学物理 第4章机械振动(完全版)
注意:研究简谐振动时,坐标原点只能取在平衡位置。
平衡位置: k
F
外
0, 或 M外 0
o (原长) (平衡位置)
m
x
21
4.4简谐振动的能量 x =Acos( t+ ) =- Asin( t+ )
振动势能: E p 振动动能:Ek
1 2 1 kx
2
k
o (原长) (平衡位置)
m
o (原长) (平衡位置) x
o
x
xo (平衡位置)
(原长)
m
1 2 kx
2
Ep
弹
E p振
E p振 E p弹 1 2
1 2
kx
2
k ( xo x)
2
24
例题如图,有一光滑水平面上的弹簧振子,弹簧的 倔强系数k=24N/m, 物体的质量m=6kg, 静止在平衡位 置。设以一水平恒力F=10N向左作用于物体,使之由 平衡位置向左运动了s=0.05m, 此时撤去外力F。取物 体运动到左方最远处开始计时,求:(1)物体的运动方 程; (2)何处Ek=Ep? 解 (1) k
质点的简谐振动状态由下面两个物理量确定: x =Acos( t+ )
dx dt
A sin( t )
显然,它们由相位唯一确定。
5
五 .振动的超前与落后
设有两个同频率的谐振动: x1=A1cos( t+1) x2=A2cos( t+2) 振动x2超前x1(2 -1) ; >0, =0, 振动x2和x1同相 ; 相差 =2 -1 <0, 振动x2落后x1(2 -1) ; =, 振动x2和x1反相 。
机械振动复习提纲
1、组成振动系统的三个基本元件:质量、弹簧、阻尼。
振动现象(简谐运动)三要素:振幅、频率、初相位。
其中强调频率为0并不代表振动函数为0,只是表示其未振动,没有振荡特性,图线是一根直线而已。
(P9)2、振动问题分类:已知系统模型、外载荷、求系统响应,称为响应计算或正问题;已知外载荷响应,求系统特性,称为系统识别或参数识别,也称为第一类逆问题;已知系统特性响应求载荷称为载荷识别,也称为第二类逆问题。
(P3-P4)3、单(多)自由度线性振动系统运动方程由二阶常系数微分方程(组)表示,且自由振动问题由齐次方程表示,受迫振动问题的运动方程为非齐次方程。
(P8)4、弹簧刚度系数的物理意义:使弹簧产生单位位移所需要施加的力。
在振动系统中通常假定弹簧质量为0;线性振动(微幅振动)的范围内,通常认为弹簧总在线性变形的范围内;两弹簧串联后等效弹簧刚度如何计算?并联?(P12)对于角振动系统,弹簧为扭转弹簧,其刚度系数的物理意义是:使弹簧产生单位角位移所需要施加的力矩。
(P14)5、粘性阻尼系数的特点:阻尼器产生的阻尼力与阻尼器两端的相对速度成正比。
(P32-34)6、什么是二阶线性常系数齐次微分方程的通解?非齐次微分方程的通解是对应齐次方程的通解加上非齐次方程的一个特解。
(P20)7、求解无阻尼单自由度系统的自由振动响应,就是确定求系统在给定的初始位移、初始速度下,系统运动方程的一个特解和通解的系数。
8、无阻尼单自由度系统的固有频率,仅取决于系统的刚度、质量,而与系统初始条件、所受外激励无关,是系统的固有属性。
系统的质量越小,刚度越大,固有频率越高。
要求掌握弧度制单位和频率之间的换算关系。
(P10)9、简谐运动的位移、速度、加速度间的关系,速度位移间的相位差为90度,加速度和位移之间的相位差为180度。
其物理意义?(P10)10、两频率不同的简谐振动合成,若两频率比为有理数(可通约)时,合成振动为周期振动;若为无理数,合成振动为非周期振动。
大学物理课后习题答案第四章
第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
机械振动和机械波知识点复习及总结
机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。
b 、阻力足够小。
回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。
机械振动期末考试题及答案
机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。
答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。
答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。
大物习题答案第4章机械振动重点讲义资料
第4章机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1•简谐振动离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程x二Acosjt •「)2.振幅A作简谐振动的物体的最大位置坐标的绝对值。
3.周期T作简谐振动的物体完成一次全振动所需的时间。
4.频率单位时间内完成的振动次数,周期与频率互为倒数,即T二丄V5.圆频率,作简谐振动的物体在2二秒内完成振动的次数,它与频率的关系为2二2曲T6.相位和初相位简谐振动的运动方程中-t项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位:7.简谐振动的能量作简谐振动的系统具有动能和势能。
弹性势能E p = 1kx2= 1kA2 cos2()p 2 2动能E k=丄mv2」m I _ ■ Asin( t 「)『=1m 2A2sin2( t )2 2 2弹簧振子系统的机械能为E二E k E^ 1 m.2A^ 1 kA2p 2 28•阻尼振动振动系统因受阻尼力作用,振幅不断减小。
9•受迫振动系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10•共振驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值, 但其总机械能却保持不变,且机械能与振幅的平方成正比。
图4.1表示了弹簧振子的动能和势能随时间的变化(④=0 )。
机械振动复习
机械振动一、机械振动(1)定义:中心位置;往复运动(2)条件:回复力;阻力足够小。
(3)特点:中心位置;往复运动例1下列属于机械振动选择完整的是()①乒乓球在地面上的来回上下运动;②弹簧振子在竖直方向的上下运动;③秋千在空中来回的运动;④竖于水面上的圆柱形玻璃瓶上下振动A、①②B、②③C、③④D、②③④二、简谐运动1.定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
(2)回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
(3)“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以不处于平衡状态)(4)F = -kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
1.怎样判断某一振动是简谐运动:方法一:从动力学:证明物体在运动方向上所受合力F =-kx 。
方法二:从运动学特点:例1 证明竖直弹簧振子的振动是简谐运动.解析:如图9—1—1所示,设振子的平衡位置为O ,向下方向为正方向,此时弹簧的形变为x 0,根据胡克定律及平衡图9—1—1mg -kx 0=0当振子向下偏离平衡位置xF 回=mg-k (x +x 0)将①代入②得:F 回=-kx ,故重物的振动满足简谐运动的条件.说明:分析一个振动系统是否为简谐运动,关键是判断它的回复力是否满足:其大小随着位移的变化作正比变化,其方向总与位移方向相反.应理解F =-kx 式中的k 值是由振动系统本身条件所决定,不要将F =-kx 简单理解为胡克定律中的弹力,在这里就理解为产生简谐运动的回复力的定义和重力的合力.是否满足F =-kx . 例2 如图所示,m 和M 叠放在一起,弹簧的作用下相对静止一起运动。
机械振动复习课讲义及答案
机械振动复习课讲义(1) 知识点精要简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动叫做简谐振动。
平衡位置 振动方向上,受力平衡的位置。
弹簧振子 弹簧振子的周期简谐运动的描述简谐运动的表达式和图象描述i) 表达式振幅:,振动的最大位移频率:为圆频率,简谐运动的快慢。
为运动周期()。
为频率。
相位: 括号内位相位,为初相(的相位)相位差(两个具有相同频率的简谐运动之间)ii) 图象描述振幅、频率、相位、不同时刻质点的位置、质点的运动情况简谐运动的回复力和能量回复力i) 如何理解式子中的负号?ii) 如果质点所受的力与它偏离平衡位置的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
iii) 振动过程中的能量转化情况单摆单摆的周期公式 (应用:如何用单摆测重力加速度)单摆的回复力外力作用下的振动阻尼振动 频率不变,振幅逐渐变小受破振动 受周期性外力的作用,频率与外力的频率相同共振现象 固有频率与驱动力频率越接近,受迫振动的振幅越强;等于时振幅最强。
(2) 习题练习1.判断正误i) 在振动中,平衡位置就是物体振动范围的中心位置。
( )ii) 所有振动都可以看做是简谐振动。
( )iii) 机械振动的位移总是以平衡位置为起点的位移。
( )iv) 简谐运动一定是水平方向上的运动。
( )v) 物体做简谐运动时一定可以得到正弦曲线形的轨迹线。
( )vi) 只要物体的振动图象是正弦曲线,一定是做简谐运动。
( )2.作简谐运动的物体每次通过平衡位置时 ( )(A)位移为零,动能为零 (B)动能最大,势能最小(C)速率最大,振动加速度为零 (D)速率最大,回复力不一定为零3.作简谐运动的物体,当它每次经过同一位置时,一定相同的物理量是( )(A)速度 (B)位移 (C)回复力 (D)加速度4.作简谐运动的物体,回复力和位移的关系图是下图所给四个图像中的( )5.关于简谐运动的位移、加速度和速度的关系,下列说法中正确的是(A. 位移减少时,加速度减少,速度也减少B. 位移方向总是更加速度方向相反,跟速度方向相同C. 物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背离平衡位置时,速度方向跟位移方向相同D. 物体向负方向运动时,加速度方向跟速度方向相同;向正方向运动时,加速度方向跟速度方向相反。
大学物理(第四版)课后习题及答案-机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
机械振动复习资料
机械振动全章复习资料一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F回= -kx(判断一个振动是否是简谐运动的方法)⑴振动的位移必须是指偏离平衡位置的位移(实质与位置对应)。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
简谐运动的位移随时间变化的规律是正弦函数(判断一个振动是否是简谐运动的方法)。
⑵回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
⑶“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)⑷F=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
例1.简谐运动的判断方法。
两根质量均可不计的弹簧,劲度系数分别为K1、K2,它们与一个质量为m的小球组成的弹簧振子,如图1所示。
试证明弹簧振子做的运动是简谐运动。
证明:以平衡位置O为原点建立坐标轴,当振子离开平衡位置O时,因两弹簧发生形变而使振子受到指向平衡位置的合力。
设振子沿X正方向发生位移x,则物体受到的合力为F=F1+F2=-k1x-k2x=-(k1+k2)x=-kx.所以,弹簧振子做的运动是简谐运动。
要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。
然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
大学物理学 机械振动
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
机械振动 复习提纲
机械振动复习提纲知识点一、简谐运动1、机械运动:物体相对与参考系位置发生改变叫机械运动。
常见的机械运动形式有:匀速直线运动、匀变速直线运动、非匀变速直线运动、自由落体运动、竖直上抛运动、平抛运动、圆周运动、类平抛运动、机械振动等。
2、机械振动:物体在某一平衡位置附近的往复运动叫机械振动,简称振动。
3、简谐运动:物体在与位移成正比方向相反的回复力作用下的机械振动叫简谐运动。
注意:(1)、简谐运动是机械振动中最简单、最基本的运动、是理想的物理模型。
(2)、做简谐运动的物体的位移默认指的是物体离开平衡位置的位移,因此位移的方向始终从平衡位置指向物体所在的位置。
(3)、简谐运动的平衡位置就是运动轨迹的对称中心的位置,也就是物体静止时所在的位置。
(4)、简谐运动中的物体到达平衡位置时速度最大,位移为0,在离开平衡位置最远的位置时位移最大,速度为0。
4、简谐运动的两个常见模型:(1)、弹簧振子(2)、单摆例题1、下述说法中正确的是( )A .树枝在风中摇动是振动B .拍篮球时,篮球的运动是振动C .人走路时手的运动是振动D .转动的砂轮的边缘上某点的运动是振动,圆心可以看作是振动中心知识点二、描述简谐运动的物理量1、简谐运动的位移在简谐运动中,通常研究物体在某一时刻或到达某一位置时的位移,因此默认是离开平衡位置的位移,方向总是从平衡位置指向物体所在的位置。
2、回复力:回复力是根据力的效果命名的,回复力的方向总是指向平衡位置,其作用效果是要把物体拉回到平衡位置。
注意:(1)、回复力可能是物体受到的某一个力、可能是物体受到的合力、也可能是物体受到的某一个力的分力。
(2)、在简谐运动中,回复力和位移的关系是:kx F -=例题1、关于机械振动,下列说法正确的是( )A .往复运动就是机械振动B .机械振动是靠惯性运动的,不需要有力的作用C .机械振动是受回复力作用的D .回复力是物体所受的合力例题2、物体做机械振动的回复力( )A .必定是区别于重力、弹力、摩擦力的另一种力B .必定是物体所受的合力C .可以是物体受力中的一个力D .可以是物体所受力中的一个力的分力3、加速度:简谐运动的加速度是指回复力产生的加速度,由牛二定律可知它和物体的位移成正比,方向相反。
大学物理期末复习题---填空,计算题
填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置取作 坐标原点。若 t=0 时质点第一次通过 x=-2cm 处且向 x 轴负方向运动,则质点 第二次通过 x=-2cm 处的时刻为__ __s。
[答案: 2 s ] 3
(2)一水平弹簧简谐振子的振动曲线如题 4.2(2)图所示。振子在位移为零,速度 为-A、加速度为零和弹性力为零的状态,对应于曲线上的____________点。振 子处在位移的绝对值为 A、速度为零、加速度为-2A 和弹性力为-KA 的状态, 则对应曲线上的____________点。
8.9 设题8.9图中两导线中的电流均为8A,对图示的三条闭合曲线 a , b , c ,
分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点的磁感应强度
B
的大小是否相等?
(2)在闭合曲线
c
上各点的
B
是否为零?为什么?
解:
B dl a
= 80
B dl
ba
= 80
cB dl = 0
计, t 以秒计.求:
(1)绳子上各质点振动时的最大速度和最大加速度;
(2)求 x =0.2m 处质点在 t =1s时的位相,它是原点在哪一时刻的位相?这一位相所代表 的运动状态在 t =1.25s时刻到达哪一点?
解: (1)将题给方程与标准式
y = Acos(t − 2 x)
相 比 , 得 振 幅 A = 0.05 m , 圆 频 率 = 10 , 波 长 = 0.5 m , 波 速 u = = = 2.5 m s−1 .
=
2s
即
= 2 = rad s−1
机械振动复习(有例题、配套习题,有答案)
第一讲 简谐运动、简谐运动的表达式及其图象【基本概念与基本规律】一、简谐运动定义 1、机械振动物体在平衡位置附近所做的往复运动叫机械振动。
机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。
2、回复力使振动物体返回平衡位置的力叫回复力。
回复力时刻指向平衡位置。
回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。
3、简谐运动物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。
表达式为:F=-kx。
4、描述简谐运动的物理量(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅;(2)振幅A:是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)(3)周期T:是描述振动快慢的物理量。
频率f=T1。
【例1】下列属于机械振动选择完整的是…………………………………………( D ) ①乒乓球在地面上的来回上下运动;②弹簧振子在竖直方向的上下运动;③秋千在空中来回的运动;④竖于水面上的圆柱形玻璃瓶上下振动A 、①②B 、②③C 、③④D 、②③④【例2】关于简谐运动回复力的说法正确的是……………………………………( A )A 、回复力F kx =-中的x 是指振子相对于平衡位置的位移B 、回复力F kx =-中的x 是指振子从初位置指向末位置的位移C 、振子的回复力一定就是它所受的合力D 、振子的回复力一定是恒力【例3】关于简谐运动的位移、速度、加速度的关系,下列说法中正确的是 ( CD )A 、位移减小时,加速度增大,速度增大B 、位移方向总跟加速度方向相反,跟速度方向相同C 、物体运动方向指向平衡位置时,速度方向跟位移方向相反D 、物体向平衡位置运动时,做加速运动,背离平衡位置时,做减速运动【例4】如图所示,一个弹簧振子沿x 轴在B 、C 间做简谐运动,O 为平衡位置,当振子从B 点向O 点运动经过P 点时振子的位移为 ,振子的回复力为 ,振子速度为 ,振子的加速度为 (填“正”“负”或“零”)答案:负 负 正 正二、理解简谐运动重难点 1、平衡位置的理解平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。
第4章 机械振动 湘潭大学 大学物理 期末复习
x3为高阶无穷小,略去,得:
2 1 d Ep E p ( x) E p (0) ( 2 ) x 0 x 2 2 dx d 2Ep F ( 2 ) x 0 x kx dx
4)振动过程中机械能守恒,从力学观点看,为保守系统。由 能量守恒可导出运动学方程:
1 2 1 同样: E p kA E 4 2
3)判断实际系统是否作简谐振动,只需证明其是否满足简谐振 动的动力学特征,即所受力是否为线性回复力。 如:系统沿x轴振动,势能函数为Ep(x) 如果势能曲线存在一个极小值,则该位置就是系统平衡位置。 证明:取该位置为x=0, 将势能在x=0附近用级数展开: 2 dEp 1 d Ep 2 E p ( x) E p (0) ( ) x 0 x ( ) x x 0 2 dx 2 dx 若系统作微振动,有 (
如:弹簧振子
t 0 0
t 0 t 0 2 t 0 3 2
x A, v 0, a A 2
x A, v 0, a A 2 x 0, v A, a 0 x 0, v A, a 0
平衡位置:物体所受合外力为零处。
d 2x d 2x F m a m 2 kx 2 2 x 0 dt dt
2
1、运动学特征:
k m
----运动学方程
加速度与其位移大小成正比,而方向相反; 2、动力学特征:
a
k x m
物体所受合力大小与位移成正比,而方向相反。
F kx
T 2
如:比较位移、速度、加速度的位相。
x A cos( t 0 )
v A sin( t 0 ) vm cos( t 0 ) 2
机械振动基础期末考试卷
机械振动基础期末考试卷题目:机械振动基础期末考试卷一、选择题1. 机械振动的定义是什么?a. 物体在响亮的声音中发生摆动b. 物体在倾斜的表面上运动c. 物体在平衡位置附近的来回运动d. 物体围绕一个固定点旋转答案:c. 物体在平衡位置附近的来回运动2. 什么是自由振动?a. 机械振动源自外力的作用b. 物体在空气中飘浮运动c. 没有外界干扰下的振动d. 物体受到弹簧的牵引答案:c. 没有外界干扰下的振动3. 以下哪个量不是描述振动速度的?a. 频率b. 振幅c. 距离d. 波长答案:c. 距离4. 当一个物体受到周期性外力作用时,发生受迫振动,这类振动的特点是?a. 振幅不固定b. 振动频率与外力频率一致c. 没有固定的平衡位置d. 振动不受外力干扰答案:b. 振动频率与外力频率一致5. 振幅越大,振动的能量越大,对吗?a. 对b. 错答案:a. 对二、简答题1. 什么是简谐振动?简谐振动的特点是什么?答案:简谐振动是指物体受到恢复力作用,并且恢复力与位移成正比的振动。
简谐振动的特点包括振幅恒定、周期固定、频率稳定、能量守恒等。
2. 请简要说明自由振动和受迫振动的区别?答案:自由振动是物体在没有外界干扰下的振动,由初始位移和初速度决定。
受迫振动是物体受到外界周期性力作用导致的振动,振动频率与外力频率一致。
三、计算题1. 一个简谐振动的物体质量为2kg,弹簧劲度系数为100N/m,振幅为0.1m,求振动的周期。
答案:振动周期T = 2 * π * sqrt(m / k)其中,m = 2kgk = 100N/mT = 2 * π * sqrt(2 / 100)T ≈ 0.89s2. 一根弹簧的振动频率为10Hz,质量为0.5kg,求弹簧的劲度系数是多少?答案:振动频率f = 1 / 2π * sqrt(k / m)其中,f = 10Hzm = 0.5kgk = ?k = (2πf)^2 * mk = (2π*10)^2 * 0.5k = 628N/m以上为机械振动基础期末考试卷的答案,请同学们核对自己的答案,祝顺利通过考试!。
大学物理第4章 机械振动 机械波
特征:具有交替出现的波峰和波谷.
纵波:质点振动方向与波的传播方向平行的波. (能在固体、液体和气体中传播) 特征:具有交替出现的密部和疏部.
4 2 0 -2 -4 x(cm) p
x A cos(t 0 )
从图中得:A=4 cm t=0时,x0=-2 cm,且0<0,得
1
t(s)
2 4 cos0
0 A sin 0 0
再分析,t=1 s时,x=2 cm, >0,
2 得 0 3
2 2 4 cos( ) 3
谐振动的总能量
E Ek E p 1 1 2 1 2 2 2 E kA m A m max 2 2 2
x
0
x=Acos(ωt+π)
t
E
1 2 E kA 2
t
平均动能
1 EK T
T
0
1 kA 2 sin 2 (t 0 )dt 2
1 E K kA 2 4
2
)
a am cos( t 0 )
答:
3
用旋转矢量表示相位关系
A2
A1
A2 A1
A1
0
x
0
x
A2
0
x
2 1
旋转矢量与振动曲线
0 同步
x
反相
t
例4-2:已知如图示的谐振动曲线,试写出振动方程. 解:方法一 设谐振动方程为
Amin= |A2 A1| , 相互减弱 0
A
(3) 一般情形
Amin<A < Amax
例4-4:已知两个简谐振动的x-t曲线如图所示,它们的频率相同,求它们的 合振动方程. 解 :由图中曲线可以看出,两个简谐 振动的振幅相同,A1=A2=A=5 cm, 周期均为T=0.1 s,因而圆频率为
大学物理机械振动总结(一)2024
大学物理机械振动总结(一)引言:在大学物理学习中,机械振动是一个重要的内容之一。
机械振动涉及到物体在受到外力作用下产生周期性运动的现象和规律。
本文将从振动的基本概念和分类、振动的受迫振动和自由振动、振动的能量、振动的阻尼和受迫振动的共振等五个大点进行阐述。
1. 振动的基本概念和分类1.1 振动的定义和基本特征1.2 振动的分类及相关示意图1.3 振动的周期、频率和角频率的关系1.4 振动运动中的位移、速度和加速度之间的关系1.5 振动的简谐性及简谐振动的特征2. 振动的受迫振动和自由振动2.1 受迫振动的定义及相关示意图2.2 受迫振动的驱动力和谐振频率的关系2.3 受迫振动的位移、速度和加速度之间的关系2.4 自由振动的定义及相关示意图2.5 自由振动的周期和频率的关系3. 振动的能量3.1 振动系统的动能和势能的定义3.2 动能和势能之间的关系3.3 振动能量的守恒定律3.4 振动系统的总能量4. 振动的阻尼4.1 阻尼的定义及分类4.2 阻尼系数和阻力方程的关系4.3 阻尼振动的特性4.4 阻尼比和阻尼振动的关系4.5 阻尼振动的衰减和周期的关系5. 受迫振动的共振5.1 共振现象的定义及特点5.2 共振频率和谐振频率的关系5.3 共振峰的形成及共振峰的特点5.4 共振的应用领域5.5 阻尼对共振的影响及其应用总结:本文从振动的基本概念和分类、振动的受迫振动和自由振动、振动的能量、振动的阻尼和受迫振动的共振等方面进行了系统的阐述。
通过对这些内容的学习和理解,能够更好地掌握和应用机械振动的相关知识,为工程实践和相关科学研究提供指导。
高考物理湘潭力学知识点之机械振动与机械波知识点
高考物理湘潭力学知识点之机械振动与机械波知识点一、选择题1.一列简谐横波在t=0时刻的波形图如图甲所示,P是介质中的一个质点,图乙是质点P 的振动图像。
下列说法正确的是A.该波的波速为4m/sB.该波沿x轴负方向传播C.t=1s时,质点P的速度最小,加速度最大D.在t=0到t=1s的时间内,质点P沿传播方向移动了2m2.做简谐运动的物体,下列说法正确的是A.当它每次经过同一位置时,位移可能不同B.当它每次经过同一位置时,速度可能不同C.在一次全振动中通过的路程不一定为振幅的四倍D.在四分之一周期内通过的路程一定为一倍的振幅3.如图为一弹簧振子做简谐运动的位移﹣时间图象,在如图所示的时间范围内,下列判断正确的是()A.0.2s时的位移与0.4s时的位移相同B.0.4s时的速度与0.6s时的速度相同C.弹簧振子的振动周期为0.9s,振幅为4cmD.0.2s时的回复力与0.6s时的回复力方向相反4.在简谐运动中,振子每次经过同一位置时,下列各组描述振动的物理量总是相同的是A.速度、加速度、动能B.动能、冋复力、对平衡位置的位移C.加速度、速度、势能D.速度、动能、回复力5.一洗衣机在正常工作时非常平稳,当切断电源后,发现洗衣机先是振动越来越剧烈,然后振动再逐渐减弱,对这一现象,下列说法正确的是()①正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率大;②正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率小;③正常工作时,洗衣机波轮的运转频率等于洗衣机的固有频率;④当洗衣机振动最剧烈时,波轮的运转频率恰好等于洗衣机的固有频率.A .①B .③C .①④D .②④6.如图所示,一列简谐横波向右传播,P 、Q 两质点平衡位置相距0.15 m 。
当P 运动到上方最大位移处时,Q 刚好运动到下方最大位移处,则这列波的波长可能是( )A .0.60 mB .0.20 mC .0.15 mD .0.10 m7.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 8.图甲为一列简谐横波在某一时刻的波形图.a 、b 两质点的横坐标分别为x=2m 和x=6m ,图乙为质点b 从该时刻开始计时的振动图象.下列说法正确的是( )A .该波沿+x 方向传播,波速为1m/sB .质点a 经4s 振动的路程为4mC .此时刻质点a 的速度沿-y 方向D .质点a 在t =2 s 时速度最大9.一列简谐横波沿x 轴传播,t=0时刻的波形如图所示.则从图中可以看出( )A .这列波的波长为5mB .波中的每个质点的振动周期为4sC .若已知波沿x 轴正向传播,则此时质点a 向下振动D .若已知质点b 此时向上振动,则波是沿x 轴负向传播的10.如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像,由图可知,这列波的振幅A 、波长λ和x =l 米处质点的速度方向分别为:( )A .A =0.4 m λ=1m 向上B .A =1m λ=0.4m 向下C .A =0.4m λ=2m 向下D .A =2 m λ=3m 向上11.如图所示为一列沿x 轴负方向传播的简谐横波,实线为0t =时刻的波形图,虚线为0.6s t =时的波形图,波的周期0.6s T >,则:( )A .波的周期为2.4sB .波的速度为10 m/s 3C .在0.5 s =t 时,Q 点到达平衡位置D .在0.5 s =t 时,Q 点到达波峰位置12.下列关于简谐振动和简谐机械波的说法正确的是( )A .简谐振动的平衡位置一定是物体所受合外力为零的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v0 0 arctg ( ) 0, x0
(2)按题意
t=0 时 x0=0,v0>0 m O
x0=Acos0=0 , cos0=0 0=/2 ,3/2 v0=-Asin>0 , sin 0 <0, 取0=3/2
x=9.810-2cos(10t+3/2) m
3、位相、初位相、位相差(Phase, Initial phase, Phase difference) 从简谐振动的运动学方程,可以看到,对于振幅和圆频率都已知的谐振 动中,任意时刻的振动状态完全取决于物理量 . t 0 位相:确定振动系统任意时刻运动状态的物理量。
v0 初位相:T=0 时刻的位相。 tan 0 x0
如位移,电流,电场,磁场,温度等
如:机械波:机械振动在连续介质中的传播; 电磁波:电磁振动在真空或介质中的传播; 物质波:和实物粒子相联系的波。
2、从物理学角度看,振动和波动是唯一一个横跨物理学所有学科,既 与经典物理紧密联系,又与现代物理融为一体的概念。
3、振动和波动在各分支学科中,具体内容不同、本质不同,但描述形 式却具有相似性,,并且都具有干涉、衍射等波动特征。
x A cos( t 0 )
v vm cos(t 0
2
)
a am cos( t 0 )
例1:如图m=2×10-2kg,弹簧的静止形变为l=9.8cm t=0时, x0=-9.8cm,v0=0,1)取开始振动时为计时零点, 写出振动方程;2)若取x0=0,v0>0为计时零点,写 出振动方程,并计算振动频率。 ⑴ 确定平衡位置取为原点:k=mg/ l 令向下有位移x, 则:f=mg-k(l +x)=-kx 作谐振动 设振动方程为:
A, 0
为积分常数,由初始条件决定,若初始条件:
t0
x0 A cos0
2 v0
v0 A sin 0
1
A x
2 0
2
v0 0 tan ( ) (代回原式决定取舍) x0
二、描述简谐振动的三个重要参量 1、振幅(Amplitude): 作简谐振动的物体偏离平衡位置的最大位移(或角位移)的绝对值。 给出了振动物体的运动范围,即
1 2 1 2 dv dx d 2x k m v kx E m v kx 0 2 x0 2 2 dt dt m dt
通过能量守恒得到动力学方程,有时会使我们的计算得到简化。
例1:在横截面积为S的U形管中有适量液体,液体 总长度为l,质量为m,密度为ρ,求液面上下起伏 的振动频率。(忽略液体与管壁间的摩擦)
简谐振动:一个做往复运动的物体,如果其偏离平衡位置的位移(角 位移)随时间按余弦(或正弦)规律变化,即:
x A cos( t 0 )
则这种振动称为简谐振动(Simple Harmonic Motion )。
一、弹簧振子模型(Spring oscillator)
忽略摩擦阻力
F kx
T 2
如:比较位移、速度、加速度的位相。
x A cos( t 0 )
v A sin( t 0 ) vm cos( t 0 ) 2
a A2 cos( t 0 ) am cos( t 0 )
故速度比位移超前位相π/2, 加速度比位移超前π或落后 π ,加速度比速度超前 π/2或落后3π/2
2
§4-3 弹簧振子:
简谐振动的能量
1 1 1 2 2 2 2 2 2 动能: E k mv m A sin (t 0 ) kA sin (t 0 ) 2 2 2 1 1 势能: E p kx 2 kA 2 cos 2 (t 0 ) 2 2 1 1 1 2 总能量: E E k E p kA 2 m 2 A 2 mv m 2 2 2 说明
J mgh
频率:单位时间内系统所完成的完全振动的次数
1 T 2
圆频率: 2π时间内系统所完成的完全振动的次数
2 2 T
由于周期、频率、圆频率都只与系统性质有关,故称为固有周期、固 有频率、固有圆频率,与系统处于什么振动状态及是否在振动无关。 如:可绕其一端转动的质量为m,长度为l的细直棍的周期为:
固有频率
x X
1 2 2
g 1.6 Hz l
可见,对同一谐振动取不同的计时起点不同,但、A不变
例2:如图所示,振动系统由一倔强系数为 k的 轻弹簧、一半径为R、转 动惯量为I的 定滑轮和一质量为m的 物体所组成。使物体略偏离平衡位 置后放手,任其振动,试证物体作简谐振动,并求其周期 T. 取位移轴ox,m在平衡位置时, R J 设弹簧伸长量为l,则
第四章
机械振动
孟利军
1、振动和波动是物质的基本运动形式,是自然界中的普遍现象。 振动(Vibration) :任何一个 具有质量和弹性的系统在其运动 如弹簧振子、单摆、复摆等。
状态发生突变时都会发生振动
广义地说,任何一个物理量 在某一量值附近随时间做周 期性变化都可以叫做振动。 波动:如果空间某处发生 的振动,以有限的速度向 四周传播,这种传播着的 振动称为波动。
1)动能和势能都随时间作周期性变化 (周期减半),总机械能不变,如图。 2)动能和势能在一个周期内的平均值 相等,等于总能量的一半;
1 T 1 T1 2 2 Ek Ek (t )dt kA sin (t 0 )dt T 0 T 0 2 1 1T 1 2 1 kA2 kA E 2 T 2 4 2
非线性振动:不能用线性微分方程描述的运动。
原因: a)内部:出现非线性回复力; b)外部:存在非线性影响,如非线性阻尼力。
地震仪
§4-1 简谐振动的动力学特征
简谐振动是自然界中最简单最基本的振动形式 . 任何一个复杂的振动都可以看成若干个或无限多个简谐振动的合成, 任何一个复杂的振动都可以分解为若干个或无限多个简谐振动。
如:机械波和电磁波: y( x, t ) Ae
x i ( t ) u
( Et pr ) 物质波: (r , t ) 0 e
i
机械振动:物体在某固定位置附近的往复运动;
线性振动:能用线性微分方程描述的运动;
如:忽略空气阻力的情况下,弹簧振子、单摆、复摆的小幅度振动;
三、简谐振动的旋转矢量表示法 为了直观形象的领会简谐振动表达式中
A, , 0
三个物理量的意义,并为后面讨论简 谐振动的合成提供简洁的方法,引入 简谐振动的旋转矢量表示法。 旋转矢量A的末端在x轴的投影点 P点做简谐振动:
x A cos( t 0 )
x x
t 0
2、用旋转矢量法表示位移、速度、加速度:
m
O
x X
x A cos(t 0 )
k g 9.8 10rad / s m l 0.098 由初始条件得
A x0 2 ( v0
)2 0.098m
由x0=Acos0=-0.098<0 cos0<0, 取0= 振动方程为: x=9.810-2cos(10t+) m
g l
2
2、复摆(Physics pendulum):绕不过质心的水平固定轴转动的刚体
o 忽略空气阻力的小角度摆动 5
运动学方程:
d 2 d 2 mgh J mgh J 2 2 2 0 dt dt
mgh J
2
§4-2
一、简谐振动的运动学方程
1 2 1 同样: E p kA E 4 2
3)判断实际系统是否作简谐振动,只需证明其是否满足简谐振 动的动力学特征,即所受力是否为线性回复力。 如:系统沿x轴振动,势能函数为Ep(x) 如果势能曲线存在一个极小值,则该位置就是系统平衡位置。 证明:取该位置为x=0, 将势能在x=0附近用级数展开: 2 dEp 1 d Ep 2 E p ( x) E p (0) ( ) x 0 x ( ) x x 0 2 dx 2 dx 若系统作微振动,有 (
xA
反映振动强弱,振幅越大,振动越强,平衡位置速度越大。 2、周期、频率、圆频率(Period, Frequency, Circular frequency): 反映振动的快慢。
周期:物体完成一次全振动所需的时间
m T 2 弹簧振子: k
l T 2 单摆: g
T
2
复摆: T 2
可见在一个周期内不同的位相表示不同的振动状态,不同周期内凡位 移和速度都相同的振动状态,它们对应的位相必然相差 2π的整数倍. 由此可见,相位反映了振动的周期性特征。
为了比较两个相同或不同物理量振动步调上的差异,引入相位差。 位相差:两振动位相之差: 2 1
讨论:1、同相(in phase) 2k
如:弹簧振子
t 0 0
t 0 t 0 2 t 0 3 2
x A, v 0, a A 2
x A, v 0, a A 2 x 0, v A, a 0 x 0, v A, a 0
简谐振动的运动学
解运动学方程得: d 2 x
dt
2
x 0
2
m cos(t 0 )
t 0 ) 位移: x A cos(
速度: v A sin(t 0 )
2 t 0 ) 加速度: a A cos(
物体做简谐振动时,其 速度和加速度都随时间 做周期性变化.
平衡位置:物体所受合外力为零处。
d 2x d 2x F m a m 2 kx 2 2 x 0 dt dt