2016年奉贤区中考数学二模试卷及答案
2016年中考数学模拟试题(二)及答案(沪教版使用地区专用)
2016年中考数学模拟试题(二)(沪教版使用地区专用)时间120分钟满分150分2015.8.30一、选择题(本大题共6题,每题4分,满分24分)1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG:AD是() A. 2:3 B. 1:2 C. 1:3 D. 3:42.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是() A. BD:AB=CE:AC B. DE:BC=AB:AD C. AB:AC=AD:AE D. AD:DB=AE:EC3.下列有关向量的等式中,不一定成立的是()A.=﹣ B. ||=|| C.+= D. |+|=||+||4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A. cosA= B. tanA= C. sinA= D. cosA=5.在下列y关于x的函数中,一定是二次函数的是()A. y=x2 B. y= C. y=kx2 D. y=k2x6.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A. 4.5米 B. 6米 C. 7.2米 D. 8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则= .9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD =9,则S△EFC= .10.如果α是锐角,且tanα=cot20°,那么α= 度.11.计算:2sin60°+tan45°= .12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA= .16题图 17题图18题图17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C 恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m= (用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19(10分).解方程:﹣=2.20(10分).已知二次函数y=﹣2x2+bx+c的图象经过点A (0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21(10分).如图,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设=,=,试用、分别表示向量和.22(10分).如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23(12分).如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24(12分).如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.25(14分).如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.参考答案一、选择题1.A.2.故选B.3.故选D.4.故选:C.5.故选:A.6.故选:B.二、填空题7..8..9. 4 .10.70 度.11.+1 .12.1:.(请写成1:m的形式)13.m>1 .14.(3,﹣1).15.是(填“是”或“否”).16..17. 3 对相似三角形.18. m= 2n+1 (用含n的代数式表示m).三、解答题19.解:去分母得:2﹣3x+x+2=2x2﹣8,整理得:x2+x﹣6=0,即(x﹣2)(x+3)=0,解得:x=2或x=﹣3,经检验x=2是增根,分式方程的解为x=﹣3.20.解:(1)将A(0,4)和B(1,﹣2)代入y=﹣2x2+bx+c,得,解得,所以此函数的解析式为y=﹣2x2﹣4x+4;y=﹣2x2﹣4x+4=﹣2(x2+2x+1)+2+4=﹣2(x+1)2+6;(2)∵y=﹣2(x+1)2+6,∴C(﹣1,6),∴△CAO的面积=×4×1=2.21.解:∵四边形ABCD是平行四边形,∴==,==,∵AE=3ED,∴==,==,∴=﹣=﹣;∵EF=CE,∴==﹣,∴=+=+﹣=+.22.解:过点C⊥AB于点D,在Rt△ACD中,∵∠ACD=35°,AC=100m,∴AD=100•sin∠ACD=100×0.574=57.4(m),CD=100•cos∠ACD=100×0.819=81.9(m),在Rt△BCD中,∵∠BCD=45°,∴BD=CD=81.9m,则AB=AD+BD=57.4+81.9≈139(m).答:A、B之间的距离约为139米.23.(1)证明:∵四边形ABCD为等腰梯形,∴∠ABE=∠C,且∠BAE=∠DBC,∴△ABE∽△BCD;(2)解:过D作DG⊥BC于点G,∵AD=1,BC=3,∴CG=(BC﹣AD)=1,BG=2,又∵在Rt△DGC中,CD=2,CG=1,∴DG=,在Rt△BDG中,tan∠DBC==;(3)解:由(2)在Rt△BGD中,由勾股定理可求得BD=,由(1)△ABE∽△BCD可得=,即==,解得BE=,又∵AD∥BC,∴=,且DF=BD﹣BF,∴=,解得BF=.24.解:(1)由x=0得y=0+4=4,则点C的坐标为(0,4);由y=0得x+4=0,解得x=﹣4,则点A的坐标为(﹣4,0);把点C(0,4)代入y=x2+kx+k﹣1,得k﹣1=4,解得:k=5,∴此抛物线的解析式为y=x2+5x+4,∴此抛物线的对称轴为x=﹣=﹣.令y=0得x2+5x+4=0,解得:x1=﹣1,x2=﹣4,∴点B的坐标为(﹣1,0).(2)∵A(﹣4,0),C(0,4),∴OA=OC=4,∴∠OCA=∠OAC.∵∠AOC=90°,OB=1,OC=OA=4,∴AC==4,AB=OA﹣OB=4﹣1=3.∵点D在y轴负半轴上,∴∠ADC<∠AOC,即∠ADC<90°.又∵∠ABC>∠BOC,即∠ABC>90°,∴∠ABC>∠ADC.∴由条件“以A、C、D为顶点的三角形与△ABC相似”可得△CAD∽△ABC,∴=,即=,解得:CD=,∴OD=CD﹣CO=﹣4=,∴点D的坐标为(0,﹣).25.(1)证明:如图1,由折叠可得:∠EDF=∠C=90°,∠DFE=∠CFE.∵△ABC是等腰直角三角形,∠C=90°,∴∠A=∠B=45°.∵DK⊥AB,∴∠ADK=∠BDK=90°,∴∠AKD=45°,∠EDF=∠KDB=90°,∴∠EKD=∠FBD,∠EDK=∠FDB,∴△DEK∽△DFB;(2)解:∵∠A=∠AKD=45°,∴DK=DA=x.∵AB=2,∴DB=2﹣x.∵△DFB∽△DEK,∴=,∴y=cot∠CFE=cot∠DFE===.当点F在点B处时,DB=BC=AB•sinA=2×=,AD=AB﹣AD=2﹣;当点E在点A处时,AD=AC=AB•cosA=2×=;∴该函数的解析式为y=,定义域为2﹣<x<;(3)取线段EF的中点O,连接OC、OD,∵∠ECF=∠EDF=90°,∴OC=OD=EF.设EF与CD交点为H,根据轴对称的性质可得EF⊥CD,且CH=DH=CD.∵=,∴tan∠HOC==,∴∠HOC=60°①若点K在线段AC上,如图2,∵CO=EF=OF,∴∠OCF=∠OFC=∠HOC=30°,∴y=cot30°=,∴=,解得:x=﹣1;②若点K在线段AC的延长线上,如图3,∵OC=OF,∠FOC=60°,∴△OFC是等边三角形,∴∠OFC=60°,∴y=cot60°=,∴=,解得:x=3﹣;综上所述:x的值为﹣1或3﹣.。
上海市奉贤区中考数学二模试题
12012学年奉贤区调研测试九年级数学(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分) [每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.与无理数3最接近的整数是(▲)A .1;B .2 ;C .3;D .4; 2.下列二次根式中最简二次根式是(▲)A .12-a ;B .ba; C .b a 2; D .a 9; 3.函数1-=x y 的图像经过的象限是(▲)A.第一、二、三象限;B.第一、二、四象限;C.第一、三、四象限;D.第二、三、四象限;4.一个不透明的盒子中装有5个红球和3个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(▲)A .摸到红球是必然事件;B .摸到白球是不可能事件;C .摸到红球和摸到白球的可能性相等;D .摸到红球比摸到白球的可能性大; 5.对角线相等的四边形是(▲)A .菱形;B .矩形;C .等腰梯形;D .不能确定; 6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是(▲) A .01d <<; B .5d >; C .01d <<或5d >; D .01d <≤或5d >;二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算:26a a ÷= ▲ ;8.分解因式:1682+-x x = ▲ ; 9.函数3+=x y 的定义域是 ▲ ;10.方程xx 312=-的解是 ▲ ; 11.已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范围是 ▲ ;12.如果点A 、B 在同一个反比例函数的图像上,点A 的坐标为(2,3),点B 横坐标为3,2那么点B 的纵坐标是 ▲ ;13.正多边形的中心角为72度,那么这个正多边形的内角和等于 ▲ 度;14. 如图,已知直线AB 和CD 相交于点O , OE AB ⊥,128AOD ∠=o, 则COE ∠的度数是▲ 度;15.如图,已知∠E =∠C ,如果再增加一个条件就可以得到DEBCAD AB =,那么这个条件可以是 ▲ (只要写出一个即可).16.梯形ABCD 中,AB ∥DC ,E 、F 分别是AD 、BC 中点,DC =1,AB =3,设a AB =,如果用a 表示向量EF ,那么EF = ▲ ;17.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于 ▲ ;18.如图,在ABC ∆中,90C ∠=o ,10AB =,3tan 4B =,点M 是AB 边的中点,将ABC ∆绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到DEA ∆,且AE 交CB 于点P ,那么线段CP 的长是 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:︒+--+--30tan 3)31(20132310;20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧-≤-->+x x x x 322121232,并把它的解集在数轴上表示;32 0第15题第18题MCA第14题 O EDC B A E DCBA3ADCBFEG第23题21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知:在△ABC 中,AB =AC ,BD 是AC 边上的中线,AB =13,BC =10,(1)求△ABC 的面积; (2)求tan ∠DBC 的值.22.(本题满分10分,第(1)小题4分,第(2)(3)小题各3分)我区开展了“关爱老人从我做起”的主题活动。
奉贤区2016年数学二模卷 答案
∵∠BPD=∠APO ∴∠DBP=∠OAP ∵∠AOP=∠BOE=90° ∴△AOP∽△BOE …1 分
AO PO ∴ BO OE
2 ∵OA=1,PO= ,BO=3 3
2 1 ∴ 3 3 OE
∴OE=2……………1 分
∵OC=3
∴EC=1
∴ S EBC
1 3 ………………………………………1 分 1 3 2 2
2 2 2 2 2
EH 3 = AE 5
∴EH=3
EF=6………………………………2 分
3 5
∵CM=4,MD=3,DE=5-x,CE=y ∴ y 4 ( 3 5 x ) ……………………1 分 ∴ y
2
x 2 16 x 80 (0<x≤5)………………………………………………………2 分
………………………………3 分
解得
……………………………………………………………2 分
答:参与敬老院服务的六、七年级学生各有 30 人. 23.(本题满分 12 分,每小题满分各 6 分) 证明:(1)∵ DC∥AB, AD=BC=DC ∴ ∠DCB=∠ADC ,∠DCB=∠CBE ∴∠ADC=∠CBE …………………1 分 ∵ ∠BCE=∠ACD, BC=DC ∴△ADC≌△EBC……………………………2 分 ∴ AD=BE ∴DC=BE ……………………………………………………2 分 ∵ DC∥AB ∴ 四边形 DBEC 是平行四边形……………………………………1 分 (2)∵ 四边形 DBEC 是平行四边形 ∴ BD=CE ∵ DC∥AB, AD=BC=DC ∴ AC=BD ∴ AC=BD…………………………1 分 ∵ ∠DCA=∠CAB ∠BCE=∠ACD ∴ ∠BCE=∠CAB ∵∠E=∠E ∴ △ECB∽△EAC……………………………………………………3 分 ∴
奉贤区2016学年第二学期初三调研测试数学试卷参考答案
奉贤区2016学年第二学期初三调研测试数学试卷参考答案 201704一 、选择题:(本大题共8题,满分24分)1.C ; 2.A ; 3.D ; 4.C ; 5.D ; 6.B ;二、填空题:(本大题共12题,满分48分)7.2-; 8.一切实数; 9.0=x ; 10.0>a ;11.4±; 12.4; 13.103; 14.360; 15.22-+; 16.6; 17.3; 18.635; 三.(本大题共7题,满分78分)19. (本题满分10分)先化简,再求值: 1)2211(22-÷-+--+a a a a a a ,其中5=a . 解原式=aa a a a a a a a 1)1)(2(21)1)(1(1-⋅-+--⋅-++. …………………………………3分 =)2(21+-a a a . ……………………………………………………………………2分 =21)2(22+=+-+a a a a . ………………………………………………………………2分 当5=a 时,2525121-=+=+a .…………………………………………3分 20.(本题满分10分) 解不等式组⎪⎩⎪⎨⎧-≥++>-.52312,24)1(7x x x x 将其解集在数轴上表示出来,并写出这个不等式组的整数解. 解:由①得: 3>x .………………………………………………………………………2分由②得: 4≤x .………………………………………………………………………2分 所以原不等式的解集是43≤<x . ……………………………………………………2分数轴上正确表示解集. …………………………………………………………………2分所以这个不等式组的整数解是4.…………………………………………………………2分21. (本题满分10分)(1)过点D 作DH ⊥BC ,垂足为点H , ……………………………………………………1分∵AD//BC ,∠ABC =90°, ∴DH =AB ,BH =AD .∵AB =4, AD =8, ∴DH =AB =4,BH =AD =8. …………………………………………1分在Rt △DHC 中,sin ∠HCD =54 即54=DC DH .∴DC=5.…………………………………1分 ∴322=-=DH DC HC .∴BC=BH +HC =11. …………………………………………………………………………1分∴梯形ABCD 的周长=4+8+11+5=28.………………………………………………………1分(2) ∵AD//BC , ∴ ∠DEC=∠ECB .∵CE 平分∠BCD ,∴ ∠DCE=∠ECB .∴ ∠DEC=∠DCE .∴DE =DC=5. ………………………………………………………………………………1分 ∴AE =AD-DE=3. ∴522=+=AE AB BE . …………………………………………………………………1分 ∵AD//BC ,∴BC DEPB PE =, 1155=+PE PE 即:. ……………………………………………2分 ∴PE=625. …………………………………………………………………………………1分 22.(本题满分10分,每小题5分)解:(1)由题意可知,y 与x 之间的函数解析式是:)0(≠+=k b kx y , …………1分 由图像可知,它经过(10,100)、(15,90),∴⎩⎨⎧=+=+901510010b k b k ,解得:⎩⎨⎧=-=1202b k . …………………………………………………2分 ∴y 关于x 的函数解析式是:1202-+=x y ,它的定义域是:2010≤≤x . ………2分(2)由题意可得:800)1202)(10=+--x x ( . ……………………………………3分 整理得:01000702=+-x x ,解得 50,2021==x x (不合题意,舍去) . …………………………………2分 答:当王阿姨销售草莓获得的利润为800元时,草莓销售的单价是20元.23.(本题满分12分,每小题满分各6分)证明:(1)∵∠CED= ∠A ,∠DCE =∠FCA ,∴△DCE ∽△CF A . ……………………………………………………………2分 ∴FAED AC EC =. ……………………………………………………………………1分 ∵∠ACB =90° ,点E 是BD 的中点,∴ED EC =. ……………………………………………………………………2分 ∴AF AC =. ……………………………………………………………………1分(2)在图7中正确画出图形. ……………………………………………………………1分 ∵∠GBA= ∠CED ,∠CED= ∠A ,∴∠GBA= ∠A ,∴BG //CD . …………………………………………………………1分 ∴EGCE BE DE =. ……………………………………………………………………………1分 ∵DE =BE ,∴CE =EG . ……………………………………………………………………1分 ∴四边形CDGB 是平行四边形. ………………………………………………………1分 ∵∠ACB =90° ,∴平行四边形CDGB 是矩形. ……………………………………………………………1分24.(本题满分12分,每小题4分)(1)由抛物线c bx x y ++-=2经过点A (3,0)和点B (2,3)可得:⎩⎨⎧=++-=++-324039c b c b ,解得:⎩⎨⎧==32c b . ………………………………………2分∴抛物线的表达式:322++-=x x y . ……………………………………………1分 ∴对称轴是:直线1=x . ……………………………………………………………1分(2)过点B 作x 轴的垂线,垂足为点H ,∵A (3,0),B (2,3),∴AH=1,BH=3.∴ 在Rt △ABH 中,31tan ==∠BH AH ABH . ∵tan ∠CAO =31, ∴CAO ABH ∠=∠. ………………………………………1分 ∵∠ABH +∠BAH=90°,∴∠CAO +∠BAH=90°,即∠BAC=90°. ………………………………………………1分 ∵∠AHB =∠AOC=90° , CAO ABH ∠=∠,HB =AO =3∴△AOD ≌△CHA .∴∠ABC=∠ACB=45°.……………………………………………………………………1分 ∴tan ∠ABC =1. …………………………………………………………………………1分(3) ∵ ADC ABC S S ∆∆= , ∴点D 到AC 的距离等于点B 到AC 的距离. …………1分 延长BA 到点P ,使BA =P A ,过点P 作PD //AC ,交直线1=x 于点D ,即点D 就是所要求的点,设点D (1,m ),且0<m .过点P 作x 轴的垂线,垂足为点G ,由BA =P A ,∠BHA =∠PGA=90°,∠BAH =∠P AG , 易得:△P AG ≌△BAH .∴AG=1, PG=3,∴P (4,-3). …………………………………………………………1分在Rt △AOC 中,31tan ==∠OA OC CAO ,OA =3, ∴OC=1,C (0,1-).∴直线AC 的表达式是:1-31x y =. ……………………………………………………1分 ∴直线PE 的表达式是:31331-=x y . ∴当1=x 时,4-=m . 即点D (1,4-).……………………………………………1分另解:由(2)可知,△ABC 是等腰直角三角形,5101021=⨯⨯=∆ABC S (1分) ∴直线AC 的表达式是:1-31x y =. 直线AC 与直线1=x 相交于点F (1,32-),m DF --=32(1分). 5332(21=⨯--⨯=∆)m S ADC (1分), 解得4-=m . 即点D (1,4-). (1分)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)∵点C 为弧AB 的中点,∴CO ⊥AB .……………………………………………1分 ∵AB =4,∴AO=CO =2.∵点P 与点A 重合,∴2222=+==CO AO AC PC . ………………………………1分 ∴CD //AB ,DE//PC ,∴四边形PCDE 是平行四边形. …………………………………1分 ∵CD =PC ,∴平行四边形PCDE 是菱形. ………………………………………………1分 ∴PC=PE .∴BE=AB-PE=224-. …………………………………………………………………1分(2)∵∠COE =∠PQE=90°,∠CEO =∠PEQ ,∴△COE ∽△PQE .∴QEOE PQ CO = ,∴OE CO QE PQ =. … ……………………………………………………1分 ∵PC = x ,CO =2, ∴在Rt △POC 中,PO =4222-=-x CO PC .∵x PC PE ==, ∴42--=-=x x PO PE OE . ∴244222-+=--==x x x x OE CO EQ PQ . ………………………………………………1分 由(1)可知,四边形PCDE 是菱形,∴PD ⊥CE ,PQ PD 2=,EQ CE 2=.∴ EQPQ EQ PQ CE PD ==22. ……………………………………………………………………1分 ∴ 242-+=x x y )222(≤≤x .………………………………………………………2分 (3)当点Q 在半圆O 上时,点P 在OB 上,过点O 作ON ⊥CQ ,垂足为点N ,∴CQ NQ 21=. ……………………………………1分 ∵CQ=EQ ,∴2=NQQE .……………………………………………………………………1分 ∵PQ //ON ,∴2==NQ QE OP PE ,∴242=-x x . ……………………………………1分 整理得:1632=x ,解得: 334±=x (负数不合题意,舍去).……………………1分 ∴当点Q 在半圆O 上时,334=PC .。
2016年上海奉贤区调研测试九年级数学
2016年上海奉贤区调研测试九年级数学 2016.111.下列函数中,属于二次函数的是( )A .32-=x y ;B .22)1(x x y -+=;C .x x y 722-=;D .22xy -=. 2.已知32=y x ,那么下列等式中不正确的是( )A .y x 23=;B .23=x y ; C .3232=++y x ; D .25=+y y x . 3.已知△ABC 中,D 、E 分别是边BC 、AC 上的点,下列各式中,不能判断DE ∥AB 的是( )A .AE BD EC DC=; B .AE BD AC BC =; C .AC EC BC DC =; D .DE CEAB AC =. 4.对一个图形进行放缩时,下列说法中正确的是( )A .图形中线段的长度与角的大小都保持不变;B .图形中线段的长度与角的大小都会改变;C .图形中线段的长度可以改变、角的大小保持不变;D .图形中线段的长度保持不变、角的大小可以改变.5.把抛物线22y x =--平移后得到抛物线2y x =-,平移的方法可以是( ) A .沿y 轴向上平移2个单位; B .沿y 轴向下平移2个单位; C .沿x 轴向右平移2个单位; D .沿x 轴向左平移2个单位.6.如果二次函数c bx ax y ++=2的图像如图所示,那么下列判断中,不正确的是( ) A .0>a ; B .0>b ; C .0>c ; D .0<++c b a .7.AB 两地的实际距离是24千米,那么,在比例尺是1:800000的地图上量出AB 两地距离是 厘米;8.如果将抛物线1)1(22-+=x y 沿x 轴向右平移2个单位,那么所得新的抛物线的表达式是 ;9.已知二次函数2)2(+=x y ,它的图像在对称轴 (填“左侧”或“右侧”)的部分是下降的; 10.已知:在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD =2DB ,BC =6,那么DE = ; 11.己知抛物线y 21mx x =-+(m 为常数)的顶点是最低点,那么m ; 12.把长度为10cm 的线段进行黄金分割,那么较长线段的长是 cm ; 13.抛物线bx x y +=2的对称轴直线21-=x ,那么抛物线的解析式是 ; 14.抛物线1)1(22--=x y 与y 轴的交点坐标是 ;15.在△ABC 中,AB =AC ,如果中线BM 与高AD 相交于点P ,那么ADAP= ;16.如图,光源P 在水平放置的横杆AB 的正上方,AB 在灯光下的影子CD 也呈水平状态.AB =4m ,CD =12m ,点P 到CD 的距离是3.9m ,那么的距离是m ;第6题图17.已知抛物线c x x y +-=22经过点),1(1y A -和),2(2y B ,比较1y 与2y 的大小:1y 2y (选择“>”或“<”或“=”填入空格);18.边长为8的正方形ABCD 中,点P 在BC 边上,CP =2,点Q 为线段AP 上的动点,射线BQ 与矩形ABCD 的一边交于点R ,且AP =BR ,那么QRBQ= ; 19.已知:如图AB//CD//EF ,AC 、BD 相交于点O ,E 在AC 上,F 在BD 上,且AE :EC =2:3,BD =10. (1)求BF 的长;(2)当AB =12,CD =8时,求EF 的长.20.在平面直角坐标系xOy 中,抛物线n mx x y ++-=2经过点A (4,﹣1),B (1,2).(1)求抛物线的表达式及对称轴;(2)该抛物线对称轴与抛物线交于点C ,连结BA 、BC ,求△ABC 的面积.O B ADC第19题FE第20题图21.如图,点D 为△ABC 内一点, E 、F 、G 点分别为线段AB 、AC 、AD 上一点,且EG ∥BD ,GF ∥DC .(1)求证:EF ∥BC ;(2)当43=BE AE 时,求EFG BCDSS ∆∆的值22.我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?第23题图C B第21题图24.已知在平面直角坐标系xOy 中,二次函数的图像经过原点O 及B (6,6), 交x 轴于点A ,对称轴是直线x =4,并与x 轴相交于点C . (1)求出抛物线的解析式和顶点D 坐标;(2)过点D 作DE ⊥y 轴于点E ,联结AE,点Q 是线段AE 上的一点,是否存在点Q ,使得△EDQ 与△OBC 相似?若相似,请求出点Q 的坐标,若不相似,请说明理由.25.已知:矩形ABCD 中,AB =9,AD =6,点E 在对角线AC 上,且满足AE =2EC ,点F 在线段CD 上,联结FE 并延长,交线段AB 于点M ,交直线BC 于点N . (1)当CF =2时,求线段BN 的长;(2)若设CF =x ,△BNE 的面积为y ,求y 关于x 的函数解析式,并写出自变量的取值范围; (3)试判断△BME 能不能成为等腰三角形,若能,请求出x 的值,若不能,请说明理由.BC第25题图BC 备用图1BC备用图2上海奉贤区初三调研考数学卷参考答案 2016.11一 、选择题:(本大题共6题,满分24分)1.C ; 2.D ; 3.D ; 4.C ; 5.A ; 6.B ; 二、填空题:(本大题共12题,满分48分)7.3; 8.1)1(22--=x y ; 9.左; 10.4; 11.m >0; 12.555-;13.x x y +=2; 14.(0,1); 15.32; 16.2.6; 17.>; 18.1或1213; 19、(本题满分10分,每小题满分各5分)解:(1)∵AB //CD //EF ∴32==EC AE FD BF …………………………………………………(1分) 设BF =2k ,FD =3k , …………………………………………………………………………(1分)∵ BD =2k +3k =10 ∴ k =2……………………………………………………………………(1分)∴ BF =4,FD =6.………………………………………………………………………………(1分)(2)∵EF CD AB ////,AB =6,CD =4 ∴OD OF DC EF =,23812===DC AB OD BO ,……………(2分) ∴ BO =6,OD =4. ∴ OF =2 ……………………………………………………………(2分) ∴428=EF ∴EF =4………………………………………………………………………(1分) 20.(本题满分10分,每小题满分各5分)解:把A (4,﹣1),B (1,2)代入抛物线n mx x y ++-=2中,⎩⎨⎧=++--=++-211416n m n m ………………………………………………………………………(1分)解得⎩⎨⎧-==14n m ……………………………………………………………………………………(2分)∴ 抛物线的表达式142-+-=x x y ……………………………………………………………(1分)()()32144422+--=--+--=x x x∴抛物线的对称轴是直线x =2………………………………………………………………………(1分) (2)由题意可知:C 是抛物线的顶点,坐标是(2,3)……………………………………………………(1分)∵A (4,﹣1),B (1,2).()()()()()()23221203124182114222222222=-+-==--+-==--+-=BC AC AB ∴222AB BC AC +=………………………………………(1分)∴△ABC 是直角三角形。
2016年上海市奉贤区中考数学二模试卷(解析版)
故选:B.
D.4.
3.(4 分)一次函数 y=﹣2x+3 的图象不经过的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解答】解:∵y=﹣2x+3 中,k=﹣2<0,
∴必过第二、四象限,
∵b=3,
∴交 y 轴于正半轴.
∴过第一、二、四象限,不过第三象限,
故选:C.
,那么 =
;(用不
的线性组合表示)
16.(4 分)四边形 ABCD 中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边
形 ABCD 是矩形,那么可以添加的条件是
.(不再添加线或字母,写出一种情况
即可)
17.(4 分)如图,在 Rt△ABC 中,∠ACB=90°,AD 是边 BC 边上的中线,如果 AD=BC,
7.(4 分)化简:
=
8.(4 分)因式分解:a2﹣a=
. .
D.1
9.(4 分)函数 y= 的定义域是
.
10.(4 分)一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中
有 2 个白球 n 个黄球,从中随机摸出白球的概率是 ,那么 n=
.
11.(4 分)不等式组
的解集是
.
12.(4 分)已知反比例函数 ,在其图象所在的每个象限内,y 的值随 x 值的增大而 (填“增大”或“减小”).
(1)求该抛物线的解析式;
第 3 页(共 17 页)
(2)连结 BC,当 P 点坐标为(0, )时,求△EBC 的面积; (3)当点 D 落在抛物线的对称轴上时,求点 P 的坐标.
25.(14 分)如图,边长为 5 的菱形 ABCD 中,cosA= ,点 P 为边 AB 上一点,以 A 为圆 心,AP 为半径的⊙A 与边 AD 交于点 E,射线 CE 与⊙A 另一个交点为点 F.
2015-2016年上海市奉贤区九年级上学期期中数学试卷及参考答案
2015-2016学年上海市奉贤区九年级(上)期中数学试卷一、选择题:(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)下列各组图形中一定相似的有()A.两个矩形B.两个等腰梯形C.两个等腰三角形 D.两个等边三角形2.(4分)下列函数中是二次函数的是()A.y=ax2+c B.y=x2+x C.y=(x﹣4)2﹣x2 D.y=x+23.(4分)在△ABC中,D、E分别是AB、AC上的点,下列比例式中不能判定DE∥BC的是()A.B.C.D.4.(4分)抛物线y=(x﹣1)2与y轴的交点坐标是()A.(0,1) B.(1,0) C.(0,﹣1)D.(0,0)5.(4分)下列式子中,正确的是()A.﹣=0 B.﹣=﹣C.如果=,那么||=|| D.如果||=||,那么=.6.(4分)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a<0B.b<0C.c>0D.方程ax2+bx+c=0有两个实数根二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)如果,那么=.8.(4分)抛物线y=2(x+1)2的对称轴是直线.9.(4分)计算:=.10.(4分)如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.11.(4分)已知一个数是2和5的比例中项,那么这个数是.12.(4分)二次函数y=﹣x2+2x的图象与x轴的交点坐标是.13.(4分)把抛物线y=3x2先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为:.14.(4分)相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.15.(4分)已知△ABC中,中线AD、BE相交于点G,若AD=12cm,那么AG的长为cm.16.(4分)抛物线在y轴左侧的部分是(填“上升”或“下降”)的.17.(4分)在平面直角坐标系中,过点A(0,3)作x轴的平行线,交抛物线于点B、C,那么BC的长为.18.(4分)如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=ax2+bx+c的部分对应值如下表:(1)求这个二次函数的解析式;(2)当x=3时,求y的值.20.(10分)已知,如图,AD∥EF∥BC,BE=3,AE=9,FC=2.(1)求DF的长;(2)如果AD=3,EF=5,试求BC的长.21.(10分)如图:已知△ABC中,∠BAD=∠C,AB=4,BD=2,.(1)试用表示;=3,求S△CDE.(2)过点D作DE∥AB交AC于点E,若S△ABD22.(12分)在体育测试时,九年级的一名男同学推铅球,铅球运行时离地面的高度y(米)是关于水平距离x(米)的二次函数.已知铅球刚出手时离地面高度为1.5米,铅球出手后,运行到离地面最高3米时,恰好与该同学的水平距离为4米,如图建立平面直角坐标系.(1)求铅球运行时这个二次函数的解析式;(2)该同学把铅球推出去多远?(精确到0.01米,≈1.414)23.(12分)已知平行四边形ABCD,点E为线段AD上一点.联结CE并延长交BA的延长线于点F.联结BE、DF.(1)当E为AD的中点时,求证:△DEF与△ABE的面积相等;(2)当∠ABE=∠DFE时,求证:EF2=AF•DC.24.(12分)如图所示,在平面直角坐标系xOy中,抛物线y=x2平移后经过A(﹣3,0)、B(1,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线解析式和点D的坐标;(2)求证:∠CAD=∠OCB;(3)在x轴上是否存在点E,使得△ACE与△OCD相似?若存在,求出点E的坐标;若不存在,请说明理由.25.(12分)已知在△ABC中,∠ABC=45°,AD⊥BC,且BD=4,高AD上有一动点E(点E不与点A、点D重合),联结BE并延长与边AC相交于点F.(1)当点E为AD中点,且BF⊥AC时,求AF;(2)当DC=3,设DE=x,AF=y,请建立y与x的函数关系式,并写出定义域;(3)在(2)的条件下,当△AEF为等腰三角形时,求DE的长.2015-2016学年上海市奉贤区九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)下列各组图形中一定相似的有()A.两个矩形B.两个等腰梯形C.两个等腰三角形 D.两个等边三角形【解答】解:A、两个矩形四个角相等,但是各边不一定对应成比例,所以不一定相似,故本选项错误;B、两个等腰梯形不一定相似,故本选项错误.C、两个等腰三角形,三个角不一定相等,因此不一定相似,故本选项错误.D、两个等边三角形,三个角对应相等,一定相似,故此选项正确;故选:D.2.(4分)下列函数中是二次函数的是()A.y=ax2+c B.y=x2+x C.y=(x﹣4)2﹣x2 D.y=x+2【解答】解:A、当a=0时,y=ax2+c不是二次函数,故此选项错误;B、y=x2+x是二次函数,故此选项正确;C、y=(x﹣4)2﹣x2化简后,不含x2项,不是二次函数,故此选项错误;D、y=x+2是一次函数,故此选项错误;故选:B.3.(4分)在△ABC中,D、E分别是AB、AC上的点,下列比例式中不能判定DE∥BC的是()A.B.C.D.【解答】解:A、=,可证明DE∥BC,故本选项不正确;B、=,不可证明DE∥BC,故本选项正确;C、=,可证明DE∥BC,故本选项不正确;D、=,可证明DE∥BC,故本选项不正确.故选:B.4.(4分)抛物线y=(x﹣1)2与y轴的交点坐标是()A.(0,1) B.(1,0) C.(0,﹣1)D.(0,0)【解答】解:当x=0时,y=(x﹣1)2=1,所以抛物线y=(x﹣1)2与y轴的交点坐标是(0,1).故选:A.5.(4分)下列式子中,正确的是()A.﹣=0 B.﹣=﹣C.如果=,那么||=|| D.如果||=||,那么=.【解答】解:A、﹣≠0,故本选项错误;B、﹣=﹣(﹣),故本选项错误;C、如果=,那么||=||,故本选项正确;D、如果||=||,那么不一定等于;故本选项错误.故选:C.6.(4分)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a<0B.b<0C.c>0D.方程ax2+bx+c=0有两个实数根【解答】解:∵抛物线开口向下,∴a<0,故A不合题意;∵对称轴在y轴的右侧,a,b异号,∴b>0,故B正确;∵抛物线和y轴的正半轴相交,∴c>0,故C不合题意;∵抛物线和x轴有两个交点,∴方程ax2+bx+c=0有两个不等实根,故D不合题意.故选:B.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)如果,那么=.【解答】解:∵原式的两个内项分别是a+b、5,两个外项分别是a、7,∴7a=5(a+b),即2a=5b,∴=.故答案为:.8.(4分)抛物线y=2(x+1)2的对称轴是直线x=﹣1.【解答】解:抛物线y=2(x+1)2的对称轴是直线x=1,故答案为x=1.9.(4分)计算:=﹣﹣3.【解答】解:=2﹣3﹣3=﹣﹣3.故答案为:﹣﹣3.10.(4分)如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9.【解答】解:∵两个相似三角形对应角平分线的比是4:9,∴它们的相似比为4:9,∴它们的周长比为4:9.故答案为:4:9.11.(4分)已知一个数是2和5的比例中项,那么这个数是±.【解答】解:设这个数是x,∵x是2和5的比例中项,∴x2=2×5=10,解得:x=±;故答案为:±.12.(4分)二次函数y=﹣x2+2x的图象与x轴的交点坐标是(0,0),(2,0).【解答】解:当y=0时,﹣x2+2x=0,解得x1=0,x2=2,所以二次函数y=﹣x2+2x的图象与x轴的交点坐标是(0,0),(2,0).故答案为(0,0),(2,0).13.(4分)把抛物线y=3x2先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为:y=3(x﹣2)2﹣1.【解答】解:由“左加右减”的原则可知,抛物线y=3x2先向右平移2个单位得到抛物线的解析式为:y=3(x﹣2)2;由“左加右减”的原则可知,抛物线y=3(x﹣2)2向下平移1个单位得到的解析式为:y=3(x﹣2)2﹣1.故答案为:y=3(x﹣2)2﹣1.14.(4分)相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于(10﹣10)厘米.【解答】解:设所求边长为x,由题意,得=,解得x=(10﹣10)cm.故答案为(10﹣10).15.(4分)已知△ABC中,中线AD、BE相交于点G,若AD=12cm,那么AG的长为8cm.【解答】解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG=AD==8,故答案为:8.16.(4分)抛物线在y轴左侧的部分是上升(填“上升”或“下降”)的.【解答】解:抛物线的开口向下,对称轴为y轴,对称轴左侧y随x 增大而增大,∴y轴左侧的部分上升.故答案为上升.17.(4分)在平面直角坐标系中,过点A(0,3)作x轴的平行线,交抛物线于点B、C,那么BC的长为6.【解答】解:当y=3时,x2=3,解得x1=3,x2=﹣3,所以B(3,3),C(﹣3,3),所以BC=3﹣(﹣3)=6.故答案为6.18.(4分)如图,在△ABC中,AC=BC=2,∠C=90°,点D为腰BC中点,点E在底边AB上,且DE⊥AD,则BE的长为.【解答】解:过D点作DH⊥AB,垂足为H,∵在△ABC中,AC=BC=2,∠C=90°,∴AB==2.∵点D为腰BC中点,∴AD==,∵DE⊥AD,∠B=45°,∴DH=HB=,∴AD2=AH•AE,∴AE===,EB=AB﹣AE=2﹣=.故答案为:.三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=ax2+bx+c的部分对应值如下表:(1)求这个二次函数的解析式;(2)当x=3时,求y的值.【解答】解:(1)把(﹣3,7)、(0,﹣8)、(1,﹣9)代入y=ax2+bx+c得,解得,所以抛物线解析式为y=x2﹣2x﹣8;(2)当x=3时,y=x2﹣2x﹣8=9﹣6﹣8=﹣5.20.(10分)已知,如图,AD∥EF∥BC,BE=3,AE=9,FC=2.(1)求DF的长;(2)如果AD=3,EF=5,试求BC的长.【解答】解:(1)∵AD∥EF∥BC,∴,∵BE=3,AE=9,FC=2,∴,解得:DF=6;(2)延长BA与CD,相交于点G,∵AD∥EF∥BC,∴△GAD∽△GEF,△GAD∽△GBC,∴,,∵AD=3,EF=5,AE=9,∴,解得:GA==13.5,∴GB=GA+AE+BE=25.5,∴,解得:BC=.21.(10分)如图:已知△ABC中,∠BAD=∠C,AB=4,BD=2,.(1)试用表示;=3,求S△CDE.(2)过点D作DE∥AB交AC于点E,若S△ABD【解答】解:(1)∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴,∵AB=4,BD=2,∴,∴BC=8,∴CD=BC﹣BD=6,∴=3=3;(2)∵S△ABD=3,∴S△ABC=4S△ABD=12,∵DE∥AB,∴△CDE∽△CBA,∴S△CDE :S△ABC=()2=,∴S△CDE=×12=.22.(12分)在体育测试时,九年级的一名男同学推铅球,铅球运行时离地面的高度y(米)是关于水平距离x(米)的二次函数.已知铅球刚出手时离地面高度为1.5米,铅球出手后,运行到离地面最高3米时,恰好与该同学的水平距离为4米,如图建立平面直角坐标系.(1)求铅球运行时这个二次函数的解析式;(2)该同学把铅球推出去多远?(精确到0.01米,≈1.414)【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+3,由抛物线经过A(0,1.5),由题意,得1.5=a(0﹣4)2+3,解得a=﹣.故抛物线的解析式为:y=﹣(x﹣4)2+3;(2)当y=0时,0=﹣(x﹣4)2+3,解得:x1=4+4,x2=4﹣4(舍去).4+4≈9.7米.故这个同学推出的铅球有9.7米远.23.(12分)已知平行四边形ABCD,点E为线段AD上一点.联结CE并延长交BA的延长线于点F.联结BE、DF.(1)当E为AD的中点时,求证:△DEF与△ABE的面积相等;(2)当∠ABE=∠DFE时,求证:EF2=AF•DC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCF,在△AEF与△CDE中,,∴△AFE≌△CDE,∴AF=CD,∴AB=AF,∴S=S△AEF,△ABE∵AE=EF,=S△DEF,∴S△AEF∴△DEF与△ABE的面积相等;(2)∵AE∥BC,∴,∵∠ABE=∠DFE,∠AFC=∠FCD,∴△FBE∽△CFD,∴,∴,∴EF2=AF•DC.24.(12分)如图所示,在平面直角坐标系xOy中,抛物线y=x2平移后经过A(﹣3,0)、B(1,0),设平移后的抛物线与y轴交于点C,其顶点为D.(1)求平移后的抛物线解析式和点D的坐标;(2)求证:∠CAD=∠OCB;(3)在x轴上是否存在点E,使得△ACE与△OCD相似?若存在,求出点E的坐标;若不存在,请说明理由.【解答】解:(1)设平移后的解析式为y=x2+bx+c,将B、C点坐标代入,得,解得.平移后的抛物线解析式为y=x2+2x﹣3,y=x2+2x﹣3=(x+1)2﹣4,顶点D的坐标是(﹣1,﹣4);(2)证明:当x=0时,y=﹣4,即C(0,﹣3).由勾股定理,得AD==2,DC==,AC==3,BC==,==,=,==,∵===,∴△ACD∽△COB,∴∠CAD=∠OCB;(3)如图:设E(b,0),∠EAC=∠OCD=135°,DC==,AC==3,OC=3,AE=﹣3﹣b,当△AEC∽△CDO时,=,即=,解得b=﹣5,即E1(﹣5,0);当△AEC∽△COD时,=,即=,解得b=﹣12,即E2(﹣12,0).综上所述:在x轴上存在点E,使得△ACE与△OCD相似,点E的坐标为E1(﹣5,0),E2(﹣12,0).25.(12分)已知在△ABC中,∠ABC=45°,AD⊥BC,且BD=4,高AD上有一动点E(点E不与点A、点D重合),联结BE并延长与边AC相交于点F.(1)当点E为AD中点,且BF⊥AC时,求AF;(2)当DC=3,设DE=x,AF=y,请建立y与x的函数关系式,并写出定义域;(3)在(2)的条件下,当△AEF为等腰三角形时,求DE的长.【解答】解:(1)∵AD⊥BD,∠ABD=45°,∴BD=AD=4,∵AE=ED=2,在RT△BED中,BE===2.∵∠BED=∠AEF,∠BDE=∠AFE=90°,∴△BED∽△AEF,∴=,∴=,∴AF=.(2)作CK⊥BC,交BF的延长线于K.∵AD⊥BC,∴AD∥KC,∴=,∴=,∴CK=x,∵=,∴=,∴y=.(0<x<4).(3)∵∠AEF>∠DAC,∠EFA>∠EAF,∴只有可能∠AEF=∠AFE,∴AE=AF,∴4﹣x=,解得:x=或4(舍弃).∴当△AEF为等腰三角形时,DE的长为.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2016上海中考数学二模试卷含闵行,普陀,杨浦,虹口,黄浦,松江,浦东,长宁8个区包括答案
闵行区2015-2016学年第二学期九年级质量调研考试2016.4数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.如果单项式22n a b c是六次单项式,那么n的值取(A)6;(B)5;(C)4;(D)3.2(A;(B(C1;(D1.3.下列函数中,y随着x的增大而减小的是(A)3y x=;(B)3y x=-;(C)3yx=;(D)3yx=-.4.一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是(A)平均数;(B)中位数;(C)众数;(D)方差.5.下列图形中,既是轴对称又是中心对称图形的是(A)正五边形;(B)等腰梯形;(C)平行四边形;(D)圆.6.下列四个命题,其中真命题有(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为sin20a⋅o.(A)1个;(B)2个;(C)3个;(D)4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.在实数范围内分解因式:32a a -= ▲ . 92=的解是 ▲ . 10.不等式组30,43x x x -≥⎧⎨+>-⎩的解集是 ▲ .11.已知关于x 的方程20x x m --=没有实数根,那么m 的取值范围是 ▲ .12.将直线213y x =-+向下平移3个单位,那么所得到的直线在y 轴上的截距为 ▲ .13.如果一个四边形的两条对角线相等,那么称这个四边 形为“等对角线四边形”.写出一个你所学过的特殊 的等对角线四边形的名称 ▲ .14.如图,已知在梯形ABCD 中,AD // BC ,且BC = 3AD ,点E 是边DC 的中点.设AB a =uu u r r ,AD b =uuu r r ,那么 AE =uu u r ▲ (用a r 、b r的式子表示).15.布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是 ▲ .16.9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是 ▲ .17.点P 为⊙O 内一点,过点P 的最长的弦长为10cm ,最短的弦长为8cm ,那么OP的长等于 ▲ cm .18.如图,已知在△ABC 中,AB = AC ,1tan 3B ∠=,将△ABC 翻折,使点C 与点A 重合,折痕DE 交边BC 于点D ,交边AC 于点E ,那么BDDC的值为 ▲ . ABD C(第14题图)EABC(第18题图)(第16题图) 乘公车 y % 步行 x %骑车 25%私家车 15%学生出行方式扇形统计图师生出行方式条形统计图三、解答题:(本大题共7题,满分78分)19.(本题满分10分)110212(cos60)32--++-o.20.(本题满分10分)解方程:222421242xx x x x x-+=+--.21.(本题满分10分,其中每小题各5分)如图,已知在△ABC中,∠ABC = 30º,BC = 8,sin A∠=,BD是AC边上的中线.求:(1)△ABC的面积;(2)∠ABD的余切值.22.(本题满分10分,其中每小题各5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i =1∶512,且AB = 26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53º时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin530.8≈o,cos530.6≈o,tan53 1.33≈o,cot530.75≈o).BCD(第21题图)BDC(第22题图)F23.(本题满分12分,其中每小题各6分)如图,已知在矩形ABCD 中,过对角线AC 的中点O 作 AC 的垂线,分别交射线AD 和CB 于点E 、F ,交边DC 于 点G ,交边AB 于点H .联结AF ,CE . (1)求证:四边形AFCE 是菱形; (2)如果OF = 2GO ,求证:2GO DG GC =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =++与x 轴交于 点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线l . (1)求这条抛物线的关系式,并写出其对称轴和顶点M 的坐标;(2)如果直线y kx b =+经过C 、M 两点,且与x 轴交于点D ,点C 关于直 线l 的对称点为N ,试证明四边形CDAN(3)点P 在直线l 上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切, 求点P 的坐标.(第24题图)(第23题图)AB CDE FGOH25.(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在△ABC中,AB = AC = 6,AH⊥BC,垂足为点H.点D在边AB上,且AD = 2,联结CD交AH于点E.(1)如图1,如果AE = AD,求AH的长;(2)如图2,⊙A是以点A为圆心,AD为半径的圆,交AH于点F.设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与⊙A外切,以点P为圆心,CP为半径的圆与⊙A内切,求边BC的长;(3)如图3,联结DF.设DF = x,△ABC的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围.(第25题图3)普陀区2015-2016学年度第二学期初三质量调研数学试卷 2016年4月13日(时间:100分钟,满分析150分)一、选择题:(本大题共6题,每题4分,满分24分)1、据统计,2015年上海市全年接待国际旅游入境者共80016000人次,80016000用科学记数法表示是( )(A )8.0016⨯610; (B )8.0016710⨯; (C )8100016.8⨯; (D )9100016.8⨯2、下列计算结果正确的是( )(A )824a a a =⋅; (B )()624a a =; (C )()222b a ab =; (D )()222b a b a -=-.3、下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )(A )折线图; (B )扇形图; (C )统形图; (D )频数分布直方图。
中考二模测试《数学试卷》附答案解析
A B. ﹣ C.2D. ﹣2
二、填空题
11.因式分解:ab2﹣2ab+a=_____.
12.如图,已知正六边形ABCDEF,则∠ADF=_____度.
13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为_____.
24.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一交点为E,其顶点为F.
(1)求a、c 值;
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
【答案】B
【解析】
试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.
考点:棱柱的侧面展开图.
3.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE∥AB,∠ADE=42°,则∠B的大小为( )
A.42°B.45°C.48°D.58°
【答案】C
【解析】
【详解】解:∵DE∥AB,∠ADE=42°,∴∠CAB=∠ADE=42°.
【详解】A、 ,故A选项错误;
B、 ,故B选项错误;
C、 ,故C选项错误;
D、 a2+a2=2a2,故D选项正确,
故选D.
【点睛】本题考查了单项式乘以单项式、积的乘方、和合并同类项,正确掌握相关运算法则是解题关键.
6.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE= CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为()
最新奉贤区中考数学二模试题(含答案)
上海市奉贤区2017届九年级数学4月调研测试题(二模)(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分) 1、2的倒数是( ) A 、2 B 、 -2 C 、22 D 、 -222、下列算式的运算为2m 的是( )A 、42m m -⋅B 、63m m ÷ C 、 21)(-m D 、24m m -3、直线y =(3-π)x 经过的象限是( )A 、 一、二象限B 、 一、三象限C 、 二、三象限D 、 二、四象限4、李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步)它将记录的结果绘制成了如图一所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为( ) A 、 1.2与1.3 B 、 1.4与1.35 C 、 1.4与1.3 D 、 1.3与1.35、小明用如图2所示的方法画出了△ABC 全等的△DEF ,他的具体画法是:①画射线DM ,在射线DM 上截取DE =BC ; ②以点D 为圆心,BA 长为半径画弧,以E 为圆心,CA 长为半径画弧,两弧相交于点F ;③联结FD 、FE ; 这样△DEF 就是所要画的三角形,小明这样画的依据是全等三角形判定方法中的( )A 、 边角边B 、 角边角C 、 角角边D 、 边边边6、已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是( ) A 、 1 B 、 3 C 、 5 D 、7 二、填空题:(本大题共12题,每题4分,满分48)7、计算:(-1)2017+02-4= ;8、函数y =x +2的定义域是 ; 9、方程x =-x 的解是 ;10、如果抛物线y =a 2x -3的顶点是它的最低点,那么a 的取值范围是 ;11、如果抛物线32-=ax y 的顶点是它的最低点,那么a 的取值范围是 ; 12、如果点P (m -3,1)在反比例函数xy 1=的图像上,那么m 的值是 ; 13、学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“试卷默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 ;14、为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格,并将测试结果绘制成了如图所示的统计图.由此估计全区九年级体育测试成绩可以达到优秀的人数约为 ;15、在梯形ABCD 中,AD //BC ,AD =21BC ,设AB a →→=,DC b →→=,那么BC →等 于(结果用a →、b →的线性组合表示);16、如果正n 边形的内角是它的中心角的2倍,那么边数n 的值是 ;17、在等腰ABC ∆中,当顶角A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也确定了,我们把这个比值记作T (A ),即()ABBCA A A T =∠∠=的邻边(腰)的对边(底边).例:T (600)=1,那么T (1200)= ;18、如图,矩形ABCD ,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将BEF ∆绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好是边DC 的中点,那么ABAD的值是 。
2016年上海市松江区中考数学二模拟试卷及答案
1 2 8 C.9 ;72016 年松江区初中毕业生学业第二次模拟考试数学试卷(满分150 分,考试时间100 分钟)2016.4 考生注意:1.本试卷含三个大题,共 25 题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()22A.;B.7;C.;D.16.2.下列式子中,属于最简二次根式的是()A.;B.;D..3.在平面直角坐标系中,直线y =x -1经过()A.第一、二、三象限;B.第一、二、四象限;C.第一、三、四象限;D.第二、三、四象限.4.某班一个小组7 名同学的体育测试成绩(满分30 分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是()A.27,25;B.25,27;C.27,27 ;D.27,30.5.如图,已知四边形ABCD 是平行四边形,要使它成为菱形,那么需要添加的条件可以是( )A. AC⊥BD;B. AB=AC;C.∠ABC=90°;D.AC=BD.A DB (第 5 题图) C6.已知⊙O1的半径r1=6,⊙O2的半径为r2,圆心距O1O2=3,如果⊙O1与⊙O2有交点,那么r2的取值范围是()A.r2 ≥ 3 ;B.r2 ≤ 9 ;C.3 <r2 < 9 ;D.3 ≤r2 ≤9 .二、填空题:(本大题共12题,每题4分,满分48分)7.因式分解:2a2 - 3a = .8.函数y =2x -1的定义域是.59⎨ ⎩9.计算:2 ( a ─ b ) + 3 b =.10. 关于 x 的一元二次方程 x 2- 2 x + m = 0 有两个实数根,则 m 的取值范围是.⎧- 1x ≤ 011. 不等式组⎪ 2 的解集为 .⎪⎩2 x - 4 > 012. 将抛物线 y = x2- 2 向左平移 3 个单位长度,再向上平移 2 个单位长度,所得的抛物线的解析式为.13. 反比例函数 y =k的图象经过点(﹣1,2),A ( x , y ) ,B ( x , y ) 是图像上另两点,其x1122中 x 1 < x 2 < 0 ,则y 1 、 y 2 的大小关系是 .14. 用换元法解分式方程x -1 - 3x + 1 = 0 时,如果设 x -1= y ,将原方程化为关于 y 的 x x -1 x整式方程,那么这个整式方程是.15. 某服装厂从 20 万件同类产品中随机抽取了 100 件进行质检,发现其中有 2 件不合格,那么你估计该厂这 20 万件产品中合格品约为 万件.16. 从 1 到 10 的十个自然数中,随意取出一个数,该数为 3 的倍数的概率是.17. 某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为 x ,那A D么根据题意可列关于 x 的方程是. 18. 如图,梯形ABCD 中,AD ∥BC , ∠B =90°,AD =2,BC =5,E 是AB 上一点,将△BCE 沿着直线CE 翻折,点B 恰好与D 点重合,则BE=.三、解答题:(本大题共 7 题,满分 78 分) 19.(本题满分 10 分)C (第 18 题图)计算:(1)-23 - 1 - + (π- 3.14)0 + 1 8 2⎧x + 2 y = 12 ,① 20.(本题满分 10 分)解方程组: ⎨x 2 - 3 x y + 2 y 2= 0 . ②21.(本题满分 10 分,第(1)小题满分 7 分,第(2)小题满分 3 分) 已知气温的华氏度数 y 是摄氏度数 x 的一次函数.如图所示是一个家用温度表的表盘.其左边为摄氏温度的刻度和读数(单位℃),右边为华氏温度的刻度和读数 (单位℉).观察发现表示-40℃与-40℉的刻度线恰好对齐(在一条水平线上),(第 21 题图)2G O EDFEFyCBAOx而表示 0℃与 32℉的刻度线恰好对齐.(1) 求 y 关于 x 的函数关系式(不需要写出函数的定义域);(2) 当华氏温度为 104℉时,温度表上摄氏温度为多少?22. (本题满分 10 分,每小题满分各 5 分)如图,在△ABC 中,AB =AC=10,BC =12,AD ⊥BC 于 D ,O 为 AD 上一点,以 O 为圆心,OA为半径的圆交 AB 于 G ,交 BC 于 E 、F ,且 AG =AD .A(1) 求 EF 的长;(2) 求 tan∠BDG 的值.B C(第 22 题图)23.(本题满分 12 分,每小题满分各 6 分)如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,垂足分别为 D 、E .(1) 求证:∠CAD =∠ECB ;(2) 点 F 是 AC 的中点,联结 DF ,求证:BD 2=FC ·BE . ABDC(第 23 题图)24.(本题满分 12 分,每小题满分各 4 分)如图,平面直角坐标系 xOy 中,已知 B (-1,0),一次函数 y = - x + 5 的图像与 x 轴、y 轴分别交于点 A ,C 两点.二次函数 y =﹣x 2+bx +c 的图像经过点 A 、点 B .(1) 求这个二次函数的解析式;(2) 点 P 是该二次函数图像的顶点,求△APC 的面积;(3) 如果点 Q 在线段 AC 上,且△ABC 与△AOQ 相似,求点 Q 的坐标.(第 24 题图)ϖ25.(本题满分 14 分,其中第(1)小题 4 分,第(2)小题 5 分,第(3)小题 5 分) 已知:如图 1,在梯形 ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点 E在 AD 边上,且 AE=3ED ,EF //AB 交 BC 于点 F ,点 M 、N 分别在射线 FE 和线段 CD 上.(1) 求线段 CF 的长;(2) 如图 2,当点 M 在线段 FE 上,且 AM ⊥MN ,设 FM ·cos ∠EFC =x ,CN =y ,求 y 关于 x的函数解析式,并写出它的定义域;(3) 如果△AMN 为等腰直角三角形,求线段 FM 的长.AE D A E DA E DBFC (第 25 题图 1)M BFC(第 25 题图 2)(备用图)2016 年松江区初中毕业生学业模拟考试参考答案及评分标准一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 1. B 2.D 3.C 4.C 5. A 6.D 二、填空题:(本大题共12 题,每题 4 分,满分 48 分) 7 . a (2a - 3) 8 . a ≠ 19 . 2a + b 10 . m ≤ 111 . x >212 . y = (x + 3)213. y < y14. y 2+ y - 3 = 015.19.616.317. 289(1 - x )2= 256121018.2.5三、解答题:(本大题共 7 题,满分 78 分)19.解:原式= 9 - ( - 1) + 1 + ……………………………(每个 2 分)2 2H G O EDF⎩⎩⎩=11 ............................................................................................. 2 分20.解方程组: ⎧x + 2 y = 12 ,① ⎨x 2- 3 x y + 2 y 2 = 0 . ② 解:由②得: (x - y )(x - 2 y ) = 0 .∴ x - y = 0 或 x - 2 y = 0 . ........................................2 分⎧x + 2 y = 12 ,原方程组可化为⎨x - y = 0 ,⎧x + 2 y = 12 ,⎨x - 2 y = 0 .……………………………4 分解这两个方程组,得原方程组的解为⎧x 1 = 4 , ⎧x 2 = 6 , ..................................4 分 ⎨ y = 4 , ⎨y = 3 . ⎩ 1 ⎩ 2另解:由①得 x = 12 - 2 y . ③ ................................... 1 分把③代入②,得 (12 - 2 y ) 2 - 3(12 - 2 y ) y + 2 y 2 = 0 . ................. 1 分整理,得 y 2 - 7 y + 12 = 0 . ....................................... 2 分解得 y 1 = 4 , y 2 = 3 . ............................................. 2 分分别代入③,得 x 1 = 4 , x 2 = 6 . ................................. 2 分∴原方程组的解为⎧x 1 = 4 ,⎧x 2 = 6 , ............................................................. 2 分 ⎨ y = 4 ,⎨ y = 3 . ⎩ 1⎩ 221.解:(1)设 y = kx + b (k ≠ 0) ,依题意,得x = -40 时, y = -40 ; x = 0 时, y = 32 ............................................. 2 分⎧- 40k + b = -40 ⎧⎪k = 9 9代入,得⎨......2 分 解得⎨ 5 (2)分 ∴ y = x + 32 ………1 分 ⎩b = 32 ⎪⎩b = 325 (2)由 y = 104 得, 9 x + 32 = 104 ,……2 分;5答:温度表上摄氏温度为 40 度.9 x = 72 , x = 40.............. 1 分5A22. 解:(1)过点 O 作 OH ⊥AG 于点 H ,联接 OF ............... 1 分 AB =AC=10,AD ⊥BC,BC=12 1∴BD =CD = BC =6,24 ∴AD =8,cos ∠BAD = 5∵AG =AD, OH ⊥AGB C(第 22 题图)⎩ ⎨1 ∴AH =2 ∴AO =AG =4,AH= 5 .................................................................. 2 分 cos ∠BAD∴OD =3,OF =5∴DF =4 .................................................................................................. 1 分 ∴EF =8 ................................................................................................... 1 分 (2)过 B 作 BM ⊥BD 交 DG 延长线于 M ............................................... 1 分 ∴BM //AD ,∴∠BMG =∠ADG ∵AD =AG , ∴∠ADG =∠AGD∴∠BMG =∠BGM∴ BM =BG =10-8=2 .............................................................................. 2 分 MB tan∠BDG=BD 23. 证明:2 1= = ................... 2 分6 3(1) ∵AB =AC ,∴∠ABC =∠ACB .......................................................................... 2 分 ∵AD ⊥BC ,CE ⊥AB ,∴∠ABC +∠ECB =∠ACB+∠CAD=90° ....................................... 2 分 ∴∠CAD =∠ECB ; ................................. 2 分 (2) ∵ AD ⊥BC ,∴DB =CD ...................................................................................... 1 分 ∵F 是 AC 的中点∴FD =FC , .................................................................................... 1 分 ∵CE ⊥AB ,∴DE =DB .................................................................................. 1 分 ∵∠ABC =∠ACB ∴△FCD ∽△DBE ....................................................................... 1 分 ∴FC = DB ,(第 23 题图)CD BE∴BD ·CD =FC ·BE . ....................................... 1 分 ∵DB =CD∴BD 2=FC ·BE . ............................................. 1 分 24.解:∵直线 y = - x + 5 , y = 0 得 x = 5 ,由 x = 0 得 y = 5∴A (5,0) C (0,5) ...................................................................... 1 分∵二次函数 y =-x 2+bx +c 的图像经过点 A (5,0)、点 B (-1,0).⎧- 25 + 5b + c = 0 ⎧b = 4∴ ⎨- 1 - b + c = 0 解得: ⎩c = 5…………2 分∴二次函数的解析式为 y = -x 2+ 4x + 5 ..............1 分(2)由 y = -x 2+ 4x + 5 = -(x - 2) 2+ 9 题意得顶点 P (2,9) ................. 1 分2 AO 6 设抛物线对称轴与 x 轴交于 G 点,∴ S ∆APC = S 四边形AOCP - S ∆AOC = S 梯形OCPG + S ∆APG - S ∆AOC = 14 + 13.5 -12.5 = 15…3 分(3)∠CAB =∠OAQ ,AB=6,AO=6,AC= 5 ,AB①△ABC ∽△AOQ ∴ AC AB = ∴ AQ = AQ AQ…………1 分 5 Q 1 ( 6 , 25) ............. 1 分 6②△ABC ∽△AQO ∴ =AC ∴ AQ = 3 AO …………1 分 Q 2 (2,3) …………1 分 5 ∴点 Q 的坐标Q 1 ( 6 , 25) Q 2 (2,3) 时,△ABC 与△AOQ 相似.25.解:(1)作 AG ⊥BC 于点 G ,∴∠BGA =90°∵∠BCD =90°,AD ∥BC ,∴AG =DC =6,……………………………………………(1 分) ∵tan ∠ABC = AG =2BG∴BG =3, ∵BC =11 ∴GC =8,∴AD =GC =8 ...................................................................... (1 分) ∴AE =3ED∴AE =6,ED =2 ................................................................... (1 分) ∵AD ∥BC ,AB ∥EF ∴BF =AE =6∴CF =BC -BF =5 ...................................................................... (1 分)(2)过点 M 作 PQ ⊥CD ,分别交 AB 、CD 、AG 于点 P 、Q 、H ,作 MR ⊥BC 于点 R 易得 GH =CQ =MR ∵MF cos ∠EFC =x ,∴FR =x ....................................................................................................... (1 分) ∵tan ∠ABC =2 ∴GH =MR =CQ =2x∴BG =3,由 BF =6 得 GF =3∴HM =3+x ,MQ =CF -FR =5-x ,AH =AG -GH =6-2x ................................... (1 分) ∵∠AMQ =∠AHM +∠MAH ,且∠AMN =∠AHM =90° ∴∠MAH =∠NMQ∴△AHM ∽△MQN ......................................................................................... (1 分) ∴ AH = HM ,即 6 - 2x = 3 + xMQ NQ 5 - x y - 2x25 2 6 25∴y = 5x2 -14x -152x - 6…………………………………………………(1 分)定义域:0 ≤x ≤ 1(3)①∠AMN=90°………(1 分)1)当点M 在线段EF 上时,∵△AHM∽△MQN 且AM=MN,P∴AH=MQ ……………(1 分)∴6-2x=5-x,∴x=1Q∴FM= M 2)当点M 在FE 的延长线上时同上可得AH=MQ∴2x -6=5-x∴x =113Q 11∴FM=35 ........................ (2 分)②∠ANM=90°过点N 作PQ⊥CD,分别交AB、AG 于点P、H,作MR⊥BC 于交BC 延长线于交直线PN 于点Q,∵AN=MN, 易得△AHN≌△NQM∴AH=N Q, HN =MQ=8令PH=a,则AH=2a,DN=2a,CN=6-2a∴FR=5+2a,MR=8+(6-2a)=14-2a2由MR=2FR 得a= ,319 38 19∴FR= ,MR= ∴FM= 5 ................................... (1 分)3 3 3。
2016上海各区初中数学二模试题及解答
十分遗憾最低的同学仍然只得了 56 了。这说明本次考试分数的众数是(
)
A、82;
B、91;
C、11;
D、56;
5、如果点 K、L、M、N 分别是四边形 ABCD 的四条边 AB、BC、CD、DA 的中点,且四边形 KLMN
是菱形,那么下列选项正确的是(
)
A、AB⊥BC;
B、AC⊥BD;
C、AB=BC;
6、如图 1,梯形 ABCD 中,AD∥BC,AB=DC,∠DBC=45°,
D、AC=BD;
AD
点 E 在 BC 上,点 F 在 AB 上,将梯形 ABCD 沿直线 EF 翻折,
F
使得点 B 与点 D 重合。如果 AD 1 ,那么 AF 的值是(
)
BC 4
BF
A、 1 ; 2
B、 3 ; 5
C、 2 ; 3
三、解答题(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 273 (
3
1)2
1 2
1
2 3 1
M C
N
B
A
(第 18 题图)
20.(本题满分 10 分)
解方程组:
x 2y 1
x2
3xy
2y2
0
21.(本题满分 10 分,其中每小题各 5 分)
如图,在平面直角坐标系 xOy 中,一次函数 y kx b (k 0) 的图像经过 A(0, 2) , B(1, 0)
BF 相交于 H,BF 与 AD 的延长线相交于 G.求证:
(1)CD=BH; (2)AB 是 AG 和 HE 的比例中项.
A
D
G
HF
B
2016年中考数学二模试卷(带答案)
2016年中考数学二模试卷一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣22.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×1063.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣24.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m95.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,410.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.411.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.412.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.计算:(﹣)=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.15.=.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.18.关于x的不等式组的解集为x<3,那么m的取值范围是.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.20.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③DP2=PH•PB;④.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共6小题,共60分.21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=,D级所在小扇形的圆心角的大小为;(2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的人数.22.(8分)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离.23.(12分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.24.(8分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.25.(12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动,DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5). 解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式,是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由; (3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.26.(12分)如图所示,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A ,B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.2016年内蒙古包头市昆都仑区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每题3分,共36分.1.﹣8的立方根是()A.2 B.2C.﹣D.﹣2【考点】立方根.【分析】直接利用立方根的定义分析得出答案.【解答】解:﹣8的立方根是:﹣2.故选:D.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.2.统计显示,2013年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为()A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11.4万=1.14×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.函数中自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x<2 D.x<﹣2【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得x+2≥0,解得x≥﹣2,故选B.【点评】注意二次根式的被开方数是非负数.4.下列计算正确的是()A.a2+a2=2a4 B.3a2b2÷a2b2=3abC.(﹣a2)2=a4D.(﹣m3)2=m9【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则化简,进而判断得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、3a2b2÷a2b2=3,故此选项错误;C、(﹣a2)2=a4,正确;D、(﹣m3)2=m6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式除以单项式运算和积的乘方运算等知识,正确掌握相关运算法则是解题关键.5.抛物线y=﹣6x2可以看作是由抛物线y=﹣6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位【考点】二次函数图象与几何变换.【分析】先得到两个抛物线的顶点坐标,然后根据顶点坐标判断平移的方向和单位长度.【解答】解:∵y=﹣6x2+5的顶点坐标为(0,5),而抛物线y=﹣6x2的顶点坐标为(0,0),∴把抛物线y=﹣6x2+5向下平移5个单位可得到抛物线y=﹣6x2.故选B.【点评】本题考查了抛物线的几何变换:抛物线的平移问题可转化为其顶点的平移问题,抛物线的顶点式:y=a(x﹣h)2+k(a≠0),则抛物线的顶点坐标为(h,k).6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.7.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB 于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为()A.4﹣π B.4﹣2πC.8+πD.8﹣2π【考点】扇形面积的计算;切线的性质.【分析】根据圆周角定理可以求得∠A的度数,即可求得扇形EAF的面积,根据阴影部分的面积=△ABC的面积﹣扇形EAF的面积即可求解.【解答】解:△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=90°.则扇形EAF的面积是:=π.故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.故选A.【点评】本题主要考查了扇形面积的计算,正确求得扇形的圆心角是解题的关键.8.按一定规律排列的一列数:,,,…其中第6个数为()A.B.C.D.【考点】算术平方根.【分析】观察这列数,得到分子和分母的规律,进而得到答案.【解答】解:根据一列数:,,,可知,第n个数分母是n,分子是n2﹣1的算术平方根,据此可知:第六个数是,故选C.【点评】此题考查了数字的变化类,从分子、分母两个方面考虑求解是解题的关键,难点在于观察出分子的变化.9.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15人数 1 2 3 4 3 2这15名男同学引体向上成绩的中位数和众数分别是()A.12,13 B.12,12 C.11,12 D.3,4【考点】众数;中位数.【分析】根据中位数与众数的定义,从小到大排列后,中位数是第8个数,众数是出现次数最多的一个,解答即可.【解答】解:第8个数是12,所以中位数为12;12出现的次数最多,出现了4次,所以众数为12,故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.10.下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1 B.2 C.3 D.4【考点】命题与定理.【分析】利用正方形的判定方法、垂径定理及其推理、圆的有关性质等知识分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直的平行四边形是菱形,故错误;②,则m≥1,正确;③过弦的中点的且垂直于弦的直线必经过圆心,故错误;④圆的切线垂直于经过切点的半径,正确;⑤圆的两条平行弦所夹的弧相等,正确,正确的有3个,故选C;【点评】本题考查了命题与定理的知识,解题的关键是了解正方形的判定方法、垂径定理及其推理、圆的有关性质等知识,难度不大.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2D.4【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S=底×高=2×2=4,菱形ABCD故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4 B.3 C.2 D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每题3分,共24分.13.计算:(﹣)=﹣.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣•=﹣.故答案为:﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【考点】概率公式.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.=5.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2﹣4×+1+4=2﹣2+5=5.故答案为:5.【点评】本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则、特殊角的三角函数值及绝对值的性质是解答此题的关键.16.折叠矩形ABCD,使点D落在BC边上的点F处,若折痕AE=5,tan∠EFC=,则BC=10.【考点】矩形的性质;翻折变换(折叠问题).【分析】根据tan∠EFC=,设CE=3k,在RT△EFC中可得CF=4k,EF=DE=5k,根据∠BAF=∠EFC,利用三角函数的知识求出AF,然后在RT△AEF中利用勾股定理求出k,继而代入可得出答案.【解答】解:设CE=3k,则CF=4k,由勾股定理得EF=DE==5k,∴DC=AB=8k,∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,∴∠BAF=∠EFC,∴tan∠BAF=tan∠EFC=,∴BF=6k,AF=BC=AD=10k,在Rt△AFE中,由勾股定理得AE===5k=5,解得:k=1,∴BC=10×1=10;故答案为:10.【点评】此题考查了翻折变换的性质、矩形的性质、勾股定理;解答本题关键是根据三角函数值,表示出每条线段的长度,然后利用勾股定理进行解答,有一定难度.17.如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.【考点】扇形面积的计算.【分析】根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面积公式计算即可.【解答】解:AB=4,∠ABA′=120°,所以s==π.【点评】主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.18.关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【考点】解一元一次不等式组.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.20.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出下列结论: ①△ABE ≌△DCF ;②;③DP 2=PH •PB ;④.其中正确的是 ①③ .(写出所有正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】①根据等边三角形的性质和正方形的性质,得到∠ABE=∠DCF ,∠A=∠ADC ,AB=CD ,证得△ABE ≌△DCF ,①正确;②由于∠FDP=∠PBD ,∠DFP=∠BPC=60°,推出△DFP ∽△BPH ,得到===tan∠DCF=,②错误;③由于∠PDH=∠PCD=30°,∠DPH=∠DPC ,推出△DPH ∽△CPD ,得到=,PB=CD ,等量代换得到DP 2=PH •PB ,③正确;④设正方形ABCD 的边长是3,则PB=BC=AD=3,求得∠EBA=30°,得出AE 、BE 、EP 的长,由S △BED =S ABD ﹣S ABE ,S △EPD =S △BED ,求得=,④错误;即可得出结论.【解答】解:①∵△BPC 是等边三角形, ∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°, ∵四边形ABCD 为正方形,∴AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, 在△ABE 与△CDF 中,,∴△ABE ≌△DCF (ASA ),故①正确;②∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠FCB=∠BPC=60°,∴△DFP∽△BPH,∴===tan∠DCF=,故②错误;③∵∠FDP=15°,∴∠PDH=30°∴∠PDH=∠PCD,∵∠DPH=∠DPC,∴△DPH∽△CDP,∴=,∴DP2=PH•CD,∵PB=CD,∴DP2=PH•PB,故③正确;④设正方形ABCD的边长是3,∵△BPC为正三角形,∴∠PBC=60°,PB=BC=AD=3,∴∠EBA=30°,∴AE=ABtan30°=3×=,BE===2,∴EP=BE﹣BP=2﹣3,S=S ABD﹣S ABE=×3×3﹣×3×=,△BEDS △EPD =S △BED =×=,∴==,故④错误;∴正确的是①③; 故答案为:①③.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定、等边三角形的性质、正方形的性质、三角形面积计算、三角函数等知识;熟练掌握相似三角形的判定与性质、三角形面积计算、三角函数是解决问题的关键.三、解答题:本大题共6小题,共60分.21.某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了 80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ,D 级所在小扇形的圆心角的大小为 18° ; (2)请直接补全条形统计图;(3)若该校九年级共有600名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A 组人数及其百分比可得抽查总人数,将B 级人数除以总人数可得其百分比,用D 等级人数占被抽查人数的比例乘以360°即可;(2)总人数减去A 、B 、D 三等级人数可得C 等级人数,补全条形图即可;(3)用样本中C等级及其以上(即A、B、C三等级)人数占被抽查人数的比例乘以总人数600可得.【解答】解:(1)课题研究小组共抽查学生:20÷25%=80(名),b=×100%=40%,D级所在小扇形的圆心角的大小为×360°=18°;故答案为:80,40%,18.(2)C等级人数为:80﹣20﹣32﹣4=24(名),补全条形统计图如图:(3)600×=570(人),答:估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)的约有570人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C 处的距离.【考点】解直角三角形的应用-方向角问题.【分析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的长,可以过B作BD⊥BC于D,先求出AD和CD的长.转化为运用三角函数解直角三角形.【解答】解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=5×2=10,∴x+x=10.得x=5(﹣1).∴BC=•5(﹣1)=5(﹣)(海里).答:灯塔B距C处海里.【点评】解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)(2016•包头二模)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【考点】二次函数的应用;一次函数的应用.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.24.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.【考点】切线的判定.【分析】(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得;DC=.【点评】此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD∽△ACB 是解题关键.25.(12分)(2016•昆都仑区二模)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s 的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.【考点】三角形综合题.【分析】(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解;(2)作PM⊥BC,将四边形的面积表示为S△ABC ﹣S△BPE即可求解;(3)假设存在符合条件的t值,由相似三角形的性质即可求得.【解答】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ;∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°;∴∠DEF=∠EQC;∴CE=CQ;由题意知:CE=t,BP=2t,∴CQ=t;∴AQ=8﹣t;在Rt△ABC中,由勾股定理得:AB=10cm;则AP=10﹣2t;∴10﹣2t=8﹣t;解得:t=2;答:当t=2s时,点A在线段PQ的垂直平分线上;(2)如图1,过P作PM⊥BE,交BE于M,∴∠BMP=90°;在Rt△ABC和Rt△BPM中,sinB=,∴=,∴PM=,∵BC=6cm,CE=t,∴BE=6﹣t,∴y=S△ABC ﹣S△BPE=BC•AC﹣BE•PM=6×8﹣(6﹣t)×t=t2﹣t+24=(t﹣3)2+,∵a=,∴抛物线开口向上;∴当t=3时,y最小=;答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;如图2,过P作PN⊥AC,交AC于N∴∠ANP=∠ACB=∠PNQ=90°;∵∠PAN=∠BAC,∴△PAN∽△BAC,∴,∴,∴PN=6﹣tAN=8﹣t,∵NQ=AQ﹣AN,。
2016年宝山、嘉定区中考数学二模试卷及答案
2015学年第二学期期中考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.﹣2的倒数是(▲) (A)﹣5;(B)2; (C)﹣21; (D)21. 2. 下列计算正确的是(▲)(A)12=-a a ; (B)4222a a a =+; (C)532a a a =⋅; (D)222)(b a b a -=- 3.某地气象局预报称:明天A 地区降水概率为%80,这句话指的是(▲)(A)明天A 地区%80的时间都下雨; (B)明天A 地区的降雨量是同期的%80; (C)明天A 地区%80的地方都下雨; (D)明天A 地区下雨的可能性是%80.4.某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众, 但是十分遗憾最低的同学仍然只得了56分。
这说明本次考试分数的众数是(▲) (A)82; (B)91; (C)11; (D)56.5.如果点K 、L 、M 、N 分别是四边形ABCD 的四条边AB 、BC 、CD 、DA 的中点,且四边形KLMN 是菱形,那么下列选项正确的是(▲) (A) AB ⊥BC ; (B) AC ⊥BD ; (C) AB=BC ; (D) AC=BD .6.如图1,梯形ABCD 中,AD ∥BC ,DC AB =,︒=∠45DBC .点E 在BC 上,点F 在AB 上,将梯形ABCD 沿直线EF 翻折,使得点B 与点D 重合.如果41=BC AD ,那么BFAF的值是(▲) (A)21; (B) 53; (C) 32; (D) 22.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为 ▲ 人次. 8.因式分解:822-x = ▲ .ABCDEF图19.不等式组⎩⎨⎧>-<+xx x 1231的解集是 ▲ .10.如果在组成反比例函数xky -=1图像的每条曲线上,y 都随x 的增大而增大,那么k 的取值范围是 ▲ .11.如果函数)(x f y =的图像沿x 轴的正方向平移1个单位后与抛物线322+-=x x y 重合,那么函数)(x f y =的解析式是 ▲ .12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选 ▲ 同学.13.方程x 14.已知在平行四边形ABCD 中,点M 、N 分别是边AB 、BC 的中点,如果a AB =,b AD =,那么向量MN = ▲ (结果用a 、b 表示).15.以点A 、B 、C 为圆心的圆分别记作⊙A 、⊙B 、⊙C ,其中⊙A 的半径长为1、⊙B的半径长为2、⊙C 的半径长为3,如果这三个圆两两外切,那么B cos 的值是 ▲ . 16.如图2,如果在大厦AB 所在的平地上选择一点C ,测得大厦顶端A 的仰角为30°,然后向大厦方向前进40米,到达点D 处(C 、D 、B 三点在同一直线上),此时测得大厦顶端A 的仰角为45°.那么大厦AB 的高度为 ▲ 米.(保留根号) 17.对于实数m 、n ,定义一种运算“*”为:n mn n m +=*.如果关于x 的方程41)*(*-=x a x 有两个相等的实数根,那么满足条件的实数a 的值是 ▲ .18.如图3,点D 在边长为6的等边△ABC 的边AC 上,且AD =2,将△ABC 绕点C 顺时针方向旋转60°,若此时点A 和点D 的对应点分别记作点E 和点F ,联结BF 交边AC 于点G ,那么AEG ∠tan = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简,再求值:xx x xx x x -÷+-)( ,其中22+=x .20.(本题满分10分)解方程: 0212312=+---x xx x图3BACD图221.(本题满分10分)如图4,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于21AB 的长为半径画弧,相交于两点M ,N ;②联结MN ,直线MN 交△ABC 的边AC 于点D ,联结BD .如果此时测得∠A =34°,BC= CD .求∠ABC 与∠C 的度数.求:(1)求反比例函数的解析式;(2)求直线CD 与x 轴的交点坐标.23.(本题满分12分,每小题满分各6分)如图6,BD 是平行四边形ABCD 的对角线,若∠DBC =45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE 与BF 相交于H ,BF 与AD 的延长线相交于G .求证:(1)CD =BH ;(2)AB 是AG 和HE 的比例中项.NM ABD C图4E G 图6图524. (本题满分12分,每小题满分各4分)在平面直角坐标系xOy (如图7)中,经过点)01(,-A 的抛物线32++-=bx x y 与y 轴交于点C ,点B 与点A 、点D 与点C 分别关于该抛物线的对称轴对称. (1)求b 的值以及直线AD 与x 轴正方向的夹角; (2)如果点E 是抛物线上的一动点,过E 作EF 平行于x 轴交直线AD 于点F ,且F 在E 的右边,过点E 作EG ⊥AD 于点G ,设E 的横坐标为m ,△EFG 的周长为l ,试用m 表示l ;(3)点M 是该抛物线的顶点,点P 是y 轴上一点,Q 是坐标平面内一点,如果以A 、M 、P 、Q 为顶点的四边形是矩形,求该矩形的顶点Q 的坐标.25. (本题满分14分,每小题满分分别为4分、4分、6分)如图8,⊙O 与过点O 的⊙P 相交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O于点E ,交AB 的延长线于点C .如果AB =24,32tan =∠AOP . (1) 求⊙P 的半径长;(2) 当△AOC 为直角三角形时,求线段OD 的长; (3) 设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.图8图7。
2016年奉贤区中考数学二模试卷及答案
2015学年奉贤区调研测试九年级数学 2016.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果两个实数a ,b 满足0=+b a ,那么a ,b 一定是(▲)A .都等于0;B .一正一负;C .互为相反数;D .互为倒数. 2.若x =2,y = -1,那么代数式222y xy x ++的值是(▲)A .0;B .1;C .2;D .4. 3.函数32-+=x y 的图像不经过(▲)A .第一象限;B .第二象限;C .第三象限;D .第四象限. 4.一组数据3,3,2,5,8,8的中位数是(▲)A .3;B .4;C .5;D .8. 5.下列说法中,正确的是(▲)A .关于某条直线对称的两个三角形一定全等;B .两个全等三角形一定关于某条直线对称;C .面积相等的两个三角形一定关于某条直线之间对称;D .周长相等的两个三角形一定关于某条直线之间对称.6.已知⊙O 1与⊙O 2外离,⊙O 1的半径是5,圆心距721=O O ,那么⊙O 2的半径可以是(▲) A .4; B .3; C .2; D .1. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.化简:a 16= ▲ ; 8.因式分解:a a -2= ▲ ;9.函数11-=x y 的定义域是 ▲ ; 10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有2个白球,n 个黄球,从中随机摸出白球的概率是32,那么n = ▲ ; 11.不等式组1228x x ->⎧⎨-<⎩的解集是 ▲ ;12.已知反比例函数xy 3=,在其图像所在的每个象限内,y 的值随x 的值增大而 ▲ ; (填“增大”或“减小”)13.直线)(0≠+=k b kx y 平行于直线x y 21=且经过点(0,2),那么这条直线的解析 式是 ▲ ;14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60o ,那么这辆汽车到楼 底的距离是 ▲ 米;(结果保留根号)15.如图,在△ABC 中,点D 在边BC 上,且DC =2BD ,点E 是边AC 的中点,设BC =a ,AC =b ,那么DE = ▲ ;(用a 、b的线性组合表示)16.四边形ABCD 中,AD //BC ,∠D =90o ,如果再添加一个条件,可以得到四边形ABCD 是矩形,那么可以添加的条件是 ▲ ;(不再添加线或字母,写出一种情况即可) 17.如图,在Rt △ABC 中,∠ACB =90o ,AD 是BC 边上的中线,如果AD=BC ,那么cot ∠CAB 的值是 ▲ ;18.如图,在△ABC 中,∠B =45o ,∠C =30o ,AC =2,点D 在BC 上,将△ACD 沿直线AD 翻折后,点C 落在点E 处,边AE 交边BC 于点F ,如果DE //AB ,那么BFCF 的值是 ▲ ;三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:o 311-0cos45-28-2-2016+)()(.20.(本题满分10分)解方程:41621222-=+--+x x x x .ABC第18题图AB D CE第15题图 AB DC第17题图21.(本题满分10分,每小题满分各5分)已知:如图,在Rt △ABC 中,∠ACB =90o ,AB =4,AD 是∠BAC 的角平分线,过点D作DE ⊥AD ,垂足为点D ,交AB 于点E ,且41=AB BE . (1)求线段BD 的长; (2)求∠ADC 的正切值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动.该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示.(1)参与社区文艺演出的学生人数是 ▲ 人,参与敬老院服务的学生人数是 ▲ 人; (2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%.求参与敬老院服务的六、七年级学生分别有多少人?23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,DC ∥AB , AD=BC=DC ,AC 、BD 是对角线,E 是AB 延长线上一点,且∠BCE =∠ACD ,联结CE . (1)求证:四边形DBEC 是平行四边形; (2)求证:2AC AD AE =⋅.第22题图第21题图D第23题图EDCBA24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xoy (如图)中,抛物线c bx x y ++-=2与x 轴交于点A (-1,0)与点C (3,0),与y 轴交于点B ,点P 为OB 上一点,过点B 作射线AP 的垂线,垂足为点D ,射线BD 交x 轴于点E . (1)求该抛物线解析式;(2)联结BC ,当P 点坐标为(0,32)时,求△EBC 的面积; (3)当点D 落在抛物线的对称轴上时,求点P 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.DCBA E F第25题图P DCBA备用图2015学年奉贤区调研测试九年级数学答案 2016.04一、选择题:(本大题共6题,每题4分,满分24分)1. C ; 2. B ; 3.C ; 4.B ; 5. A ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.a 4; 8.)a (a 1-; 9.1≠x ; 10.1; 11.x > 3;12.减小;13.221+=x y ;14.36; 15.b a 2132-; 16.AD=BC 等; 17.23; 18.13+; 三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 解:原式=22-22-22-1+ (2)=2-1……………………………………………………………………………2分20. (本题满分10分)解:方程两边同乘以)4(2-x ……………………………………………………………1分得:16)2()2(2=--+x x …………………………………………………………3分整理,得:01032=-+x x …………………………………………………………2分 解得:21=x ,52-=x ……………………………………………………………2分 经检验:21=x 是增根,52-=x 是原方程的根 …………………………………1分 所以原方程的根是5-=x ……………………………………………………………1分 21.(本题满分10分,每小题满分各5分) 解:(1)∵ AB =4,41=AB BE∴BE=1……………………………………………………1分∵ DE ⊥AD ,∠ACB =90o ∴∠CAD +∠ADC =∠BDE+∠ADC. ∴∠CAD =∠BDE ∵ AD 是∠BAC 的角平分线,∴∠CAD =∠BAD ∴∠BAD =∠BDE …………2分 ∵∠B=∠B ∴ △BDE ∽△BAD ………………………………………………1分∴ABBDBD BE = ∴BD=2…………………………………………………………1分 (2)解法一:∵△BDE ∽△BAD ∴21==AD DE BD BE ……………………………………1分 ∴ 在Rt △ADE 中,∠ADE =90o ,tan ∠AED =2=DEAD……………………2分∵ ∠CAD =∠BAD ,∠ADE =90o ,∠ACB =90o ∴ ∠AED =∠ADC …………1分 ∴ tan ∠ADC =2,即:∠ADC 的正切值为2……………………………………1分 解法二:过点D 作DH ⊥AB 于点H …………………………………………………………1分 ∴∠AHD =90o ∵ AD 是∠BAC 的角平分线,∠ACB =90o ∴ CD=DH ………1分 ∵ ∠AHD =∠ACB =90o ,∠B =∠B ,△BDH ∽△BAC ………………………………1分 ∴2142===AB BD AC DH ,∴21=AC CD ………………………………………………1分∴在Rt △ACD 中,∠ACD =90o ,tan ∠ADC =2=CD AC即:∠ADC 的正切值为2……1分22.(本题满分10分,第(1)小题4分,第(2)小题6分)(1)50,60;…………………………………………………………………………每空各2分 (2)设参与敬老院服务的六、七年级学生分别有x 人、y 人 …………………………1分根据题意,得:⎩⎨⎧=+++=+9060%140%160y x y x )()( ………………………………3分解得⎩⎨⎧==3030y x ……………………………………………………………2分 答:参与敬老院服务的六、七年级学生各有30人.23.(本题满分12分,每小题满分各6分) 证明:(1)∵ DC ∥AB , AD=BC=DC∴ ∠DCB =∠ADC ,∠DCB =∠CBE ∴∠ADC =∠CBE .....................1分 ∵ ∠BCE =∠ACD, BC=DC ∴△ADC ≌△EBC .................................2分 ∴ AD =B E ∴DC =B E ............................................................2分 ∵ DC ∥AB ∴ 四边形DBEC 是平行四边形 (1)分 (2)∵ 四边形DBEC 是平行四边形 ∴ BD=CE∵ DC ∥AB , AD=BC=DC ∴ AC=BD ∴ AC=BD (1)分∵ ∠DCA =∠CAB ∠BCE =∠ACD ∴ ∠BCE =∠CAB∵∠E=∠E ∴ △ECB ∽△EAC ……………………………………………………3分 ∴AEEC EC BE =∴AE BE CE ⋅=2即2AC AD AE =⋅………………………2分 24.(本题满分12分,每小题满分各4分)(1)∵抛物线c bx x y ++-=2交x 轴交于点A )0,1(-和点C )0,3(∴⎩⎨⎧=++-=+--03901c b c b 解得:⎩⎨⎧==32c b………………………………………………3分∴该抛物线的解析式:322++-=x x y …………………………………………1分(2)由322++-=x x y 得点B (0,3)……………………………………………………1分 ∵AD ⊥CD ∴∠DBP+∠BPD=90° ∵∠POA=90° ∴∠OAP+∠APO=90° ∵∠BPD =∠APO ∴∠DBP =∠OAP ∵∠AOP=∠BOE=90° ∴△AOP ∽△BOE …1分∴OE PO BO AO =∵OA =1,PO =32,BO =3 ∴OE3231= ∴OE =2……………1分 ∵OC =3 ∴EC =1 ∴233121=⨯⨯=∆EBC S………………………………………1分(3)设点P ),0(y ,则OP=y ,BP=y -3,AP=21y + ∵点D 在抛物线的对称轴上,过点D 作DH ⊥x 轴,垂足为点H ∴AH=2 ∴AO=OH ∴PD =AP=21y +∵∠BPD =∠APO ∠AOP=∠BDP=90° ∴△AOP ∽△BDP …………………1分∴PD POBP AP =∴22131y y y y +=-+解得:21,121==y y .………………1分 经检验:21,121==y y 都是原方程的根 ∴)1,0(1P ,)21,0(2P ………………2分 25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:当点E 与点D 重合时,AE =5,EF//AB ∴∠ADF =∠DAB ……………………1分过点A 作AH ⊥EF 于点H ……………………………………………………………1分 ∴在⊙A 中,EF =2EH ,∠AHE =90o …………………………………………………1分 ∴cos ∠ADF=cos ∠DAB =AE EH =35∴EH=3 EF =6………………………………2分 (2) 解:过点C 作CM ⊥AD 交AD 延长线于点M ………………………………………1分在Rt △CMD 中,∠CMD =90o ,cos ∠MDC=cosA =35,CD=5∴MD =3,∴CM =4………………………………………………………………………1分 在Rt △CME 中,∠CME =90o ,∴222ME CM CE +=∵CM =4,MD =3,DE =5-x ,CE =y ∴222534)x (y -++=……………………1分 ∴ 80162+-=x x y (0<x ≤5)………………………………………………………2分(3)解:假设存在一点P ,使得2EF PE =⋅过圆心A 作AH ⊥EF 于点H ,交⊙A 为点N …………………………………………1分 ∴2EF EN =⋅,∵2EF PE =⋅,∴PE EN = ∴∠NAE =∠P AE ………………1分 ∵AH ⊥EF , ∴∠NAE+∠HEA=90°. ∵∠CME=90°,∴∠CEM+∠ECM=90°.∵∠HEA =∠CEM , ∴∠NAE =∠ECM =∠P AE=∠MDC . ∴tan ∠ECM=tan ∠MDC=34∴ 在Rt △CME 中,∠CME =90o ,CM =4,ME =MD +DE =3+5-xtan ∠ECM=3448=-=x MC ME , 解得 x=38…………………………………………2分 即:存在点P ,使得2EF PE =⋅,此时AP 长为38.。
2016届上海奉贤区初三数学一模试卷加答案(完美WORD版)
2016届上海奉贤区初三数学一模试卷加答案(完美WORD版)2015年奉贤区调研测试九年级数学2016.01(满分150分,测试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲)A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍;C .△ABC 放大后,周长是原来的4倍;D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--和x 轴的交点个数是(▲)A . 0个;B .1个;C . 2个;D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12.5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲)A .3sin 5B = ; B . 3cos 4B = ;C .4tan 3B =;D .3cot 4B =6.下列关于圆的说法,正确的是(▲)A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分)7.已知3x =2y ,那么x y=▲; .8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲;12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 和y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲;14.线段AB 长10cm ,点P 在线段AB 上,且满足BP AP AP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB =25AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不和点B 重合),那么sin ∠CAB ’=▲.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:?+?--?+?60sin 260tan 2130cos 45sin 422. 20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=.(1)= (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡第13题图 B A DC E 第17题图 B AD C 第18题图 B DE AB F第20题图 C D中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=0.8,tan 36°=0.7,3=1.7)22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =25,AE =5.(1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC ,若2CD AD BC =?,求证:∠DCE ∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 和抛物线交于点B ,且∠BAO =45°.(1)求二次函数分析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC BE BC AD ?=?;(2)设AD =x ,四边形BDCE 的面积为S ,求S 和x 之间的函数关系式及x 的取值范围;(3)当ABC BDE S S ?=41△时,求tan ∠BCE 的值. 学年九年级第一学期期末测试参考答案和评分标准 2016.0124分)E 第21题图 B A D CF 30° H M G30° E A B O C D E A B 第20题图 D 第24题图 BAO y x ED C A B 1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D .二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3); 9.2k <-; 10.1∶3; 11.35°; 12.10103; 13.4; 14.555-; 15.1或3; 16.-9; 17.72;18.1010或22.三、解答题:(本大题共7题,满分78分) 19.(1)原式=22233+2422223-+? ? ?-??...................................(4分) =()13+23344-++..........(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG .图形准确……………………………………………(3分)结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点∴BD =AD =12AB =30................................................(1分)∵DF//AC 交BC 、HG 分别于点F 、M ,∴∠BDF =∠A=30°,∠BFE =∠C=90°在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=, 330DF =,15325.5DF =≈............(1分) sin BF BDF BD∠= 1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BF EF ∠=,0.715EF =,EF =21.4………(1分)∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD∠= 330AN = 153AN =................(1分)sin DN DAN AD ∠= 1230DN = 15DN =...................(1分)∴15327DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HM DM∠=153327+1593HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分)22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =152CD =…(2分)∴222OD ED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分)又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CE ED OE=…………………………(2分) 55= 得52EF =……………………………………………………(1分)∴ 52 AF AE EF =-=……………………………………………………………(1分)23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分)∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分)∴△ADE ∽△DBC ……………………………………………………………(2分)(2)∵△ADE ∽△DBC∴AD DB DE BC= ∴AD BC DB DE ?=?…………………………………………(1分)∵2CD AD BC =? ∴2CD DB DE =?∴CD DE DB CD=………………………………………………………………………(1分)∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分)∴ ∠DCE =∠DBC ………………………………………………………………(1分)∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中 0042c b c =??=++?解得20b c =-??=? 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1)……………………?-…………………………(1分)(2)过点 B 作BG ⊥x 轴,垂足为点G ……………………………………………(1分)y G o BA xC ∵∠BGA =90°,∠A =45° ∴∠GBA=45° ∴∠GBA=∠A ∴BG=AG 设点A (x ,22x x -)则22x x -=2-x 解得12=21x x =-,∴点B (-1,3)………………………………………………………………(2分)设直线AB :0y kx b k =+≠()将点A (2,0)、B (-1,3)代入 203k b k b +=??-+=? 解得12k b =-??=? 直线AB :2y x =-+ ……………………(1分)设点D (x ,2x -+)则25BC =22810CD x x =-+2=242BD x x ++若△BCD 为直角三角形①∠BCD =90° ∴222BC C D BD +=即 (222225+2810=242x x x x -+++2 解得73x = ∴7133D ?? ???点,-……………………………………………(2分)② ∠BDC =90° ∴222BD CD BC +=即 (((22222242+2810=5x x x x ++-+2 解得 1221x x ==-,(舍去)∴点D (2,0)…………………(2分)综上所述:()712,033D ?? ???点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90?∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BC DC AC=……………(2分)∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵EC BC DC AC =∴△BCE ∽△ACD ………………………………(1分)∴BC AC BE AD = 即AC BE BC AD ?=?………………………………………(1分)(2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴224AC AB BC =-=,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)B D ∴22225102516DE BD BE x x =+=-+ ∵BC AC BE AD=,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ?-?-?=……………………………………(1分)∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ==-+ ∵11==43=622ABC S B C AC ∴2312=685CDE S x x ?-+……………………(1分)即()21=S 60540BDE CDE S S x x ??+=-<<……………………………(2分)(3)11==43=622ABC S BC AC 由14ABC S S ?=得 21531684x x -=? ∴2540x x -+= 1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AF BC AB AC ==当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分)在Rt △DFC 中,∠DFC =90° tan 316DF CF DCF ==∠ ∵∠BCE=∠DCA ∴3an 16t BCE =∠…………………………………………(1分)当x =4时,得121655DF AF ==, 45CF AC AF =-= 3tan DCF DF CF ∠==,即3tan =∠BCE ……………………………(1分)∴综上所述:6an 331t BCE =∠或.。
数学中考二模测试题(带答案解析)
2.截止2021年2月28日,全球新冠肺炎累计确诊病例超113000000,数字113000000月科学记数法可简洁表示为()
A. B. C. D.
3.如图所示 几何体的俯视图为( )
A. B. C. D.
4.计算 的正确结果是()
A. B. C. D.
5.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()
,
故选C.
【点睛】本题考查一元一次方程的应用,熟练掌握列方程的方法是解题关键.
9.如图,一次函数 与y轴相交于点 ,与 轴相交于点 ,在直线 上取一点 (点 不与 , 重合),过点 作 轴,垂足为点 ,连结 ,若 的面积恰好为 ,则满足条件的 点有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
17.(1)计算:
(2)解方程:
18.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,如图表示两车行驶时间 (小时)与到甲地的距离 (千米)的函数图象,已知其中一个函数的表达式为 .
(1)求另一个函数表达式.
(2)求两车相遇的时间.
19.某校九(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,将“垃圾分类”的知晓情况分为 , , , 四类,其中, 类表示“非常了解”, 类表示“比较了解”, 类表示“基本了解”, 类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.
试卷Ⅱ(非选择题,共110分)
二、填空题(本大题有6小题,每小题5分,共30分)
11.因式分解: _____
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015学年奉贤区调研测试九年级数学 2016.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果两个实数a ,b 满足0=+b a ,那么a ,b 一定是(▲)A .都等于0;B .一正一负;C .互为相反数;D .互为倒数. 2.若x =2,y = -1,那么代数式222y xy x ++的值是(▲)A .0;B .1;C .2;D .4. 3.函数32-+=x y 的图像不经过(▲)A .第一象限;B .第二象限;C .第三象限;D .第四象限. 4.一组数据3,3,2,5,8,8的中位数是(▲)A .3;B .4;C .5;D .8. 5.下列说法中,正确的是(▲)A .关于某条直线对称的两个三角形一定全等;B .两个全等三角形一定关于某条直线对称;C .面积相等的两个三角形一定关于某条直线之间对称;D .周长相等的两个三角形一定关于某条直线之间对称.6.已知⊙O 1与⊙O 2外离,⊙O 1的半径是5,圆心距721=O O ,那么⊙O 2的半径可以是(▲) A .4; B .3; C .2; D .1. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.化简:a 16= ▲ ; 8.因式分解:a a -2= ▲ ;9.函数11-=x y 的定义域是 ▲ ; 10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有2个白球,n 个黄球,从中随机摸出白球的概率是32,那么n = ▲ ; 11.不等式组1228x x ->⎧⎨-<⎩的解集是 ▲ ;12.已知反比例函数xy 3=,在其图像所在的每个象限内,y 的值随x 的值增大而 ▲ ; (填“增大”或“减小”)13.直线)(0≠+=k b kx y 平行于直线x y 21=且经过点(0,2),那么这条直线的解析 式是 ▲ ;14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60o ,那么这辆汽车到楼 底的距离是 ▲ 米;(结果保留根号)15.如图,在△ABC 中,点D 在边BC 上,且DC =2BD ,点E 是边AC 的中点,设BC =a ,AC =b ,那么DE = ▲ ;(用a 、b的线性组合表示)16.四边形ABCD 中,AD //BC ,∠D =90o ,如果再添加一个条件,可以得到四边形ABCD 是矩形,那么可以添加的条件是 ▲ ;(不再添加线或字母,写出一种情况即可) 17.如图,在Rt △ABC 中,∠ACB =90o ,AD 是BC 边上的中线,如果AD=BC ,那么cot ∠CAB 的值是 ▲ ;18.如图,在△ABC 中,∠B =45o ,∠C =30o ,AC =2,点D 在BC 上,将△ACD 沿直线AD 翻折后,点C 落在点E 处,边AE 交边BC 于点F ,如果DE //AB ,那么BFCF 的值是 ▲ ;三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:o 311-0cos45-28-2-2016+)()(.20.(本题满分10分)解方程:41621222-=+--+x x x x .ABC第18题图AB D CE第15题图 AB DC第17题图21.(本题满分10分,每小题满分各5分)已知:如图,在Rt △ABC 中,∠ACB =90o ,AB =4,AD 是∠BAC 的角平分线,过点D作DE ⊥AD ,垂足为点D ,交AB 于点E ,且41=AB BE . (1)求线段BD 的长; (2)求∠ADC 的正切值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动.该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示.(1)参与社区文艺演出的学生人数是 ▲ 人,参与敬老院服务的学生人数是 ▲ 人; (2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%.求参与敬老院服务的六、七年级学生分别有多少人?23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,DC ∥AB , AD=BC=DC ,AC 、BD 是对角线,E 是AB 延长线上一点,且∠BCE =∠ACD ,联结CE . (1)求证:四边形DBEC 是平行四边形; (2)求证:2AC AD AE =⋅.第22题图第21题图D第23题图EDCBA24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xoy (如图)中,抛物线c bx x y ++-=2与x 轴交于点A (-1,0)与点C (3,0),与y 轴交于点B ,点P 为OB 上一点,过点B 作射线AP 的垂线,垂足为点D ,射线BD 交x 轴于点E . (1)求该抛物线解析式;(2)联结BC ,当P 点坐标为(0,32)时,求△EBC 的面积; (3)当点D 落在抛物线的对称轴上时,求点P 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.DCBA E F第25题图P DCBA备用图2015学年奉贤区调研测试九年级数学答案 2016.04一、选择题:(本大题共6题,每题4分,满分24分)1. C ; 2. B ; 3.C ; 4.B ; 5. A ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.a 4; 8.)a (a 1-; 9.1≠x ; 10.1; 11.x > 3;12.减小;13.221+=x y ;14.36; 15.b a 2132-; 16.AD=BC 等; 17.23; 18.13+; 三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 解:原式=22-22-22-1+ (2)=2-1……………………………………………………………………………2分20. (本题满分10分)解:方程两边同乘以)4(2-x ……………………………………………………………1分得:16)2()2(2=--+x x …………………………………………………………3分整理,得:01032=-+x x …………………………………………………………2分 解得:21=x ,52-=x ……………………………………………………………2分 经检验:21=x 是增根,52-=x 是原方程的根 …………………………………1分 所以原方程的根是5-=x ……………………………………………………………1分 21.(本题满分10分,每小题满分各5分) 解:(1)∵ AB =4,41=AB BE∴BE=1……………………………………………………1分∵ DE ⊥AD ,∠ACB =90o ∴∠CAD +∠ADC =∠BDE+∠ADC. ∴∠CAD =∠BDE ∵ AD 是∠BAC 的角平分线,∴∠CAD =∠BAD ∴∠BAD =∠BDE …………2分 ∵∠B=∠B ∴ △BDE ∽△BAD ………………………………………………1分∴ABBDBD BE = ∴BD=2…………………………………………………………1分 (2)解法一:∵△BDE ∽△BAD ∴21==AD DE BD BE ……………………………………1分 ∴ 在Rt △ADE 中,∠ADE =90o ,tan ∠AED =2=DEAD……………………2分∵ ∠CAD =∠BAD ,∠ADE =90o ,∠ACB =90o ∴ ∠AED =∠ADC …………1分 ∴ tan ∠ADC =2,即:∠ADC 的正切值为2……………………………………1分 解法二:过点D 作DH ⊥AB 于点H …………………………………………………………1分 ∴∠AHD =90o ∵ AD 是∠BAC 的角平分线,∠ACB =90o ∴ CD=DH ………1分 ∵ ∠AHD =∠ACB =90o ,∠B =∠B ,△BDH ∽△BAC ………………………………1分 ∴2142===AB BD AC DH ,∴21=AC CD ………………………………………………1分∴在Rt △ACD 中,∠ACD =90o ,tan ∠ADC =2=CD AC即:∠ADC 的正切值为2……1分22.(本题满分10分,第(1)小题4分,第(2)小题6分)(1)50,60;…………………………………………………………………………每空各2分 (2)设参与敬老院服务的六、七年级学生分别有x 人、y 人 …………………………1分根据题意,得:⎩⎨⎧=+++=+9060%140%160y x y x )()( ………………………………3分解得⎩⎨⎧==3030y x ……………………………………………………………2分 答:参与敬老院服务的六、七年级学生各有30人.23.(本题满分12分,每小题满分各6分) 证明:(1)∵ DC ∥AB , AD=BC=DC∴ ∠DCB =∠ADC ,∠DCB =∠CBE ∴∠ADC =∠CBE .....................1分 ∵ ∠BCE =∠ACD, BC=DC ∴△ADC ≌△EBC .................................2分 ∴ AD =B E ∴DC =B E ............................................................2分 ∵ DC ∥AB ∴ 四边形DBEC 是平行四边形 (1)分 (2)∵ 四边形DBEC 是平行四边形 ∴ BD=CE∵ DC ∥AB , AD=BC=DC ∴ AC=BD ∴ AC=BD (1)分∵ ∠DCA =∠CAB ∠BCE =∠ACD ∴ ∠BCE =∠CAB∵∠E=∠E ∴ △ECB ∽△EAC ……………………………………………………3分 ∴AEEC EC BE =∴AE BE CE ⋅=2即2AC AD AE =⋅………………………2分 24.(本题满分12分,每小题满分各4分)(1)∵抛物线c bx x y ++-=2交x 轴交于点A )0,1(-和点C )0,3(∴⎩⎨⎧=++-=+--03901c b c b 解得:⎩⎨⎧==32c b………………………………………………3分∴该抛物线的解析式:322++-=x x y …………………………………………1分(2)由322++-=x x y 得点B (0,3)……………………………………………………1分 ∵AD ⊥CD ∴∠DBP+∠BPD=90° ∵∠POA=90° ∴∠OAP+∠APO=90° ∵∠BPD =∠APO ∴∠DBP =∠OAP ∵∠AOP=∠BOE=90° ∴△AOP ∽△BOE …1分∴OE PO BO AO =∵OA =1,PO =32,BO =3 ∴OE3231= ∴OE =2……………1分 ∵OC =3 ∴EC =1 ∴233121=⨯⨯=∆EBC S………………………………………1分(3)设点P ),0(y ,则OP=y ,BP=y -3,AP=21y + ∵点D 在抛物线的对称轴上,过点D 作DH ⊥x 轴,垂足为点H ∴AH=2 ∴AO=OH ∴PD =AP=21y +∵∠BPD =∠APO ∠AOP=∠BDP=90° ∴△AOP ∽△BDP …………………1分∴PD POBP AP =∴22131y y y y +=-+解得:21,121==y y .………………1分 经检验:21,121==y y 都是原方程的根 ∴)1,0(1P ,)21,0(2P ………………2分 25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:当点E 与点D 重合时,AE =5,EF//AB ∴∠ADF =∠DAB ……………………1分过点A 作AH ⊥EF 于点H ……………………………………………………………1分 ∴在⊙A 中,EF =2EH ,∠AHE =90o …………………………………………………1分 ∴cos ∠ADF=cos ∠DAB =AE EH =35∴EH=3 EF =6………………………………2分 (2) 解:过点C 作CM ⊥AD 交AD 延长线于点M ………………………………………1分在Rt △CMD 中,∠CMD =90o ,cos ∠MDC=cosA =35,CD=5∴MD =3,∴CM =4………………………………………………………………………1分 在Rt △CME 中,∠CME =90o ,∴222ME CM CE +=∵CM =4,MD =3,DE =5-x ,CE =y ∴222534)x (y -++=……………………1分 ∴ 80162+-=x x y (0<x ≤5)………………………………………………………2分(3)解:假设存在一点P ,使得2EF PE =⋅过圆心A 作AH ⊥EF 于点H ,交⊙A 为点N …………………………………………1分 ∴2EF EN =⋅,∵2EF PE =⋅,∴PE EN = ∴∠NAE =∠P AE ………………1分 ∵AH ⊥EF , ∴∠NAE+∠HEA=90°. ∵∠CME=90°,∴∠CEM+∠ECM=90°.∵∠HEA =∠CEM , ∴∠NAE =∠ECM =∠P AE=∠MDC . ∴tan ∠ECM=tan ∠MDC=34∴ 在Rt △CME 中,∠CME =90o ,CM =4,ME =MD +DE =3+5-xtan ∠ECM=3448=-=x MC ME , 解得 x=38…………………………………………2分 即:存在点P ,使得2EF PE =⋅,此时AP 长为38.。