第11章习题与解答
大学物理习题答案第十一章

[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
第十一章答案

第十一章答案第 11章凝固缺陷及控制1. 何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析? (2)2. 偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成? (2)3. 焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位? (3)4. 分析偏析对金属质量的影响? . (3)5简述析出性气体的特征、形成机理及主要防止措施。
(4)6、焊缝中的气孔有哪几种类型?有何特征? . (4)7、试述夹杂物的形成原理、影响因素及主要防止措施。
(5)8、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率? (6)9、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同点。
..................... 6 10、分析灰铸铁和球墨铸铁产生缩孔、缩松的倾向性及影响因素。
....................................... 7 11、简述顺序凝固原则和同时凝固原则各自的优缺点和适用范围。
....................................... 8 12、焊件和铸件的热应力是如何形成的 ? 应采取哪些措施予以控制 ? ....................................... 9 13、简述凝固裂纹的形成机理及防止措施。
. ............................................................................ 10 14、何谓液化裂纹?出现在焊接接头的哪个区域?为什么? ................................................. 11 15. 试叙冷裂纹的种类及特征 . .................................................................................................... 11 16、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。
第11章-作业及习题参考答案

第11章(8分)将下面程序划分为基本块,并画出其基本块程序流图。
(1) if a<b goto (3)(2) halt(3) if c<d goto (5)(4) goto (8)(5) t1:=y+z(6) x :=t1(7) goto (1)(8) t2:=y-z(9) x :=t2(10) goto (1)11.1答:所谓代码优化即对代码进行等价变换,使得变换后的代码与变换前代码运行结果相同,而运行速度加快或占用存储空间少,或两者兼有。
进行优化的基础是中间或目标代码生成,以及基本块的识别、控制流分析和数据流分析。
2答:根据不同的阶段,分为中间代码优化和目标代码的优化。
根据优化所涉及的程序范围,又可分为局部优化、循环优化和全局优化。
3答:最常用的代码优化技术有:(1)删除多余运算(2)代码外提(3)强度削弱(4)变换循环控制条件(5)合并已知量和复写传播(6)删除无用赋值4 图11.23是图11.22的C代码的部分四元式代码序列(1) 请将图11.23的四元式代码序列划分为基本块并做出其流图?(2) 将每个基本块的公共子表达式删除?(3) 找出流图中的循环,将循环不变量计算移出循环外?(4) 找出每个循环中的归纳变量,并且在可能的地方删除它们图11.22void quicksort(m,n)int m,n;1 / 10{ int i,j;int v,x; if (n<=m) return;/* fragment begins here */ i = m-1;j = n;v = a[n];while(1) {do i = i+1;while (a[i]<v);do j = j-1; while (a[j]>v);if (i>=j) break;x = a[i];a[i] = a[j];a[j] = x;}x = a[i];a[i] = a[n];a[n] = x;/* fragment ends here */ quicksort (m,j);quicksort(i+1,n);}图11.23(1) i:=m-1(2)j:=n(3) t1:=4*n(4) v:=a[t1](5) i:=i+1(6) t2:=4*i(7) t3:=a[t2](8) if t3< v goto (5)(9) j:=j-1(10)t4:=4*j(11)t5:=a[t4](12)if t5> v goto (9)(13)if i >= j goto (23)(14)t6:=4*i(15)x:=a[t6] (16) t7:=4*i(17) t8:=4*j(18) t9:=a[t8](19) a[t7]:=t9(20) t10:=4*j(21) a[t10]:=x(22) goto (5)(23) t11:=4*i(24) x:=a[t11](25) t12:=4*i(26) t13:=4*n(27) t14:=a[t13](28) a[t12]:=t14(29) t15:=4*n(30) a[t15]:=x答:(1)1-4为第1块,5-8为第2块,9-12为第3块,13句为第4块,14-22为第5块,23-30句为第6块。
机械设计基础习题解答第11章

思考题及练习题11.1记里鼓车是中国古代用于计算道路里程的车,由“记道车”发展而来。
车箱内有立轮、大小平轮、铜旋风轮等,轮周各出齿若干,结构及参数如图所示。
求齿轮4与车轮(齿轮1)的传动比。
齿轮4转一周,木人击鼓一次。
假定要求车行500米,木人击鼓一次,问车轮直径应为多少?答:齿轮1~齿轮4组成定轴齿轮系1412441354100====100183i n z z n z z ×× 如果:n 4=1 r ,则 n 1=100 r设车轮直径为d 1,则11=500d n πd 1=1.59 m车轮直径应为1.59米。
11.2如图所示齿轮系,已知1z =15、2z =50、3z =15、4z =60、5z =15、6z =30、7z =2(右旋)8z =60,若1n =1000 r/min 。
试求:(1)求18i =?(2)蜗轮8的转速大小和方向?答:(1)800215151560306050753186428118=××××××===Z Z Z Z Z Z Z Z n n i习题11.1图(2)18181000 1.25r /min 800n n i === 方向用画箭头方法确定,为顺时针方向。
11.3. 如图所示轮系,已知齿轮齿数1z =30、2z =20、3z =30、4z =20、5z =80 、蜗杆头数6z =1、蜗轮齿数7z =60,齿轮1转速n 1=1200 r/min ,方向如图中箭头所示,求齿轮1与蜗轮7的传动比17i ,蜗轮7的转速n 7,并在图中标出其转动方向。
答: 解:235711771246203080602403020201z z z z n i n z z z z ×××====××× 171712005r /min 240n n i === 方向用画箭头方法确定,为逆时针方向。
物理学第三版(刘克哲)11章习题解答

(b)还可以看到,b*与竖直轴线op的夹角为α,所以载流导线ab在点p产 生的磁感应强度沿该竖直轴的分量为
. 由于对称性,载流导线bc和ca在点p产生的磁感应强度沿竖直轴的分
量,与上式相同。同样由于对称性,三段载流导线在点p产生的磁感应 强度垂直于竖直轴的分量彼此抵消。所以点p的实际磁感应强度的大小 为
, 方向沿竖直轴po向下。 11-10 两个半径相同、电流强度相同的圆电流,圆心重合,圆面正
交,如图11-10所示。如果半径为r,电流为i,求圆心处的磁感应强度 b。
解 两个正交的圆电流,一个处于xy平面内, 产生的磁感应强度b1,沿z轴正方向,另一个处于 xz平面内,产生的磁感应强度b2,沿y轴正方向。 这两个磁感应强度的大小相等,均为
动,速度v的大小应满足
, 所以速度的大小应为
. 11-29 半径为r的磁介质球被均匀磁化,磁化强度为m,求: (1) 由磁化电流在球心产生的磁感应强度和磁场强度; (2)由磁化电流产生的磁矩。 解 (1)取球心o为坐标原点、z轴水平向右建立如 图11-14所示的坐标系。根据
解 放电管中的电流是由电子和质子共同提供的,所以
. 电流的流向与质子运动的方向相同。 11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端
施加的电势差为u。问: (1)通过两导体的电流是否相同? (2)两导体内的电流密度是否相同? (3)两导体内的电场强度是否相同? (4)如果两导体的长度相同,两导体的电阻之比等于什么? (5)如果两导体横截面积之比为1: 9,求以上四个问题中各 量的比例关系,以及两导体有相同电阻时的长度之比。 解 (1)通过两导体的电流相同,
第11章《光的干涉》补充习题解答上课讲义

第11章《光的干涉》补充习题解答第11章 《光的干涉》补充习题解答1.某单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化?解: υ不变,为波源的振动频率;nn 空λλ=变小;υλn u =变小.2.什么是光程? 在不同的均匀介质中,若单色光通过的光程相等时,其几何路程是否相同?其所需时间是否相同?在光程差与相位差的关系式2πϕδλ∆=中,光波的波长要用真空中波长,为什么?解:nr δ=.不同媒质若光程相等,则其几何路程定不相同;其所需时间相同,为t Cδ∆=. 因为δ中已经将光在介质中的路程折算为光在真空中所走的路程。
3.在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由。
(1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中;(4)光源作平行于1S 、2S 连线方向的上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝。
解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.4.在空气劈尖中,充入折射率为n 的某种液体,干涉条纹将如何变化? 解:干涉条纹将向劈尖棱边方向移动,并且条纹间距变小。
5.当将牛顿环装置中的平凸透镜向上移动时,干涉图样有何变化?解:透镜向上移动时,因相应条纹的膜厚k e 位置向中心移动,故条纹向中心收缩。
6.杨氏双缝干涉实验中,双缝中心距离为0.60mm ,紧靠双缝的凸透镜焦距为2.5m ,焦平面处有一观察屏。
(1)用单色光垂直照射双缝,测得屏上条纹间距为2.3mm ,求入射光波长。
(2)当用波长为480nm 和600nm 的两种光时,它们的第三级明纹相距多远? 解:(1)由条纹间距公式λdDx =∆,得 332.3100.6105522.5x d nm D λ--∆⋅⨯⨯⨯===(2)由明纹公式Dx k dλ=,得 92132.5()3(600480)10 1.50.610D x kmm d λλ--∆=-=⨯⨯-⨯=⨯ 7.在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m 。
高等数学第3版(张卓奎 王金金)第十一章习题解答

第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=;(5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得()()3sin 4cos 3sin 4cos 0y y x x x x ''+=-++-= ∴ 3sin 4cos y x x =-是方程的解.(3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得220x y xy yy ''--+=移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=- ()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得()()3223222()20xy xy xyy y yxy x x y xy x xy xxy x xy x -+--⋅+⋅+⋅-⋅=---- 故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 11201C C C =⎧⎨+=⎩。
大学物理第十一章习题解答..

第十一章:恒定电流的磁场习题解答1.题号:40941001分值:10分如下图所示,是一段通有电流I 的圆弧形导线,它的半径为R ,对圆心的张角为θ。
求该圆弧形电流所激发的在圆心O 处的磁感强度。
解答及评分标准:在圆弧形电流中取一电流元l Id (1分),则该电流元l Id 在圆心处的磁感强度为: θπμπμd R I RIdl dB 490sin 40020==(2分) 其中θRd dl =则整段电流在圆心处的磁感强度为:θπμθπμθR I d R I dB B 44000===⎰⎰(2分)2.题号:40941002分值:10分一无限长的载流导线中部被弯成圆弧形,如图所示,圆弧形半径为cm R 3=,导线中的电流为A I 2=。
求圆弧形中心O 点的磁感应强度。
解答及评分标准:两根半无限长直电流在O 点的磁感应强度方向同为垂直图面向外,大小相等,以垂直图面向里为正向,叠加后得RI R I B πμπμ242001-=•-= (3分) 圆弧形导线在O 点产生的磁感应强度方向垂直图面向里,大小为R I R I B 83432002μμ==(3分) 二者叠加后得 T RI R I B B B 500121081.1283-⨯=-=+=πμμ (3分) 方向垂直图面向里。
(1分)3.题号:40941003分值:10分难度系数等级:1一段导线先弯成图(a )所示形状,然后将同样长的导线再弯成图(b )所示形状。
在导线通以电流I 后,求两个图形中P 点的磁感应强度之比。
(a ) (b )解答及评分标准:图中(a )可分解为5段电流。
处于同一直线的两段电流对P 点的磁感应强度为零,其他三段在P 点的磁感应强度方向相同。
长为l 的两段在P 点的磁感应强度为 lI B πμ4201= (2分) 长为2l 的一段在P 点的磁感应强度为 l I B πμ4202=(2分) 所以lI B B B πμ22012=+= (2分) 图(b )中可分解为3段电流。
机械设计基础第11章 键连接习题解答

11-1一齿轮装在轴上,采用A 型普通平键连接,齿轮、轴、键均用45号钢,轴径d =80mm ,轮毂长度L =150mm ,传递转矩T =2000N.m ,工作中有轻微冲击,试确定平键尺寸和标记并验算连接的强度。
解答:1)确定平键尺寸由轴径d=80mm 查得A 型平键剖面尺寸b=22mm ,h=14mm 。
参照毂长L '=150mm 及键长度系列选取键长L=140mm 。
2)挤压强度校核计算Mpa hld T p 53.608011814102000443=⨯⨯⨯⨯==σl ——键与毂接触长度mmb L l 11822140=-=-=查得[]100=p σ~120pa ,故[]p p σσ≤,安全。
[]MPa 140~100=P σ,取[]P σ=120Mpa11-3图所示凸缘半联轴器及圆柱齿轮,分别用键与减速器的低速轴相连接。
试选择两处键的类型及尺寸,并校核其连接强度。
已知轴的材料为45钢,传递的转矩T =1000N.m ,齿轮用锻钢制造,半联轴器用灰铸铁制成,工作时有轻微冲击。
题11-3图解:1、联轴器处①键的类型和尺寸选A (或C )型普通平键,根据轴径d =70mm ,查表11.1得键的截面尺寸为:b =20mm ,h =12mm ,根据轮毂的长度130mm ,取键长L=110mm ,键的标记:键20×110GB/T1096—1979(键C 20×110GB/T1096—1979)②校核联接强度联轴器的材料为铸铁,查表11.2,取[σP ]=55MP a ,k =0.5h =6mm ,l=L -b =90mm (或l=L -b/2=100mm )满足强度条件2、齿轮处①键的类型和尺寸选A 型平键,根据轴径d =90mm ,查表11.1得键的截面尺寸为:b =25mm ,h =14mm ,根据轮毂的宽度90mm ,取键长L =80mm ,键的标记:键25×80GB/T1096—1979②校核联接强度齿轮和轴的材料均为钢,查表11.2,取[σP ]=110MP a ,k =0.5h =7mm ,l=L -25=55mm[]p a p σMP kld T σ≤=⨯⨯⨯⨯=⨯=725790557101000210233.满足强度条件。
化学工业出版社物理化学答案第11章 胶体化学

第11章 胶体化学1.1 某粒子半径为30×10-7 cm 的金溶胶,在25℃时,在重力场中达到沉降平衡后,在高度相距0.1 mm 的某指定体积内粒子数分别为277个和166个,已知金与分散介质的密度分别为19.3×103 kg·m -3及1.00×103 kg·m -3。
试计算阿伏伽德罗常数。
解:由胶粒在达到沉降平衡时的分布定律()02211ln 1C Mg h h C RT ρρ⎛⎞=−−−⎜⎟⎝⎠则:()()()21021ln //1RT C C M g h h ρρ=−− 上式中,M 为胶粒在h 2~h 1范围内的平均摩尔质量,其又可由下式算的()343M V L r L ρπρ==粒子 故:()()()213021ln /43RT C C L r g h h πρρ=−−()()()3-833-423-18.314298.15ln 166/2774 3.0109.81.001019.310 1.0103=6.2610mol π××=××××−×××× 答:6.26×1023 mol -11.2有一金溶胶,胶粒半径为3×10-8 m ,25℃时在重力场中达沉降平衡后,在某一高度处单位体积中有166个粒子,试计算比该高度低10-4 m 处体积粒子数为多少?已知金的体积质量ρB 为19 300 kg·m -3,介质的体积质量ρ0为1 000 kg·m -3。
解:由胶粒在达到沉降平衡时的分布定律()02211ln 1C Mg h h C RT ρρ⎛⎞=−−−⎜⎟⎝⎠上式中,M 为胶粒在h 2~h 1范围内的平均摩尔质量,其又可由下式算的()343M V L r L ρπρ==粒子 故:]3)()(4exp[210312RTh h gL r C C −⋅−⋅=ρρπ272]15.298314.83100.1)100.1103.19(1002.68.9)103(14.34exp[1664332338=×××××−×××××××××=−−答:272 个1.3试用沉降平衡公式验证。
第11章卤素和氧族元素习题解答

第十一章卤素和氧族思考题解析1.解释下列现象:(1)在卤素化合物中,Cl、Br、I可呈现多种氧化数。
解:因为Cl、Br、I原子的价层电子排布为ns2np5,当参加反应时,未成对的电子可参与成键外,成对的电子也可拆开参与成键,故可呈现多种氧化数。
(2)KI溶液中通入氯气是,开始溶液呈现红棕色,继续通入氯气,颜色褪去。
解:开始I-被CI2氧化成I2,使溶液呈现红棕色;继续通入氯气,I2被Cl2氧化成无色的IO3-,反应式如下:2I-2 I2 + 2Cl-I2 + 5Cl2 + 6H2O 2IO3-+ 10Cl-+ 12H+2.在氯水中分别加入下列物质,对氯水的可逆反应有何影响?(1)稀硫酸(2)苛性钠(3)氯化钠解:氯水中存在如下平衡:Cl2 + H2(2)加入苛性钠,平衡向右移动,有利于Cl2的歧化反应;(3)加入氯化钠,平衡向左移动,不利于Cl2的歧化反应。
3.怎样除去工业溴中少量Cl2?解:蒸馏工业溴时,加入少量KBr,使其发生下列反应:Cl2+ 2KBr → Br2+ 2KCl4.将Cl2通入熟石灰中得到漂白粉,而向漂白粉中加入盐酸却产生Cl2,试解释之。
解:因为上述过程发生了如下相应反应:40℃以下··3Ca(OH)2 + 2Cl2 Ca(ClO)2 + CaCl2 Ca(OH)2 H2O + H2OCa(ClO)2 + 4HCl 2Cl2 + CaCl2 + 2H2O5.试用三种简便的方法鉴别NaCl、NaBr、NaI。
解:(1)AgNO3(A)Cl-+ Ag+→ AgCl ↓白色(B ) Br -+ Ag +→ AgBr ↓淡黄色(C ) I -+ Ag +→ AgI ↓黄色(2)Cl 2水+CCl 4(A ) 2NaBr + Cl 4 → 2NaCl + Br 2在CCl 4中呈桔黄色(B ) 2NaI + Cl 4 → 2NaCl + I 2在CCl 4中呈紫红色 (3)浓H 2SO 4(A ) NaCl + H 2SO 4 → NaHSO 4 + HCl ↑ (B ) NaBr + H 2SO 4 → NaHSO 4 + HBr ↑2 HBr + H 2SO 4 → Br 2 + 2H 2O + SO 2 ↑使品红试纸褪色(C ) NaI + H 2SO 4 → NaHSO 4 + HI ↑8HI + H 2SO 4 → 4I 2 + 4H 2O + H 2S ↑使Pb (OAc )2试纸变黑6.下列两个反应在酸性介质中均能发生,如何解释?(1) Br 2 + 2I -→ 2Br -+ I 2 (2) 2BrO 3-+ I 2 → 2IO 3-+ Br 2解:(1)E ¢(Br 2/ Br -)=1。
基础化学第十一章后习题解答

第十一章后习题解答1. 区别下列名词:(1) 内层与外层(2) 单齿配体与多齿配体(3) d2sp3杂化和sp3d2杂化(4) 内轨配合物和外轨配合物(5) 强场配体和弱场配体(6) 低自旋配合物和高自旋配合物解(1)配合物的内层是由中心原子提供杂化轨道,配体中配位原子提供孤对电子,通过配位键形成的配离子。
与配离子带相反电荷的离子称为配合物的外层。
(2)只含有一个配位原子的配体称为单齿配体,如NH3,H2O,OH-,F -等。
含有两个或两个以上配位原子的配体称为多齿配体,如:乙二胺,EDTA等。
(3)以2个(n-1)d轨道、1个n s轨道和3个n p轨道杂化形成6个杂化轨道,称为d2sp3杂化。
以1个n s轨道、3个n p轨道和2个n d轨道杂化形成6个杂化轨道,称为sp3d2杂化。
(4)中心原子全部用最外层轨道杂化所形成的配合物称为外轨配合物;用次外层(n-1)d轨道和最外层n s,n p轨道杂化所形成的配合物称为内轨配合物。
(5)依据配体使中心原子d轨道能级的分裂程度不同,配体有强场、弱场之分。
使d轨道能级分裂能力强的配体称为强场配体,如CN-,CO;使d轨道能级分裂能力弱的配体称为弱场配体,如H2O、F -、Cl-、Br-、I-。
(6)中心原子电子组态为d4~d7的配合物中,单电子数多的称为高自旋配合物,单电子数少的称为低自旋配合物。
强场配体形成低自旋配合物,弱场配体形成高自旋配合物。
2. 命名下列配离子和配合物,指出中心原子、配体、配位原子和配位数,写出K s的表达式(1) Na3[Ag(S2O3)2] (2) [Co(en)3]2(SO4)3(3) H[Al(OH)4] (4) Na2[SiF6](5) [PtCl5(NH3)]-(6) [Pt(NH3)4(NO2)Cl](7) [CoCl2(NH3)3H2O]Cl (8) NH4[Cr(NCS)4(NH3)2]解名称中心原子配体配位原子配位数K s表达式(1) 二(硫代硫酸根)合银(I)酸钠Ag+S2O32-S2O32-中的S2 32322223[Ag(S O)][Ag][S O]-+-(2) 硫酸三(乙二胺)合钴(Ⅲ)Co3+en en中的N6 333+3[Co(en)][Co][en]+(3) 四羟基合铝(Ⅲ)酸Al3+OH-OH-中的O4434[Al(OH)][Al][OH]-+-(4) 六氟合硅(Ⅳ)酸钠Si(Ⅳ) F-F-中的F 62646[SiF][Si][F]-+-(5) 五氯•氨合铂(Ⅳ)酸根Pt4+Cl-,NH3Cl,N 653453[Pt(Cl)(NH)][Pt][Cl][NH]-+-(6) 氯•硝基•四氨合铂(Ⅱ)Pt2+NO2-,Cl-,NH3N,Cl、N 6 2342423[PtCl(NO)(NH)][Pt][Cl][NO][NH]+--(7) 氯化二氯•三氨•水合钴(Ⅲ)Co3+Cl-,NH3,H2OCl,N,O 623323233[Co(Cl)(NH)(H O)][Co][Cl][NH]++-(8) 四(异硫氰酸根)•二氨合铬(Ⅲ)酸铵Cr3+NCS-,NH3N,N 64323423[Cr(NCS)(NH)][Cr][NCS][NH]-+-3. 什么是螯合物?螯合物有何特点?它的稳定性与什么因素有关?形成五员环和六员环的螯合物,要求配体应具备什么条件?解由中心原子与多齿配体形成有环状结构的配合物称为螯合物。
第11章思考题和习题解答

第11章供配电系统的运行和管理11-1.节约电能有何重要意义答:节约电能的意义主要表现为:1.缓解电力供需矛盾。
节约电能可以节约煤炭、水力、石油等一次能源,使整个能源资源得到合理使用,缓解电力供需矛盾,并能减轻能源部门和交通运输部门的紧张程度。
2.节约国家的基建投资。
节约电能可以节约国家用于发电、输配电及用电设备所需要的投资,给整个国民经济带来很大的利益,有利于国民经济的发展。
3.提高企业的经济效益。
节约电能可以减少企业的电费开支,降低生产成本,积累资金,提高企业的经济效益。
4.推动企业用电合理化。
节约电能可以推动企业采用新技术、新材料、新设备、新工艺,加速设备改造和工艺改革,从而提高企业的经营管理水平,使企业生产能力得到充分发挥,促进企业生产水平的不断发展和提高。
11-2.什么叫负荷调整有哪些主要调整措施答:根据供电系统的电能供应情况及各类用户不同的用电规律,合理地安排各类用户的用点时间,以降低负荷高峰,填补负荷的低谷(即所谓的“削峰填谷”),充分发挥发、变电设备的潜能,提高系统的供电能力。
负荷调整的主要措施:①同一地区各厂的厂休日错开;②同一厂内各车间的上下班时间错开,使各个车间的高峰负荷分散;③调整大容量用电设备的用点时间,使它避开高峰负荷时间用电,做到各时段负荷均衡,从而提高了变压器的负荷系数和功率因数,减少电能的损耗。
④实行“阶梯电价+分时电价”的综合电价模式。
“阶梯电价”全名为“阶梯式累进电价”,是指把户均用电量设置为若干个阶梯,随着户均消费电量的增长,电价逐级递增。
峰谷分时电价是指根据电网的负荷变化情况,将每天24小时划分为高峰、平段、低谷等时段,各时段电价不同,以鼓励用电客户合理安排用电时间,削峰填谷,提高电力资源的利用效率。
11-3.什么叫经济运行什么叫变压器的经济负荷答:经济运行是指整个电力系统的有功损耗最小,获得最佳经济效益的设备运行方式。
变压器的经济负荷,就是应满足变压器单位容量的综合有功损耗△P/S 为最小值的条件。
大学物理简明教程习题解答第11章_2010.9

第11章 狭义相对论11-1 一根在参照系s 中平行于x 轴的细棒,沿此轴以0.63c 运动。
它的静长是1.70m ,求在s 系中测得的细棒长度。
解 已知细棒静长m 70.10=L ,相对S 系的运动速度c u 630.=。
在S 系中测得棒长发生收缩。
根据长度收缩公式,细棒长度为m 32.1/1220=-=c u L L11-2 一根米尺沿长度方向相对观察者作匀速运动,观察者测得其长度为75cm ,求米尺的运动速度。
解 已知米尺静长cm 1000=L ,米尺相对观察者作匀速直线运动。
观察者测得米尺长度 cm 75/1220=-=c u L L 故米尺的运动速度 82266.075.01)(1c c L L c u =-=-= 11-3 一根米尺沿着它的长度方向相对于观察者以0.6c 的速度运动,米尺通过观测者面前要花多长时间?解 已知米尺静长cm 1000=L ,米尺相对于观察者的运动速度c u 60.=。
根据长度收缩公式,观察者测得米尺长度 m 800.08.0/10220==-=L c u L L 米尺通过观察者面前需要的时间s 1044.4Δ9-⨯==uLt 11-4 一个立方体的(固有)体积为1000cm 3。
求沿与立方体的一边平行的方向以0.8c 的速度运动的观察者o '所测得的体积。
解 已知立方体的固有边长cm 10300==V L ,观察者o '相对立方体一边平行运动,c u 80.=。
测得与运动方向垂直的边长保持不变,但与运动方向平行的边长发生长度收缩。
根据长度收缩公式,有 cm 0.66.0/10220==-=L c u L L 观察者o '测得立方体体积320cm 600==L L V11-5 一个π介子在它自己的参照系中的平均寿命是2.6⨯10–8s 。
如果介子以0.95c 的速率运动,则在地面上的观察者测得它的平均寿命是多少?解 π介子在自己的参照系,即在相对静止的参照系中的寿命为原时,即s 106.2Δ80-⨯=t 。
《电工与电子技术基础》第11章交流电动机习题解答

P2 N 4 × 103 (3) TN = 9.55 × = 9.55 × = 26.3 (N.m) 1450 nN
11.14 一台额定电压为 380V 的异步电动机在某一负载下运行。测得输入电功率为 4kW,线电流为 10A ,求这时的功率因数是多少?若这时的输出功率为 3.2kW ,则电动机
的效率为多少? 解:由于 P 1 =
P2 N 30 × 103 = 9.55 × = 194.5 (N.m) nN 1470
PN 30 × 103 = 0.88 = 3U L I Lη N 3 × 380 × 57.5 × 0.9
(3)电动机的功率因数 Cosϕ N =
11.10
上题中电动机的 Tst/TN=1.2,Ist/IN=7,试求: (1)用 Y—△换接起动时的起动电流
s=
11.3
n0 − nN 1500 − 1430 n − nN 3000 − 2900 = = 0.047 , s = 0 = = 0.033 n0 1500 n0 3000
在额定工作情况下的三相异步电动机,已知其转速为 960r/min,试问电动机的同步
转速是多少?有几对磁极对数?转差率是多大? ∴n0=1000(r/min) 解:∵ nN=960(r/min) p=3
率为 0.02,求此电动机的同步转速。 解:六极电动机,p=3 定子磁场的转速即同步转速 n0=(60×50)/3=1000(r/min) 起 11.6 Y180L—4 型电动机的额定功率为 22kW,额定转速为 1470r/min,频率为 50Hz, 动电磁转矩为 314.6N ⋅ m。试求电动机的起动系数 λst ?如果 λm = 2.2 ,则最大转矩为多少? 解: TN = 9.55 ×
大学物理(肖剑荣主编)-习题答案-第11章

个劈尖空气膜,用波长为 564 纳米的单色光垂直照射板面,板上显示出完整的
明暗条纹各 74 条。求金属丝的直径。
解 金属丝与两板之间形成一个劈尖空气膜,其上下表面的反射光相遇而发生干 涉。光程差为 Δ = 2e + λ / 2
由于板上显示出完整的明暗条纹各 74 条,所以该处应为第 74 条明条纹。 由明条纹的条件 2d + λ / 2 = kλ k=74,则 N = d / Δe
能看到第几级明条纹?
解: a + b = 1 mm = 2.0 ´10-3 mm = 2.0 ´10-4 Å 500
由 (a
+
b) sinj
=
kl
知,最多见到的条纹级数 kmax 对应的 j
=
p 2
,
所以有 kmax
=
a+b l
=
2.0 ´104 5900
» 3.39 ,即实际见到的最高级次为 kmax
解得
a = a + b k′ = 1.5 × 10−6 k′ 4
取 k′ = 1 得光栅上狭缝的的最小宽度为1.5 × 10−6 m
(3)由
(a + b)sinϕ = kλ
得
k
=
(
a
+
b) sinϕ λ
当 ϕ=π 2
时,对应 k = k max
k max
=
a+b λ
=
6.0 × 10−6 6000 × 10−10
解 在杨氏双缝干涉实验中,条纹间距 Δx = D λ d
屏幕上 20 条明条纹之间的距离 ΔX = 19Δx = D λ d
ΔX
= 19
第十一章习题解答

第十一章习题解答Last revision on 21 December 2020第十一章 微分方程习题11-11.说出下列各微分方程的阶数:(1)20dy dy x y dx dx ⎛⎫+-= ⎪⎝⎭; (2)220d Q dQ Q L Rdt dt C -+=; (3)220xy y x y '''''++= ; (4)()d (76)0x y y x y dx ++-=; (5)2sin y y y x '''++= ; (6)2d sin .d ρρθθ+= 解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各函数是否为所给微分方程的解: (1)22 , 5;xy y y x '==(2)0 , 3sin 4cos ;y y y x x ''+==-(3)221, ;y x y y x''=+=(4)21221 , sin cos .2x x d y y e y C x C x e dx +==++解:(1)∵ 10 y x '=,代入方程得 21025x x x ⋅=⋅∴25y x =是方程的解.(2)∵ 3cos 4sin ,3sin 4cos y x x y x x '''=+=-+,代入方程,得∴ 3sin 4cos y x x =-是方程的解. (3)∵ 2312,y y x x '''=-=,代入方程,得 23221x x x≠+ ∴1y x=是方程的解. (4)∵ 21212211cos sin ,sin cos 22x x dy d y C x C x e C x C x e dx dx =-+=--+,代入方程, 得 121sin cos 2x C x C x e ⎛⎫--++ ⎪⎝⎭121sin cos 2x x C x C x e e ⎛⎫++= ⎪⎝⎭∴121sin cos 2x y C x C x e =++是方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解: (1)()2222 , ;x y y x y x xy y C '-=--+= (2)()220 , ln().xy x y xy yy y y xy '''''-++-==解:(1)在二元方程22 x xy y C -+=的两边同时对x 求导,得 移项后即得 ()22 x y y x y '-=-故二元方程22x xy y C -+=所确定的函数是所给微分方程的解.(2)在 ln()y xy =两边对x 求导,得11 ()y y y xy xy x y '''=+=+, 即 yy xy x'=-()()()()()232223122 y xy x y y xy xy y yxy xy xyy xy x xy x xy x ''--+-'--+-+-''===---,代入微分方程,得故 ln()y xy =所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初始条件: (1)2220 , |1;x x xy y C y =-+==(2)()1200 , |0 , |1;x x x y C C x e y y =='=+== (3)1200cos sin , | 1 , |.t t x C t C t x x ωωω=='=+== 解:(1)∵ 0 |1x y ==∴222 =0011C -+=即 221x xy y -+=(2)()122 x y C C x C e '=++,由00 |0 , |1x x y y =='==,得 11201C C C =⎧⎨+=⎩∴12 =0 , =1C C , x y xe =(3)12sin cos x C t C t ωωωω'=-+,由00| 1 , |t t x x ω=='==,得 121C C ωω=⎧⎨=⎩∴12 =1 , =1C C , cos sin x t t ωω=+5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(,)x y 处切线的斜率等于该点横坐标的平方;(2)曲线上点(,)P x y 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分. 解:(1)设曲线的方程为()y y x =,则曲线上点(,)x y 处切线的斜率为y ',由条件知2y x '=,此即为所求曲线的微分方程.(2)设曲线的方程为()y y x =,则曲线上点(,)P x y 处法线的斜率为1y -',由条件知线段PQ 中点的横坐标为0,所以Q 的坐标为(,0)x -,则有 即所求曲线的微分方程为 20yy x '+=.习题11-21.求下列微分方程的通解:(1)ln 0;xy y y '-= (2)23550;x x y '+-= (3'= (4)2();y xy a y y '''-=+ (5)cos sin d sin cos d 0;x y x x y y += (6)2d (4)d 0.y x x x y +-= 解:(1)原方程可写为ln 0dyxy y dx-=,分离变量,得d 1,ln y dx y y x = 两端积分,得 11ln dy dx y y x=⎰⎰ 即 ln ln ln ln ln y x C Cx =+=,亦即ln y Cx = ,故通解为Cx y e = (2)原方程可写为235dy x x dx =+,两端分离变量并积分,得 23()5dy x x dx =+⎰⎰, 故通解为231125y x x C =++ .(3)原方程可写为dy dx =,两端分离变量并积分,得=,故通解为arcsin arcsin y x C =+.(4)原方程可写为21dy ay dx x a=--,两端分离变量并积分,得211ady dx y x a =--⎰⎰,故通解为1ln 1a x a C y=+-+. (5)分离变量,得cos cos d d sin sin y x y x y x =- ,两端积分,得 cos cos d d sin sin y xy x y x=-⎰⎰ , 1ln sin ln sin y x C =-+,1ln sin sin x y C ⋅=,故通解为sin sin x y C = ,其中1C C e =±为任意常数. (6)分离变量,得,24dx dyx x y=-积分,得 1144dy dx x x y ⎛⎫+= ⎪-⎝⎭⎰⎰, 即 4ln ln(4)ln ln x x C y --+=,故通解为4(4)x y Cx -=. 2.求下列微分方程满足所给初始条件的特解:(1)20,|0;x y x y e y -='== (2)0cos sin d cos sin d ,|;4x x y y y x x y π===(3)2sin ln ,|;x y x y y y e π='== (4)0cos d (1)sin d 0,|;4xx y x e y y y π-=++==(5)2d 2d 0,|1;x x y y x y =+== (6)220(+)d ()d 0,| 1.x xy x x x y y y y =+-==解:(1)分离变量并积分得, 2y x e dy e dx =⎰,即通解为 212y x e e C =+,由条件0|0x y ==,得112C =+, 12C =,故满足初始条件的特解 21(1)2y x e e =+ .(2)分离变量并积分得,sin sin d d cos cos y xy x y x=⎰⎰, 即 ln(cos )ln(cos )ln y x C -=--, 亦即通解为cos cos y C x =,由条件0|4x y π==,得 coscos 04C π=,C =,故满足初始条件的特解 cos 0x y -=. (3)分离变量并积分得,1csc ln dy xdx y y=⎰⎰, 即ln(ln )ln(tan )ln 2x y C =+,亦即通解为ln tan 2xy C =,由条件2|x y e π==,得ln tan 4e C π=,1C =,故满足初始条件的特解ln tan2xy =. (4)分离变量并积分得,tan 1x xe ydy dx e-=+⎰⎰,通解为(1)sec xe y C +=,由条件0|4x y π==,得C =(1)sec x e y +=.(5)分离变量并积分得,12dy dx y x=-⎰⎰,通解为2x y C =由条件2|1x y ==,得4C =,故满足初始条件的特解24x y =. (6)分离变量并积分得,2211y x dy dx y x=+-⎰⎰,通解为22(1)(1)x y C -+= 由条件0|1x y ==,得2C =,故满足初始条件的特解22(1)(1)2x y -+=. 3.求下列齐次方程的通解:(1)0;xy y '-= (2)d ln ;d y yxy x x= (3)22()d d 0;x y x xy y +-= (4)332()d 3d 0;x y x xy y +-=(5) ;y xyy e x '=+ (6)(12)d 21d 0.x xy y x e x e y y ⎛⎫++-= ⎪⎝⎭解:(1)原方程可写为dy y dx x =y u x =,则 ,y ux =d d ,d d y u u x x x =+代入原方程,得dd uu xu x +=+1dx x =,积分得 ln(ln ln u x C =+,即u Cx =,亦即y Cx x +=,原方程的通解2y Cx =.(2)原方程可写为d ln d y y y x x x =,令y u x =,则 ,y ux =d d ,d d y uu x x x=+ 代入原方程,得d ln d uu xu u x+=,分离变量积分得 ()11ln 1du dx u u x =-⎰⎰, 即 ln(ln 1)ln ln u x C -=+,亦即 ln 1y Cx x =+,原方程的通解ln 1yCx x=+. (3)原方程可写为d d y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+ 代入原方程,得d 1d u u xu x u +=+,分离变量积分得 1udu dx x=⎰⎰, 即 22ln u x C =+,,将yu x =代入上式得原方程的通解22(2ln )y x x C =+.(4)原方程可写为22d d 33y y x x x y =+,令y u x =,则 ,y ux =d d ,d d y uu x x x=+代入原方程,得2d 1d 33u u u x x u+=+,分离变量积分得 233112u du dx u x =-⎰⎰, 即 311ln(12)ln 2u x C --=+,亦即 3221C u x =-,其中1C C e =,将yu x =代入上式,得原方程的通解332x y Cx -=. (5)令y u x =,则 ,y ux =d d ,d d y u y u x x x '==+代入原方程,得d d u uu x e u x+=+,即 ln ueCx --=,将yu x=代入上式,得原方程的通解ln 0yx e Cx -+=.(6)原方程可写为12d d 12xy xyx ey x ye ⎛⎫- ⎪⎝⎭=+,令x u y =,则 ,x u y =d d ,d d x u u y y y =+ 代入原方程,得d 2(1)dy 12u uu e u u y e -+=+,分离变量积分得 1212u u e du dy u e y +=-+⎰⎰, 即 ln(2)ln ln u u e y C +=-+,亦即 (2)u y u e C +=,将yu x=代入上式,得原方程的通解2x yx ye C +=4.求下列线性微分方程的通解:(1)d ;d x yy e x-+= (2)232;xy y x x '+=++ (3)tan sin 2;y y x x '+= (4)d 32;d ρρθ+=(5)ln d (ln )d 0;y y x x y y +-= (6)2d (6)20.d yy x y x -+=解:(1)原方程是()1P x =,()x Q x e -=的一阶非齐次线性方程.由通解公式得原方程的通解为()()dx dxx x xx x y e e e dx C eee dx C e x C -----⎛⎫⎰⎰=⋅+=⋅+=+ ⎪⎝⎭⎰⎰.(2)原方程可化为123y y x x x '+=++,它是1()P x x =,2()3Q x x x=++的一阶非齐次线性方程.由通解公式得原方程的通解为()11221332dx dx x x y e x e dx C x x dx C x x -⎡⎤⎛⎫⎰⎰⎡⎤=++⋅+=+++⎢⎥ ⎪⎣⎦⎝⎭⎣⎦⎰⎰213232C x x x =+++; (3)原方程是()tan P x x =,()sin 2Q x x =的一阶非齐次线性方程.由通解公式得原方程的通解为tan tan 2sin 2sin 2cos cos 2cos cos xdx xdx x y e x e dx C x dx C C x x x -⎛⎫⎛⎫⎰⎰=⋅+=+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰. (4)原方程是()3P θ=,()2Q θ=的一阶非齐次线性方程.由通解公式得333332223333d d C C Ce e d e e dx e θθθθθρθ---⎛⎫⎛⎫⎰⎰=⋅+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ,即原方程的通解为 332Ce θρ-=+. (5)原方程可化为1=ln dx x dy y y y +,它是1()ln P y y y =,1()Q y y=的一阶非齐次线性方程.由通解公式得112ln ln 11111ln ln 2ln 2ln 22dy dyy y y y C C C x e e dy ydy y y y y y -⎛⎫⎛⎫⎰⎰⎛⎫=⋅+=⋅+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰, 即原方程的通解为22ln ln x y y C =+.(6)原方程可化为3=2dx x y dy y --,它是3()P y y =-,()2yQ y =-的一阶非齐次线性方程.由通解公式得33323311222dy dy y y y y x e e dy C y dy C y Cy y -⎡⎤⎛⎫⎰⎰⎛⎫=-⋅+=-⋅+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰. 5.求下列微分方程满足所给初始条件的特解: (1)0d tan sec ,|0;d x y y x x y x =-== (2)21d 4,| 2 ;d x y yx y x x=+== (3)cos 2d cot 5,|4;d x x y y xe y x π=+==- (4)0d 38,| 2 d x yy y x =+==.解:(1)由公式可得一阶线性微分方程通解为()tan tan 11sec sec cos cos cos xdxxdx y e x e dx C x xdx C x C x x -⎡⎤⎰⎰⎡⎤=⋅+=⋅+=+⎢⎥⎣⎦⎣⎦⎰⎰由0|0x y ==得0C =,故特解为cos xy x=. (2)由公式可得一阶线性微分方程通解为由12x y==得1C =,故特解为31y x x=+. (3) 由公式可得一阶线性微分方程通解为 由24x yπ==得1C =,故特解为cos 151sin x y e x⎡⎤=-+⎣⎦,即 cos sin 51x y x e +=. (4)由公式可得一阶线性微分方程通解为由0| 2 x y ==得23C =-,故特解为32(4)3x y e -=-.6.求下列伯努利方程的通解:(1)2d (cos sin );d y y y x x x +=- (2)33d 22 .d yxy x y x+= 解:方程两边同除以2y ,得21d cos sin d yy y x x x --+=- 令1z y =,2d d y dz y x dx -=-,则原方程变为sin cos dzz x x dx-=-,故将1z y =代入上式,得原方程通解为1sin x Ce x y =-.1sin x x Ce y=-+; (2)方程两边同除以3y ,得323d 22d yy xy x x--+= 令21z y =,3d 1d 2y dz y x dx -=-,则原方程变为344dz xz x dx-=-,故 将21z y =代入上式,得原方程通解为222212x y Ce x -=++. 7.用适合的变量代换将下列方程化为可分离变量的方程,然后求出通解: (1)2d ();d yx y x=+ (2)d 11;d y x x y =+- (3)(ln ln );xy y y x y '+=+ (4)212x y y e +-'=-.解:(1)令u x y =+,则1dy du dx dx =-,从而原方程可化为21du u dx=+,分离变量积分得21dudx u=+⎰⎰,即arctan x u C =+. 将u x y =+代入,得原方程的通解为arctan()x x y C =++,即tan()y x x C =-++.(2)令u x y =-,则1dy du dx dx =-,从而原方程可化为1du dx u -=,分离变量积分得udu dx =-⎰⎰,即2112x u C +=. 将u x y =-代入,得原方程的通解为2()2x y x C -=-+ (其中12C C =).(3)令u xy =,则2,duxuu dydx y x dx x-==,从而原方程可化为21()ln du u u u x u x dx x x x -+=,分离变量积分得ln dx dux u u =⎰⎰,即 ln ln ln(ln )x C u +=,亦即C x u e =,将u xy =代入,得原方程的通解为1C x y e x=.(4)令21u x y =+-,则2dy du y dx dx '==-,从而原方程可化为u du e dx=,分离变量积分得udx e du -=⎰⎰,即u e C x -=-. 将21u x y =+-代入,得原方程的通解为12ln y x C x =---.8.判别下列方程中哪些是全微分方程,并求全微分方程的通解:(1)(cos cos )d (sin sin )d 0x y x y y y x x ++-=; (2)2()0x y dx xdy --=; (3)22()0x y dx xydy ++= ; (4)22(1)20e d e d θθρρθ++=. 解:(1)这里(,)sin sin , (,)cos cos P x y y y x Q x y x y x =-=+,cos sin P Q y x y x∂∂=-=∂∂,所以(1)是全微分方程.取000 , 0x y ==, 根据公式00(,)(,)(,)x yx y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为sin cos x y y x C +=.. (2)这里2(,),(,)P x y x y Q x y x =-=-,于是有1P Qy x∂∂=-=∂∂,所以(2)是全微分方程.取000 , 0x y ==,根据公式00(,)(,)(,)xy x y u x y P x y dx Q x y dy =+⎰⎰,有于是全微分方程的通解为33x xy C =+.(3)这里22(,),(,),P x y x y Q x y xy =+=2P y y ∂=∂,Q y x∂=∂,显然P Q y x ∂∂≠∂∂,所以(3)不是全微分方程.(4)22(1)20e d e d θθρρθ++=.这里22(,)1,(,)2P e Q e θθρθρθρ=+=,显然22P Qe θθρ∂∂==∂∂,所以(4)是全微分方程,取000 , 0ρθ==,根据公式00(,)(,)(,)u P d Q d ρθρθρθρθρρθθ=+⎰⎰ ,有于是全微分方程的通解为2(1)e C θρ+=.9.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2x y +.9. 2(1)x y e x =--.解:设曲线的方程为()y y x =,由题意知2y x y '=+,0|0x y ==,于是()()222122dx dx x x x x xy e x e dx C e xe dx C e x e C Ce x ---⎛⎫⎰⎰⎡⎤=⋅+=+=-++=-- ⎪⎣⎦⎝⎭⎰⎰由0|0x y ==,得2C =,于是所求曲线的方程为2(1)x y e x =--10.质量为lg (克)的质点受外力作用作直线运动,这外力和时间成正比,和质点运动的速度成反比.在10s t =时,速度等于50cm/s ,外力为24g cm/s ⋅,问从运动开始经过了一分钟后的速度是多少解 :已知t F k v =⋅,并且10t s =时50/v cm s =,4/F g cm s =⋅,故10450k =⋅,从而20k =,因此20t F v =⋅.又由牛顿定律F ma =,即201t dvv dt⋅=⋅,故20vdv tdt =,积分得221102v t C =+,即v ,再代入初始条件得2250C =,因此所求特解为v 60t s =时269.3(/)v cm s ==≈.11.镭的衰变有如下的规律:镭的衰变速度与它的现存量R 成正比.由经验材料得知,镭经过1600年后,只余原始量0R 的一半.试求镭的量R 与时间t 的函数关系. 解: 设比例系数0λ>,则由题意可得dR R dt λ=-⋅.分离变量积分可得dR dt Rλ=-⎰⎰,即1ln R t C λ=-+,从而1()C t R C e C e λ-=⋅=,因为0t =时0R R =,所以0R C =,即0t R R e λ-=⋅.又因为1600t =时02R R =,所以1600002R R e λ-=⋅,从而ln 21600λ=,因此镭的量R 与时间t 的函数关系为ln 20.000433160000t t R R eR e --==,.时间以年为单位.12.设有连结点(0,0)O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围图形的面积为2x ,求曲线弧OA 的方程.解: 曲线弧OA 的方程为()y y x =,由题意得 两边求导得11()()()222y x y x xy x x '--=,即4yy x'=-, 令y u x =,则 ,y ux =d d ,d d y u u x x x =+上式可化为4dux dx=-,分离变量积分得4ln u x C =-+.将yu x=代入,得 4ln y x x Cx =-+.由于(1,1)A 在曲线上,因此(1)1y =,代入得1C =,从而曲线弧OA 的方程为(14ln )y x x =-,01x <≤;当0x =时0y =.13.设有一质量为m 的质点作直线运动.从速度等于零的时刻起,有一个与运动方向一致、大小与时间成正比(比例系数为1k )的力作用于它,此外还受一与速度成正比(比例系数为2k )的阻力作用.求质点运动的速度与时间的函数关系. 解 由牛顿定律知12dv mk t k v dt =-,即21kk dv v t dt m m+=,因此 由0t =时0v =得122k m C k =,故22211122222kkkt t t m mm k k m k m v e te e k k k -⎛⎫=-+ ⎪⎝⎭,即质点运动的速度与时间的函数关系为211222(1)kt m k k mv t e k k -=--.习题11-31.求下列各微分方程的通解:(1)2290;4d y x dx -= (2);x y xe '''=(3)2(1)2;x y xy '''+= (4)220.1y y y'''-=- 解:(1)原方程变形,得2294d y x dx =,对所给方程接连积分两次,得2198y x C '=+, 31238y x C x C =++ ,这就是所求的通解.(2)对所给方程接连积分三次,得 2123(3)x y x e C x C x C =-+++. 这就是所求的通解.(3)令(),y p x y p ''''==,原方程可化为2(1)2x p xp '+=,即221dp xdx p x =+,积分得21ln ln(1)ln p x C =++,亦即21(1)p C x =+,21(1)y C x '=+,所以就是原方程的通解.(4)令()y p y '=,则dpy p dy ''=,原方程化为2201dp p p dy y -=-,即201dp p p dy y ⎡⎤-=⎢⎥-⎣⎦, 当0p =时,得原方程的一个解为y C =,它不是通解; 当0p ≠时,约去p ,分离变量积分,得2(1)p y C -=,即2(1)dy Cp dx y ==-,从而2(1)y dy Cdx -=,积分得312(1)y C x C -=+,其中13C C =,因此原方程的通解为312(1)y C x C -=+.2.求下列各微分方程满足所给初始条件的特解: (1)111, |||0 ;x x x x y e y y y ===''''''====(2)00| 1 , | 2 ;x x y y y =='''=== (3)2000 , ||0 ;y x x y e y y =='''-=== (4)31110 , | 1 , |0 x x y y y y =='''+===.解:(1)1+C x x y e dx e ''==⎰,由1|0 x y =''=得,1C e =-,即x y e e ''=-,2()+C x x y e e dx e ex '=-=-⎰,由1|0 x y ='=得,20C =,即x y e ex '=-,23()+C 2x x e y e ex dx e x =-=-⎰,由1|0 x y ==得,32eC =-,故222x e ey e x =-- 为 原方程的所求特解 .(2)令()y p y '=,那末 dp y pdy ''=,得dppdy=,即pdp =, 积分得3221122p y C =+,由00 | 1 , |2x x y y =='==得10C =,从而342y p y '==±,又y ''=,可知342y y '=,即342y dy dx -=,积分得14242y x C =+,由0 | 1 x y ==,得24C =,所以4112y x ⎛⎫=+ ⎪⎝⎭为所求特解.(3)令()y p y '=,那末dp y pdy ''=,得20y dpp e dy-=,即2y pdp e dy =,积分得2211122yp e C =+,由000x x y y=='==得112C =-,从而22()1,y y e y ''=-=dx =±y dx -=±,积分得2arcsin y e x C --=±+,由00x y==,得22C π=-,所以sin()cos 2y e x x π-=±+=,原方程特解为lnsec y x =. (4) 令y p '=,则dp y pdy ''=,原方程变为31dpy pdy=-,从而3pdp y dy -=-,积分得2121p C y =+,即2121()y C y'=+,由111,0x x y y =='==得11C =-,从而221()1y y'=-,即y '=dx =±,积分得2x C =±+,再由11x y ==得21C =,因此所求特解为(1)x =±-,即221(1)y x -=-亦即222x y x +=,或y =(舍去y =,因为11x y ==).3.试求y x ''=的经过点(0,1)M 且在此点与直线12xy =+相切的积分曲线. 解:由积分曲线经过点(0,1)M 知,01x y ==,又由积分曲线在点(0,1)M 与直线12x y =+相切知,012x y ='=. 对方程y x ''=积分得,2112y xdx x C '==+⎰,利用条件012x y ='=,从而112C =,即21122y x '=+,再积分得,3262x x y C =++,利用条件01x y==,从而21C =,于是3162x xy =++.4.下列函数组在其定义区间内哪些是线性无关的(1)2cos , ;x x (2)22,5 ;x x (3)22,3;x x e e (4)2sin ,1 ;x (5)cos 2,cos sin ;x x x (6)22,;x x e xe (7)ln ,2ln ;x x (8)1212,().x x e e λλλλ≠ 解:(1)、(4)、(5)、(6)、(8)线性无关.因为:对于定义在区间I 上的两个函数1()y x 与2()y x ,如果1()y x 与2()y x 在区间I 上线性相关,则存在两个不全为0的常数12 , k k ,使得对于∀x I ∈恒有1122()()0k y x k y x +=成立,即12()()y x y x 或21()()y x y x 恒为常数.因而如果12()()y x y x 或21()()y x y x 均不为常数,则称1()y x 与2()y x 在区间I 上一定线性无关.(1)、(4)、(5)、(6)、(8)中的两个函数之比均不为常数,所以这五组函数均线性无关.相反地(2)(3)(7)线性相关.5.验证21x y e -=及62x y e -=都是方程8120y y y '''++=的解,并写出该方程的通解. 解: 因为21x y e -=,22112,4x x y e y e --'''=-=,62x y e -=,66226,36x x y e y e --'''=-=,所以21x y e -=和 62x y e -=都是已知方程的解.由于24162xx x y e e y e--==不为常数,因此1y 与2y 线性无关,所给方程的通解为2612x x y C e C e --=+.6.验证1sin y x =及2cos y x =都是方程0y y ''+=的解,并写出该方程的通解. 解: 因为1sin y x =,11cos ,sin y x y x '''==-,2cos y x =,22sin ,cos y x y x '''=-=-,所以1sin y x =何2cos y x =都是已知方程的解.由于12tan y x y =不为常数,因此1y 与2y 线性无关,所给方程的通解为12sin cos y C x C x =+.7.求下列微分方程的通解:(1)3100;y y y '''--= (2)40;y y '''-= (3)20; y y ''+= (4)8160;y y y '''++=(5)22d d 690;d d x xx t t-+= (6)220y y y '''++=.解:(1)特征方程为23100r r --=,解得122,5r r =-=,故方程的通解2512x x y C e C e -=+.(2)特征方程为240r r -=,特征根为120,4r r ==,故方程的通解为412x y C C e =+.(3)特征方程为220r +=,解得1,2r =,故方程的通解12y C C =+.(4)特征方程为28160r r ++=,特征根为124r r ==-,故方程的通解为412()x y C C x e -=+.(5)特征方程为2690r r -+=,特征根为123r r ==,故方程的通解为312()t x C C t e =+.(6)特征方程为2220r r ++=,特征根为1,221i 21r -±==-±⨯,故方程的通解为12(cos sin )x y e C x C x -=+.8.求下列微分方程满足所给初始条件的特解: (1)00680,|1,|6;x x y y y y y ==''''-+=== (2)00440,|2,|0;x x y y y y y ==''''++=== (3)00340,|0,|5;x x y y y y y ==''''--===- (4)006130,|3,|1x x y y y y y ==''''++===-.解:(1)特征方程为2680r r -+=,特征根为122,4r r ==,故方程的通解为2412x x y C e C e =+代入初始条件00|1,|6x x y y =='==,得12121246C C C C +=⎧⎨+=⎩,解之得1212C C =-⎧⎨=⎩,从而所求特解为242x x y e e =-+.(2)特征方程为24410r r ++=,特征根为121,3r r ==,故方程的通解为312x x y C e C e =+代入初始条件002,0x x y y =='==,得12126310C C C C +=⎧⎨+=⎩,解之得1242C C =⎧⎨=⎩,从而所求特解为342x x y e e =+.(3) 特征方程为2340r r --=,特征根为121,4r r =-=,故方程的通解为412x x y C e C e -=+代入初始条件000,5x x y y =='==-,得1212045C C C C +=⎧⎨-+=-⎩,解之得1211C C =⎧⎨=-⎩, 从而所求特解为4x x y e e -=-(4)特征方程为26130r r ++=,特征根为1,232i r ==-±,故方程的通解为312(cos 2sin 2)x y e C x C x -=+代入初始条件00|3,|1x x y y =='==-,得1123321C C C =⎧⎨-+=-⎩,解之得1234C C =⎧⎨=⎩,从而所求特解为3(3cos 24sin 2)x y e x x -=+.9.写出下列各微分方程的待定特解的形式(不用解出): (1)355;x y y y e '''-+= (2)3;y y '''-=(3)2276(521);x y y y x x e '''-+=-- (4)369(1)x y y y x e '''-+=+.解(1)特征方程为2350r r -+=,解得1,2331i 2122r ±==±⨯. 又因为()5x f x e =,1λ=是特征根,故待定特解的形式为*x y ae =. (2)特征方程为20r r -=,特征根为120,1r r ==.又因为()3f x =,0λ=是特征根,故待定特解的形式为*y ax =. (3)特征方程为2760r r -+=,特征根为1216r r ==.又因为22()(521)x f x x x e =--, 2λ=不是特征根,故待定特解的形式为*22()x y ax bx c e =++.(4) 特征方程为2690r r -+=,特征根为123r r ==.又因为3()(1)x f x x e =+,3λ=是特征根,故待定特解的形式为*23()x y x ax b e =+. 10.求下列各微分方程满足已给初始条件的特解: (1)sin 20, |1, |1;x x y y x y y ππ=='''++=== (2)00325, |1, |2;x x y y y y y ==''''-+=== (3)004, |0, |1;x x x y y xe y y =='''-=== (4)0045, |1, |0x x y y y y ==''''-===.解:(1)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为12cos sin y C x C x =+因()sin 2f x x =-,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得3cos23sin 2sin 20A x B x x --+=,30 , 310A B -=-+=,即10,3A B ==, *1sin 23y x =.故原方程的通解为又122sin cos cos 23y C x C x x '=-++,代入初始条件1,1x x yy ππ=='==,得112211 1,2313C C C C =-⎧⎪⇒=-=-⎨=+⎪⎩,从而所求特解为11cos sin sin 233y x x x =--+.(2)特征方程为210r +=,解得121,2r r ==,对应齐次方程的通解为 因()5f x =,0λ=不是特征根,所以设原方程的特解为*y A =, 代入原方程 ,得 25A = 即 52A =,*52y =.故原方程的通解为 又2122x x y C e C e '=+,代入初始条件00 |1, |2x x y y =='==,得121212517 5,2222C C C C C C ⎧++=⎪⇒=-=⎨⎪+=⎩, 从而所求特解为275522x x y e e =-++.(3)特征方程为2320r r -+=,解得121,1r r ==-,对应齐次的通解为 而()4x f x xe =-,1λ=是特征方程的单根,故可设原方程的特解为 代入原方程整理得比较系数,得1,1A B ==-,所以*(1)x y x x e =-.故原方程的通解为 将条件00,1x x yy =='==代入,得12121211 , 111C C C C C C +=⎧⇒==-⎨--=-⎩, 从而所求特解为2()x x x y e e x x e -=-+-.(4)特征方程为240r r -=,解得120,4r r ==,对应齐次方程的通解为412x y C C e =+ 因()5f x =,0λ=是特征方程的单根,所以设原方程的特解为*y Ax =,代入原方程 ,得 45A -= 即 54A =-,*54y x =-.故原方程的通解为又42544x y C e '=-,代入初始条件00|1, |0x x y y =='==,得121221115 ,51616404C C C C C +=⎧⎪⇒==⎨-=⎪⎩, 从而所求特解为4115516164x y e x =+-. 11.设函数()x ϕ连续,且满足求()x ϕ.解: 方程两边同时对x 求导,得0()()xx x e t dt ϕϕ'=-⎰,()()x x e x ϕϕ''=-,(0) 1 , (0)1ϕϕ'== 从而 ()()x x x e ϕϕ''+=又该方程对应齐次方程的特征方程为210r +=,特征根为1,2i r =±,故齐次方程的通解为 通过观察易知*12x e ϕ=为方程()()x x x e ϕϕ''+=的一个特解,从而该方程的通解为 将初始条件(0)1,(0)1ϕϕ'==代入,得11221112 1212C C C C ⎧=+⎪⎪⇒==⎨⎪=+⎪⎩, 故总习题十一1.单项选择题:(1)下列微分方程中是线性方程的是( ).(A ) cos()y y e x '+= (B ) 22x xy y x y e '''+-=(C )()250y y '+= (D )sin 8y y x ''+=(2)下列方程中是一阶微分方程的是( ).(A ) 2()20x y yy x ''++= (B ) ()()245750y y y x '''+-+=(C )0xy y y '''++= (D )(4)5cos 0y y x '+-=(3)微分方程20ydy dx -=的通解是( ).(A ) 2y x C -= (B ) 2y x C +=(C )y x C =+ (D )y x C =-+(4)微分方程0y y ''+=满足初始条件001 , 1x x y y =='==的特解是( ).(A ) cos y x = (B ) sin y x =(C )cos sin y x x =+ (D )12cos sin y C x C x =+(5)下列函数是微分方程20y y y '''-+=的解是( ).(A ) 2x x e (B ) 2x x e -(C ) x xe - (D ) x xe解:(1)(B ) ; (2)(A ); (3)(A ); (4)(C ); (5)(D ).2.填空题:(1)以22()1x C y ++=(其中C 为任意常数)为通解的微分方程为22(1)1y y '+=. (2)以212x x y C e C e =+(其中1C 、2C 为任意常数)为通解的二阶常系数齐次线性微分方程为320y y y '''-+=.(3)微分方程x y y e -'=的通解为y x e e C =+.(4)方程cot 2sin y y x x x '-=的通解为2()sin y x C x =+.(5) 设方程()()()y p x y q x y f x '''++=的三个特解是2123 ,,x x y x y e y e ===,则此方程的通解为2212()()x x x y C x e C x e e =-+-+.3.求下列微分方程的通解:(1)2(12)(1)0y xdx x dy +++=; (2)x y y x +'=-; (3)d d 2(ln )y y x y x =- ; (4)5d d y y xy x-=; (5)20y y y '''+-=; (6)22x y y y e '''+-= ;(7)sin y y x ''+=; (8)25sin 2y y y x '''++=.解:(1)分离变量积分,得 21121x dy dx y x=-++⎰⎰, 即 ()2ln 12ln(1)ln y x C +=-++,亦即 2(1)(12)x y C ++=故原方程所求通解为 2(1)(12)x y C ++=.(2) 原方程变形为11y y x'+=-,这是一阶线性方程,其通解为 即原方程通解为22xy x C +=.(3)原方程变形为d 22ln d x y x y y y+=,这是一阶线性方程,其通解为 即原方程通解为21ln 2x Cy y -=+-. (4)这是5n =的伯努利方程. 方程两端同除以5y ,得54dy y y x dx ---=,令4z y -=,便有44dz z x dx+=-,此方程为一阶非齐次线性方程,其通解为 将4z y -=代入,得原方程的通解为4414x y Ce x --=-+. (5)特征方程为220r r +-=,解得122,1r r =-=,故方程的通解、212x x y C e C e -=+.(6)特征方程为2210r r +-=,解得1211,2r r =-=,对应齐次的通解为 而()2x f x e =,1λ=不是特征方程的根,故可设原方程的特解为代入原方程整理得 1A =,所以*x y e = 故原方程的通解为212x x x y C e C e e -=++.(7)特征方程为210r +=,解得1,2i r =±,对应齐次方程的通解为因()sin f x x =,i i αβ±=±是特征根,所以设原方程的特解为()*cos sin y x A x B x =+,又 ()*()sin cos cos sin y x A x B x A x B x '=-+++,()*()2(cos sin )cos sin y B x A x x A x B x ''=--+,代入原方程,得()()2(cos sin )cos sin cos sin sin B x A x x A x B x x A x B x x --+++=,21, 20A B -==, 即1,02A B =-=, *1cos 2y x x =-.故原方程的通解为 (8)25sin 2y y y x '''++=其特征方程为2250r r ++=,特征根为1,212r i =-±,从而其对应齐次方程的通解为12(cos 2sin 2)x y e C x C x -=+.又()sin 2f x x =,i 2i αβ±=±不是特征根,所以设原方程的特解为*cos 2sin 2y A x B x =+,*()2sin 22cos 2y A x B x '=-+,*()4cos 24sin 2y A x B x ''=--,代入原方程得()()4cos24sin 2sin 2A B x B A x x ++-=,4041 , 411717A B A B B A +=⎧⇒=-=⎨-=⎩,所以*41cos 2sin 21717y x x =-+. 故原方程的通解为1241(cos 2sin 2)cos 2sin 21717x y e C x C x x x -=+-+. 4.求下列微分方程满足所给初始条件的特解:(1)222(3+2)d (2)d 0 , 1x xy y x x xy y x -+-==时1y =;(2)2cos , 0y y y x x '''++==时30 , 2y y '==.解:(1)222(,)3+2 ,(,)2P x y x xy y Q x y x xy =-=-,于是有22P Q x y y x∂∂=-=∂∂,所以方程(1)是全微分方程.因为 所以方程(1)的通解为322x x y xy C +-=,又1x =时,1y =,从而1C =于是原方程的特解为3221x x y xy +-=.(2)特征方程为2210r r ++=,解得121r r ==-,对应齐次方程的通解为因()cos f x x =,i i αβ±=±不是特征根,所以设原方程的特解为*cos sin y A x B x =+,又 *()sin cos y A x B x '=-+,()*()cos sin y A x B x ''=-+,代入原方程,得()cos sin A x B x -+2sin 2cos A x B x -++cos sin cos A x B x x +=,20, 21A B -==, 即10,2A B ==, *1sin 2y x =.故原方程的通解为1sin 2x y xe x -=+ 由条件0x =时30 , 2y y '==,得210 1322C C =⎧⎪⇒⎨+=⎪⎩121,0C C == 所以原方程的特解为1sin 2x y xe x -=+. 5.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.解:设曲线的方程为()y y x =,其上任一点(,)x y 处的切线方程为()Y y y X x '-=-,切线在纵轴上的截距为y xy '-,由题意有y xy x '-=,即1y y x'-=-,其通解为 又因为曲线过点(1,1) ,所以1C =,从而所求曲线方程为(1ln )y x x =-.6.设可导函数()x ϕ满足求()x ϕ.解:方程两边同时对x 求导得即()cos ()sin 1x x x x ϕϕ'+=,亦即()tan ()sec x x x x ϕϕ'+=,其通解为在0()cos 2()sin 1xx x t tdt x ϕϕ+=+⎰中,令0x =得(0)1ϕ=,故 因此()cos sin x x x ϕ=+.7.一链条挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m ,分别在以下两种情况下求链条滑下来所需要的时间:(1)若不计钉子对链条产生的摩擦力;(2)若摩擦力为1m 长的链条的重量.解: (1) 设在时刻t 时,较长的一段链条垂下 m x ,且设链条的密度为ρ,则向下拉链条的作用力由牛顿第二定律可知202(10)x g x ρρ''=-,即 10g x x g ''-=- 该方程对应的齐次方程的特征方程为2010g r -=,特征根为1,2r =程的通解为通过观察知*10x =为非齐次方程10g x x g ''-=-的一个特解,因而原方程的通解为又12x e '=且(0)12,(0)0x x '==,可得1212122 10C C C C C C +=⎧⇒==⎨-+=⎩,因此10x e=++;当20x =,即链条全部滑下来,有10e =+,解得所需时间t =+(秒). (2) 此时向下拉链条的作用力变为(20)1(221)F x g x g g g x ρρρρ=---⋅=-.由牛顿第二定律可知20(221)x g x ρρ''=-,即 1.0510g x x g ''-=-.类似于(1)中解法可得此方程通解为 1210.5t t x C e C =++由初始条件得1234C C ==,因而所求特解为 3310.544x e =++当20x =时有39.54e ⎛⎫=+ ⎪ ⎪⎝⎭,解之得所需时间为193t +=(秒).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章习题与解答
1.什么叫加工误差?它与加工精度、公差之间有何区别?
答:加工误差是指零件加工后的实际几何参数与理想几何参数的偏差程度。
加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想
几何参数的符合程度。
公差是指零件加工允许变动误差的范围。
加工误差大,表明零件的加工精度低;反之,加工误差小,则表明零件
的加工精度高。
加工误差要控制在公差范围之内。
2.加工误差包括哪几方面?原始误差与加工误差有何关系?
答:加工误差包括工艺系统受到力和热的作用及加工方法上的原理误差等。
在机械加工中,零件的尺寸、几何形状和表面间相对位置的形成,取决
于工件和刀具在切削过程中相互位置的关系,而工件和刀具,又安装在夹具
和机床上面,并受到夹具和机床的约束。
因此,加工精度问题也就涉及到整
个工艺系统的精度问题。
工艺系统的种种误差,在不同的具体条件下,以不
同的程度反映为加工误差。
工艺系统误差与加工误差之间存在因果关系。
因此把工艺系统误差称之
为原始误差。
原始误差与加工误差之间存在因果关系。
3.什么叫误差复映?如何减小误差复映的影响?
答:误差复映现象是指由于毛坯加工余量和材料硬度的变化,引起了切削力
和工艺系统受力变形的变化,因而使加工后工件的尺寸误差和形状误差产生
了与毛坯误差相似的现象。
要减小工件的复映误差,可增加工艺系统的刚度或减小径向切削力的系数。
4.提高机械加工精度的途径有哪些?
答:提高机械加工精度的途径有:
1.减少误差法;2.误差补偿法;3.误差转移法;4.误差均分法。