八年级上数学期中测试卷
八年级数学上册期中试卷【含答案】
八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。
A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。
A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。
A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。
( )2. 平行四边形的对边相等且平行。
( )3. 任何两个有理数之间都存在无数个无理数。
( )4. 二次函数的图像一定经过原点。
( )5. 对角线互相垂直的四边形一定是菱形。
( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。
2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。
3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。
4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。
5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。
四、简答题1. 解释什么是算术平方根,并给出一个例子。
2. 描述平行线的性质。
2023-2024学年福建省福州市仓山区八年级(上)期中数学试卷(含解析)
2023-2024学年福建省福州市仓山区八年级第一学期期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,属于轴对称图形的是( )A.B.C.D.2.下列长度的三条线段首尾相连能组成三角形的是( )A.4,6,9B.2,3,6C.5,4,9D.2,4,73.经文化和旅游部数据中心测算,2023年中秋节、国庆节假期8天,国内旅游出游人数826000000人次( )A.82.6×107B.8.26×108C.0.826×109D.8.26×1094.已知一个多边形的内角和为720°,则这个多边形为( )A.三角形B.四边形C.五边形D.六边形5.在下列各式中,计算结果为x6的是( )A.x2+x4B.x8﹣x2C.x2•x4D.(x2)46.在平面直角坐标系xOy中,点P(2,1)关于x轴对称的点的坐标是( )A.(2,﹣1)B.(2,1 )C.(﹣2,﹣1)D.(﹣2,1 )7.如图,△ABC≌△ADE,若∠B=70°,则∠DAE的度数为( )A.75°B.80°C.85°D.90°8.如图,在△ABC中,D是BC的中点,E在AD上,且AE=2DE,则△EFC的面积是( )A.2B.3C.4D.59.已知(x+a)(x+b)=x2+mx﹣6,若a,b都是整数( )A.1B.﹣1C.﹣5D.﹣710.在平面直角坐标系xOy中,A(0,4),动点B在x轴上,连接AB,连接OC,则线段OC长度最小为( )A.0B.1C.2D.3二、填空题:本题共6小题,每小题4分,共24分.11.在等腰△ABC中,周长为14,底边长为6 .12.如图,DE∥BC,DF∥AC,则∠DEC的度数为 .13.如图,在△ABC中,∠A=60°,E在AC上,D在BC的延长线上,则∠CED的度数为 .14.如图,在△ABC中,∠B=90°,AD是△ABC的角平分线,若AD=6 .15.已知3m=a,3n=b.m,n为正整数,则33m+2n= (用含a,b的式子表示).16.如图,在△ABC中,∠A=60°,CE是△ABC的角平分线,BD与CE交于点F .(写出所有正确结论的序号)①∠BFC=120°;②BE+CD>BC;③若D是AC的中点,则△ABC是等边三角形;④S△BEF:S△BFC=AE:AC.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.计算:x3•x4•x﹣(x2)4+(2x4)2.18.解不等式组:.19.已知如图,AC交BD于点O,AB=DC20.某班去看演出,甲种票每张24元,乙种票每张30元.如果45名学生购票恰好用去1230元,甲21.如图,在△ABC中,DE是线段AB的垂直平分线22.求证:两个全等三角形对应边上的中线相等.23.如图,△ABC是等边三角形,D是△ABC内一点(1)求作点D关于直线BC的对称点E;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下连接AE,BE,延长BE至F,使得EF=EC24.如图,A(4,4),AB⊥y轴于点B,点C在线段OB上运动(点C不与O,B重合),且CD=AC.(1)如图1,当点C的坐标为(0,3)时,①求点D的坐标;②设CD与x轴交于点M,求△OMC的面积;(2)如图2,C是OB的中点,过点B作BF⊥AC于点E,求证:∠AFB=∠OFC.25.如图,在△ABC中,AB=AC,将BC绕点B逆时针旋转β至BD,点C的对应点为点D,CD,其中2α+β=180°.(1)求证:∠ABD=∠ACD;(2)如备用图,延长CD至点M,使得CM=BC.求证:①AD平分∠BDM;②A,M,B三点共线.参考答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,属于轴对称图形的是( )A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、B、C选项中的图形都不能找到这样的一条直线,直线两旁的部分能够互相重合;D选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,所以是轴对称图形;故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段首尾相连能组成三角形的是( )A.4,6,9B.2,3,6C.5,4,9D.2,4,7【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、4+6>8,符合题意;B、2+3<7,不符合题意;C、5+4=5,不符合题意;D、2+4<6,不符合题意.故选:A.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.3.经文化和旅游部数据中心测算,2023年中秋节、国庆节假期8天,国内旅游出游人数826000000人次( )A.82.6×107B.8.26×108C.0.826×109D.8.26×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:数字826000000科学记数法可表示为8.26×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知一个多边形的内角和为720°,则这个多边形为( )A.三角形B.四边形C.五边形D.六边形【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,则这个多边形是六边形.故选:D.【点评】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n﹣2)•180°是解题的关键.5.在下列各式中,计算结果为x6的是( )A.x2+x4B.x8﹣x2C.x2•x4D.(x2)4【分析】根据合并同类项、同底数幂的乘法、幂的乘方解决此题.解:A.根据合并同类项法则,x2+x4无法进行合并,那么A不符合题意.B.根据合并同类项法则,x2﹣x2无法进行合并,那么B不符合题意.C.根据同底数幂的乘法,x2•x7=x6,那么C符合题意.D.根据幂的乘方2)4=x8,那么D不符合题意.故选:C.【点评】本题主要考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握合并同类项、同底数幂的乘法、幂的乘方是解决本题的关键.6.在平面直角坐标系xOy中,点P(2,1)关于x轴对称的点的坐标是( )A.(2,﹣1)B.(2,1 )C.(﹣2,﹣1)D.(﹣2,1 )【分析】根据平面直角坐标系中对称点的规律解答.解:根据平面直角坐标系中对称点的规律可知,点P(21(5,﹣1).故选:A.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.如图,△ABC≌△ADE,若∠B=70°,则∠DAE的度数为( )A.75°B.80°C.85°D.90°【分析】根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∠B=70°,∴∠ADE=∠B=80°,∴∠DAE=180°﹣70°﹣25°=85°,故选:C.【点评】本题考查了全等三角形的性质,三角形的内角和定理的应用,熟练掌握全等三角形的性质定理是解题的关键.8.如图,在△ABC中,D是BC的中点,E在AD上,且AE=2DE,则△EFC的面积是( )A.2B.3C.4D.5【分析】根据三角形面积公式,利用D是BC的中点得到S△ACD=S△ABC=9,再利用AE=2DE得到S△ACE=S△ACD=6,然后利用F是AC的中点得到S△EFC=S△ACE.解:∵D是BC的中点,∴S△ACD=S△ABC=×18=9,∵AE=3DE,∴AE=AD,∴S△ACE=S△ACD=×9=6,∵F是AC的中点,∴S△EFC=S△ACE=×6=3.故选:B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点,三角形的重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形的面积公式.9.已知(x+a)(x+b)=x2+mx﹣6,若a,b都是整数( )A.1B.﹣1C.﹣5D.﹣7【分析】直接利用多项式乘以多项式分析得出答案.解:∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx﹣7,∴当a=1,b=﹣6时;当a=﹣5,b=6时;当a=2,b=﹣5时;当a=﹣2,b=3时;当a=6,b=﹣2时;当a=﹣3,b=2时;故m的值不可能是﹣7;故选:D.【点评】此题主要考查了多项式乘以多项式,正确分类讨论是解题关键.10.在平面直角坐标系xOy中,A(0,4),动点B在x轴上,连接AB,连接OC,则线段OC长度最小为( )A.0B.1C.2D.3【分析】在x轴上取点E、点F,使∠OAE=∠OAF=30°,则∠EOF=∠AEO=∠AFO =60°,所以AE=AF,由旋转得AC=AB,∠BAC=60°,则∠EAC=∠FAB=60°﹣∠BAE,作直线CE交y轴于点D,作OH⊥DE于点H,可证明△EAC≌△FAB,则∠AEC =∠AFB=60°,所以∠DEO=∠AEO=60°,可知点C在经过点E且与x轴所夹的锐角为60°的直线上运动,可证明OD=OA=4,则OH=OD=2,则线段OC长度最小为2,于是得到问题的答案.解:在x轴上取点E、点F,则∠EOF=60°,∵∠AOE=∠AOF=90°,∴∠AEO=∠AFO=60°,∴AE=AF,由旋转得AC=AB,∠BAC=60°,∴∠EAC=∠FAB=60°﹣∠BAE,作直线CE交y轴于点D,作OH⊥DE于点H,在△EAC和△FAB中,,∴△EAC≌△FAB(SAS),∴∠AEC=∠AFB=60°,∴∠DEO=∠AEO=60°,∴点C在经过点E且与x轴所夹的锐角为60°的直线上运动,∵∠DOE=90°,∠DEO=60°,∴∠ODE=30°=∠OAE,∴DE=AE,∵EO⊥AD,A(0,∴OD=OA=4,∴OH=OD=2,∵OC≥OH,∴OC≥2,∴线段OC长度最小为2,故选:C.【点评】此题重点考查图形与坐标、等腰三角形的判定、全等三角形的判定与性质、垂线段最短等知识,正确地作出所需要的辅助线是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.在等腰△ABC中,周长为14,底边长为6 4 .【分析】根据等腰三角形的周长公式解答即可.解:∵等腰△ABC中,周长为14,,∴腰长=×(14﹣5)=4,故答案为:4.【点评】此题考查等腰三角形的性质,关键是根据等腰三角形的周长公式解答.12.如图,DE∥BC,DF∥AC,则∠DEC的度数为 60° .【分析】由平行线的性质得到∠C=∠DFB=120°,∠DEC+∠C=180°,即可求出∠DEC=60°.解:∵DF∥AC,∴∠C=∠DFB=120°,∵DE∥BC,∴∠DEC+∠C=180°,∴∠DEC=60°.故答案为:60°.【点评】本题考查平行线的性质,关键是掌握平行线的性质.13.如图,在△ABC中,∠A=60°,E在AC上,D在BC的延长线上,则∠CED的度数为 50° .【分析】利用三角形的外角性质,可求出∠ACD(即∠ECD)的度数,再在△CDE中,利用三角形内角和定理,即可求出∠CED的度数.解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B=60°+50°=110°.在△CDE中,∠ECD=110°,∴∠CED=180°﹣∠ECD﹣∠D=180°﹣110°﹣20°=50°.故答案为:50°.【点评】本题考查了三角形的外角性质以及三角形内角和定理,牢记“三角形的一个外角等于和它不相邻的两个内角的和”及“三角形内角和是180°”是解题的关键.14.如图,在△ABC中,∠B=90°,AD是△ABC的角平分线,若AD=6 3 .【分析】过点D作DE⊥AC于点E,根据含30°角的直角三角形的性质即可求解.解:如图,过点D作DE⊥AC于点E,在△ABC中,∠B=90°,∴∠BAC=60°,∵AD是△ABC的角平分线,∴∠DAE==30°,∴DE=,∴点D到AC的距离为3,故答案为:3.【点评】本题考查了含30度角的直角三角形的性质,角平分线的定义,数据含30度角的直角三角形的性质是解题的关键.15.已知3m=a,3n=b.m,n为正整数,则33m+2n= a3b2 (用含a,b的式子表示).【分析】逆向运用同底数幂的乘法法则以及幂的乘方运算法则解答即可.解:∵3m=a,3n=b,m,n为正整数,∴83m+2n=83m•38n=(3m)3•(2n)2=a3b3.故答案为:a3b2.【点评】本题考查了同底数幂的乘法以及幂的乘方,掌握幂的运算法则是解答本题的关键.16.如图,在△ABC中,∠A=60°,CE是△ABC的角平分线,BD与CE交于点F ①③④ .(写出所有正确结论的序号)①∠BFC=120°;②BE+CD>BC;③若D是AC的中点,则△ABC是等边三角形;④S△BEF:S△BFC=AE:AC.【分析】由∠A=60°,得∠ABC+∠ACB=120°,而∠DBC=∠ABC,∠ECB=∠ACB,所以∠DBC+∠ECB=(∠ABC+∠ACB)=60°,则∠BFC=180°﹣(∠DBC+∠ECB)=120°,可判断①正确;在BC上截取BG=BE,连接GF,可证明△BEF≌△BGF,则∠BFE=∠CFD=60°,可推导出∠CFD=∠CFG,再证明△CFD≌△CFG,得CD=CG,所以BE+CE=BG+CG=BC,可判断②错误;延长BD到点R,使RD=BD,连接AR,可证明△ADR≌△CDB,则AR=CB,∠R=∠CBD=∠ABD,所以AB=AR=CB,则△ABC是等边三角形,可判断③正确;作EM⊥BC于点M,EN⊥AC于点N,CL⊥AB于点L,则EM=EN,所以=,由S△BCE=BE•CL=BC•EM,S△ACE=AE•CL=AC•EN,得=,=,则=,作FI⊥AB于点I,FH⊥BC于点H,则FI=FH,所以===,可判断④正确,于是得到问题的答案.解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BD,CE是△ABC的角平分线,∴∠DBC=∠ABC∠ACB,∴∠DBC+∠ECB=(∠ABC+∠ACB)=,∴∠BFC=180°﹣(∠DBC+∠ECB)=180°﹣60°=120°,故①正确;如图6,在BC上截取BG=BE,在△BEF和△BGF中,,∴△BEF≌△BGF(SAS),∵∠BFE=∠CFD=180°﹣120°=60°,∴∠BFE=∠BFG=60°,∴∠CFG=180°﹣∠BFE﹣∠BFG=60°,∴∠CFD=∠CFG,在△CFD和△CFG中,,∴△CFD≌△CFG(ASA),∴CD=CG,∴BE+CE=BG+CG=BC,故②错误;如图1,延长BD到点R,连接AR,∵D是AC的中点,∴AD=CD,在△ADR和△CDB中,,∴△ADR≌△CDB(SAS),∴AR=CB,∠R=∠CBD=∠ABD,∴AB=AR,∴AB=CB,∵∠BAC=60°,∴△ABC是等边三角形,故③正确;如图2,作EM⊥BC于点M,CL⊥AB于点L,∴=,∵S△BCE=BE•CL=,S△ACE=AE•CL=,∴=,=,∴=,如图3,作FI⊥AB于点I,则FI=FH,∴===,∴S△BEF:S△BFC=AE:AC,故④正确,故答案为:①③④.【点评】此题重点考查三角形内角和定理、角平分线的性质、全等三角形的判定与性质、等边三角形的判定与性质等知识,正确地作出所需要的辅助线是解题的关键.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.计算:x3•x4•x﹣(x2)4+(2x4)2.【分析】根据幂的乘方与积的乘方法则、同底数幂的乘法法则进行解题即可.解:原式=x8﹣x8+7x8=4x6.【点评】本题考查幂的乘方与积的乘方、同底数幂的乘法,熟练掌握相关的知识点是解题的关键.18.解不等式组:.【分析】先求出其中各不等式的解集,再求出这些解集的公共部分.解:,解不等式①得x≤﹣1,解不等式②得x>﹣2,故不等式组的解集为﹣6<x≤﹣1.【点评】本题主要考查一元二次方程的解法及解一元一次不等式组,熟练掌握一元二次方程的解法是解题的关键.19.已知如图,AC交BD于点O,AB=DC【分析】先根据全等三角形的判定定理“AAS”证明△AOB≌△DOC,得OA=OD,OB=OC,即可证明AC=BD.【解答】证明:在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴OA=OD,OB=OC,∴OA+OC=OD+OB,∴AC=BD.【点评】此题重点考查全等三角形的判定与性质、对顶角相等、线段的和差关系等知识与方法,正确的找到全等三角形的对应边和对应角是解题的关键.20.某班去看演出,甲种票每张24元,乙种票每张30元.如果45名学生购票恰好用去1230元,甲【分析】设甲种票买了x张,乙种票买了y张,根据45名学生购票恰好用去1230元,列出二元一次方程组,解方程组即可.解:设甲种票买了x张,乙种票买了y张,由题意得:,解得:,答:甲种票买了20张,乙种票买了25张.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.如图,在△ABC中,DE是线段AB的垂直平分线【分析】由线段垂直平分线的性质推出AD=BD,因此∠B=∠BAD,由AD=CD,推出∠C=∠DAC,得到∠B+∠C=∠BAD+∠DAC,由三角形内角和定理推出∠BAD+∠DAC=×180°=90°,即可证明AC⊥AB.【解答】证明:∵DE是线段AB的垂直平分线,∴AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠DAC,∴∠B+∠C=∠BAD+∠DAC,∵∠B+∠C+∠BAD+∠DAC=180°,∴∠BAD+∠DAC=×180°=90°,∴AC⊥AB.【点评】本题考查线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,关键是由线段垂直平分线的性质得到AD=BD,由等腰三角形的性质,三角形内角和定理推出∠BAD+∠DAC=×180°=90°.22.求证:两个全等三角形对应边上的中线相等.【分析】设△ABC≌△DEF,AP、DQ分别是对应边BC、EF上的中线,则AB=DE,∠B=∠E,再推导出BP=EQ,即可根据全等三角形的判定定理“SAS”证明△ABP≌△DEQ,得AP=DQ,所以全等三角形对应边上的中线相等.【解答】已知:△ABC≌△DEF,AP、EF上的中线.求证:AP=DQ.证明:∵△ABC≌△DEF,∴AB=DE,BC=EF,∴AP、DQ分别是对应边BC,∴BP=CP=BC EF,∴BP=EQ,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴AP=DQ,∴全等三角形对应边上的中线相等.【点评】此题重点考查三角形中线的定义、全等三角形的判定与性质等知识,适当选择全等三角形的判定定理证明有关的三角形全等是解题的关键.23.如图,△ABC是等边三角形,D是△ABC内一点(1)求作点D关于直线BC的对称点E;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下连接AE,BE,延长BE至F,使得EF=EC【分析】(1)根据要求作出图形即可;(2)根据线段垂直平分线的性质得到CD=CE,BD=BE,根据全等三角形的性质得到∠BCE=∠BCD,∠BEC=∠BDC=120°,根据等边三角形的判定和性质以及全等三角形的判定和性质定理即可得到结论.【解答】(1)解:如图所示;(2)证明:由作图知,BC垂直平分DE,∴CD=CE,BD=BE,∵BC=BC,∴△BDC≌△BEC(SSS),∴∠BCE=∠BCD,∠BEC=∠BDC=120°,∴∠CEF=60°,∵CE=EF,∴△CEF是等边三角形,∴∠F=∠ECF=60°,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】本题考查了作图﹣基本作图,等边三角形的判定和性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练掌握等边三角形的性质是解题的关键.24.如图,A(4,4),AB⊥y轴于点B,点C在线段OB上运动(点C不与O,B重合),且CD=AC.(1)如图1,当点C的坐标为(0,3)时,①求点D的坐标;②设CD与x轴交于点M,求△OMC的面积;(2)如图2,C是OB的中点,过点B作BF⊥AC于点E,求证:∠AFB=∠OFC.【分析】(1)①由“AAS”可证△ACB≌△CDH,可得BC=HD=1,AB=CH=4,可求OH=1,即可求解;②由面积关系可求解;(2)由“ASA”可证△ABC≌△BON,可得BC=ON,由“SAS”可证△OFN≌△OFC,可得∠CFO=∠OFN,可求解.【解答】(1)解:①如图1,过点D作DH⊥y轴于H,MH,∵点A(4,6),∴AB=BO=4,∴∠AOB=45°,∵点C的坐标为(0,5),∴OC=3,∴BC=1,∵CD⊥AC,∴∠ACD=∠ABC=∠CHD=90°,∴∠ACB+∠BAC=90°=∠ACB+∠DCH,∴∠BAC=∠DCH,又∵AC=CD,∴△ACB≌△CDH(AAS),∴BC=HD=5,AB=CH=4,∴OH=1,∴点D(5,﹣1);②∵OH=1,HD=8,∴S△OHD=×7×1=,∵OM∥HD,∴S△OHM=,∵OC=6OH,∴S△OCM=;(2)证明:如图7,延长BF交x轴于点N,∵BF⊥AC,∴∠ABE+∠BAE=90°=∠ABE+∠OBN,∴∠OBN=∠BAE,又∵AB=BO,∠ABC=∠BON=90°,∴△ABC≌△BON(ASA),∴BC=ON,∵点C是BO的中点,∴CO=BC,∴CO=ON,又∵∠COF=∠NOF=45°,∴△OFN≌△OFC(SAS),∴∠CFO=∠OFN,∴∠CFO=∠OFN=∠AFB.【点评】本题是三角形综合题,考查全等三角形的判定和性质,等腰直角三角形的性质,三角形的面积公式,添加恰当辅助线构造全等是解题的关键.25.如图,在△ABC中,AB=AC,将BC绕点B逆时针旋转β至BD,点C的对应点为点D,CD,其中2α+β=180°.(1)求证:∠ABD=∠ACD;(2)如备用图,延长CD至点M,使得CM=BC.求证:①AD平分∠BDM;②A,M,B三点共线.【分析】(1)根据题意可得BC=BD,∠CBD=β,所以∠BDC=∠BCD;在△BCD中,∠BDC+∠BCD+∠CBD=180°,所以2∠BDC+β=180°,由2α+β=180°,可得∠BDC=α;在△ABC和△BCD中,利用三角形内角和可知,∠ABC+∠ACB=∠DBC+∠DCB,所以∠ABD+∠DBC+∠ACB=∠DBC+∠ACB+∠ACD,则∠ABD=∠ACD;(2)①如图1,过点A作AH⊥CM,AK⊥BD,垂足分别为H,K,所以∠AKB=∠AHC =90°,可证△ABK≌△ACH(AAS),所以AK=AH,由角平分线的判定可知,AD平分∠BDM;②如图2,连接AM,设AC与BD交于点G,可证△ABD≌△ACM(SAS),所以∠BAD =∠CAM,所以∠BAC=∠DAM=α,由等腰三角形的性质可知,∠BCG=90﹣α;由(1)知∠BDC=α,且AD平分∠BDM,所以∠ADG=90°﹣α,因为∠AGB=∠CAD+∠ADG,∠AGB=∠CBD+∠BCG,所以∠CAD=∠CBD=β,所以∠BAC+∠DAM+∠CAD =2α+β=180°,则A,M,B三点共线.【解答】证明:(1)根据题意可得BC=BD,∠CBD=β,∴∠BDC=∠BCD,在△BCD中,∠BDC+∠BCD+∠CBD=180°,∴2∠BDC+β=180°,∵2α+β=180°,∴∠BDC=α,在△ABC中,∠ABC+∠ACB=180﹣α,在△BCD中,∠DBC+∠DCB=180﹣α,∴∠ABC+∠ACB=∠DBC+∠DCB,∴∠ABD+∠DBC+∠ACB=∠DBC+∠ACB+∠ACD,∴∠ABD=∠ACD;(2)①如图7,过点A作AH⊥CM,垂足分别为H,K,∴∠AKB=∠AHC=90°,在△ABK和△ACH中,,∴△ABK≌△ACH(AAS),∴AK=AH,∵AH⊥CM,AK⊥BD,∴AD平分∠BDM;②如图2,连接AM,在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴∠BAD=∠CAM,∴∠BAC=∠DAM=α,∵AB=AC,∴∠BCG=90﹣α,由(1)知∠BDC=α,且AD平分∠BDM,∴∠ADG=90°﹣α,∵∠AGB=∠CAD+∠ADG,∠AGB=∠CBD+∠BCG,∴∠CAD=∠CBD=β,∴∠BAC+∠DAM+∠CAD=7α+β=180°,∴A,M,B三点共线.【点评】本题侧重考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,掌握其性质定理是解决此题的关键.。
八年级上册数学期中检测共5套及答案
八年级上册数学期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2) 4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40°B.45°C.60°D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若DC DB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F 是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15°B.22.5°C.30°D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1 cm/s的速度沿B→A→C的方向运动.设运动时间为t s,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21. 已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1 s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x <70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE 中,∠A +∠B +∠C +∠EDC +∠AED =180°×(5-2)=540°. ∵∠A =∠C =90°,∴∠B +∠AED +∠EDC =360°.又∵∠AED +∠DEF =180°,∠EDC +∠EDG =180°, ∴∠AED +∠EDC +∠DEF +∠EDG =360°. ∴∠B =∠DEF +∠EDG .20.解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =12(180°-∠BAC )=30°.∵∠PAC =∠BAC -∠BAP =120°-90°=30°,∴∠C =∠PAC . ∴AP =CP =4 cm.在Rt △ABP 中,∵∠B =30°, ∴BP =2AP =8 cm.21.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 与△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO (ASA). ∴OB =OC .22.解:(1)△A 1B 1C 1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A1B1C1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P点即为所求.23.解:(1)DF=EF.证明:∵△ABC是等边三角形,∴∠BAC=60°.又∵AD⊥BC,∴AD平分∠BAC.∴∠DAC=30°.∵△ADE是等边三角形,∴∠DAE=60°.∴∠DAF=∠EAF=30°.∴AF为△ADE的中线,即DF=EF.(2)∵AD⊥DC,∴∠ADC=90°.∵△ADE是等边三角形,∴∠ADE=60°.∴∠CDF=∠ADC-∠ADE=30°.∵∠DAF=∠EAF,AD=AE,∴AF⊥DE.∴∠CFD=90°.∴CD=2CF=4 cm.∵AD⊥BC,AB=AC,∴BD=CD,∴BC=2CD=8 cm.故等边三角形ABC 的边长为8 cm. 24.(1)证明:∵BF ∥AC ,∠ACB =90°,∴∠CBF =180°-90°=90°. ∵△ABC 是等腰直角三角形, ∠ACB =90°,∴∠ABC =45°. 又∵DE ⊥AB , ∴∠BDF =45°, ∴∠BFD =45°=∠BDF . ∴BD =BF .∵D 为BC 的中点, ∴CD =BD .∴BF =CD . 在△ACD 和△CBF 中,⎩⎨⎧AC =CB ,∠ACD =∠CBF =90°,CD =BF ,∴△ACD ≌△CBF (SAS). ∴∠CAD =∠BCF .∴∠CGD =∠CAD +∠ACF =∠BCF +∠ACF =∠ACB =90°. ∴AD ⊥CF .(2)解:△ACF 是等腰三角形.理由如下: 由(1)可知BD =BF . 又∵DE ⊥AB ,∴AB 是DF 的垂直平分线. ∴AD =AF .又由(1)可知△ACD ≌△CBF , ∴AD =CF ,∴AF =CF . ∴△ACF 是等腰三角形.25.解:(1)△EAD ≌△EA ′D ,其中∠EAD 与∠EA ′D ,∠AED 与∠A ′ED ,∠ADE与∠A ′DE 是对应角. (2)∵△EAD ≌△EA ′D ,∴∠A ′ED =∠AED =x ,∠A ′DE =∠ADE =y .∴∠AEA ′=2x ,∠ADA ′=2y . ∴∠1=180°-2x ,∠2=180°-2y . (3)规律为∠1+∠2=2∠A .理由:由(2)知∠1=180°-2x ,∠2=180°-2y , ∴∠1+∠2=180°-2x +180°-2y =360°-2(x +y ). ∵∠A +∠AED +∠ADE =180°, ∴∠A =180°-(x +y ). ∴2∠A =360°-2(x +y ). ∴∠1+∠2=2∠A .26.解:(1)①△BPD 与△CQP 全等.理由如下:运动1 s 时,BP =CQ =3×1=3(cm). ∵D 为AB 的中点,AB =10 cm , ∴BD =5 cm.∵CP =BC -BP =5 cm , ∴CP =BD .又∵AB =AC ,∴∠B =∠C . 在△BPD 和△CQP 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等, ∴BP ≠CQ . 又∵∠B =∠C ,∴两个三角形全等需BP =CP =4 cm ,BD =CQ =5 cm. ∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设x s 后点Q 第一次追上点P .根据题意,得⎝ ⎛⎭⎪⎫154-3x =10×2.解得x =803.∴点P 共运动了3×803=80(cm). ∵△ABC 的周长为10×2+8=28(cm), 80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.八年级(上)期中数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的) 1.下列图形中不是轴对称图形的是( ) A .B .C .D .2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,1B .1,2,2C .1,2,3D .1,2,43.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或126.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.97.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC 于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是.16.如果一个n边形的内角和等于900°,那么n的值为.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= °.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为cm.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于度.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)求图中x的值.22.(10分)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.23.(10分)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.24.(8分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.25.(10分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(12分)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【点评】本题考查了三角形具有稳定性在实际生活中的应用,是基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.5.等腰△ABC的两边长分别是2和5,则△ABC的周长是()A.9 B.9或12 C.12 D.7或12【考点】等腰三角形的性质;三角形三边关系.【分析】分为两种情况:①当腰是2时,②当腰是5时,看看三角形的三边是否符合三角形的三边关系定理,求出即可.【解答】解:分为两种情况:①当腰是2时,三边为2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此种情况不可能;②当腰是5时,三边为2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;故选C.【点评】本题考查了等腰三角形的性质和三角形三边关系定理的应用,注意要进行分类讨论.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7 C.8 D.9【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【考点】翻折变换(折叠问题).【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.9.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°【考点】三角形内角和定理;角平分线的定义.【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.10.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30° B.AD=BD C.BD=2CD D.CD=ED【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据三角形内角和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可.【解答】解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.【点评】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.12.如果一个三角形有两个外角(不在同一顶点)的和等于270°,则此三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故选B.【点评】本题考查了三角形内角和定理的应用,能求出∠BAC+∠ACB的度数是解此题的关键,注意:三角形的内角和等于180°.13.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍【考点】三角形的面积.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE +S△ACE=S△ABC,∴S△BCE =S△ABC,∵点F是CE的中点,∴S△BEF =S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选C.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.14.在直角坐标系中,O为坐标原点,已知A(2,2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.4个B.3个C.2个D.1个【考点】等腰三角形的判定;坐标与图形性质.【分析】分三种情形考虑∠O为顶角,∠P为顶角,∠A为顶角即可解决问题.【解答】解:如图,△AOP为等腰三角形,则符合条件的点P的个数共有4个.故选A.【点评】本题考查等腰三角形的判定和性质、坐标与图形性质等知识,解题的关键是考虑问题要全面,不能漏解,属于基础题,中考常考题型.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:已知等腰三角形的一个内角是70°,根据等腰三角形的性质,当70°的角为顶角时,三角形的内角和是180°,所以其余两个角的度数是(180﹣70)×=55;当70°的角为底角时,顶角为180﹣70×2=40°.故填55°,55°或70°,40°.【点评】本题主要考查等腰三角形的性质以及三角形的内角和为180度.分类讨论是正确解答本题的关键.16.如果一个n边形的内角和等于900°,那么n的值为7 .【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可求解.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=900°,解得n=7.故答案为:7.【点评】本题考查了多边行的内角和定理:n边形的内角和为(n﹣2)•180°.17.一个多边形的每一个外角都等于30°,则这个多边形的边数是12 .【考点】多边形内角与外角.【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【解答】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点评】本题考查根据多边形的内角与外角.关键是明确多边形的外角和为360°.18.如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD= 19 °.【考点】三角形内角和定理.【分析】由三角形的高得出∠ADC=90°,求出∠ADC,由三角形内角和定理求出∠BAC,由角平分线求出∠EAC,即可得出∠EAD的度数.【解答】解:∵△ABC中,AD是BC边上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣78°=12°,∵∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣78°=62°,∵AE平分∠BAC,∴∠EAC=∠BAC=×62°=31°,∴∠EAD=∠EAC﹣∠DAC=31°﹣12°=19°.故答案为:19.【点评】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则△ABD的周长为21 cm.【考点】线段垂直平分线的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质计算.【解答】解:因为DE⊥AC,AE=CE,则DA=DC,于是C=AB+BD+DA=AB+(BD+DC)=AB+BC=10+11=21.△ABD∴△ABD的周长为21.【点评】此题设计巧妙,解答时要根据垂直平分线的性质将三角形ABC的周长问题转化为三角形ABC的两边长问题.20.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于90 度.【考点】方向角;平行线的性质;三角形内角和定理.【分析】根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.【解答】解:∵C岛在A岛的北偏东50°方向,∴∠DAC=50°,∵C岛在B岛的北偏西40°方向,∴∠CBE=40°,∵DA∥EB,∴∠DAB+∠EBA=180°,∴∠CAB+∠CBA=90°,∴∠ACB=180°﹣(∠CAB+∠CBA)=90°.故答案为:90.【点评】解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)(2016秋•秦皇岛期中)求图中x的值.【考点】多边形内角与外角;三角形的外角性质.【分析】(1)根据三角形外角等于与它不相邻的两个内角的和,列出方程即可解决问题.(2)根据四边形内角和为360°,列出方程即可解决问题.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.【点评】本题考查三角形的外角,多边形内角和等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.22.(10分)(2016秋•秦皇岛期中)已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小,写出作法.【考点】轴对称-最短路线问题;作图-轴对称变换.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点C关于x轴的对称点C″的位置,连接AC″与x轴相交于点P,根据轴对称确定最短路线问题,点P即为所求作的点.【解答】解:(1)△A′B′C′如图所示,A′(﹣1,2),B′(﹣3,1),C′(﹣4,3);(2)如图所示,点P即为使PA+PC最小的点.作法:①作出C点关于x轴对称的点C″(4,﹣3),②连接C″A交x轴于点P,点P点即为所求点.【点评】本题考查了利用轴对称确定最短路线问题,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(10分)(2014春•邵阳期末)如图,在△ABC中;(1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N;(2)若EN=2,AC=4,求△ACE的面积.【考点】作图—复杂作图.【分析】(1)利用角平分线的作法以及过一点作已知直线的作法得出即可;(2)利用角平分线的性质以及三角形面积求法求出即可.【解答】解:(1)如图所示:CE为∠ACB的角平线,(2)∵CE为∠ACB的角平线,∠EMC=∠ENC=90°,∴EM=EN=2,∴S=AC×EM=4.【点评】此题主要考查了复杂作图以及角平分线的性质,得出EM的长是解题关键.24.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【考点】全等三角形的判定与性质.【分析】根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(10分)(2011•德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.(12分)(2016秋•秦皇岛期中)学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)【考点】三角形综合题.【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt △DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;【解答】(1)解:HL;故答案为:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,∴△CBG≌△FEH(AAS),。
数学期中测试卷八年级上
1. 下列各数中,不是有理数的是()A. 3.14B. -1/2C. √2D. 02. 若a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. 无法确定3. 下列函数中,是反比例函数的是()A. y=x+1B. y=2xC. y=1/xD. y=x^24. 已知二次方程x^2-5x+6=0,下列说法正确的是()A. 该方程有两个不同的实数根B. 该方程有两个相同的实数根C. 该方程没有实数根D. 无法确定5. 在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)6. 若sinα=1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/27. 下列各式中,正确的是()A. a^2=0B. a^3=-aC. a^0=1D. a^2=a8. 下列命题中,正确的是()A. 平行四边形对边相等B. 矩形对角线相等C. 矩形对边平行D. 平行四边形对角线互相平分9. 已知a、b是方程x^2-3x+2=0的两个根,则a^2+b^2的值为()A. 7B. 5C. 3D. 110. 在△ABC中,若a=3,b=4,c=5,则△ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 无法确定11. 已知数列{an}的前三项分别是1,-2,3,则该数列的通项公式是______。
12. 若等差数列{an}的首项a1=3,公差d=2,则第10项an=______。
13. 若二次函数y=ax^2+bx+c的图象开口向上,且a>0,b=0,则该函数的顶点坐标是______。
14. 在平面直角坐标系中,点A(-2,3),点B(4,-1),则AB的长是______。
15. 若sinα=√3/2,cosα=-1/2,则tanα的值为______。
16. 已知等比数列{an}的首项a1=2,公比q=3,则第5项an=______。
八年级上册数学期中数学试卷(附解析)
八年级数学上册期中测试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列线段长能构成三角形的是()A.3、7、5 B.2、3、5C.5、6、11D.1、2、4 2.(3分)下列图形中不是轴对称图形的是()A.B.C.D.3.(3分)下列图形中,不是运用三角形的稳定性的是()A.房屋顶支撑架B.自行车三脚架C.拉闸门D.木门上钉一根木条4.(3分)一个多边形的内角和是它的外角和的2倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.(3分)如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A.33°B.47°C.53°D.100°6.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4C.2:3D.4:97.(3分)如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为()A.16cm B.28cm C.26cm D.18cm8.(3分)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°9.(3分)如图,在△ABC中,∠B=∠C,D为BC边上的一点,E点在AC边上,∠ADE=∠AED,若∠BAD=20°,则∠CDE =()A.10°B.15°C.20°D.30°10.(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,共18分)11.(3分)点P(1,3)关于y轴对称点的坐标为.12.(3分)已知△ABC中的∠B=∠A+10°,∠C=∠B+10°,则∠A =,∠B=,∠C=.13.(3分)小华要从长度分别为5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.14.(3分)如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)15.(3分)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC =3,则BE=.16.(3分)在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.参考答案与试题解析一、选择题1.A;2.C;3.C;4.B;5.A;6.A;7.D;8.B;9.A;10.A;二、填空题11.(﹣1,3);12.50°;60°;70°; 13.33; 14.BC=BD;15.1.5;16.20°或40°;三、解答题(共8小题,共72分)17.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.18.(8分)已知等腰三角形的周长是22,一边长为5,求它的另外两边长.19.(8分)如图,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向.求∠C的度数.20.(8分)如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF (A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.21.(8分)如图,在△ABC中,AD是∠BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E.求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.22.(10分)如图,∠ECF=90°,线段AB的端点分别在CE和CF上,BD平分∠CBA,并与∠CAB的外角平分线AG所在的直线交于一点D,(1)∠D与∠C有怎样的数量关系?(直接写出关系及大小)(2)点A在射线CE上运动,(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.23.(10分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC 上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.24.(12分)如图1,A(m,0),B(0,n),且m,n满足(m ﹣2)2+=0.(1)求S△ABO;(2)点C为y轴负半轴上一点,BD⊥CA交CA的延长线于点D,若∠BAD=∠CAO,求的值;(3)点E为y轴负半轴上一点,OH⊥AE于H,HO,AB的延长线交于点F,G为y轴正半轴上一点,且BG=OE,FG,EA的延长线交于点P,求证:点P的纵坐标是定值.参考答案与试题解析三、解答题(共8小题,共72分)17.(8分)【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.18.(8分)【解答】解:若底边为5,设腰长为x,则5+2x=22,解得x=8.5,若腰为5,设底边为xcm,则2×5+x=22,解得x=12,∵5+5<12,∴不合题意.所以等腰三角形另外两边长分别为8.5和8.5.19.(8分)【解答】解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC﹣∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°﹣25°﹣72°=83°.即:∠C的度数为83°.20.(8分)【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)21.(8分)【解答】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA;(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC;(3)∵∠EAC=∠EAD﹣∠CAD,∠B=∠EDA﹣∠BAD,且∠BAD =∠CAD,∠EAD=∠EDA,∴∠EAC=∠B.22.(10分)【解答】解:(1)∠C=2∠D即:∠D=45°,∵BD平分∠CBA,AG平分∠EAB,∴∠EAB=2∠GAB,∠ABC=2∠DBA,∵∠CAB=180°﹣2∠GAB,∠BAC+∠ABC=90°,即180°﹣2∠GAB+2∠DBA=90°,整理得出∠GAB﹣∠DBA=45°,∴∠D=∠C=45°;(2)当A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立,∵∠CAB+∠ABC=∠C=90°,不论A在CE上如何运动,只要不与C点重合,这个关系式都是不变的,整理这个式子:∠CAB=180°﹣2∠GAB,∠ABC=2∠DBA,得:180°﹣2∠GAB+2∠DBA=90°,整理得∠GAB﹣∠DBA=45度,恒定不变,即:∠D=45°的结论不变,∴∠C=2∠D恒成立.23.(10分)【解答】(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ;(2)解:如图2所示:∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,∴∠CAQ=∠DBQ,在△AQC和△BPC中,∴△AQC≌△BPC(ASA),∴QC=CP,∵∠QCD=90°,∴∠CQP=∠CPQ=45°;(3)解:当∠DBA=22.5°时,AQ=2BD;∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠P=22.5°,∴∠DBA=∠P,∴AP=AB,∵AD⊥BP,∴AD=DP,∵∠ACQ=∠ADP=90°,∠PAD=∠QAC,∴∠P=∠Q,在△ACQ和△BCP中,∴△ACQ≌△BCP(ASA),∴BP=AQ,∴此时AQ=BP=2BD.故答案为:22.5°.24.(12分)【解答】解:(1)∵(m﹣2)2+=0.∴m=n=2,∴A(2,0),B(0,2),∴OA=2,OB=2,∴S△AOB=OA×OB=2;(2)如图1,在OC上取一点E,使OE=OA=2,由(1)知,OA=OB=2,∴∠OAB=45°,∴AE=2,∵∠BAD=∠CAO,∴∠BAD=∠CAO=67.5°,∵∠ADB=∠AOC=90°,∴∠ABD=∠ACO=22.5°,∴CE=AE=2,∴OC=OE+CE=2(+1),∴AC2=OA2+OC2=4+4(+1)2=8(2+),tan∠ACO==﹣1,在Rt△ABD中,tan∠ABD=tan22.5°=tan∠ACO==﹣1,∴AD=(﹣1)BD,在Rt△AOB中,OA=OB=2,∴AB=2,根据勾股定理得,AD2+BD2=AB2,∴[(﹣1)BD]2+BD2=8,∴BD2=2(2+),==,∴=;(3)如图2,由(1)知,A(2,0),B(0,2),∴直线AB解析式为y=﹣x+2①,设E(0,a),∴OE=|a|=﹣a,∵BG=OE,∴BG=﹣a,∴OG=2﹣a,∴G(0,2﹣a),∵A(0,2),E(0,a),∴直线AE解析式为y=﹣x+a②,∵OH⊥AE,∴直线OH解析式为y=x③,联立①③得,x=,y=,∴F(,),∵G(0,2﹣a),∴直线FG的解析式为y=x+2﹣a④,联立②④得,x=,y=1,∴P(,1),∴点P的纵坐标是定值,定值为1.。
(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)
2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。
期中测试题(八年级上册数学)
期中自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A B C D2.(2022年金华)已知三角形的两边长分别为5 cm和8 cm,则第三边的长可以是()A. 2 cmB. 3 cmC. 6 cmD. 13 cm3. 如图1,已知△ABC≌△DEC,点E在AB边上,∠B=70°,则∠BCE的度数为()A. 30°B. 40°C. 45°D. 50°图14.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5. 根据图2中给定的条件,全等的三角形是()A.①和②B.②和③C.①和④D.②和④①②③④图26.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7. 如图3,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C,E,再分别以点C,E为圆心,大于12CE的长为半径画弧,两弧交于点F,连接BF交AC于点D.若∠A=50°,则∠CBD的度数是()A. 25°B. 40°C. 50°D. 65°图3 图4 图5 图68.(2022年海南)如图4,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A. 80°B. 100°C. 120°D. 140°9. 如图5,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点的三角形共有()A. 3个B. 4个C. 5个D. 6个10.如图6,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S.若AQ=PQ,PR=PS,有下列结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确的是()A.仅①②B.仅①②③C.仅①②④D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11. 如图7是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是.图7 图8 图912. 如图8,已知BE=DC,请添加一个条件:,使得△ABE≌△ACD.13.如图9,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG.若S△ABC=6,则图中阴影部分的面积是.14. 如图10,把长方形纸片ABCD沿对角线折叠,若∠BDE =25°,那么∠BED =__________.图10 图11 图1215. 如图11,OP平分∠AOB,PM⊥OA于点M,点D在OB上,DH⊥OP于点H.若OD=4,OP=7,PM=3,则DH的长为.16. 如图12,点E在等边三角形ABC的边BC上,BE=12,DC⊥BC于点C,P是射线CD上一动点,F 是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为__________.三、解答题(本大题共7小题,共66分)17.(6分)如图13,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出字母“V”的图形关于x轴对称的图形;(2)所得图形与原图形结合起来,你能从中看出什么英文字母?图1318.(6分)如图14,在四边形ABCD中,∠A=100°,∠D=140°,∠BCD的平分线CE交AB于点E.(1)若∠B=∠BCD,则∠B= °;(2)若CE∥AD,求∠B的度数.图1419.(8分)如图15,点B,E,C,F在同一条直线上,AB=DE,AB∥DE.老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AC=DF;乙说:添加AC∥DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是 .(2)请你从正确的说法中选择一种,并给出证明.图1520.(10分)如图16,在△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.图1621.(10分)如图17,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证:(1)△ADB≌△AEC;(2)DB⊥EC.图1722.(12分)如图18,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?为什么;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,试说明这个结论.图1823.(14分)如图19,在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向A点运动,并且点Q的运动速度与点P的运动速度不相等,设点Q的运动时间是t s.(1)用含有t的式子表示PC=cm;(2)当△BPD与△CQP全等时,求点Q的运动速度;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求:经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?图19期中自我评估一、1. A 2. C 3. B 4. D 5. C 6. D 7. A 8. B 9. C 10. C二、11. 540°12.∠B=∠C或∠AEB=∠ADC13.2 14.130°15. 12 716. 20 解析:如图1,作点E关于直线CD的对称点G,过G作GF⊥AB于点F,交CD 于点P,此时EP+PF的值最小.因为△ABC是等边三角形,所以AC=BC,∠B=60°.又∠BFG=90°,所以∠G=30°.所以BG=2BF=28.因为BE=12,所以CE=12EG=12×(28-12)=8.所以AC=BC=BE+EC=12+8=20.三、17. 解:(1)如图所示.(2)字母x.18.解:(1)60(2)因为CE∥AD,所以∠DCE+∠D=180°.所以∠DCE=180°-∠D=180°-140°=40°.因为CE平分∠BCD,所以∠BCD=2∠DCE=80°.所以∠B=360°-(100°+140°+80°)=40°.19. 解:(1)乙、丙(2)选择乙(答案不唯一).证明如下:因为AB∥DE,AC∥DF,所以∠B=∠DEC,∠F=∠ACB.在△ABC和△DEF中,∠ACB=∠F,∠B=∠DEF,AB=DE,所以△ABC≌△DEF(AAS).20.解:(1)因为DE是BC的垂直平分线,所以CD=BD.所以∠CBD=∠C=35°.因为∠A=90°,所以∠C+∠CBD+∠DBA=90°.所以∠DBA=90°-35°-35°=20°.(2)因为△ABD的周长为30,所以AB+AD+BD=AB+AD+CD=AB+AC=30.因为AC=18,所以AB=30-18=12.21.证明:(1)因为AB⊥AC,AD⊥AE,所以∠BAC=∠DAE=90°.所以∠BAC+∠BAE=∠DAE+∠BAE,即∠BAD=∠CAE.在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,所以△ADB≌△AEC(SAS).(2)设BD和CE交于点F.因为△ADB≌△AEC,所以∠ACE=∠ABD.图1所以∠BFC=∠BAC=90°.所以DB⊥EC.22.(1)证明:AD=CE.理由如下:因为BD为△ABC的角平分线,所以∠ABD=∠CBE.在△ABD和△EBC中,BA=BE,∠ABD=∠CBE,BD=BC,所以△ABD≌△EBC(SAS).所以AD=CE.(2)解:因为BD=BC,所以∠BDC=∠BCD=75°.所以∠ADB=180°-75°=105°.由(1)知∠BCE=∠ADB=105°.所以∠ACE=105°-75°=30°.(3)解:同(2)可得∠BDC=∠BCD=α-β.因为△ABD≌△EBC,所以∠BAD=∠BEC.所以∠EBC=∠ABD=∠ACE=β.因为∠DBC+∠BDC+∠BCD=180°,所以β+(α-β)+(α-β)=180°.所以2α-β=180°.23.解:(1)(8-3t)(2)因为D为AB的中点,所以BD=12AB=5.因为点Q的运动速度与点P的运动速度不相等,所以BP≠CQ.又∠B=∠C,所以△BPD≌△CPQ.所以BP=PC=4 cm,CQ=BD=5 cm.所以3t=4,解得t=4 3 .所以点Q的运动速度为5÷43=154cm/s.(3)设经过x秒后点P与点Q第一次相遇.根据题意,得154x=3x+2×10.解得x=803.所以点P共运动了803×3=80 cm.△ABC周长为10+10+8=28 cm.因为80=28×2+8+10+6,所以点P,Q在AB边上相遇.所以经过803s点P与点Q第一次在AB边上相遇.。
八年级上册数学期中考试试卷【含答案】
八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。
()2. 任何两个奇数之和都是偶数。
()3. 一个数的平方和它的立方一定相等。
()4. 任何两个负数相乘的结果都是正数。
()5. 若一个数的平方是36,则这个数一定是6。
()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。
2. 若一个等差数列的首项为3,公差为2,则第5项是______。
3. 一个圆的直径是10cm,则这个圆的周长是______厘米。
4. 若一个数的立方是64,则这个数的平方根是______。
5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是等差数列?给出一个等差数列的例子。
3. 简述圆的周长和面积的计算公式。
4. 什么是质数?给出5个质数的例子。
5. 什么是因式分解?给出一个多项式因式分解的例子。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。
八年级(上)期中测试数学试卷(含答案)
第一学期八年级期中测试数学试卷一、选一选(本大题共12小题,每小题3分,共36分)下列各题均附有四个备选答案,其中有且只有—个是正确的,请将正确答案的代号填在上面答题卡中对应的题号内. 1、实数—2,0.3,71,2,π中,无理数的个数是( ) A .2 B .3 C .4 D .5 2、下列“QQ 表情”中属于轴对称图形的是( )3、如图1所示,△ABC ≌△EFD, ∠B 与∠F 是对应角,那么( ) A. AB=DE, AC=EF, BC=DF B. AB=DF, AC=DE, BC=EFC. AB=EF, AC=DE, BC=DFD.AB=EF, AC=DF, BC=DEFED C BAEDCA图1 图2 4、点P(2,-3)关于y 轴的对称点的坐标是( )A.(2,3)B.(-2,-3)C.(-2,3)D.(-3,2) 5、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A.x>-5 B.x<-5 C.x≠-5 D.x≥-5 6、下列四个条件中,能证明两个直角三角形全等的是( ) A .两个锐角对应相等 B .一条直角边对应相等 C .斜边对应相等 D .两条直角边对应相等 7、下列性质中,等腰三角形具有而直角三角形不一定具有的是( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边,C .有两个锐角的和等于90°D .内角和等于180°8. 如图2,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个 9.下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第9个图案中的三角形与第一个图案中的三角形能够全等的共有( )个。
A 49 B.64 C.81. D.10010、如图3,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )A .100°B .80°C .70°D .50°DCBAFEDCBAFOGEDCBA图3 图4 图511、如图4所示,四边形ABCD 中,AE 、AF 分别是BC 、CD 的垂直平分线,∠EAF=80°,∠CBD=30°则∠ADC 的度数为( )A .45°B .60°C .80°D .100°12、如图5,已知:△ABE 是等边三角形,BC 平分∠GBE, DF ∥AB. 下列结论:①△BGC 是等边三角形;②BO+OC=GO;③BO 平分∠AOG;④AF -EF=BF ,成立的是( ) A .①②③④ B .①②④ C .①②③ D .①③ 二、填一填(每题3分,共12分)13、16 =_____,38- =____,2)3(-=____14、如图6,点P 关于OA 、OB 的对称点分别为点C 、点D ,连接CD ,分别交OA 、OB 于M 、N 两点,若△PMN 的周长为8厘米,则CD 的长为______ 厘米.P N MODC BA DCBA图6 图7 图815、如图7,AB=AC ,要证明△ADB ≌△ADC ,需添加的条件不能是______(只需写其中一种). 16、如图8,△ABC 中,点A 的坐标为(O ,1),点B 的坐标为(3,1), 点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是______.三、解下列各题(本大题有9小题,共72分) 17.(本题6分)计算:3(3+31)-327125-18(本题6分)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE . 求证:∆ACD ≌△BCE.ED19(本题6分)若m=1-x -x -1+4x ,求出m 的算术平方根。
八年级期中测试卷数学上册
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. -3/4D. 0.1010010001……2. 下列各式中,同类项是()A. 3x^2和4x^3B. 5xy和-3xyC. 2x^2和-2x^2yD. 4a^2b和-4ab^23. 下列各式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^24. 下列各式中,分式有意义的是()A. 1/(x-2)B. 1/(x^2 - 4)C. 1/(x^2 + 1)D. 1/(x^2 - x)5. 下列各函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 - 4x + 3C. y = x^3 + 2x^2 + 1D. y = 2x + 3二、填空题(每题4分,共20分)6. 若a,b是方程2x^2 - 5x + 2 = 0的两个根,则a+b的值为______。
7. 已知x^2 - 2x + 1 = 0,则x的值为______。
8. 若a,b,c成等差数列,且a+b+c=21,则b的值为______。
9. 若|a|=3,|b|=5,则|a+b|的最大值为______。
10. 若sinα = 1/2,则α的度数为______。
三、解答题(每题10分,共40分)11. (1)化简:2(3x-4) - 5(x+2) + 4x - 3(2)解方程:3x^2 - 5x + 2 = 012. (1)已知a,b是方程2x^2 - 5x + 2 = 0的两个根,求a^2 + b^2的值。
(2)已知a,b,c成等差数列,且a+b+c=21,求b+c的值。
13. (1)已知y = 2x^2 - 5x + 2,求y的顶点坐标。
(2)已知函数y = ax^2 + bx + c(a≠0)的顶点坐标为(1,-2),求函数的表达式。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
人教版八年级上册数学期中测试卷(含答案)
人教版八年级上册数学期中测试卷姓名班级学号成绩一、单项选择题(每小题2分, 共12分)1.下列银行标志中,不是轴对称图形的为()A. B. C. D.2.点(﹣2,3)关于y轴的对称点的坐标为()A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(2,﹣3)3.已知等腰三角形的一个内角为40°,则这个等腰三角形的底角为()A.40° B.100° C.40°或100° D.40°或70°4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=68°,∠C′=38°,则∠B的度数为()A.74° B.38° C.94° D.68°(第4题图)(第5题图)(第6题图)AB长为半径画弧,两弧交点的连线交5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于12AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40° B.30° C.20° D.10°6.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.290° C.285° D.295°二、填空题(每小题3分, 共24分)7.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.8.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.9.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.10.如图,∠ADB=90°,∠DAB=∠BAC,BD=4,AC=10,则△ABC的面积是.(第7题图)(第10题图)(第11题图)11.如图,AB∥CF,E为DF的中点,若AB=7cm,CF=5cm,则BD=cm.12.如图,△ABC中AB=AC,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=.(第12题图)(第13题图)(第14题图)13.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=度.14.如图,已知△ABC中∠A=43°,∠B=73°,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(每小题5分,共20分)15.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.16.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为;点B关于y轴对称的点坐标为;(2)若网格上的每个小正方形的边长为1则△ABC的面积是.17.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.18.如图,四边形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.四、解答题(每小题7分,共28分)19.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.20.如图,在△ABC中,AC=BC.(1)尺规作图:在AC上找一点M,使得∠MBC=∠C;(不写作法,保留作图痕迹)(2)在(1)的条件下,若满足BM=AB时,求∠C的度数.21.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).22.如图所示,△ABC和△A′BC存在着某种对应关系(它们关于BC对称),其中A的对应点是A′,A(3,6),A′(3,0),△ABC内部的点M(4,4)的对应点是N(4,2).(1)你知道它们的对应点的坐标有什么关系吗?(2)如果△ABC内有一点P(x,y),那么在△A′BC内P的对应点P′的坐标是什么?五、解答题(每小题8分,共16分)23.(1)证明角平分线具有的性质:角平分线上的点到角的两边的距离相等.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图1,已知:OC平分∠AOB,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.(2)如图2,在△OAB中,OP平分∠AOB,交AB于点P,PD⊥OA于点D,PE⊥OB于点E,OA=OB=6,若S△OAB=15,求PD的长.24.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?说明理由.六、解答题(每小题10分,共20分)25.感知:如图①,点E为等边三角形ABC中AC边上一点,连接BE,以BE为边在BE的左侧作等边三角形BDE,连接AD。
八年级数学上册期中测试题
八年级上册数学期中测试卷1. 下列汽车标志中,不是轴对称图形的是()A .B .C .D .2. 下列每组数分别是三根木棒的长庋,能用它们摆成三角形的是()A.3,4,8 B.13,12,20 C.8,7,15 D.5,5,113. 若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7 B.8 C.9 D.104. 在平面直角坐标系中,点(4,﹣3)关于x轴对称的点的坐标是()A.(4,3)B.(﹣4,3)C.(3,﹣4)D.(﹣3,﹣4)5. 等腰三角形的周长是20cm,其中一边长4cm,则腰长为()A.4cm B.8cm C.4cm或8cm D.无法确定6. 如图,四个图形中,线段BE是△ABC的高的图是()A .B .C .D .7. 已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°第7题图第8题图8. 如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,AB=5cm,BC=8cm,则△ABD的周长等于()A.16cm B.13 cm C.10 cm D.无法确定9. 将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°第9题图第10题图10. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=()°A.90 B.135 C.180 D.27011. 如图,△ABC中,AB=AC,AD平分∠CAB,则下列结论中:①AD⊥BC;②AD=BC;③∠B=∠C;④BD=CD.正确的结论有()A.①②③B.②③④C.①②④D.①③④12. 如图,已知EA∥DF,AE=DF,要使△AEC≌△DFB,则需要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC13. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.614.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=()A.4 B.8 C.4或8 D.615. 两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.小明在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO =AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD.其中正确的结论有()A.1个B.2个C.3个D.4个16. (6分)已知正多边形的一个外角的度数比一个内角度数的多12°,请求出这个正多边形的一个内角的度数和它的边数.17. (6分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,BF=CE.求证:AE∥DF.18.(7分)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于x轴对称的图形△A1 B1 C1;(2)画出△ABC关于直线x=﹣1对称的图形△A2 B2 C2;八年级数学试题卷共2页第1页八年级数学试题卷 共2页 第2页CA B(3)在x 轴上找一点P ,使△ACP 的周长最小(保留作图痕迹).19.(7分)如图,在△ABC 中,∠C =90°. (1)尺规作图:作斜边AB 的垂直平分线DE ,分别交 AB ,BC 于D 、E (不写作法,保留作图痕迹);(2)连接AE ,若∠CAE =∠B +30°,求∠AEC 的度数.20. (8分)如图,点C 在线段AB 上,△DAC 和△DBE 都是等边三角形. (1)求证:△DAB ≌△DCE ;(2)求证:DA ∥EC .21. (8分)如图,BE ⊥AC ,CF ⊥AB 于点E ,F ,BE 与CF 交于点D ,DE =DF ,连接AD . (1)求证:∠F AD =∠EAD ;(2)连接BC ,判断线段AD 与线段BC 的位置关系,并说明理由.22. (10分)如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD , BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H . (1)求∠APB 度数;(2)求证:△ABP ≌△FBP ; (3)求证:AH +BD =AB .9. 已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,于E F ,.当MBN ∠绕B 点旋转到AE CF ≠时,(在图2), 求证AE CF EF +=. 当MBN ∠绕B 点旋转到AE CF ≠时,(在图3);探究AE,CF ,EF 之间的关系23.(11分)如图1,两个不全等且有公共的直角顶点O 的等腰直角三角形OAB 和OCD 叠放在一起. (1)在图1中,你发现线段AC ,BD 的数量关系是 ,直线AC ,BD 相交成 度角.(2)将图1中的△COD 绕点O 顺时针旋转一个锐角,得到图2,这时(1)中的两个结论是否成立? 请做出判断并说明理由.(3)将图1中的△COD 绕点O 顺时针旋转一个钝角,得到图3,这时(1)中的两个结论是否还成立? 请作出判断并说明理由.24. (12分)如图1,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴与G ,连OB 、OC .(1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO ;(3)在(2)的条件下,如图2,点M 为OA 上一点,且∠ACM =45°,BM 交y 轴于P ,若点B 的坐标为(3,1),求点M 的坐标.(图1) A B CD E FM N(图2)A B CD E FM N图3A BCDE FMN。
八年级数学期中测试卷八上
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. πC. 2.5D. √42. 若a、b、c成等差数列,且a+b+c=0,则a²+b²+c²的值为()A. 0B. 3C. 6D. 93. 已知函数y=kx+b(k≠0),当x=1时,y=3;当x=2时,y=5,则该函数的解析式为()A. y=2x+1B. y=3x-1C. y=2x+3D. y=3x+14. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 120°C. 45°D. 30°5. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若A、B两点的坐标分别为(-2,0)和(0,3),则该函数的解析式为()B. y=3x+2C. y=2x-3D. y=3x-26. 下列图形中,属于正多边形的是()A. 正方形B. 正五边形C. 正六边形D. 正七边形7. 若x²+2x+1=0,则x的值为()A. 1B. -1C. 2D. -28. 已知函数y=3x²-4x+1,当x=2时,y的值为()A. 3B. 5C. 7D. 99. 在△ABC中,∠A=30°,∠B=75°,则sinC的值为()A. √3/2B. 1/2C. √2/210. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 22cmB. 24cmC. 26cmD. 28cm二、填空题(每题5分,共50分)11. 若a、b、c成等比数列,且a+b+c=0,则bc的值为______。
12. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若A、B两点的坐标分别为(-1,0)和(0,2),则该函数的解析式为y=______。
13. 在△ABC中,∠A=50°,∠B=70°,则sinA的值为______。
2024-2025安徽省宿州市宿城宿城第一初级中学八年级数学(上)期中测试卷(无答案)
2024-2025北师大版安徽省宿州市宿城一初中八年级数学(上)期中测试卷(时间:120分钟满分:150分)一、选择题(本大题共10 小题,每小题4分,满分40分)1.下列给出的点中,在第四象限的是 ( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)2.在实数5,227,0,π2,36,−1.414中,有理数有 ( )A.1个B.2个C.3个D.4个3.下列函数中,y随x的增大而增大的是 ( )A. y=--5xB. y=-5x+1C. y=-x-5D. y=x--54.如图,在水塔O的东北方向32 m处有一抽水站A,在水塔O的东南方向24 m处有一建筑工地B,在A,B 间修建一条笔直的供水管道,则管道的长为 ( )A.40mB.45mC.50mD.56m5.下列计算中,正确的是 ( )A.2a2=a B.18−8=2C.615÷23=345D.−33=276.关于一次函数y=−(m²+1)x−2,下列结论错误的是 ( )A.函数图象是一条直线B.函数图象过定点(0,-2)C.函数图象经过第二、三、四象限D.当x>0时,y>-27.已知点A(m+1,--2),B(3,n--1).若直线AB∥x轴,且AB=4,则m+n的值为 ( )A. -3B.5C.7或-5D.5或-38.如图所示的是某型号光伏发电装置某天从早上6时到下午18时之间,发电功率(W)随时间(时)变化的函数图象,下列说法错误的是 ( )A.时间越接近12时,发电功率越大B.上午8时和下午16时,发电功率相同C.从上午10时到下午14时,发电功率在逐渐增大D.发电功率超过200W 的时间超过8小时9.如图,在Rt△ABC中,∠C=90°,,分别以三角形各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当AC=3,BC=4时,阴影部分的面积为 ( )A.10πB.6πC.6D.1210.在同一平面直角坐标系中,一次函数y=ax+a²与y=a²x+a的图象可能是 ( )二、填空题(本大题共4 小题,每小题5分,满分 20分)11.请写出一个图象经过原点的函数的表达式:12.如图,点 A(a,4)在一次函数. y=−3x−5的图象上,图象与y轴的交点为B,那么△AOB的面积为.13.如图,一个三棱柱盒子底面三边的长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A 沿盒子的表面爬行一周到盒顶的点 B,蚂蚁要爬行的最短路程是 cm.14.定义:在函数中,我们把关于x的一次函数y=mx+n与y=nx+m称为一组对称函数,例如,y=-2x+3与y=3x−2是一组对称函数.请解答下列问题:(1)一次函数 y=--6x+4的对称函数在y轴上的截距为(2)若一次函数y=−kx+6(k⟩0)的对称函数与x轴交于点A,与 y轴交于点B,且△AOB的面积为12,则k的值为三、(本大题共2小题,每小题8分,满分16分)15.计算: 48−21+3.316.如图,一次函数y=-2x+6的图象与x轴交于点A,与y轴交于点 B.(1)求点A,B的坐标.(2)求△OAB的面积.四、(本大题共2小题,每小题8分,满分16分)17.小霞和爸爸、妈妈到人民公园玩,回家后,她利用平面直角坐标系画出了公园的景区图(横轴和纵轴均为小正方形的边所在的直线,每个小正方形的边长均为1个单位长度).(1)若游乐园D的坐标为(2,-1),写出景点 A,B,C的坐标.(2)在(1)的条件下,位于原点西北方向的是哪个景点?表示该景点的点到原点的距离为多少?18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地.送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10 尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA 或OB)的长度.五、(本大题共2小题,每小题10分,满分20分)19.如图,在正方形网格中,每个小正方形的边长均为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A ,C 的坐标分别为A(-4,5),C(--1,3).(1)请在网格内建立符合题意的平面直角坐标系.(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1.(3)写出点B 1的坐标,并求出△A₁B₁C₁的面积.20.阅读材料,回答问题:观察下列各式:1+112+122=1+11−12=112;1+122+132=1+12−13=116; 1+132+142=1+13−14=1112;………请根据以上三个等式提供的信息解答下列问题:(1)猜想:(2)归纳:根据你的观察、猜想,写出一个用n(n 为正整数)表示的等式: .(3)应用:用上述规律计算 1+112+122+1+122+132+ 1+132+142+⋯+1+192+1102.六、(本题满分12分)21.学完勾股定理后,小宇对勾股定理产生了极大的兴趣,通过搜集资料,他整理了一篇有关勾股定理的数学学习笔记.下面是学习笔记的部分内容,请阅读并完成相应的任务.勾股定理是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.我国最早对勾股定理进行证明的是三国时期吴国的数学家赵爽.如图,这是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以验证勾股定理,思路如下:大正方形的面积有两种求法,一种是等于 c²,另一种是等于四个直角三角形与中间小正方形的面积之和,即 4×12ab +(b−a )2,从而得到等式 c 2=4×12ab +(b−a )2,化简便得结论 a²+b²=c².这里用两种求法来表示同一个量,从而得到等式或方程的方法,我们称之为“双求法”……任务:请参照小论文中的“双求法”解决下列问题:(1)图1、图2的两个正方形网格的面积分别为 S₁,S₂(两个网格单位长度不同),正方形 ABCD 、正方形 MN PQ 满足 S 正方形ABCD =S 正方形MNPQ ,下列结论正确的是 .A.S₁=36B.S 正方形ABCD =49S 1C.S 正方形MNPQ =59S 2D.S 1S 2=910(2)如图 3,在 △ABC 中,BD 是边AC 上的高, AB =4,BC =8,AC=10,求AD 的长.七、(本题满分12分)22.如图1,这是某款新能源汽车用充电器给汽车充电时,其屏幕的起始画面.经测试,在用快速充电器和普通充电器对该汽车充电时,其电量E(%)与充电时间t(h)的函数图象分别为图 2中的线段AB,AC.根据以上信息,回答下列问题:(1)在目前电量为20%的情况下,用充电器给该汽车充满电时,快速充电器比普通充电器少用 h.(2)求线段AB,AC的函数表达式.(3)已知该汽车在高速公路上正常行驶时,一般情况下耗电量为每小时20%.若该汽车目前电量为20%,在用快速充电器将其充满电后,正常行驶ah,接着用普通充电器将其充满电,其“充电一耗电一充电”的时间恰好是14h,求a的值.八、(本题满分14分)23.如图1,在平面直角坐标系中,直线y=−43x+4分别交x轴、y轴A,B两点,过点C(−4,0)作CD⊥AB于点D,交y轴于点 E.(1)试说明: △COE≅△BOA.(2)如图2,M是线段CE 上一动点(不与点 C,E 重合), ON⊥OM交AB 于点N,连接MN.①判断△OMN的形状,并说明理由.②当△OCM与△OAN面积相等时,求点N的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-八年级上学期数学期中测试卷
(考试时间:120分钟 满分:150分)
班级 姓名 座号 成绩 一、填空题(每小题3分,共计36分)
1.
9
4
的算术平方根是 ; 2. P (-3,2)关于x 轴对称的点的坐标是: ;
3.如图,要测量河岸相对的两点A 、B 之间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一根标杆,然后方向不变继续朝前走50米到D 处,在D 处转90°沿DE 方向再走17米,到达E 处,使A 、C 与E 在同一直线上,那么测得A 、B 的距离为_____米;
4.在数轴上与表示3的点的距离最近的整数点所表示的数是 ;
5.等腰三角形的一个外角为110°,则底角的度数是 ; 6.一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是: ;
7. 要使1-x 有意义,则x 的取值范围是 ;
8. 如图,已知:AD=AE, AF 是公共边,要让△ADF 和△AEF 全等只要给出条件:
就能用“SAS ”证明这两个三角形全等;
9.直线 L 1, L 2, L 3 表示三条相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,刚可供选择的地址有: 处;
10.三角形三个内角度数之比是1︰2︰ 3,最大边长是8 ,则它的最小边的长是: .
11. 等腰三角形的两边长是6和4,周长为_________________。
12.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 在BC 上,且BD=BA ,点E 在BC 的延长线上,且CE=CA ,∠DAE=________。
二、选择题(每小题4分,共计16分)
图3
C
A
B D
E
13. 下列语句中,正确的是( ).
A .一个实数的平方根有两个,它们互为相反数;
B .一个实数的立方根不是正数就是负数;
C .负数没有立方根;
D .立方根是这个数本身的数共有三个. 14. 下列图案是轴对称图形的有:( )
A .1个
B .2个
C .3个
D .4个
15. 如上图:D 、E 是△ABC 的边AC 、AB 上的点,△ADB ≌△EDB ≌△EDC ,下列结论:①AD=ED ;②BC=2AB ;③∠1=∠2=∠3;④∠4=∠5=∠6.其中正 确的有:( )
A .4个
B .3个
C .2个
D .1个
16. 图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是:( )
A .1 号袋
B .2 号袋
C .3 号袋
D .4 号袋
三、解答题(17题~24题每小题9分,第25题12分,第26题14分,共计98分) 17.(9分) 计算: -121+36+4
12-3
0.125-
E
6
C
B
A
D
2
3
514
3号袋
42号袋 1号袋
18. (9分) 化简:|6-2|+|2-1|-|3-6|.
19. (9分) 四川大地震后,电信部门要修建一座信号发射塔,如图,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应建在什么位置。
在图上确定它的位置(保留作图痕迹)。
20.(9分)已知:AD⊥BE ,垂足C是BE的中点,AB=DE ,则AB与DE有何位置关系?请说明理由.
21. (9分) 如图、在△ABC中,AB=AC,∠A=50°,BD平分∠ABC,求∠BDC的度数
22.(9分) 已知如图:AD 为△ABC 上的高,E 为AC 上一点BE 交AD 于F 且有BF=AC,FD=CD 求证:(1) △AD C ≌△BDF (2)BE ⊥AC
23. ( 9分) 如图,在四边形ABCD 中,AB=AD ,∠ABC=∠ADC.
求证:BC=DC.
24.(9分) 如图,AC=AE,BC=DE,∠ABD=∠ADB,求证:∠CAE=∠BAD
A B C D
A
B
C D
E
25.(12分) 如图,在四边形ABCD 中,点E 是BC 的中点,点F 是CD 的中点,且AE ⊥BC ,AF ⊥CD 。
(1)求证:AB=AD 。
(2)请你探究∠EAF ,∠BAE ,∠DAF 之间有什么数量关系?并证明你的结论。
26.(14分) 已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点, (1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,
求证:△DEF 为等腰直角三角形.
(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,
那么,△DEF 是否仍为等腰直角三角形?证明你的结论.
A
B
C
D
E F。