人教版28.1锐角三角函数提高练习题含答案

合集下载

2015年人教版28.2锐角三角函数提高练习题及答案

2015年人教版28.2锐角三角函数提高练习题及答案

28.1锐角三角函数(3)一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30° B.45° C.60° D.90°2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.333.计算30tan 2-2sin60°cos45°+3tan30°sin45°=_______________. 4.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________ 二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( ) A.30° B.45° C.60° D.90°2.已知α为锐角,tanα=3,则cosα等于( )A.21 B.22C.23 D.333.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.4.如图1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.5.如图2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)三、课后巩固(30分钟训练)1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________.2.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.3.如图3.在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.4.如图4,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.5.如图,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?6.如图,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.28.2 解直角三角形(1)1.在下面条件中不能解直角三角形的是( )A .已知两条边B .已知两锐角C .已知一边一锐角D .已知三边3.在△ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,有下列关系式:•①b=ccosB ,②b=atanB ,③a=csinA ,④a=bcotB ,其中正确的有( )个 A .1 B .2 C .3 D .4 4.为测一河两岸相对两电线杆A 、B 间距离,在距A 点15m 的C 处,(AC ⊥AB ),测得∠ACB=50°,则A 、B 间的距离应为( )m A .15sin50°B .15cos50° C .15tan50°D .15/tan50° 5.在△ABC 中,∠C=90°,5/2,则斜边c=_____,∠A 的度数是____. 6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a ,•则两条直角边的和为________. 7.四边形ABCD 中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________. 8.如图1,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD=4米,BC=10米,CD 与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.1.411.73)9.如图2,在Rt △ABC 中,a ,b 分别是∠A ,∠B 的对边,c 为斜边,如果已知两个元素a ,∠B ,就可以求出其余三个未知元素b ,c ,∠A .第一步:已知:a,∠B,用关系式:_______________,求出:_________________; 第二步:已知:_____,用关系式:_______________,求出:_________________; 第三步:已知:_____,用关系式:_______________,求出:_________________. 10.在等腰梯形ABCD 中,AB ∥CD ,CD=3cm ,AB=7cm ,高为,求底角B 的度数.11.如图3,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BCD=α,• 求cos α的值.12.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A ,B ,C ,D 正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架).13.在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的余弦值.14.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,求AD ,CD 的长.15.(宜昌)如图,•某一时刻太阳光从教室窗户射入室内,•与地面的夹角∠BPC 为30°,窗户的一部分在教室地面所形成的影长PE 为3.5m ,窗户的高度AF 为2.5m ,求窗外遮阳篷外端一点D 到窗户上椽的距离AD .(结果精确到0.1m )b c aABCD28.1锐角三角函数(二)答案一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30°B.45°C.60°D.90° 解:∵sinB=22,∴∠B=45°.答案:B2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.33解:由sinB=23得∠B=60°,∴cosB=21.答案:C 3.计算︒30tan 2-2sin60°cos45°+3tan30°sin45°=_______________.解:︒30tan 2-2sin60°cos45°+3tan30°sin45°=322233322232332=⨯⨯+⨯⨯- 答案:324.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________.解:cos60°sin30°-tan60°tan45°+(cos30°)2=21×21-3×1+(23)2=1-3. 答案:1-3二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( )A.30°B.45°C.60°D.90°解:tanB=33,∴∠B=30°. 答案:A2.已知α为锐角,tanα=3,则cosα等于( )A.21B.22 C.23 D.33 解析:由tanα=3求得α=60°,故cosα=21.答案:A 3.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.解析:由题意得sinα=23,tanβ=1, ∴α=60°,β=45°. 答案:60° 45°4.如图28-1-2-1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.图28-1-2-1解:在Rt △ABC 中,∠B=90°-∠A=90°-60°=30°. b=21c,c 2=a 2+b 2=152+41c 2.∴c 2=300,即c=310.∴b=35.∴sinA=23=c a ,cosA=c b =21,tanA=3=b a ,sinB=cb=21,cosB=23=c a ,,tanB=33=a b 5.如图28-1-2-2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)图28-1-2-2解:∵∠BCA=90°,∴cos ∠BAC=ABAC.∵∠BAC=30°,AC=2,∴AB=︒30cos 2≈2.3.答:相邻两棵树的斜坡距离AB 约为2.3 m.三、课后巩固(30分钟训练) 1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________. 解析:由cosB=ca ,得c=Bacos =10.答案:102.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.解析:tanA 3=ba,又a -b=2, ∴a=3+3,c=Aasin =2+32. 答案:2+323.如图28-1-2-4,在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.图28-1-2-4解:作AD ⊥BC,垂足为点D ,在Rt △ADC 中,AD=AC·sinC=8, 在Rt △ADB 中,AB=BADsin=16.4.如图28-1-2-5,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.图28-1-2-5解:设DC=x,∵∠C=90°,∠BDC=60°, 又∵DCBC=tan ∠BDC,∴BC=DCtan60°=3x.∵∠C=90°,∠A=30°,tanA=ACBC,∴AC=3x.∵AD=AC -DC,AD=20, ∴3x -x=20,x =10. ∴BC=3x=103.5.如图28-1-2-7,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?图28-1-2-7解:在Rt △BEC 中,CE=BD=24,∠BCE=30°, ∴BE=CE·tan30°=38.在Rt △AEC 中,∠ACE=45°,CE=24,∴AE=24.∴AB=24+38≈37.9(米).∵35<37.9,∴离点B 35 m 处的一保护文物在危险区内. 答:略.6.如图28-1-2-8,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.图28-1-2-8.解:如题图,A 表示灯塔的顶端,B 表示正东方向的船,C 表示正西方向的船,过A 作AD ⊥BC 于D ,则AD=200 (m),∠B=30°,∠C=45°. 从而在Rt △ADC 中,得CD=AD=200,在Rt △ADB 中, ∵tanB=BDAD,∴BD=3200tan =BAD.∴BC=CD+BD=200+3200≈546.4(m).答:两船距离约为546.4 m.28.2 解直角三角形(一)答案:1.B 2.D 3.C 4.C 5°6.12a 7.36 8.8.7 9.略 10.60° • •11.cos α12.设正方形边长为a ,则(1)3a ,(2)3a ,(3)(a ,(4))a ∴第(4)种方案最省电线13.4514.,15.过点E 作EG ∥AC 交BP 于点G ,∵EF ∥DP ,∴四边形BEFG 是平行四边形. 在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EGEP,∴EG=EP ·tan ∠ADB=3.5×tan30°≈2.02(或. 又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48(或).又∵AD ∥PE ,∠BDA=∠P=30°, 在Rt•△BAD 中,tan30°=,ABADtan 30AB AD ∴=︒=0.48)≈0.8(m ),∴所求的距离AD 约为0.8m .。

人教版初中数学28锐角三角函数练习题-答案

人教版初中数学28锐角三角函数练习题-答案

人教版初中数学28锐角三角函数练习题【答案】一、客观题1. C2. B3. C4. B5. B6. A7. B8. B9. A 10. C11. C 12. A 13. D 14. D 15. C16. A 17. C 18. A 19. B 20. C21. B 22. A 23. A 24. D 25. D26. B 27. A 28. B 29. D 30. B31. D 32. B 33. B 34. B 35. A36. A 37. A 38. C 39. A 40. C41. A 42. C 43. C 44. C 45. A46. B 47. B 48. B 49. C 50. C51. A 52. A 53. A 54. C 55. B56. A 57. D 58. A 59. A 60. D61. D 62. C 63. D 64. B 65. B66. C 67. A 68. B 69. A 70. B71. A 72. B 73. A 74. B 75. A76. B 77. A 78. A 79. C 80. D81. C 82. D 83. A 84. B 85. B86. C 87. D 88. D 89. B 90. C91. B 92. B 93. D 94. B 95. B96. B 97. C 98. B 99. B 100. D101. C 102. D二、主观题103.104. (-2,0)或(4,0)105.106.107.108.109.110.111.112. 60113.114. ±2115.116.117. 5;118. 60°≤∠A<90°119.120.121.122. 1123. -4124. 30125. 45126. 60;127. 105128. 75129. 8130.131. ( )132. 6133. 5134.135. 24136.137.138.139. 6;8; ;5x;4x; ; ; ;36°52′12″;53°7′48″140.141.142. 5143. 75°144. 10米145. 82.0米.146. 3.7(米)147. bsinα148. 6149. 1150. 30° 3151. 20152. (10+3 )153.154. cm155. 5.5156. 12157. 75°158. 0.433;91.2159. 2( )160. 6161. 15162. 8.7163. 250164. 解:过A作AD⊥BC于点D.∵S △ABC= BC•AD=33,∴×11×AD=33,∴AD=6.又∵AB=10,∴BD= = =8.∴CD=11-8=3.在Rt△ADC中,∴= =2.165. 解:∵DE垂直平分AC,∴AD=CD,∠A=∠ACD=45°,∴∠ADC=∠BDC=90°.∵AD=CD=1,∴AC=AB= ,.在直角△BCD中,.166. 解:∵AE⊥BC,∴∠AEF+∠1=90°;∵EF⊥AB,∴∠1+∠B=90°;∴∠B=∠AEF;(1分)∴∵在Rt△ABE中,∠AEB=90°∴;(2分)设BE=4k,AB=5k,∵BC=AB,∴EC=BC-BE=BA-BE=k;∵EC=1,∴k=1;(3分)∴BE=4,AB=5;∴AE=3;(4分)在Rt△AEF中,∠AFE=90°,∵,(5分)∴.(6分)167. 证明:过A作AD⊥BC于D,在Rt△ABD中,sinB= ,∴AD=ABsinB,在Rt△ADC中,sinC= ,∴AD=ACsinC,∴ABsinB=ACsinC,而AB=c,AC=b,∴csinB=bsinC,∴= .168. 解:(1)原式=2×-1+3=3.(2)去分母得:2-x+3(x-3)=-2,化简得2x=5,解得x= .经检验,x= 是原方程的根.∴原方程的根是x= .169. 解:原式= ×+ ×-3=1+ -3=- .170. 解:原式=1-3+2- +3×=- +=0.171. 解:原式= -1-2×+1+= -1- +1+= .172. 解:原式= ×=xy-3.∵(x- ) 2+|y-cos30°|=0,∴原式= = .173. 解:原式= = .174. 解:∵,∴tanB= ,sinA= ,∵∠A、∠B均为锐角,∴∠A=60°,∠B=60°,∴∠C=180°-∠A-∠B=180°-60°-60°=60°,∴△ABC是等边三角形.175. 解:原式= (4分)= (7分)= = (10分)176. 解:原式=-(3.14-π)+3.14÷1-2×+ +(-1)=π-3.14+3.14- + -1=π- + +1-1=π.177. 解:原式=4-3 +1-5+4×=- .178. 解:原式=1-2 -2+6×,=1-2 -2+2 ,=1-2,=-1,179. 解:原式=3 -3×+1+9(4分)=2 +10.(5分)故答案为:2 +10.180. 解:,= ,= .181. 解:原式=9-2×+1+ -1=9.182. 解:原式=( - )• = • =a+1(3分)把a=sin60°= 代入(1分)原式= = (1分)183. 解:原式=2- -1+2×+ =2.184. 解:原式=1-2 ×+9=10-3=7.185. 解:原式=2-2+1+2 ×=1+2=3.186. 解:原式= + ×= +=2.187. 解:原式可化为:x 2- x+ =0,∴,∴x 1=x 2= ,∴∠A=∠B=45°.188. 解:2sin45°+sin60°-cos30°+tan 260°.= ,= .故答案为:+3.189. 解:原式=4×-( ) 2-( ) 2+1-=2 - - +1-= .190. 解:在Rt△BCD中,sinB= ,∴BC= = =12,在Rt△ABC中,cosB= ,∴AB= = =8 .191. 解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴AD= AB=4,BD= AD=4 .在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴DC=AD=4,∴BC=BD+DC=4 +4.192. 解:在Rt△ABC中,∵∠B=30°,∴AC= AB= ×4 =2 .∵AD平分∠BAC,∴在Rt△ACD中,∠CAD=30°,∴AD= = =4.193. (1)证明:∵AD是BC上的高,∴AD⊥BC,∴∠ADB=90°,∠ADC=90°,在Rt△ABD和Rt△ADC中,∵tanB= ,cos∠DAC= ,又∵tanB=cos∠DAC,∴= ,∴AC=BD.(2)解:在Rt△ADC中,,故可设AD=12k,AC=13k,∴CD= =5k,∵BC=BD+CD,又AC=BD,∴BC=13k+5k=18k由已知BC=12,∴18k=12,∴k= ,∴AD=12k=12×=8.194. 解:∵CD⊥AB于D,∠A=30°,sinB= ,AC= ,∴,∴CD= ,∵AC 2=CD 2+AD 2,= +AD 2,∴AD=3,∵sinB= = = ,∴BC= ,∵BC 2=CD 2+DB 2,解得:BD=2,∴AB之长为:BD+AD=2+3=5.195. 解:(1)在△ABC中,∵AD是BC边上的高,∴∠ADB=∠ADC=90°.在△ADC中,∵∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在△ADB中,∵∠ADB=90°,sinB= ,AD=1,∴AB= =3,∴BD= =2 ,∴BC=BD+DC=2 +1;(2)∵AE是BC边上的中线,∴CE= BC= + ,∴DE=CE-CD= - ,∴tan∠DAE= = - .196. 解:(1)∵△ABC中,∠C=90°,∠A=60°,∴∠B=30°,∵c=8 ,sin60°= = = ,∴a=12,∵cos60°= = = ,∴b=4 ;(2)同理得:∠B=30°,b=9 ,c=6 .197. 解∵△ABC中,∠C=90°∠B=30°,∴∠BAC=60°,∵AD是△ABC的角平分线,∴∠CAD=30°,∴在Rt△ADC中,AD= =2.198. 解:作AF⊥BC于F.在Rt△ABF中,∠ABF=∠α=60°,.(5分)在Rt△AEF中,∵∠β=45°,∴AF=EF,(7分)于是.即AC的长度为.(10分)199. 解:(1)过点P作PC⊥MN于点C,在Rt△APC中,∠PAC=32°,PA=30.,∴PC=PA·sin∠PAC≈15.9.答:船P到海岸线MN的距离为15.9海里.(2)在Rt△BPC中,∠PBC=55°,PC≈15.9,,.船A的时间:,船B的时间:.答:船B先到.200. 解:∵△ABD是等边三角形,∴∠B=60°.在R t△BAC中,cosB=,t anB=,∴BC=,AC=AB·t anB=2 t an60°=∴△ABC的周长为AB+BC+AC=2+4+=.201. 解:如图:过C作CD⊥AB于D,CD为最近的简易公路.设CD= x,依题意得:在Rt△ADC中,∠ADC=90°,∠A=30°.∵=tan30°,∴AD=同理:BD= .∵AD-BD=6,∴-=6,解得:x= ,x≈5.20(千米).5.20×16 000=83200(元).答:这条最近的简易公路长为5.20千米,修建简易公路的最低费用为83200元.202. 解:如图,过点A作AE⊥CD于点E,根据题意,∠CAE=45°,∠DAE=30°.∵AB⊥BD,CD⊥BD,∴四边形ABDE为矩形.∴DE=AB=123.在R t△ADE中,t an∠DAE=,∴AE=.在R t△ACE中,由∠CAE=45°,得CE=AE=.∴CD=CE+DE=.答:乙楼CD的高度约为335.8 m.203. 解:如图,作CD⊥AB交AB的延长线于点D,则∠BCD=45°,∠ACD=65°在R t△ACD和R t△BCD中,设AC=x,则AD=x sin65°,BD=CD=x cos65°.∴100+ x cos65°=x sin65°.∴x=(米).∴湖心岛上的迎宾槐C处与凉亭A处之间距离约为207米.204. 解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形.∴AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,.在Rt△ABC中,∵,AB=2,∴.在Rt△AFD中,DF=DE=EF=x-2,∴∵AF=BE=BC+ CE,∴.解得x=6.答:树DE的高度为6米.205. 解:设CD= x.在Rt△ACD中,tan37°= ,则.∴AD= x.在Rt△BCD中,tan48°= ,则= ,∴BD= x.∵AD+BD=AB,∴x+ x=80.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.206. 解:如图所示延长AB交DE于C.设CD的长为x米.由图可知,在Rt△DBC中,∠DBC=45°.∠DCB=90°,则∠BDC=45°,∴BC=CD=x米.在Rt△ACD中,∠A=30°,DC=x,∴即,∴.∴AC-BC=AB,AB=20(米)∴,解得.∴.答:这棵古松的高是28.82米.207. 解:(1)如图,作AD上BC于点D,Rt△ABD中,AD=ABsin45°=4×= .在Rt△ACD中,∵∠ACD=30°,∴AC=2AD= ≈5.6.即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt△ABD中,BD=ABcos45°=4×=2 ,在Rt△ACD中,CD=ACcos30°=4 ×=2 ,∴CB=CD-BD=2 -2 =2( -)≈2.1.∵PC=PB-CB≈4-2.1=1.9<2,∴货物MNQP应挪走.208. 解:(1)过点E作ED⊥BC,垂足为D.由题意知,四边形EFCD是矩形,∴ED=FC=12,DC=EF=1.6.在Rt△BED中,∠BED=45°,∴BD=ED=12.∴BC=BD+ DC=12+1.6=13.6.答:建筑物BC的高度为13.6 m.(2)在Rt△AED中,∠AED=52°,∴AD=ED·tan∠AED=12×tan52°,∴AB=AD-BD=12×tan52°-12≈12×1.28-12=15.36-12=3.36≈3.4.答:旗杆AB的高度约为3.4m.209. 解:(1)30.(2)由题意得∠PBH=60o,∠APB=45o.∵∠ABC=30o,∴∠ABP=90o.在Rt△PHB中,,在Rt△PBA中,.答:A,B两点间的距离约34.6米.210. 解:过C作CD⊥AB于D点,由题意可知AB=50×20=1000m,∠CAB=30°,∠CBA=45°,AD= ,∵AD+BD= + =1000,解得CD= 366 m.211. 解:在Rt△ABC中,∵∠B=30°.AC= AB= ×4 =2 .∵AD平分∠BAC,∴在Rt△ACD中,∠CAD=30°,∴AD= = =4212. 解:过点P作PC⊥AB,C是垂足,则∠APC=30°,∠BPC=45°,AC=PC·tan30°,BC=PC·tan45°,∵AC+BC=AB,∴PC·tan30°+PC·tan45°=100,∴( )PC=100,∴PC=50( )≈50×(3-1.732)≈63.4>50,答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区. 213. 考查学生利用三角函数解决实际问题的能力,通过作垂线构造直角三角形是解决问题的关键.214. 解:在Rt△ACE中,∠ACE=30°CE=BD=15∴tan∠ACE=∴AE=CE·tan∠ACE=15·tan30°=5∴AB=AE+BE=5 +1.5=8.6+1.5=10.1215. 解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H.∵四边形ABCD是梯形,且AB∥CD,∴DH EG,故四边形EGHD是矩形.∴ED=GH.在Rt△ADH中,AH=DH·tan∠ADH=10×tan 45°=10(米),在Rt△FGE中,i=1∶=,∴FG==(米).∴AF=FG+GH-AH=+3-10=(米).(2)设防洪堤长为l,×l=(3+ -7)×10×500=-10 000(立方米).加宽部分主体的体积V=S梯形AFED答:加固后坝底增加的宽度为( )米,需土石( -10 000)立方米.216. 在Rt△ABD中,AB=3 m,∠ADB=45°,所以可利用解直角三角形的知识求出AD;类似地,可以求出AC.解:在Rt△ABD中,AB=3 m,∠ADB=45°,所以AD==3(m).在Rt△ACD中,AD=3 m,∠ADC=60°.所以AC=ADtan∠ADC=3×tan60°=3×=(m).所以路况显示牌BC的高度为( -3) m.217. (1)如题图,在Rt△ABC中,=sin 30°,∴BC==10(米).(2)收绳8秒后,绳子缩短了4米,只有6米,这时船离岸的距离为(米).9.题型:解答题;其它备注:主观题;分值:6;$$在△ABC中,已知AB=1,AC=,∠ABC=45°,求BC的长.218. 解:在Rt△ADC中,∠C=90°,AC=,∠ADC=60°,因为sin∠ADC=,即,所以AD=2.由勾股定理得DC==1,BD=2AD=4,BC=BD+DC=5,在Rt△ABC中,∠C=90°,AC=,BC=5,由勾股定理得AB==,所以Rt△ABC的周长为AB+BC+AC=+5+ .219. 解:存在的一般关系有:(1)sin 2A+cos 2A=1,(2)ta n A=.(1)证明:∵sin A=,cos A=,a2+ b2=c 2,∴sin 2A+cos 2A==1.(2)证明:∵sin A=,cos A=,∴ta n A==.220. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米.在Rt△ACD中,tan∠CAD= ,∴AD=.在Rt△ABD中,tan∠BAD=,∴BD=AD·tan 30°=80 ×=80,∴BC=CD-BD=240-80=160(米).答:这栋大楼的高为160米.221. 解:分别过B、C两点作BE⊥AD于E,CF⊥AD于F,则四边形BCFE为矩形,∴BE=CF,BC=EF.(1)在Rt△BAE中,i=1∶3,tanα= ≈0.333 3,∴α≈18°26′.(2)在Rt△ABE中,i=1∶3,BE=23,∴AE=3BE=3×23=69(米).在Rt△CDF中,i=1∶2.5,CF=BE=23,∴DF=2.5×23=57.5(米).∴AD=AE+EF+FD=AE+BC+FD=69+6+57.5=132.5(米),AB= ≈72.7(米).答:坡角α为18°26′,坝底AD为132.5米,斜坡AB约为72.7米.222. 解:如图1-2所示,过点A作AD⊥BD于点D,易知:AC=BC=24,∠DAC=30°.图12∴AD=24·cos30°=24×≈20.78>20.答:货轮继续向西航行,没有触礁危险.223. 解:∵BD=AB,∴∠A=∠ADB=30°×=15°,∠BDC=60°.∴∠ADC=75°.设DC=1,则BD=AB=2,BC= ,∴tan75°=.224. 解:过A作BC的垂线,垂足为D.在Rt△ADB中,∠B=60°,∴∠BAD=30°.∴BD=AD·tan30°= AD.在Rt△ADC中,∠C=45°,∴CD=AD.又∵BC=200,∴BD+CD= AD+AD=200.∴AD= ≈126.8(米).答:这段河宽约为126.8米.225. 解:如图,过点A作AE⊥CD,在Rt△ABD中,∠ADB=β,AB=24,∴BD= .在Rt△AEC中,∠CAE=α,BD= ,∴CE=8.∴CD=CE+AB=32(米).226. 解:设AB=x米,∴AD=xcos60°= ,在直角三角形EAC中,∠EAC=90°,∠C=45°,∴AE=AC,即x+30= +40,∴x= (米).227. 解:过C作CD⊥AB,垂足为D,可求得CD=136.5 m.∵CD=136.5 m>120 m,∴船继续前进没有浅滩阻碍的危险. 228. 解:过C作CD⊥AB,垂足为D.设气球离地面的高度是x m,在Rt△ACD中,∠CAD=45°,∴AD=CD=x.在Rt△CBD中,∠CBD=60°,∴cos60°= .∴BD= .∵AB=AD-BD,∴20= .∴x= .答:气球离地面的高度是( ) m.229. 解:如图,过点C作CD⊥AB于D,则∠BCD=45°,∠ACD=60°.设CD=x m,则BD=x m,AD=CDtan 60°=x(m).∵AB=50×20=1 000(m),∴x+ x=1 000.∴x=≈366.因此,建筑物C到公路的距离约为366 m.230. 解:∵l∥BC,∴∠ACB=∠α=8°.在Rt△ABC中,∵tan α=,∴BC==42(cm).根据题意,得h2+42 2=( h+6) 2,∴h=144(cm).答:铅锤P处的水深约为144 cm.231. 解:作CE⊥AB,垂足为E,根据题意,得CE=3 m,∠BCE=30°,∠ACE=60°.在Rt△CBE中,tan30°= ,∴BE=CE·tan30°=3×(m).在Rt△CAE中,tan60°= ,∴AE=CE·tan60°=3×(m).∴AB=AE+BE=≈4×1.73=6.92(m)<8 m.因此可判断该保护物不在危险之内.232. 答:该船所在B处距离灯塔有浬.233. 解:在Rt△AED中,有AE=DE·cot60°=20×;在Rt△BFC中,有;∴BF=20×1.2=24;又EF=DC,∴AB= +6+24=30+11.53≈41.5(米).答:坝底宽约为41.5米.234. 解:过点C作AB的垂线,交点为D,设BD=x.在Rt△BCD中,∵∠CBD=45°,∴BD=CD=x.在Rt△ACD中,∵tanA= ,∠A=30°,∴( )x=1 000.∴x=500( )≈1 366(m).答:飞机再向前飞行1 366 m与地面控制点距离最近.235. 解:如图,作AD⊥BC,垂足为点D.在Rt△ADC中,AD=AC·sinC=8.在Rt△ADB中,AB= .236. 解:根据题意可知:∠BAD=45°,∠BCD=30°,AC=20 m.在Rt△ABD中,由∠BAD=∠BDA=45°,得AB=BD.在Rt△BDC中,由tan∠BCD=,得BC=BD.又BC-AB=AC,∴BD-BD=20,∴BD=≈27.3.∴古塔BD的高度约为27.3 m.237. 解:(1)在Rt△ACD中,∵cos∠CAD=,∠CAD为锐角,∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°-∠CAB=30°.(2)在Rt△ABC中,∵sin B=,∴AB==16.又cos B=,∴BC=AB·cos B=16×.238. 解:第一次观察到的影子长为5×cot45°=5(米);第二次观察到的影子长为5×cot30°=5 (米).两次观察到的影子长的差=5 -5(米).答:第二次观察到的影子比第一次长5 -5米.239. 解:如图,过点A作AD⊥BD于点D,∵∠EBA=60°,∠FCA=30°,∴∠ABC=∠BAC=30°.∴AC=BC=24,∠DAC=30°.∴AD=AC•cos30°=12 ≈20.78>20.答:货轮继续向西航行,没有触礁危险.240. 解:作CD⊥AB于D,由题意知:∠CAB=30°∠CBA=60°∠ACB=90°∴∠DCB=30°∴在Rt△ABC中,BC= AB=30在Rt△DBC中,CD=BCcos30°= =答:这条公路不经过该区域.241. 解:如图,作CD⊥AB于点D.在Rt△CDA中,AC=30m,∠CAD=180°-∠CAB=180°-120°=60°.∴CD=AC•sin∠C AD=30•sin60°=15 m.AD=AC•cos∠CAD=30•cos60°=15m.在Rt△CDB中,∵BC=70,BD 2=BC 2-CD 2,∴BD= =65m.∴AB=BD-AD=65-15=50m.答:A,B两个凉亭之间的距离为50m.242. 解:在Rt△ACD中,∠ACD=45°,AD=50,∴CD=AD•cot45°=50;在Rt△ABD中,∠B=30°,AD=50,∴BD=AD•cot30°=50 ;∴BC=BD-CD= -50≈36.6(m);答:河宽为36.6米.243. 解:延长过点A的水平线交CD于点E则有AE⊥CD,四边形ABDE是矩形,AE=BD=36∵∠CAE=45°∴△AEC是等腰直角三角形∴CE=AE=36在Rt△AED中,tan∠EAD=∴ED=36×tan30°=∴CD=CE+ED=36+12答:楼CD的高是(36+12 )米.244. 解:由题意得∠CAO=60°,∠CBO=45°,∵OA=1500×tan30°=1500×=500 ,OB=OC=1500,∴AB=1500-500 ≈634(m).答:隧道AB的长约为634m.245. 解:过点A作AE∥BD交DC的延长线于点E.则∠AEC=∠BDC=90度.∵∠EAC=45°,AE=BD=20,∴EC=20.∵tan∠ADB=tan∠EAD= ,∴AB=20•tan60°=20 ,CD=ED-EC=AB-EC=20 -20≈14.6(米).答:树高约为14.6米.246. 解:过点P作PC⊥AB,垂足为C. (1分)由题意,得∠PAB=30°,∠PBC=60°.∵∠PBC是△APB的一个外角,∴∠APB=∠PBC-∠PAB=30°. (3分)∴∠PAB=∠APB,(4分)故AB=PB=400. (6分)在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB•sin60°=400× = 米. (10分)247. 解:如图,设光线FE影响到B楼的E处.作EG⊥FM于G,由题知:四边形GMNE是矩形,∴EG=MN=30米,∠FEG=30°,在Rt△EGF中,FG=EG×tan30°=MN×tan30°=30×=10 =17.32(米).则MG=FM-GF=20-17.32=2.68(米),因为DN=2,CD=1.8,所以ED=2.68-2=0.68(米),即A楼影子影响到B楼一楼采光,挡住该户窗户0.68米.248. 解:设OC=x海里,依题意得,BC=OC=x,AC= .(3分)∴AC-BC=10,即( )x=10,∴x= =5( +1),答:船与小岛的距离是5( +1)海里.(8分)249. 解:过B作BE⊥AD,交AD的延长线于点E.在Rt△BDE中,tan∠BDE= .∴BE=DE•tan∠BDE.在Rt△ABE中,tan∠BAE= .∴BE=AE•tan∠BAE.∴DE•tan∠BDE=AE•tan∠BAE.∴DE•tan60°=(DE+82)•tan30°.∴DE=(DE+82) ,即3DE=DE+82.∴DE=41.∴AC=BE=41 (米).∴BC=AE=41+82=123(米).250. 解:在Rt△ACD中,∵tan∠ACD= ,∴tan30°= ,∴= ,∴AD=3 m,在Rt△BCD中,∵tan∠BCD= ,∴tan45°= ,∴BD=9m,∴AB=AD+BD=3 +9(m).答:旗杆的高度是(3 +9)m.251. 解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°= ,∴CA=3 .∴BC=CA-BA=(3 -3)米.答:路况显示牌BC是(3 -3)米.252. 解:过点P作PC⊥AB于C点,根据题意,得AB=18×=6(海里),∠PAB=90°-60°=30°,∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC在Rt△PAC中tan30°= =即,解得PC=( +3)海里,∵+3>6,∴海轮不改变方向继续前进无触礁危险.253. 解:过点M作直线AB的垂线MC,垂足为C,设CM=x海里,在Rt△AMC中,AC= x;在Rt△BMC中,BC= x由于AC-BC=AB得:x- x=14,解得:x=7 ,BC= x=7在Rt△BMC中,BM=2BC=14.答:灯塔B与渔船M的距离是14海里.254. 解:在Rt△DBC中,DB=3,∴BC=BD÷cos30°=2 ;在Rt△ABC中,BC=2 ,∠CAB=30°,∴AB=BC÷sin30°=4 .∵8>4 ,∴距离B点8米远的保护物不在危险区内.255. 解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)• .解得:x=25(1+ ),∴AC=50(1+ )(米).答:缆绳AC的长为50(1+ )米.256. 解:在直角△BCD中,sin∠CBD= ,∴CD=BC•sin∠CBD=30×sin60°=15 ≈25.95.∴CE=CD+AB=25.95+1.5=27.45≈27.5(米).答:此时风筝离地面的高度是27.5米.257. 解:过点A作BC的垂线,垂足为D点. (1分)由题意知:∠CAD=45°,∠BAD=60°,AD=60.在Rt△ACD中,∠CAD=45°,AD⊥BC,∴CD=AD=60. (3分)在Rt△ABD中,∵,(4分)∴BD=AD•tan∠BAD=60 . (5分)∴BC=CD+BD=60+60 (6分)≈163.9(m). (7分)答:这栋高楼约有163.9m. (8分)(本题其它解法参照此标准给分)258. 解:∵∠BFC=30°,∠BEC=60°,∠BCF=90°,∴∠EBF=∠EBC=30°.∴BE=EF=20米.在Rt△BCE中,BC=BE•sin60°=20× ≈17.3(米).答:宣传条幅BC的长是17.3米.259. 解:(1)正确画出示意图;(2)①在测点A处安置测倾器,测得此时M的仰角∠MCE=α;②在测点A与小山之间的B处安置测倾器(A、B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β;③量出测倾器的高度AC=BD=h,以及测点A、B之间的距离AB=m.根据上述测量数据,即可求出小山的高度MN.260. 解:由题意知,DE=CB=10米.在Rt△ADE中,tan∠ADE= ,∵DE=10,∠ADE=40°,∴AE=DEtan∠ADE=10tan40°≈10×0.84=8.4,∴AB=AE+EB=AE+DC=8.4+1.5=9.9.答:旗杆AB的高为9.9米.261. 解:过点P作PC⊥AB,C是垂足.则∠APC=30°,∠BPC=45°,AC=PC•tan30°,BC=PC•tan45°.∵AC+BC=AB,∴PC•tan30°+PC•tan45°=100km,∴PC=100,∴PC=50(3- )≈50×(3-1.732)≈63.4km>50km.答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.262. 解:由矩形BCEF得到CE=BF,BC=EF,(2分)得到∠CAB=55°,(2分)得到BC=ACtan55°,(2分)BC=17.9米.(1分)答:两楼间距至少17.9米.263. 解:过点B作BD⊥AC于D,根据题意可得:EC⊥AC,FA⊥AC,∠ECB=60°,∠FAB=45°,∴∠BCD=30°,∠BAD=45°,在Rt△ABD中,AB=20(海里),∴BD=AB•sin45°=20× =10 (海里),在Rt△BCD中,∠BCD=30°,∴BC=2×10 =20 ≈28(海里),∴护渔舰需小时可以到达该商船所在的位置C处,∴×60=28(分钟),答:护渔舰约需28分钟就可到达该渔船所在的位置C处.264. 解:作CD⊥AB于D,依题意,AB=1000,∠DAC=30°,∠CBD=45°,设CD=x,则BD=x,Rt△ACD中,tan30°= = = ,整理得出:3x=1000 + x,(3- )x=1000 ,x= = =500( +1)≈1366米,即黑匣子C离海面约1366米.265. 解:∵两条水平线是平行的,∴∠B=30°,∠PAO=60°.∵PO=30,∠POA=90°,∴OB= =30 ,OA= =10 .∴AB=OB-OA=20 .266. 解:(1)在Rt△ABD中,AD=ABsin45°= ,(2分)∴在Rt△ACD中,AC= =2AD=8,即新传送带AC的长度约为8米.(4分)(2)结论:货物MNQP不需挪走.(5分)在Rt△ABD中,BD=ABcos45°=在Rt△ACD中,CD=ACcos30°= ∴CB=CD-BD=∵PC=PB-CB=5-( )=9- ≈2.2>2∴货物MNQP不需挪走.(8分)267. 解:(1)分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.∵在Rt△ABF中,AB=16米,∠B=60°,sin∠B= ,∴在矩形AFGD中,AF=16×=8 ,DG=8 米∴S △DCE= ×CE×DG= ×8×8 =32需要填方:150×32 =4800 (立方米);(2)在直角三角形DGC中,DC=16 米,∴GC= =24米,∴GE=GC+CE=32米,坡度i= = = .268. 解:(1)已知AB=6m,∠ABC=45°,∴AC=BC=AB•sin45°=6× =3 ,已知∠ADC=30°.∴AD=2AC=6 .答:调整后楼梯AD的长为6 m;(2)CD=AD•cos30°=6 ×=3 ,∴BD=CD-BC=3 -3 .答:BD的长为3 -3 (m).269. 解:如图,在△ABD中,∠A=45°,∠D=90°,AD=300∴AB= =300 ,BD=AD•tan45°=300,在△BCD中,∵∠BCD=60°,∠D=90°,∴BC= ,∴=100 .1号救生员到达B点所用的时间为=150 ≈210(秒)2号救生员到达B点所用的时间为≈191.7(秒)3号救生员到达B点所用的时间为=200(秒)∵191.7<200<210,∴2号救生员先到达营救地点B.270. 解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE= BC=0.5.在Rt△AEC和Rt△DFC中,∵tan78°= ,∴AE=EC×tan78°≈0.5×4.70=2.35.又∵sinα= = ,DF= •AE= ×AE≈1.007.∴李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴他安装比较方便.271. 解:根据题意得:∠A=30°,∠PBC=60°所以∠APB=60°-30°,所以∠APB=∠A,所以AB=PB在Rt△BCP中,∠C=90°,∠PBC=60°,PC=450,所以PB=所以AB=PB=300 ≈520(米)答:A、B两个村庄间的距离520米.272. 解:易知四边形ABCD为矩形.∴CD=AB=1.5米.(1分)在等腰直角三角形ADE中,AD=DE÷tan45°=14.5-1.5=13米.(2分)在直角三角形ADF中,DF=AD•×tan55°.(4分)∴13+EF=13×1.4.∴EF=5.2≈5(米).(6分)273. 解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=50(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴(m).∴BC=BD+CD= = (m).答:这栋楼约高136.6m.274. 解:在Rt△CEB中,sin60°= ,∴CE=BC•sin60°=10× ≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.275. 解:根据题意,有∠AOC=30°,∠ABC=45°,∠ACB=90°,所以BC=AC,于是在Rt△AOC中,由tan30°= ,得,解得AC= ≈27.32(海里),因为27.32>25,所以轮船不会触礁.276. 解:解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴=∵AB=CB=8∴BD=4,AD=12.∴=∴CD=4≈6.928>6.∴船继续向东航行无触礁危险.277. 解:如图,过点D作DF⊥AB,垂足为F,∵AB⊥BC,CD⊥BC,∴四边形BCDF是矩形,∴BC=DF,CD=BF,设AB=x米,在Rt△ABE中,∠AEB=∠BAE=45°,∴BE=AB=x,在Rt△ADF中,∠ADF=30°,AF=AB-BF=x-3,∴DF= = (x-3),∵DF=BC=BE+EC,∴(x-3)=x+15,解得x=12+9 ,答:塔AB的高度(12+9 )米.【解析】1.解:∵Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB=5;∴sinA= = .故选C.2.解:设小正方形的边长为1,则AB=4 ,BD=4,∴cos∠B= = .故选B.3.解:设Rt△ABC的两直角边分别为a、b,斜边为c,则sinA= ,cosB= .∴sinA=cosB.故选C.4.解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2 .∴cos∠ABC= = .故选B.5.解:∵点P(3,4),根据点的坐标的意义可知,∠α的对边是4,邻边为3,斜边为=5,则sinα的值为.故选B.6.解:由题意得,AO⊥BO,AO= AC=5cm,BO= BD=3cm,则tan =tan∠BAO= = .故选A.7.解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE= ,∴sin∠AOB= = = .故选B.8.解:如图,∵Rt△ABC中,∠C=90°,AB=5,BC=3,∴cosB= = .故选B.9.解:利用三角函数的定义可知tan∠A= .故选A.10.解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4.∴sinB= .故选C.11.解:过点A向BC引垂线,与BC的延长线交于点D.在Rt△ABD中,AD=2,BD=4,∴AB= =2 ,sin∠ABC= = .故选C.12.解:∵在Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB= ,sinB= ,cosB= ,tanB= ,cotB=2.故选A.13.解:∵AD,BE,CF为△ABC的三条高,易知B,C,E,F四点共圆∴△AEF∽△ABC∴,即cos∠BAC=∴sin∠BAC=∴在Rt△ABE中,BE=ABsin∠BAC=6 = .故选D.14.解:由勾股定理得,AB= = =5.由同角的余角相等知,∠BCD=∠A.∴cos∠BCD=cos∠A= = .故选D.15.解:A、错误,无法计算;B、错误,sin60°= ,2sin30°=2×=1;C、正确,符合互余两角的三角函数关系;D、错误,cos30°= >cos60°= .故选C.16.解:tanA= ,∵AC=2BC,∴tanA= .故选A.17.解:在△ABC中,∵∠C=90°,c=3b,∴cosA= = = .故选C.18.解:∵Rt△ABC∽Rt△DEF,∴∠E=∠ABC=60°,∴cosE=cos60°= .故选A.19.解:cot∠A= ,∴AC=BC•cotA=a•cotA,故选B.20.解:过点O作OM⊥AB于M,在直角△AOM中,OA=2.根据OC⊥AB,则AM= AB= ,所以cos∠OAM= ,则∠OAM=30°,同理可以求出∠OAC=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45-30=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45+30=75°.故选C.21.解:连接BD,由AB是直径得,∠ADB=90°.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选B.22.解:利用互为余角的三角函数关系式求解,只有A不一定成立.故选A.23.解:在直角△ABC中,根据勾股定理可得:AB= = =3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD.∴sin∠ACD=sin∠B= = ,故选A.24.解:如图,过点A作AD⊥BC于D.在△ABD中,∵∠ADB=90°,AD=3,BD=4,∴AB=5,∴sinB= = ,故A正确,不符合题意;cosB= = ,故B正确,不符合题意;tanB= = ,故C正确,不符合题意;∵tan∠BAD= = ,∠A<∠BAD,∴tanA<,故D错误,符合题意.故选D.25.解:∵∠C=90°,AB=13,BC=5,∴AC= =12,∴cosA= = ,故选:D.26.解:根据题意,由三角函数的定义可得sinA= ,则sinA= ;故选B.27.解:在Rt△ABC中,设a=2m,则c=3m.根据勾股定理可得b= m.根据三角函数的定义可得:tanB= = .故选A.28.解:∵在△ABC中,∠C=90°,tanA= ,∴设BC=5x,则AC=12x,∴AB=13x,sinB= = .故选B.29.解:在△ABC中,∠C=90°,∵tanA= ,∴设BC=x,则AC=3x.故AB= x.sinB= = = .故选D.30.解:∵cos40°= ,∴BC=AB•cos40°=mcos40°.故选B.31.解:∵关于x的方程(b+c)x 2-2ax+c-b=0有两个相等的实根,∴(-2a) 2-4(b+c)(c-b)=0,化简,得a 2+b 2-c 2=0,即a 2+b 2=c 2.又∵sinB•cosA-cosB•sinA=0,∴tanA=tanB,故∠A=∠B,∴a=b,所以△ABC的形状为等腰直角三角形.故选D.32.解:在Rt△ABC中,∠C=90°,a=4,b=3,∴c= =5,∴cosA= = ,故选B.33.解:∵Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,cosB= = .故选B.34.解:∵点P的坐标为(3,4),∴OP=5.∴sinα= .故选B.35.解:设AD=x,则CD=x-3,在直角△ACD中,(x-3) 2+ =x 2,解得,x=4,∴CD=4-3=1,∴sin∠CAD= = ;故选A.36.解:在Rt△ABC中,∠C=90°,AB=4,BC=1,由勾股定理可知AC= ,则cosA= = .故选A.37.解:∵Rt△ABC中,∠C=90°,b= c,∴sinB= = = .故选A.38.解:由点A(3,0),点B(0,-4),∴tan∠OAB= = .故选C.39.解:根据锐角三角函数的概念知:把Rt△ABC各边的长度都扩大2倍,那么它们的余弦值不变.故选A.40.解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.41.解:原式=3×= .故选A.42.解:A、经过平移,对应点所连的线段平行且相等,对应线段平行且相等,AD∥BE,故正确;B、由菱形的性质知,对角线互相垂直,所以有AC⊥BD,故正确;C、∵△ABC≌△CED,∴AB=BC=CE=DE=CD,∠ACB=∠ECD=60°,∴∠ACD=180°-∠ACB-∠ECD=60°,∴△ACD也是等边三角形,有AD=AB=BC=CD,∴四边形ADCB是菱形,∴S ABCD=2S △ABC=2××AB×BC×sin60°=2 ,故错误;D、∵AD∥BE,AB=DE,∴四边形ABED是等腰梯形,故正确.故选C.43.解:因为cos30°= ,所以C正确.故选C.44.解:根据特殊角的三角函数值可知:sin60°= .故选C.45.解:cos60°= .故选A.46.解:∵△ABC是等腰直角三角形,∠C=90°,∴∠A=45°,sinA= .故选B.47.解:sin30°= .故选B.48.解:sin45°= .故选B.49.解:∵关于x的方程x 2- +cosα=0有两个相等的实数根,∴△=0,即-4×1×cosα=0,∴cosα= ,∴α=60°.故选C.50.解:原式= + - = .故选C.51.解:∵sin45°= ,cos45°= ,∴sin45°+cos45°= + = .故选A.52.解:∵sin30°= ,cot45°=1,∴sin30°•cot45°= ×1= .故选A.53.解:∵∠ACB=90°,BC=2,AB=4,∴∠A=30°,∴∠B=90°-30°=60°,∴tanB=tan60°= ,tanA=tan30°= ,cosB=cos60°= ,sinA=sin30°= .故选A.54.解:∵sin60°= ,∴a-10°=60°,即a=70°.故选C.55.解:原式=5×+2×-3= .故选B.56.解:∵α为锐角,tan(90°-α)= ,∴90°-α=60°,∴α=30°.故选A.57.解:∵tan(α+20°)=1,∴tan(α+20°)= ,∵α为锐角,∴α+20°=30°,α=10°.故选D.58.解:∵∠A为锐角,sinA= ,∴∠A=30°.故选A.59.解:∵sinA= ,∴∠A=30°;又∵tanB= ,∴∠B=60°.∴∠C=180°-30°-60°=90°.故选A.60.解:∵|sinA- |+(cosB- ) 2=0,∴sinA= ,cosB= ,∴∠A=30°,∠B=60°,则∠C=180°-30°-60°=90°.故选D.61.解:∵正弦函数在30°到90°中是单调递增的,且sin30°= ,sin90°=1,∴<sinA<1.故选D.62.解:如图,过A作AD⊥BC,∵AB=AC,∴BD=DC= BC=3,在Rt△ABD中,AB=4,BD=3,∴cosB= = .故选C.63.解:在直角三角形中,根据cosB= ,求得AB= .再根据中心对称图形的性质得到:BB′=2AB= .故选D.64.解:如图,作底边上的高AD.∠B=30°,AB=6cm,AD为高,则AD=ABsinB=ABsin30°=3,BD=ABcosB=6×=3 .∴BC=2BD=6 ,S △ABC= = ×3×6 =9 .故选B.65.解:如图,过A点作AC⊥x轴于点C,∵∠AOB=30°,∴AC= OA,∵OA=6,∴AC=3,在Rt△ACO中,OC 2=AO 2-AC 2,∴OC= =3 ,∴A点坐标是:(3 ,3),设反比例函数解析式为y= ,∵反比例函数的图象经过点A,∴k=3×3 =9 ,∴反比例函数解析式为y= .故选B.66.解:在Rt△ABC中,cosB= ,∴BC=AB•cosB=7cos35°.故选C.67.解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC= = ,∴= ,解得:CD=3,BD=5,∴BC=4.故选A.68.解:作DE⊥AB于E点.∵tan∠DBA= = ,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE.∴BE=5AE,又∵AC=6,∴AB=6 .∴AE+BE=5AE+AE=6 ,∴AE= ,∴在等腰直角△ADE中,由勾股定理,得AD= AE=2.故选B.69.解:在Rt△ABC中,∠C=90°,∴sinA=∴c= .故选A.70.解:∵∠C=30°,∠BAC=105°,∴∠BAD=∠ABD=45°.在Rt△ADB中,BD=AD,在Rt△ADC中,CD=cot∠CAD= AD,∴BC=(1+ )AD=2+2 .解得:AD=2.故选B.71.解:设CD=x,则AC= = x,∵AC 2+BC 2=AB 2,AC 2+(CD+BD) 2=AB 2,∴( x) 2+(x+2) 2=(2 ) 2,解得,x=1,∴AC= .故选A.72.解:∵cosB= ,∴BC=ABcosB=10cos50°.故选B.73.解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠A=∠BCD.∴tanA= =tan∠BCD= ,∴CD 2=AD•BD=4,∴CD=2.故选A.74.解:作CD⊥AB于点D.由题意知,∵sinA= ,∴CD=ACsinA=ACsin30°=2 ×= ,∵cosA= ,∴AD=ACcos30°=2 ×=3.∵tanB= = ,∴BD=2.∴AB=AD+BD=2+3=5.故选B.75. 本题考查用三角函数解决实际问题的能力,难度中等.因为,解得,故选A.76. 本题考查三角函数的计算与推理,难度中等.,AB=4,.由勾股定理可得,∵AB×斜边上的高=AC×BC,,故选B.77. 本题直接考查了锐角三角函数的定义。

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)
(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,
tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)
23.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求tanB的值.
13.
【分析】
在直角三角形中,将AB的值代入余弦值中,可求出BC边的长.
【详解】
解:在Rt△ABC中,
∵∠C=90°,AB=8,cosB= ,
∴ = ,
∴BC= ,
故答案为 .
【点睛】
本题考查了解直角三角形,应用余弦函数的定义来求直角三角形的边是解题的关键.
14.
【详解】
过P作PA⊥OA,
∵P点坐标为(4,3),
18.在△ABC中,(tanA﹣ )2+| ﹣cosB|=0,则∠C的度数为_____.
19.已知在Rt△ABC中,∠C=90°,tanA= ,则sinA=________.
20.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC=_____.
三、解答题
21.计算:cos245° + +cos230°.
10.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值( )
A. B. C. D.
二、填空题
11.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.
12.比较大小:cos 36°________cos 37°.
13.在Rt△ABC中,斜边AB的长是8,cosB= ,则BC的长是__________.

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。

人教中考数学提高题专题复习锐角三角函数练习题及答案

人教中考数学提高题专题复习锐角三角函数练习题及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=23(分米),在Rt△PKE中,EK=22-=26(分米),EF FK∴BE=10−2−26=(8−26)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=23(分米),在Rt△FJE′中,E′J=22-(2)=26,63∴B′E′=10−(26−2)=12−26,∴B′E′−BE=4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP6223.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=33,综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.已知:如图,在四边形 ABCD 中, AB∥CD,∠ACB =90°, AB=10cm, BC=8cm, OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点P作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥AC,分别交 AD, OD 于点 F, G.连接 OP,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==,∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB ,易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC , ∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG ,∴tan ∠EOC=tan ∠QOG ,∴EC GQ OC OG =,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.4.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)22.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=A E=AC′=22.∴AP+BP的最小值是22.(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.5.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.6.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:s in32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.【答案】塔高AB 约为32.99米.【解析】【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论.【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°,∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB AEB EB ∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH ADH HD ∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒. ∴ 塔高AB 约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tanPHPAH∠333,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=503505033≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

人教版九年级下册数学 28.1---28.2基础练习题含答案。

人教版九年级下册数学 28.1---28.2基础练习题含答案。

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯28.1锐角三角函数一.选择题1.sin45°+cos45°的值为()A.1B.2C.D.22.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cos B==()A.B.C.D.3.下列式子正确的是()A.cos60°=B.cos60°+tan45°=1C.tan60°﹣=0D.sin230°+cos230°=4.在Rt△ABC中,∠C=90°,AC=,AB=,则下列结论正确的是()A.sin B=B.cos A=C.tan B=2D.tan A=5.已知在Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.6.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°7.如图,在Rt△ABC中,∠C=90°,AB=13,cos A=,则AC的长为()A.5B.8C.12D.138.在Rt△ABC中,∠C=90°,∠A=60°,则sin A+cos B的值为()A.B.C.D.9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A.B.3C.D.10.若∠A是锐角,且sin A=,则()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°二.填空题11.如图,Rt△ABC中,∠C=90°,AC=4,BC=6,则sin A=.12.已知α是锐角,若2sinα﹣=0,则α=°.13.已知α为锐角,且满足sin(α+15°)=,则tanα=.14.比较大小:sin81°tan47°(填“<”、“=”或“>”).15.计算:=.三.解答题16.计算:(1)cos245°+tan245°﹣tan260°.(2).17.已知∠A为锐角且sin A=,则4sin2A﹣4sin A cos A+cos2A的值是多少.18.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A 的三个三角函数值.参考答案一.选择题1.解:原式=+=.故选:C.2.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=3,∴BC==,∴cos B==.故选:C.3.解:A.cos60°=,故本选项不符合题意;B.cos60°+tan45°=+1=1,故本选项不符合题意;C.tan60°﹣=﹣=﹣=0,故本选项符合题意;D.sin230°+cos230°=1,故本选项不符合题意;故选:C.4.解:在Rt△ABC中,∠C=90°,∴BC==2,A、sin B===,本选项计算错误;B、cos A===,本选项计算正确;C、tan B===,本选项计算错误;D、tan A===2,本选项计算错误;故选:B.5.解:如图:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:C.6.解:∵,且,∴45°<α<60°.故选:B.7.解:∵cos A=,即=,AB=13,∴AC=AB•cos A=5,故选:A.8.解:∵∠C=90°,∠A=60°,∴∠B=30°,则sin A+cos B=+=.故选:B.9.解:∵在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,a=3b,∴cot A==.故选:A.10.解:∵∠A是锐角,且sin A=<=sin30°,∴0°<∠A<30°,故选:A.二.填空题11.解:在Rt△ABC中,∵∠C=90°,AC=4,BC=6,∴AB===2,则sin A===,故答案为:.12.解:∵2sinα﹣=0,即sinα=,∴α=45°,故答案为:45.13.解:∵sin60°=,∴α+15°=60°,∴α=45°,∴tanα=tan45°=1,故答案为:1.14.解:∵sin81°<sin90°=1,tan47°>tan45°=1,∴sin81°<1<tan47°,∴sin81°<tan47°.故答案为<.15.解:原式=+===.故答案为:三.解答题16.解:(1)原式=()2﹣+1﹣()2=﹣1+1﹣3=﹣;(2)原式=3×﹣2+2×+﹣1=﹣2+2+﹣1=2﹣1.17.解:∵∠A为锐角,且sin A=,∴∠A=30°,∴cos A=,2sin A﹣cos A=2×﹣=1﹣,∴4sin2A﹣4sin A cos A+cos2A=(2sin A﹣cos A)2=(1﹣)2=1﹣+=﹣.18.解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sin A===,cos A===,tan A===.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AD=3,tan B=,则BC的值为()A.4B.C.D.72.如图,在△ABC中,∠A=90°,sin B=,点D在边AB上,若AD=AC,则tan∠BCD 的值为()A.B.C.D.3.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,竖直放置的杆AB,在某一时刻形成的影子恰好落在斜坡CD的D处,而此时1米的杆影长恰好为1米,现量得BC为10米,CD为8米,斜坡CD与地面成30°角,则杆的高度AB为()米.A.6+4B.10+4C.8D.66.如图,AB是垂直于水平面的一栋大楼.离大楼30米(BC=30米)远的地方有一段斜坡CD(坡度为1:0.75),且坡长CD=15米,某时刻,在太阳光的照射下,大楼的影子落在了水平面BC,斜坡CD,以及坡顶上的水平面DE处(A,B,C,D,E均在同一个平面内).若DE=6米,且此时太阳光与水平面所夹锐角为24°(∠AED=24°),则大楼AB的高约为()(参考数据:sin24°≈0.41.cos24°≈0.91,tan24°≈0.45)A.10.25B.20.25C.22.25D.32.257.比萨斜塔是意大利的著名建筑,其示意图如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A的三角函数值,进而可求∠A的大小.下列关系式正确的是()A.sin A=B.cos A=C.tan A=D.sin A=8.某次台风来袭时,﹣棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是()米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)A.9B.10C.11D.129.如图,△ABC是等边三角形,点D,E,F分别在边AB,BC,AC上,且AD=BE=CF,若DE⊥BC,则的值为()A.B.C.D.10.如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+b)米B.(a+b)米C.(a+b)米D.(a+b)米二.填空题11.如图,在△ABC中,tan∠B=2,∠ACB=45°,AD⊥BC于点D,CE⊥AB于点E,AD、CE交于点F,若AC=5,则线段EF的长为.12.如图,在四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD.若,则tan D=.13.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.9m,则铁板BC边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).14.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为cm.三.解答题15.当0°<α<45°时,有sin(α+45°)=sinα+cosα.(1)计算sin75°;(2)如图,△ABC中,AB=1,∠ACB=45°,∠CAB=α,请利用这个图形证明上述结论.16.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC=30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.17.如图是某幼儿园的两个同一水平面AF上的长度相同的滑梯模型图,已知滑梯斜面BC =EF=4m,∠ABC=30°,∠EFD=53°,且对角线CE所在的四边形是正方形.若小红从D﹣C﹣B再返回D处,小芳从D﹣C﹣E﹣F再返回D,试计算说明,小红和小芳谁走的路程更短,短多少?(精确到0.1m)(参考数据:sin53°≈,cos53°≈,tan53°≈,)参考答案一.选择题1.解:∵∠BAC=90°,AD⊥BC,∴∠ADB=90°,∴∠B+∠BAD=90°,∠BAD+∠DAC=90°,∴∠B=∠DAC,∴tan B=tan∠DAC=,∴==,∴==,∴BD=4,CD=,∴BC=BD+CD=4+=,故选:B.2.解:如图,作DH⊥BC于H.∵∠A=90°,sin B==,∴可以假设AC=3k,BC=5k,则AB=4k,∵AC=AD=3k,∴BD=k,∵∠B=∠B,∠DHB=∠A=90°,∴△BHD∽△BAC,∴==,∴==,∴DH=k,BH=k,∵CH=BC﹣BH=5k﹣k=k,∴tan∠BCD===,故选:C.3.解:设AB=x,∵在Rt△ABC中,∠B=90°,∠ACB=45°,∴∠BAC=∠ACB=45°,∴AB=BC=x,由勾股定理得:AC==x,∵AC=CD,∴AC=CD=x,∴BD=BC+CD=(+1)x,∴tan22.5°===﹣1,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:如图,延长AB交DT的延长线于E.∵1米的杆影长恰好为1米,∴AE=DE,∵四边形BCTE是矩形,∴BC=ET=10米,BE=CT,在Rt△CDT中,∵∠CTD=90°,CD=8米,∠CDT=30°,∴DT=CD•cos30°=8×=4(米),CT=CD=4(米),∴AE=DE=ET+DT=(10+4)(米),BE=CT=4(米),∴AB=AE﹣BE=(10+4)﹣4=(6+4)(米),故选:A.6.解:延长ED交AB于G,DH⊥BF于H,∵DE∥BF,∴四边形DHBG是矩形,∴DG=BH,DH=BG,∵==,CD=15,∴DH=12,CH=9,∴GE=30+6+9=45,∵tan24°==≈0.45,∴AG≈20.25,∴AB=AG+BG=20.25+12=32.25(米).即:大楼AB的高约为32.25米;故选:D.7.解:在Rt△ABD中,∠ADB=90°,则sin A=,cos A=,tan A=,因此选项A正确,选项B、C、D不正确;故选:A.8.解:过点A作AE⊥CD于点E,∵∠BAC=15°,∴∠DAC=90°﹣15°=75°,∵∠ADC=60°,∴在Rt△AED中,∵cos60°===,∴DE=2,∵sin60°===,∴AE=2,∴∠EAD=90°﹣∠ADE=90°﹣60°=30°,在Rt△AEC中,∵∠CAE=∠CAD﹣∠DAE=75°﹣30°=45°,∴∠C=90°﹣∠CAE=90°﹣45°=45°,∴AE=CE=2,∴sin45°===,∴AC=2,∴AB=2+2+2≈2×2.4+2×1.7+2=10.2≈10(米).答:这棵大树AB原来的高度是10米.故选:B.9.解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠BED=90°,∴=,∵AD=BE,∴,故选:A.10.解:∵EF=a米,∠A=90°,∠AEF=30°,∴AF=EF=米,∠AFE=60°,∵∠EFG=90°,∴∠MFG=30°,∴PQ=NP=MN=FM=(米),DQ=QK•cos30°=(米),∴AD=AF+4FM+dq=a+4×+=a+b(米),故选:A.二.填空题11.解:∵在△ABC中,∠ACB=45°,AD⊥BC于点D,∴△ADC为等腰直角三角形,∴AD=CD,∵AC=5,∴AD=CD=AC•sin45°=5×=5,∵AD⊥BC于点D,CE⊥AB于点E,∴∠B+∠BAD=∠AFE+∠BAD=90°,∴∠DFC=∠AFE=∠B,∵tan∠B=2,∴tan∠DFC=2,∴=2,∴DF==,∴AF=AD﹣DF=5﹣=,∵tan∠AFE=tan∠B=2,∴设AE=2x,EF=x,由勾股定理得AF=x=,∴EF=x=,故答案为:.12.解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴tan∠ADC===.故答案为:.13.解:在直角三角形中,sin A=,则BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701,则CD=BC﹣BD=1.701﹣0.9,=0.801≈0.8(m),故答案为:0.8.14.解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB∥EF,AE∥BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE∥PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.三.解答题15.解:(1)∵当0°<α<45°时,有sin(α+45°)=sinα+cosα,∴当α=30°时,sin(30°+45°)=sin30°+cos30°,∴sin75°=,解得,sin75°=;(2)作AD⊥CB交CB的延长线于点D,∵AB=1,∠ACB=45°,∠CAB=α,∴∠ABD=∠ACB+∠ACB=45°+α,sin∠ABD===AD,∴sin(45°+α)=AD,又∵∠ADC=90°,∠C=45°,∴sin C=,即AD=AC•sin C=AC×=AC,∴AC=AD=sin(α+45°),作BE⊥AC于点E,∵∠CAB=α,AB=1,∴sinα==BE,cosα==AE,∵∠C=45°,∠BEC=90°,∴∠C=∠CBE=45°,∴BE=CE,∴AC=AE+CE=AE+BE,∴sin(α+45°)=sinα+cosα.16.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.17.解:小红走的路程更短,约短0.6m,理由如下:如图所示:由题意得:DG=AC,∠EDF=∠BAC=90°,∠ABC=30°,∴DG=AC=BC=2m,AB=AC=2m,∵sin∠EFD=,cos∠EFD=,∴DE=EF×sin53°≈4×=3.2(m),DF=EF×cos35°≈4×=2.4(m),∴EG=DE﹣DG=1.2m,∵四边形CGEH是正方形,∴CE=EG=×1.2≈1.69(m),∵小红从D﹣C﹣B再返回D处,小芳从D﹣C﹣E﹣F再返回D,∴小红走的路程为CD+BC+BA+AD,小芳走的路程为CD+CE+EF+DF,∴小芳比小红走的路程短AB+AD﹣CE﹣DF=2+1.2﹣1.69﹣2.4≈0.6(m).一天,毕达哥拉斯应邀到朋友家做客。

人教版九年级数学下册锐角三角函数同步练习附答案【优选】

人教版九年级数学下册锐角三角函数同步练习附答案【优选】

28.1 锐角三角函数——正弦、余弦、正切一、基础·巩固达标1.在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定 2.已知α是锐角,且cosα=54,则sinα=( ) A.259 B.54 C.53 D.2516 3.Rt △ABC 中,∠C=90°,AC ∶BC=1∶3,则cosA=_______,tanA=_________. 4.设α、β为锐角,若sinα=23,则α=________;若tanβ=33,则β=_________. 5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________. 6.△ABC 中,∠BAC=90°,AD 是高,BD=9,tanB=34,求AD 、AC 、BC.二、综合•应用达标 7.已知α是锐角,且sinα=54,则cos(90°-α)=( ) A.54 B.43 C.53 D.518.若α为锐角,tana=3,求ααααsin cos sin cos +-的值.9.已知方程x 2-5x·sinα+1=0的一个根为32+,且α为锐角,求tanα.10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14三、回顾•展望达标11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是( )A.43 B.34 C.53 D.54图28.1-15 图28.1-17 图28.1-1612.如图28.1-17,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径23r ,AC=2,则cosB 的值是( ) A.23 B.35 C.25 D.3213.在△ABC 中,∠C=90°,AB=15,sinA=31,则BC=( ) A.45 B.5 C.51 D.451 14.如图28.3-16,CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=( )A.53 B.43 C.34 D.5415.课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB 上,任意取两点P 和P 1,分别过点P 和P 1做始边OA 的垂线PM 和P 1M 1,M 和M 1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P 点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.图28.1-18 图28.1-1916.计算:2-1-tan60°+(5-1)0+|3|;17.已知:如图28.1-19,△ABC 内接于⊙O ,点D 在OC 的延长线上,sinB=21,∠CAD=30°. (1)求证:AD 是⊙O 的切线; (2)若OD ⊥AB ,BC=5,求AD 的长.参考答案一、基础·巩固达标1.在Rt △ABC 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定 思路解析:当Rt △ABC 的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A 大小不变. 答案:A2.已知α是锐角,且cosα=54,则sinα=( ) A.259 B.54 C.53 D.2516 思路解析:由cosα=54,可以设α的邻边为4k ,斜边为5k ,根据勾股定理,α的对边为3k ,则sinα=53. 答案:C3.Rt △ABC 中,∠C=90°,AC ∶BC=1∶3,则cosA=_______,tanA=_________.思路解析:画出图形,设AC=x ,则BC=x 3,由勾股定理求出AB=2x ,再根据三角函数的定义计算. 答案:21,3 4.设α、β为锐角,若sinα=23,则α=________;若tanβ=33,则β=_________. 思路解析:要熟记特殊角的三角函数值. 答案:60°,30°5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________.思路解析:用计算器算三角函数的方法和操作步骤. 答案:0.386 06.△ABC 中,∠BAC=90°,AD 是高,BD=9,tanB=34,求AD 、AC 、BC. 思路解析:由条件可知△ABC 、△ABD 、△ADC 是相似的直角三角形,∠B=∠CAD ,于是有tan ∠CAD=tanB=34,所以可以在△ABD 、△ADC 中反复地运用三角函数的定义和勾股定理来求解.解:根据题意,设AD=4k ,BD=3k ,则AB=5k. 在Rt △ABC 中,∵tanB=34,∴AC=34AB=320k.∵BD=9,∴k=3.所以AD=4×3=12,AC=320×3=20. 根据勾股定理25152022=+=BC .二、综合•应用达标 7.已知α是锐角,且sinα=54,则cos(90°-α)=( ) A.54 B.43 C.53 D.51思路解析:方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=54.方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”. 答案:A8.若α为锐角,tana=3,求ααααsin cos sin cos +-的值.思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶10,sinα=103,cosα=101,分别代入所求式子中.方法2.利用tanα=ααcos sin 计算,因为cosα≠0,分子、分母同除以cosα,化简计算. 答案:原式=213131tan 1tan 1cos sin cos cos cos sin cos cos =+-=+-=+-αααααααααα 9.已知方程x 2-5x·sinα+1=0的一个根为32+,且α为锐角,求tanα.思路解析:由根与系数的关系可先求出方程的另一个根是32-,进而可求出sinα=54,然后利用前面介绍过的方法求tanα.解:设方程的另一个根为x 2,则(32+)x 2=1 ∴x 2=32-∴5sinα=(32+)+(32-),解得sinα=54. 设锐角α所在的直角三角形的对边为4k ,则斜边为5k ,邻边为3k , ∴tanα=3434=k k . 10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?图28.1-14思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=b 21,再在高所在的直角三角形中由三角函数求出α的度数. 解:设原矩形边长分别为a ,b ,则面积为ab , 由题意得,平行四边形的面积S=21ab.又因为S=ah=a(bsinα),所以21ab=absinα,即sinα=21.所以α=30°. 三、回顾•展望达标11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是( )图28.1-15A.43 B.34 C.53 D.54思路解析:观察格点中的直角三角形,用三角函数的定义. 答案:C12.如图28.1-17,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径23r ,AC=2,则cosB 的值是( )图28.1-17A.23 B.35 C.25 D.32思路解析:利用∠BCD=∠A 计算. 答案:D13.在△ABC 中,∠C=90°,AB=15,sinA=31,则BC=( ) A.45 B.5 C.51 D.451 思路解析:根据定义sinA=ABBC,BC=AB·sinA. 答案:B14.如图28.3-16,CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=( )图28.1-16A.53 B.43 C.34 D.54 思路解析:直径所对的圆周角是直角,设法把∠B 转移到Rt △ADC 中,由“同圆或等圆中,同弧或等弧所对的圆周角相等”,得到∠ADC=∠B. 答案:B15.课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB 上,任意取两点P 和P 1,分别过点P 和P 1做始边OA 的垂线PM 和P 1M 1,M 和M 1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P 点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.图28.1-18思路解析:正弦、余弦函数的定义. 答案:11111,,,OP OM OP OM OP M P OP PM OP OM OP PM ==,锐角α 16.计算:2-1-tan60°+(5-1)0+|3|;思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义.解:2-1-tan60°+(5-1)0+|3|=21-3+1+3=23. 17.已知:如图28.1-19,△ABC 内接于⊙O ,点D 在OC 的延长线上,sinB=21,∠CAD=30°.图28.1-19(1)求证:AD 是⊙O 的切线; (2)若OD ⊥AB ,BC=5,求AD 的长.思路解析:圆的切线问题跟过切点的半径有关,连接OA ,证∠OAD=90°. 由sinB=21可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO 是等边三角形,由此∠OAD=90°.AD 是Rt △OAD 的边,有三角函数可以求出其长度. (1)证明:如图,连接OA.∵sinB=21,∴∠B=30°.∴∠AOD=60°. ∵OA=OC ,∴△ACO 是等边三角形 ∴∠OAD=60°.∴∠OAD=90°.∴AD 是⊙O 的切线. (2)解:∵OD ⊥AB ∴ OC 垂直平分AB. ∴ AC=BC=5.∴OA=5.在Rt △OAD 中,由正切定义,有tan ∠AOD=OAAD. ∴ AD=35.。

人教版数学九年级下册第28章锐角三角函数锐角三角函数同步训练题含答案

人教版数学九年级下册第28章锐角三角函数锐角三角函数同步训练题含答案

人教版数学九年级下册第28章锐角三角函数锐角三角函数同步训练题含答案1. 把Rt △ABC 各边的长度都扩展3倍失掉Rt △A′B′C′,那么锐角∠A 、∠A′的余弦值的关系是( )A .cosA =cosA′B .cosA =3cosA′C .3cosA =cosA′D .不能确定2. 以下式子错误的选项是( )A .cos40°=sin50°B .tan15°·tan75°=1C.sin 225°+cos 225°=1 D .sin60°=2s in30°3. 在Rt △ABC ,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( )A .sinA =32B .tanA =12 C.cosA =32D .以上都不对 4. 在Rt △ABC 中,∠C =90°,AB =13,AC =5,那么sinA 的值为( ) A.513 B .1213 C.512 D .1255. 在Rt △ABC 中,∠C =90°,AB =5,BC =3,那么tanA 的值是( ) A.34 B .43 C.35 D .456. 在Rt △ABC 中,∠C =90°,假定sinA =513,那么cosA 的值为( ) A.512 B .813 C.23 D .12137. 在Rt △ABC 中,∠C =90°,AB =4,AC =1,那么cosB 的值为( ) A.154 B .14 C.1515 D .417178. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,假定AC =2,BC =1,那么sin ∠ACD 的值为( )A.53 B .23 C.255 D .559.△ABC 中, ∠C =90°,AB =8,cosA =34,那么BC 的长______. 10. 如图,在Rt △ABC 中,∠C =90°.那么sinA =______,cosA =_______,tanA =_______.11. 假定0<∠A <90°,那么0____sinA_____1,0_____cosA_____1.12. 如图,在Rt △ABC 中,∠C =90°,BC =3cm ,AB =5cm ,那么,cosB =________.13. sin 2α+cos 2α=_____;tanα=____________.14. 如图,Rt △ABC 中,∠C =90°,BC =15,tanA =158,那么AB =______. 15.假定α为锐角,且cosα=1-3m 2,那么m 的取值范围是_______________. 16. 在如图的正方形方格纸中,每个小的四边形都是相反的正方形,ABCD 都在格点处,AB 与CD 相交于点O ,那么tan ∠BOD 的值等于____.17. α是锐角,化简:cos 2α-4cosα+4-|1-cosα|.18. :sinα+cosα=m ,sinα·cosα=n.试确定m 、n 之间的关系.19. 如图,在平面直角坐标系xOy 中,点A(2,1)和点B(3,0).求sin ∠AOB ,cos ∠ABO 的值.20. 如下图,在Rt △ABC 中,∠C =90°,D 是BC 边上的一点,AC =2,CD =1,记∠CAD =α.(1)试写出α的三个三角函数值;(2)假定∠B =α,求BD 的长.21. 小明在某次作业中失掉如下结果:sin 27°+sin 283°≈0.122+0.992=0.9945,sin 222°+sin 268°≈0.372+0.932=1.0018,sin 229°+sin 261°≈0.482+0.872=0.9873,sin 237°+sin 253°≈0.602+0.802=1.0000,sin 245°+sin 245°≈(22)2+(22)2=1. 据此,小明猜想:关于恣意锐角α,均有sin 2α+sin 2(90°-α)=1.(1)当α=30°时,验证:sin 2α+sin 2(90°-α)=1能否成立?(2)小明的猜想能否成立?假定成立,请给予证明;假定不成立,请举一个反例. 参考答案;1---8 BDCBB DBC9. 2710. BC AB BC AC BC AC11. < < < <12. 3513. 1 sinαcosα14. 1715. -13<m <1316. 317. 解:原式=cosα-22-|1-cosα|=|cosα-2|-|1-cosα|=-cosα+2-1+cosα=1.18. 解:∵sin 2α+cos 2α=1,∴(sinα+cosα)2-2sinα·cosα=1.∵sinα+cosα=m ,sinα·cosα=n ,∴m 2-2n =1.19. 解:过点A 作AC ⊥x 轴于C ,∵点A 的坐标为(2,1),点B 的坐标为(3,0),∴OC =2,AC =1,BC =1.∴OA =OC 2+AC 2=5,AB =AC 2+BC 2= 2.∴sin ∠AOB =AC OA =15=55,∴cos ∠ABO =BC AB =12=22.20. 解:(1)sinα=55,cosα=255,tanα=12; (2)BC =AC tanα=212=4,∴BD =BC -CD =4-1=3. 21. 解:(1)当α=30°时,sin 2α+sin 2(90°-α)=sin 230°+sin 260°=(12)2+(32)2=14+34=1; (2)小明的猜想成立,证明如下:如图在Rt △ABC 中,∠C =90°,设∠A =α,那么∠B =90°-α,∴sin 2α+sin 2(90°-α)=(BC AB )2+(AC AB )2=BC 2+AC 2AB 2=AB 2AB 2=1.。

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题《28.1 锐角三角函数》一、基础题1.如图,已知,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cosB 的值是( ) A.45 B.34 C.35 D.432.如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为( ) A.12 B.32 C.55 D.2553.已知在Rt △ABC 中,∠C =90°,sinA =35,则cosB 的值为( )A.74 B.35 C.34 D.454.如图,在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinB =( )A.35B.45C.34D.43 5.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( ) A .扩大2倍 B .缩小12C .不变D .无法确定6.在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,则sinA 的值是( )A.512B.125C.513D.12137.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若2a =3c ,则∠A 的正弦值等于 .8.如图所示,在Rt △ABC 中,∠C =90°,a ∶c =2∶3,求sinA 和sinB 的值.9.如图,在△ABC 中,∠C =90°,sinA =1213,AB =26,求△ABC 的周长.二、提升题10.如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A.12B.55C.1010D.255 11.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A.34B.43C.35D.4512.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,求BC 的长度.13.如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sinA =35,求DE 的长和菱形ABCD的面积.14.如图,已知⊙O 的半径为5 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,求cosP 的值.28.2 解直角三角形及其应用(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在中,,,,则边长为()A. B. C.或 D.或2. 如图,,,,,则A. B. C. D.3. 如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,这时,海轮所在的处与灯塔的距离为()A.海里B.海里C.海里D.海里4. 如图,在高为,坡角为的楼梯表面铺地毯,地毯的长度至少需要()A. B. C. D.5. 在离电视塔的处,测得塔顶仰角为,若测角仪高度为,则电视塔高为()A. B. C. D.6. 如图,沿方向开山修路,为加快施工进度,要在小山的另一边同时施工.现在上取一点,使,,,要使,,成一直线,那么开挖点离点的距离为()A. B. C. D.7. 如图,在中,,,,则A. B. C. D.8. 如图是一长为米的游泳池的纵切面,该游泳池的最浅处为米,最深处为米,底面为斜坡,则底面的坡度为()A. B. C. D.9. 在一次夏令营活动中,小亮从位于点的营地出发,沿北偏东方向走了到达地,然后再沿北偏西方向走了若干千米到达地,测得地在地南偏西方向,则,两地的距离为A. B. C. D.10. 如图,等腰的底角为,底边上的高,则腰、的值为()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在中,,,,那么________度.12. 小明同学从地出发沿北偏东的方向到地,再由地沿南偏西的方向到地,则________.13.在中,,,若,则的长度为________.14. 如图,岛在岛的北偏东,岛在岛的北偏西方向,且为海里,为海里,则________.15. 在中,,为边上的高,,则线段的长为________.16. 如图,一个小球由地面沿着坡度的坡面向上前进了,此时小球距离出发点的水平距离为________.17. 如图,,之间是一座山,一条高速公路要通过,两点,在地测得公路走向是北偏西.如果,两地同时开工,那么在地按________方向施工,才能使公路在山腹中准确接通.18. 如图,设,,为射线上一点,于,于,则等于________ (用、的三角函数表示)19. 如图,在点处测得塔顶的仰角为,点到塔底的水平距离是,那么塔的高度为________(结果保留根号).20. 如图,一幢大楼的顶部竖有一块写有“校训”的宣传牌.小明在山坡的底部处测得宣传牌底部的仰角为,沿山坡向上走到处测得宣传牌顶部的仰角为.已知山坡垂直于视线,米,米,则这块宣传牌的高度为________.(测角器的高度忽略不计,结果精确到米.参考数据:,).三、解答题(本题共计6 小题,共计60分,)21. 已知一艘轮船从港口出发以∕的速度向正东方向航行,后到港口,又从港口以同样的速度后航行到港口,此时在处测得港口位于港口的南偏西方向上,求该艘轮船以∕的速度返回到港口所需的时间.(精确到,参考数据:,,,,,)22. 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在处观测对岸点,测得=,小英同学在距处米远的处测得=,请你根据这些数据算出河宽.(精确到米,参考数据,)23. 如图,一幢居民楼临近山坡,山坡的坡度为,小亮在距山坡坡脚处测得楼顶的仰角为,当从处沿坡面行走米到达处时,测得楼顶的仰角刚好为,点,,在同一直线上,求该居民楼的高度.(结果保留整数,)24. 教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌,小明与同学们在山坡的坡脚处测得广告牌底部的仰角为,沿坡面向上走到处测得广告牌顶部的仰角为,已知山坡的坡度,=米,=米,求广告牌的高度.(测角器的高度忽略不计,结果精确到米,参考数据:,,,)25. 某课桌生产厂家研究发现,倾斜为的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图所示,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图中,当于时,测得,求此时支撑臂的长.(2)在图中,当不垂直时,测得,求此时的长(结果保留根号).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:∵,∴,当为钝角三角形时,如图,∵,,∴,∵,∴由勾股定理得,∴;当为锐角三角形时,如图,,故选.2.【答案】A【解答】解:由勾股定理知,,∴.∵,∴是直角三角形.∴.故选.3.【答案】A【解答】解:过点作于点.在中,∵海里,,∴海里.在中,∵海里,,∴海里.即海轮所在的处与灯塔的距离为海里.故选:.4.【答案】A【解答】解:由题意得:地毯的竖直的线段加起来等于,水平的线段相加正好等于,即地毯的总长度至少为,在中,,,.∵,∴.∴.故选.5.【答案】A【解答】解:根据题意画出相应的图形,如图所示:在中,,,则,即,又因为,则.故选.6.【答案】B【解答】解:由题意可得,,,∴要使,,成一直线,则,∴,故选.7.【答案】B【解答】解:作于点.由题意知,∵,∴,∵,∴.∵,∴.∴.故选.8.【答案】B解:因为水平距离为米,则底面的坡度为.故选.9.【答案】A【解答】解:如图.由题意可知,,,,.∵,∴又∵,∴.∴是直角三角形.又∵,∴.∴.∴.故选.10.C【解答】解:∵等腰的底角为,底边上的高,∴.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:在中,∵,,,∴,∴,∴(直角三角形的两个锐角互为余角).故答案是:.12.【答案】【解答】解:如图:由题意知,,,∴.故答案为: .13.【答案】【解答】解:∵,∴,∵,∴;故答案为:.14.【答案】【解答】解:过点作,∵岛在岛的北偏东,岛在岛的北偏西方向,,,∴,,∴,∴,∵为海里,为海里,∴海里,∴.故答案为:.15.【答案】或【解答】解:①如图,是锐角三角形时,∵,,∴是等边三角形,∴,②是钝角三角形时,∵,∴,∵,∴,∴,综上所述,线段的长为或.故答案为:或.16.【答案】【解答】解:∵米,.∴设,,由勾股定理得,,即,解得,∴,米.故答案为.17.【答案】北偏东【解答】解:在地按北偏东施工,就能使公路在山腹中准确接通.∵指北方向相互平行,、两地公路走向形成一条直线,∴这样就构成了一对同旁内角,∴,(两直线平行,同旁内角互补),∴可得在地按北偏东施工.故答案为:北偏东.18.【答案】【解答】解:∵于,于,∴,∴,,∴.故答案为:.19.【答案】【解答】∵在点处测得塔顶的仰角为,∴,∵,∴,20.【答案】米【解答】解:过作,交的延长线于,作于.中,∵,,∴,,∴.在中,∵,,∴.中,∵,,,∴,∴.答:宣传牌高约米.故答案为米.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.【解答】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.22.【答案】河宽为米.【解答】过作于,设=米,在中:=,==在中:=,,∴=解之得:=.23.【答案】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).【解答】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).24【答案】宣传牌高约米.【解答】过作于,,由(1)得:=,=,∴==,中,=,∴==.中,=,=,∴=.∴==.答:宣传牌高约米.25.【答案】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.【解答】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.。

(含答案)九年级数学人教版下册课时练第28章《28.1 锐角三角函数》(2)

(含答案)九年级数学人教版下册课时练第28章《28.1 锐角三角函数》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第28章锐角三角函数28.1锐角三角函数一、选择题1.如图,已知,在Rt△ABC 中,∠C=90°,AB=5,BC=3,则cosB 的值是()A.35B.45C.34D.432.计算2sin30°-2cos60°+tan45°的结果是()A.2D.13.如图,已知90ACB D Ð=Ð=°,下列条件中不能判断ABC 和BCD △相似的是()A.//AB CD B.BC 平分ABD ÐC.AB BDBC CD=D.AB BCBC BD=4.如图,在Rt ABC 中,90A Ð=°,1sin 3B =,2AC =,则BC 的长为()A.2B.4C.6D.85.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为点D.若AC=5,BC=2,则sin∠ACD 的值为()A.53B.255C.52D.236.已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,则sinA 与sinA′的关系为()A.sinA=2sinA′B.sinA=sinA′C.2sinA=sinA′D.不确定7.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值()A.不变B.缩小为原来的13C.扩大为原来的3倍D.不能确定8.在ABC 中,90C Ð=°,tan 2A =,则sin A 的值是()A.23B.13C.9.如果锐角a 的正切值为2,那么下列结论中正确的是()A.30a=°B.60a =°C.3045a °<<°D.4560a °<<°10.在Rt ABC 中,∠C=90°,∠B=60°,那么sinA+cosB 的值为()A.1B.14C.12D.2211.如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为点D.若AC=5,BC=2,则sin∠ACD 的值为()A.53B.255C.52D.2312.在Rt△ABC 中,∠C=90°,若AB=4,sinA=35,则斜边上的高等于()A.6425B.4825C.165D.125二、填空题13.在Rt△ABC 中,∠C=90°,a=20,c=202,则∠A=,∠B=,b=.14.在△ABC 中,∠C=90°,AC=2,BC=23,则∠A=.15.已知α,β均为锐角,且满足|sinα-12|+(tanβ-1)2=0,则α+β=.16.在等腰△ABC 中,AB=AC=5,BC=6,则cos A2=.17.在Rt△ABC 中,∠C=90°,AB=4,BC=2,则sin =.三、解答题19.如图,已知△OAB ,点A 的坐标为(2,2),点B 的坐标为(3,0).(1)求sin∠AOB 的值;(2)若点P 在y 轴上,且△POA 与△AOB 相似,求点P 的坐标.20.如图,在ABC 中90C Ð=°,30B Ð=°,AD 是BAC Ð的平分线,与BC 相交于点D ,且AB =AD 的长.21.(1)计算:2tan 60sin 45tan 452cos30°-°+°-°.(2)如图,在平面直角坐标系中,Rt ABC 的直角顶点C 的坐标为(1,0),点A 在x 轴正半轴上,且2AC =.将ABC 先绕点C 逆时针旋转90°,再向左平移3个单位,求变换后点A 的对应点的坐标.22.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan∠DCF 的值.23.已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.(1)求证:CA2=CE•CD;(2)已知CA=5,EA=3,求sin∠EAF.参考答案1.A.2.D.3.C.4.C.5.A6.B7.A8.A9.A 10.C 11.A 12.B13.45°,45°,20.14.60°.15.75°.16.45.17.0.5.18.m≥.19.(1)2;(2)点P 的坐标为(0,3)或(0,83).20.AD 的长为4.21.(1)12;(2)(2,2)-22.解:∵四边形ABCD 是矩形,∴AB=CD,∠D=90°.∵AB BC =23,且由折叠知CF=BC,∴CD CF =23.设CD=2x,CF=3x(x>0),∴DF=CF2-CD2=5x.∴tan∠DCF=DFCD=5x2x=52.23.解:。

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题) 含答案

人教版九年级数学下册28.1 锐角三角函数同步练习(填空题)  含答案

第28章锐角三角函数 同步学习检测(一)一、填空题:注意:填空题的答案请写在下面的横线上, (每小题3分,共96分) 1、 ;2、 ;3、 ;4、 ;5、 ; 6、 ;7、 ;8、 ;9、 ;10、 ; 11、 ;12、 ;13、 ;14、 ;15、 ; 16、 ;17、 ;18、 ;19、 ;20、 、 ;21、 ; 22、 ;23、 ; 24、 ; 25、 ;26、 ;27、 ;28、 ;29、 ;30、 ;31、 ;32、 ;1.(2009年济南)如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 .2.(2009年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 3. (2009仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)4.(2009年安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .5.(2009年桂林市.百色市)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电 线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).6.(2009湖北省荆门市)计算:104cos30sin 60(2)(20092008)-︒︒+---=______. 7.(2009年宁波市)如图,在坡屋顶的设计图中,AB AC =,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为 米.(结果精确到0.1米)8.(2009桂林百色)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).9.(2009丽水市)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB =AC =8 cm,将△MED 绕点A (M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积约是 ▲ cm 2(结果 精确到0.1,73.13≈)10.(09湖南怀化)如图,小明从A 地沿北偏东ο30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .11.(2009年孝感)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .12.(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 . 13.(2009年南宁市)如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶 的路程AB为 _____________海里(结果保留根号).14.(2009年衡阳市)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为_________.15.2009年鄂州)小明同学在东西方向的沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为____________米.16.(2009年广西梧州)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 cm .17.(2009宁夏)10.在Rt ABC △中,903C AB BC ∠===°,,, 则cos A 的值是 .18.(2009年包头)如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π). 19.(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).20.(2009年山东青岛市)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .ANBM21.(2009年益阳市)如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 . 22.(2009白银市)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B .C ,那么线段AO = cm .23. (2009年金华市) “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tan α的值等于 .24.(2009年温州)如图,△ABC 中,∠C=90°,AB=8,cosA=43,则AC 的长是 25.(2009年深圳市)如图,小明利用升旗用的绳子测量学校旗杆BC 的高度,他发现 绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30º角时,绳子末端D 距A 点还有1米,那么旗杆BC 的高度为 .26.(2009年深圳市)如图,在Rt △ABC 中,∠C=90º,点D 是BC 上一点,AD=BD , 若AB=8,BD=5,则CD= .27.(2009年黄石市)计算:1132|20093tan 303-⎛⎫+--+ ⎪⎝⎭°= .28..(2009年中山)计算:19sin 30π+32-0°+()= .29.(2009年遂宁)计算:()3208160cot 33+--o -= .30.(2009年湖州)计算:()02cos602009π9--+°= . 31.(2009年泸州)︒+--+-30sin 29)2009()21(01= . 32.(2009年安徽)计算:|2-|o 2o 12sin30(3)(tan 45)-+--+= . 二、解答题(每小题4分,24分)1.(2009年河北)图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?OEC D2.(2009年新疆乌鲁木齐市)九(1)班的数学课外小组,对公园人工湖中的湖心亭A 处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A 处测得南岸的一尊石雕C 在其东南方向,再向正北方向前进10米到达B 处,又测得石雕C 在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A 处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?3.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)BADC北东西南4. (2009山西省太原市)如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.5.(2009年中山)如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏ABC EF60°30°CDBA 北60°30°西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:3≈1.732,2≈1.414)6.(2009河池)如图,为测量某塔AB 的高度,在离该塔底部20米处目测其顶A ,仰角为60o ,目高1.5米,试求该塔的高度(3 1.7)≈.1.5C 60oA1.51.22 2. 16.1 3. 3.5 4. 2(32)- 5. 43 6. 327. 3.5 8. 43 9. 20.3 10. 100 11. 45(或0.8); 12. 33 13.. ()40340+ 14.1:215. 3200 16. 10 17. 53 18. π33-19..532 20. 10,22916n +(或23664n +)21. 3122. 5 23。

初中数学锐角三角函数提高题与常考题型和培优题

初中数学锐角三角函数提高题与常考题型和培优题

锐角三角函数提升题与常考题和培优题(含分析 )一.选择题(共11 小题)1.假如把一个锐角△ ABC的三边的长都扩大为本来的 3 倍,那么锐角 A 的余切值()A.扩大为本来的 3 被B.减小为本来的C.没有变化D.不可以确立2.在△ ABC中,∠ C=90°, AB=5,BC=4,那么∠ A 的正弦值是()A.B.C. D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sin αC.D.2cosα4.假如锐角α的正弦值为,那么以下结论中正确的选项是()A.α =30° B.α =45° C.30°<α< 45° D.45°<α< 60°5.如图,在 4× 4 的正方形方格中,△ ABC和△ DEF的极点都在边长为 1 的小正方形极点上,则tan ∠ACB的值为()A.B.C. D.3)6.在 Rt△ ABC中,各边都扩大 3 倍,则角 A 的正弦值(A.扩大 3 倍 B.减小 3 倍 C.不变 D.不可以确立7.如图,港口 A 在观察站 O的正东方向, OA=6km,某船从港口 A 出发,沿北偏东 15°方向航行一段距离后抵达 B 处,此时从观察站 O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3km B.3km C.4 km D.(3﹣3)km8.如图,在 2× 2 的网格中,以极点O为圆心,以 2 个单位长度为半径作圆弧,交图中格线于点A,则 tan ∠ ABO的值为()A. B.2C. D.39.如图,在网格中,小正方形的边长均为1,点 A,B,C 都在格点上,则∠ ABC 的正切值是()A.2B. C. D.10.如图,点 D( 0,3),O(0,0), C( 4, 0)在⊙ A 上, BD是⊙ A 的一条弦,则 sin ∠OBD=()A. B. C. D.11.如图,已知在 Rt△ ABC中,∠ ABC=90°,点 D沿 BC自 B 向 C运动(点 D 与点 B、C 不重合),作 BE⊥AD于 E,CF⊥AD于 F,则 BE+CF的值()A.不变B.增大C.减小D.先变大再变小二.填空题(共12 小题)12.假如等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.13.如图,△ ABC中∠ C=90°,若 CD⊥ AB于 D,且 BD=4,AD=9,则 tanA=.14.如图,在△ ABC中,∠ C=90°, AC=3, BC=2,边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,联络 DB,那么 tan ∠DBC的值是.15.如图,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB的底部A 处,利用对面楼 CD墙上玻璃(与地面垂直)的反光,测得楼 AB顶部B 处的仰角是α,若 tan α=,两楼的间距为 30 米,则小明家所住楼 AB的高度是米.16.如图,在边长同样的小正方形网格中,点A、B、C、 D 都在这些小正方形的极点上, AB,CD订交于点 P,则的值 =,tan∠APD的值=.17.如图,在半径为 3 的⊙ O中,直径 AB与弦 CD订交于点 E,连结 AC,BD,若AC=2,则 tanD=.18.如图,在直角坐标系中,点A,B 分别在 x 轴,y 轴上,点 A 的坐标为(﹣ 1,0),∠ ABO=30°,线段 PQ的端点 P 从点 O出发,沿△ OBA的边按 O→B→A→O运动一周,同时另一端点 Q随之在 x 轴的非负半轴上运动,假如 PQ=,那么当点 P运动一周时,点Q运动的总行程为.19.如图,丈量河宽AB(假定河的两岸平行),在 C 点测得∠ ACB=30°, D 点测得∠ ADB=60°,又 CD=60m,则河宽 AB为m(结果保存根号).20.如图,∠ AOB是搁置在正方形网格中的一个角,则cos∠AOB的值是.21.如图,P(12,a)在反比率函数图象上, PH⊥x 轴于 H,则 tan ∠POH的值为.22.已知 cosα=,则的值等于.23.如图,△ ABC 的三个极点分别在边长为 1 的正方形网格的格点上,则tan(α +β)tan α +tan β.(填“>”“ =”“<”)三.解答题(共17 小题)24.计算: cos245° +﹣ ? tan30 °.25.计算: 2cos230°﹣ sin30 ° +.26.如图,在△ ABC中,∠ C=150°, AC=4, tanB=.(1)求 BC的长;(2)利用此图形求 tan15 °的值(精准到,参照数据: =,=,=)27.如图,已知四边形 ABCD中,∠ ABC=90°,∠ ADC=90°, AB=6,CD=4,BC的延伸线与 AD的延伸线交于点 E.(1)若∠ A=60°,求 BC的长;(2)若 sinA= ,求 AD的长.(注意:本题中的计算过程和结果均保存根号)28.如图,在四边形 ABCD中,∠ BCD是钝角, AB=AD,BD均分∠ ABC,若CD=3,BD=, sin ∠DBC=,求对角线 AC的长.29.如图,在 Rt △ABC中,∠ ACB=90°, AC=BC=3,点 D在边 AC上,且 AD=2CD,DE⊥AB,垂足为点 E,联络 CE,求:(1)线段 BE的长;(2)∠ ECB的余切值.30.如图,在正方形ABCD中, M是 AD的中点, BE=3AE,试求 sin ∠ECM的值.31.如图,△ ABC中,∠ ACB=90°, sinA= , BC=8,D 是 AB中点,过点 B 作直线CD的垂线,垂足为点E.(1)求线段 CD的长;(2)求 cos∠ABE的值.32.如图,已知∠ MON=25°,矩形 ABCD的边 BC在 OM上,对角线 AC⊥ON.当AC=5 时,求 AD的长.(参照数据: sin25 ° =;cos25°=;tan25 °=,结果精准到)33.一副直角三角板如图搁置,点 C 在 FD的延伸线上,AB∥ CF,∠F=∠ACB=90°,∠E=45°,∠ A=60°, BC=10,试求 CD的长.34.已知:如图,在△ ABC中,∠ ABC=45°, AD是 BC边上的中线,过点D作 DE ⊥AB于点 E,且 sin ∠DAB=,DB=3.求:(1) AB的长;(2)∠ CAB的余切值.35.数学老师部署了这样一个问題:假如α,β都为锐角.且 tan α=,tan β=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图 1 和图 2.(1)请你分别利用图 1,图 2 求出α+β的度数,并说明原因;(2)请参照以上思虑问题的方法,选择一种方法解决下边问题:假如α,β都为锐角,当 tan α=5,tan β=时,在图 3 的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明原因.36.如图,点 P、M、Q在半径为 1 的⊙ O上,依据已学知识和图中数据(、为近似数),解答以下问题:( 1)sin60 °=;cos75°=;(2)若 MH⊥x 轴,垂足为 H, MH交 OP于点 N,求 MN的长.(结果精准到,参照数据:≈,≈)37.阅读下边的资料:某数学学习小组碰到这样一个问题:假如α,β都为锐角,且 tan α=,tan β=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ ABD=α,∠ CBE=β,且 BA,BC在直线 BD的双侧,连结 AC.(1)察看图象可知:α +β= °;(2)请参照该数学小组的方法解决问题:假如α,β都为锐角,当 tan α=3,tan β=时,在图 2 的正方形网格中,画出∠MON=α﹣β,并求∠ MON的度数.38.阅读以下资料:在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在 Rt △ABC中,∠ACB=90°, AB=1,∠ A=α,求 sin2 α(用含 sin α, cosα的式子表示).聪慧的小雯同学是这样考虑的:如图2,取 AB的中点 O,连结 OC,过点 C 作 CD ⊥AB于点 D,则∠ COB=2α,而后利用锐角三角函数在 Rt△ ABC中表示出 AC,BC,在 Rt△ ACD中表示出 CD,则能够求出sin2 α====2sin α ? cosα.阅读以上内容,回答以下问题:在 Rt△ ABC中,∠ C=90°, AB=1.( 1)如图 3,若 BC=,则 sin α=,sin2α=;(2)请你参照阅读资猜中的推导思路,求出 tan2 α的表达式(用含 sin α,cosα的式子表示).39.图 1 是小明在健身器械长进行仰卧起坐锻炼时情形.图2是小明锻炼时上半身由 EM 地点运动到与地面垂直的EN 地点时的表示图.已知BC=米, AD=米,α=18°.(sin18 °≈, cos18°≈, tan18 °≈)(1)求 AB的长(精准到米);(2)若测得 EN=米,试计算小明头顶由 M点运动到 N点的路径弧 MN的长度(结果保存π)40.某厂家新开发的一种电动车如图,它的大灯 A 射出的光芒 AB,AC 与地面 MN 所夹的锐角分别为 8°和 10°,大灯 A 与地面离地面的距离为 1m求该车大灯照亮地面的宽度 BC.(不考虑其余要素)(参数数据: sin8 °=,tan8 °=,sin10 °=,tan10 °=)锐角三角函数常考题型与分析参照答案与试题分析一.选择题(共 11 小题)1.( 2017? 奉贤区一模)假如把一个锐角△ ABC的三边的长都扩大为本来的 3 倍,那么锐角 A 的余切值()A.扩大为本来的 3 被B.减小为本来的C.没有变化D.不可以确立【剖析】依据△ ABC三边的长度都扩大为本来的 3 倍所得的三角形与原三角形相像,获得锐角 A 的大小没改变和余切的观点解答.【解答】解:因为△ ABC三边的长度都扩大为本来的 3 倍所得的三角形与原三角形相像,因此锐角 A 的大小没改变,因此锐角 A 的余切值也不变.应选: C.【评论】本题考察了锐角三角函数的定义,掌握在直角三角形中,一个锐角的余切等于它的邻边与对边的比值是解题的重点.2.(2017? 金山区一模)在△ ABC中,∠ C=90°, AB=5, BC=4,那么∠ A 的正弦值是()A. B. C. D.【剖析】依据 sinA= 代入数据直接得出答案.【解答】解:∵∠ C=90°, AB=5,BC=4,∴sinA== ,应选 D.【评论】本题考察了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.( 2017? 浦东新区一模)已知在Rt△ ABC中,∠ C=90°,∠ A=α, BC=2,那么AB的长等于()A. B.2sin αC. D.2cosα【剖析】依据锐角三角函数的定义得出sinA= ,代入求出即可.【解答】解:∵在 Rt△ ABC中,∠ C=90°,∠ A=α, BC=2,∴sinA= ,∴AB==,应选 A.【评论】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义是解本题的重点,注意:在 Rt△ ACB中,∠ ACB=90°,则 sinA= , cosA=,tanA=.4.( 2017? 静安区一模)假如锐角α 的正弦值为,那么以下结论中正确的选项是()A.α =30° B.α =45° C.30°<α< 45° D.45°<α< 60°【剖析】正弦值跟着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α< 45°,应选: C.【评论】本题考察了锐角三角形的增减性,当角度在0°~90°间变化时,①正弦值跟着角度的增大(或减小)而增大(或减小);②余弦值跟着角度的增大(或减小)而减小(或增大);③正切值跟着角度的增大(或减小)而增大(或减小).也考察了互余两角的三角函数之间的关系.5.( 2017? 莒县模拟)如图,在 4× 4 的正方形方格中,△ ABC和△ DEF的极点都在边长为 1 的小正方形极点上,则tan ∠ ACB的值为()A. B. C. D.3【剖析】依据勾股定理即可求出AC、BC、DE、DF的长度,而后证明△ FDE∽△ ABC,因此【解答】解:由勾股定理可求出:BC=2,AC=2,DF=,DE=,∴,,,∴,∴△ FDE∽△ CAB,∴∠ DFE=∠ACB,∴tan ∠DFE=tan∠ACB=,应选( B)【评论】本题考察解直角三角形,波及勾股定理,相像三角形的判断与性质.6.(2017 春?兰陵县校级月考)在Rt△ABC中,各边都扩3 倍,则角 A 的正大弦值()A.扩大 3 倍B.减小3 倍C.不变D.不可以确立【剖析】依据锐角三角函数的定义,可得答案.【解答】解:由题意,得Rt △ABC中,各边都扩大3 倍,则角 A 的正弦值不变,应选: C.【评论】本题考察了锐角三角函数的定义,利用锐角三角函数的定义是解题重点.7.( 2017? 兴化市校级一模)如图,港口 A 在观察站 O的正东方向, OA=6km,某船从港口 A 出发,沿北偏东 15°方向航行一段距离后抵达 B 处,此时从观察站 O 处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为()A.3km B.3km C.4 km D.(3﹣3)km【剖析】依据题意,能够作协助线AC⊥OB于点 C,而后依据题目中的条件,可以求得 AC和 BC的长度,而后依据勾股定理即可求得AB的长.【解答】解:作 AC⊥OB于点 C,如右图所示,由已知可得,∠COA=30°, OA=6km,∵AC⊥OB,∴∠ OCA=∠BCA=90°,∴OA=2AC,∠ OAC=60°,∴AC=3km,∠ CAD=30°,∵∠ DAB=15°,∴∠ CAB=45°,∴∠CAB=∠B=45°,∴BC=AC,∴AB=,应选 A.【评论】本题考察解直角三角形的应用﹣方向角问题,解答此类问题的重点是明确题意,利用在直角三角形中 30°所对的边与斜边的关系和勾股定理解答.8.(2017 春? 萧山区月考)如图,在2× 2 的网格中,以极点O 为圆心,以 2 个单位长度为半径作圆弧,交图中格线于点A,则 tan ∠ABO的值为()A. B.2C. D.3【剖析】连结 OA,过点 A 作 AC⊥ OB于点 C,由题意知 AC=1、OA=OB=2,从而得出 OC==、BC=OB﹣OC=2﹣,在 Rt △ABC中,依据 tan ∠ABO=可得答案.【解答】解:如图,连结 OA,过点 A 作 AC⊥OB于点 C,则 AC=1,OA=OB=2,∵在Rt △AOC中,OC===,∴ BC=OB﹣OC=2﹣,∴在 Rt △ABC中, tan ∠ABO===2+,应选: C.【评论】本题主要考察解直角三角形,依据题意建立一个以∠ ABO为内角的直角三角形是解题的重点.9.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B, C 都在格点上,则∠ABC的正切值是()A.2B. C. D.【剖析】依据勾股定理,可得AC、AB的长,依据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=, AB=2, BC=,∴△ ABC为直角三角形,∴tan ∠B==,应选: D.【评论】本题考察了锐角三角函数的定义,先求出 AC、AB的长,再求正切函数.10.( 2016? 攀枝花)如图,点D( 0, 3), O(0,0),C(4, 0)在⊙ A 上, BD 是⊙ A 的一条弦,则 sin ∠OBD=()A. B. C. D.【剖析】连结CD,可得出∠OBD=∠OCD,依据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin ∠ OBD 即可.【解答】解:∵ D(0,3),C(4,0),∴OD=3, OC=4,∵∠ COD=90°,∴CD==5,连结 CD,如下图:∵∠ OBD=∠OCD,∴sin ∠OBD=sin∠OCD==.应选: D.【评论】本题考察了圆周角定理,勾股定理、以及锐角三角函数的定义;娴熟掌握圆周角定理是解决问题的重点.11.( 2016? 娄底)如图,已知在Rt △ABC中,∠ ABC=90°,点 D 沿 BC自 B 向 C运动(点 D与点 B、C 不重合),作 BE⊥ AD于 E,CF⊥AD于 F,则 BE+CF的值()A.不变B.增大C.减小D.先变大再变小【剖析】设 CD=a,DB=b,∠DCF=∠DBE=α,易知 BE+CF=BC? cosα,依据 0<α<90°,由此即可作出判断.【解答】解:∵ BE⊥AD于 E,CF⊥AD于 F,∴CF∥BE,∴∠ DCF=∠DBF,设 CD=a, DB=b,∠ DCF=∠DBE=α,∴CF=DC? cosα, BE=DB? cosα,∴BE+CF=(DB+DC)cosα=BC?cosα,∵∠ ABC=90°,∴O<α< 90°,当点 D 从 B→D运动时,α是渐渐增大的,∴c osα的值是渐渐减小的,∴BE+CF=BC? cosα的值是渐渐减小的.应选 C.【评论】本题考察三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,获得 BE+CF=BC? cosα,记着三角函数的增减性是解题的重点,属于中考常考题型.二.填空题(共12 小题)12.( 2017? 普陀区一模)假如等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【剖析】如图,△ ABC中, AB=AC,AC:BC=5:6,作 AE⊥BC于 E,则 BE=EC,在Rt △AEC中,依据 cos∠C===,即可解决问题.【解答】解:如图,△ ABC中, AB=AC,AC:BC=5:6,作 AE⊥BC于 E,则 BE=EC,,在 Rt△ AEC中, cos∠ C===,故答案为.【评论】本题考察等腰三角形的性质,解直角三角形锐角三角函数等知识,解题的重点是娴熟掌握所学知识,掌握等腰三角形中的常用协助线,属于中考常考题型.13.( 2017? 宝山区一模)如图,△ ABC中∠ C=90°,若 CD⊥AB于 D,且 BD=4,AD=9,则 tanA=.CD的长度,而后根【剖析】先证明△ BDC∽△ CDA,利用相像三角形的性质求出据锐角三角函数的定义即可求出 tanA 的值.【解答】解:∵∠ BCD+∠ DCA=∠ DCA+∠A=90°,∴∠ BCD=∠A,∵ CD⊥AB,∴∠ BDC=∠CDA=90°,∴△ BDC∽△ CDA,2∴ CD=BD? AD,∴ CD=6,∴ tanA==故答案为:【评论】本题考察解直角三角形,波及锐角三角函数,相像三角形的判断与性质.14.( 2017? 青浦区一模)如图,在△ABC中,∠ C=90°, AC=3,BC=2,边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,联络 DB,那么 tan ∠DBC的值是.【剖析】由 DE垂直均分 AB,获得 AD=BD,设 CD=x,则有 BD=AD=3﹣ x,在直角三角形 BCD中,利用勾股定理求出 x 的值,确立出 CD的长,利用锐角三角函数定义求出所求即可.【解答】解:∵边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,∴AD=BD,设 CD=x,则有 BD=AD=AC﹣CD=3﹣x,在 Rt△ BCD中,依据勾股定理得:( 3﹣ x)2=x2 +22,解得: x=,则 tan ∠DBC==,故答案为:【评论】本题考察认识直角三角形,以及线段垂直均分线性质,娴熟掌握性质及定理是解本题的重点.15.( 2017? 黄浦区一模)如图,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB的底部 A 处,利用对面楼 CD墙上玻璃(与地面垂直)的反光,测得楼 AB顶部 B 处的仰角是α,若 tan α=,两楼的间距为 30 米,则小明家所住楼AB的高度是 27 米.【剖析】作 PE⊥ AB于点 E,在直角△ AEP中,利用三角函数求得 AE的长,依据AB=2AE即可求解.【解答】解:作 PE⊥AB于点 E,在直角△ AEP中,∠ APE=∠α,则 AE=PE? tan ∠ APE=30×=(米),则 AB=2AE=27(米).故答案是: 27.【评论】本题考察解直角三角形、仰角、俯角的定义,解题的重点是记着特别三角形的边之间关系,学会把问题转变为方程解决,属于中考常考题型.16.(2016? 自贡)如图,在边长同样的小正方形网格中,点A、B、C、D都在这些小正方形的极点上, AB,CD订交于点 P,则的值 = 3,tan∠APD的值=2.【剖析】第一连结 BE,由题意易得 BF=CF,△ACP∽△ BDP,而后由相像三角形的对应边成比率,易得 DP:CP=1:3,即可得 PF: CF=PF:BF=1:2,在 Rt△ PBF 中,即可求得 tan ∠ BPF的值,既而求得答案.【解答】解:∵四边形 BCED是正方形,∴DB∥AC,∴△ DBP∽△ CAP,∴==3,连结 BE,∵四边形 BCED是正方形,∴DF=CF=CD,BF=BE, CD=BE,BE⊥CD,∴BF=CF,依据题意得: AC∥BD,∴△ ACP∽△ BDP,∴DP:CP=BD:AC=1: 3,∴DP:DF=1:2,∴DP=PF=CF=BF,在 Rt△ PBF中, tan ∠BPF==2,∵∠ APD=∠BPF,∴ tan ∠APD=2,故答案为: 3,2.【评论】本题考察了相像三角形的判断与性质与三角函数的定义.本题难度适中,解题的重点正确作出协助线,注意转变思想与数形联合思想的应用.17.(2016? 枣庄)如图,在半径为 3 的⊙ O中,直径 AB与弦 CD订交于点 E,连接 AC, BD,若 AC=2,则 tanD= 2 .【剖析】连结 BC可得 RT△ACB,由勾股定理求得 BC的长,从而由 tanD=tanA= 可得答案.【解答】解:如图,连结 BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,∵ AB=6, AC=2,∴ BC===4,又∵∠ D=∠A,∴ tanD=tanA===2.故答案为: 2.BC构【评论】本题考察了三角函数的定义、圆周角定理、解直角三角形,连结造直角三角形是解题的重点.18.( 2016? 舟山)如图,在直角坐标系中,点 A,B 分别在 x 轴, y 轴上,点 A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P 从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x 轴的非负半轴上运动,假如PQ=,那么当点 P 运动一周时,点Q运动的总行程为4.【剖析】第一依据题意正确画出从O→B→A运动一周的图形,分四种状况进行计算:①点 P 从 O→B时,行程是线段 PQ的长;②当点 P 从 B→C时( QC⊥AB,C为垂足),点 Q从 O运动到 Q,计算 OQ的长就是运动的行程;③点 P 从 C→A时,点Q由 Q向左运动,行程为 QQ′;④点 P 从 A→O时,点 Q运动的行程就是点 P 运动的行程;最后相加即可.【解答】解:在 Rt△AOB中,∵∠ ABO=30°, AO=1,∴AB=2, BO==,①当点 P 从 O→B时,如图 1、图 2 所示,点 Q运动的行程为,②如图 3 所示, QC⊥AB,则∠ ACQ=90°,即 PQ运动到与 AB垂直时,垂足为P,当点 P 从 B→C时,∵∠ ABO=30°∴∠ BAO=60°∴∠ OQD=90°﹣ 60°=30°∴c os30°=∴AQ==2∴OQ=2﹣ 1=1则点 Q运动的行程为 QO=1,③当点 P 从 C→A时,如图 3 所示,点 Q运动的行程为 QQ′=2﹣,④当点 P 从 A→O时,点 Q运动的行程为 AO=1,∴点 Q运动的总行程为: +1+2﹣ +1=4故答案为: 4【评论】本题主假如应用三角函数定义来解直角三角形,本题的解题重点是理解题意,正确画出图形;线段的两个端点当作是两个动点,将线段挪动问题转变为点挪动问题.19.(2016? 新疆)如图,丈量河宽AB(假定河的两岸平行),在C 点测得∠ACB=30°, D点测得∠ ADB=60°,又 CD=60m,则河宽 AB为 30 m(结果保存根号).【剖析】先依据三角形外角的性质求出∠ CAD的度数,判断出△ ACD的形状,再由锐角三角函数的定义即可求出 AB的值.【解答】解:∵∠ ACB=30°,∠ ADB=60°,∴∠ CAD=30°,∴AD=CD=60m,在 Rt△ ABD中,AB=AD? sin ∠ADB=60×=30 (m).故答案为: 30 .【评论】本题考察的是解直角三角形的应用﹣方向角问题,波及到三角形外角的性质、等腰三角形的判断与性质、锐角三角函数的定义及特别角的三角函数值,难度适中.20.(2016? 港南区二模)如图,∠ AOB是搁置在正方形网格中的一个角,则cos ∠ AOB的值是.222222222【剖析】第一连结 AB,由勾股定理易求得 OA=1 +3 =10,AB=1 +3 =10,OB=2 +4 =20,而后由勾股定理的逆定理,可证得△AOB是等腰直角三角形,既而可求得cos∠AOB的值.【解答】解:连结 AB,222222222∵ OA=1 +3 =10, AB=1 +3 =10,OB=2+4 =20,222∴ OA+AB=OB,OA=AB,∴△ AOB是等腰直角三角形,即∠OAB=90°,∴∠ AOB=45°,∴cos∠AOB=cos45°=.故答案为:.【评论】本题考察了锐角三角函数的定义、勾股定理以及勾股定理的逆定理.本题难度不大,注意掌握协助线的作法,注意数形联合思想的应用.21.( 2016? 于田县校级模拟)如图,P( 12,a)在反比率函数图象上,PH⊥x 轴于 H,则 tan ∠POH的值为.【剖析】利用锐角三角函数的定义求解, tan ∠POH为∠ POH的对边比邻边,求出即可.【解答】解:∵ P(12,a)在反比率函数图象上,∴a==5,∵ PH⊥x 轴于 H,∴PH=5, OH=12,∴tan ∠POH=,故答案为:.【评论】本题主要考察了反比率函数图象上点的坐标特点,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.22.( 2016? 雅安校级模拟)已知 cosα=,则的值等于0.【剖析】先利用 tan α=获得原式 ==,而后把 cosα=代入计算即可.【解答】解:∵ tan α=,∴==,∵cosα=,∴==0.故答案为 0.【评论】本题考察了同角三角函数的关系:平方关系: sin 2 A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或 sinA=tanA ? cosA.23.( 2016?鞍山二模)如图,△ABC的三个极点分别在边长为 1 的正方形网格的格点上,则tan (α +β)>tan α +tan β.(填“>”“=”“<”)【剖析】依据正切的观点和正方形网格图求出tan α和 tan β,依据等腰直角三角形的性质和 tan45 °的值求出 tan (α +β),比较即可.【解答】解:由正方形网格图可知,tan α=,tan β=,则 tan α +tan β=+=,∵AC=BC,∠ ACB=90°,∴α +β=45°,∴ tan (α +β) =1,∴ tan (α +β)> tan α +tan β,故答案为:>.【评论】本题考察的是特别角的三角函数值、锐角三角函数的定义以及等腰直角三角形的性质,熟记特别角的三角函数值、正确理解锐角三角函数的定义是解题的重点.三.解答题(共17 小题)24.( 2017? 普陀区一模)计算: cos245°+﹣? tan30 °.【剖析】依据特别角三角函数值,可得答案.2=+﹣1=.【评论】本题考察了特别角三角函数值,熟记特别角三角函数值是解题重点.25.( 2017? 浦东新区一模)计算: 2cos230°﹣ sin30 ° +.【剖析】依据特别角三角函数值,可得答案.2=1++.【评论】本题考察了特别角三角函数值,熟记特别角三角函数值是解题重点.26.( 2016? 连云港)如图,在△ ABC中,∠ C=150°, AC=4,tanB=.(1)求 BC的长;(2)利用此图形求 tan15 °的值(精准到,参照数据: =,=,=)【剖析】(1)过 A 作 AD⊥BC,交 BC的延伸线于点 D,由含 30°的直角三角形性质得 AD=AC=2,由三角函数求出 CD=2,在 Rt △ABD中,由三角函数求出 BD=16,即可得出结果;(2)在 BC 边上取一点 M,使得 CM=AC,连结 AM,求出∠ AMC=∠MAC=15°,tan15 °=tan ∠ AMD=即可得出结果.【解答】解:(1)过 A 作 AD⊥ BC,交 BC的延伸线于点 D,如图 1 所示:在Rt△ADC中,AC=4,∵∠ C=150°,∴∠ ACD=30°,∴ AD=AC=2,CD=AC? cos30°=4× =2,在Rt△ABD中,tanB===,∴ BD=16,∴BC=BD﹣CD=16﹣2;(2)在 BC边上取一点 M,使得 CM=AC,连结 AM,如图 2 所示:∵∠ ACB=150°,∴∠ AMC=∠MAC=15°,tan15 °=tan ∠ AMD====2﹣≈≈.【评论】本题考察了锐角三角函数、含 30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;娴熟掌握三角函数运算是解决问题的重点.27.(2016? 包头)如图,已知四边形 ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延伸线与 AD的延伸线交于点 E.(1)若∠ A=60°,求 BC的长;(2)若 sinA= ,求 AD的长.(注意:本题中的计算过程和结果均保存根号)【剖析】(1)要求 BC 的长,只需求出 BE和 CE 的长即可,由题意能够获得 BE 和CE的长,本题得以解决;(2)要求 AD的长,只需求出 AE和 DE的长即可,依据题意能够获得 AE、 DE的长,本题得以解决.【解答】解:(1)∵∠ A=60°,∠ ABE=90°, AB=6,tanA=,∴∠ E=30°, BE=tan60° ? 6=6,又∵∠ CDE=90°, CD=4, sinE= ,∠ E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ ABE=90°, AB=6,sinA== ,∴设 BE=4x,则 AE=5x,得AB=3x,∴3x=6,得x=2,∴ BE=8, AE=10,∴tanE====,解得, DE=,∴AD=AE﹣DE=10﹣=,即 AD的长是.【评论】本题考察解直角三角形,解题的重点是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.28.( 2016? 厦门)如图,在四边形ABCD中,∠ BCD是钝角, AB=AD,BD均分∠ABC,若 CD=3,BD=,sin ∠ DBC=,求对角线 AC的长.【剖析】过 D 作 DE⊥BC交 BC的延伸线于 E,获得∠ E=90°,依据三角形函数的定义获得 DE=2,推出四边形 ABCD是菱形,依据菱形的性质获得 AC⊥BD,AO=CO,BO=DO=,依据勾股定理获得结论.【解答】解:过 D 作 DE⊥BC交 BC的延伸线于 E,则∠ E=90°,∵sin ∠DBC=,BD=,∴DE=2,∵ CD=3,∴CE=1, BE=4,∴BC=3,∴BC=CD,∴∠ CBD=∠CDB,∵BD均分∠ ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴ AB∥CD,同理 AD∥BC,∴四边形 ABCD是菱形,连结AC交 BD于 O,则 AC⊥ BD,AO=CO,BO=DO=,∴ OC==,∴ AC=2.【评论】本题考察了菱形的判断和性质,解直角三角形,正确的作出协助线是解题的重点.29.( 2016? 上海)如图,在 Rt△ ABC中,∠ ACB=90°, AC=BC=3,点 D 在边AC 上,且 AD=2CD, DE⊥AB,垂足为点 E,联络 CE,求:(1)线段 BE的长;(2)∠ ECB的余切值.【剖析】( 1)由等腰直角三角形的性质得出∠ A=∠B=45°,由勾股定理求出 AB=3,求出∠ ADE=∠A=45°,由三角函数得出 AE=,即可得出 BE的长;(2)过点 E 作 EH⊥BC,垂足为点 H,由三角函数求出 EH=BH=BE? cos45°=2,得出 CH=1,在 Rt△CHE中,由三角函数求出 cot ∠ECB==即可.【解答】解:(1)∵ AD=2CD,AC=3,∴AD=2,∵在 Rt △ABC中,∠ ACB=90°, AC=BC=3,∴∠ A=∠B=45°, AB===3,∵DE⊥AB,∴∠ AED=90°,∠ ADE=∠A=45°,∴AE=AD? cos45°=2× =,∴BE=AB﹣AE=3﹣=2,即线段 BE的长为 2;( 2)过点 E 作 EH⊥ BC,垂足为点 H,如下图:∵在 Rt △BEH中,∠ EHB=90°,∠ B=45°,∴EH=BH=BE? cos45° =2×=2,∵BC=3,∴ CH=1,在 Rt△ CHE中, cot ∠ ECB==,即∠ ECB的余切值为.【评论】本题考察认识直角三角形、勾股定理、等腰直角三角形的性质、三角函数;娴熟掌握等腰直角三角形的性质,经过作协助线求出 CH是解决问题( 2)的重点.30.( 2016? 厦门校级模拟)如图,在正方形ABCD中, M是 AD的中点, BE=3AE,试求 sin ∠ ECM的值.【剖析】依题意设 AE=x,则 BE=3x, BC=4x,AM=2x, CD=4x,先证明△ CEM 是直角三角形,再利用三角函数的定义求解.【解答】解:设 AE=x,则 BE=3x,BC=4x, AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,222∴ EM+CM=CE,∴△ CEM是直角三角形,∴sin ∠ECM==.【评论】本题考察了锐角三角函数值的求法.重点是利用勾股定理的逆定理证明直角三角形,把问题转变到直角三角形中求解.31.( 2016? 江西模拟)如图,△ ABC 中,∠ ACB=90°, sinA= ,BC=8,D 是AB 中点,过点 B 作直线 CD的垂线,垂足为点 E.(1)求线段 CD的长;(2)求 cos∠ABE的值.【剖析】(1)在△ ABC中依据正弦的定义获得 sinA== ,则可计算出 AB=10,而后依据直角三角形斜边上的中线性质即可获得 CD=AB=5;( 2)在 Rt △ABC中先利用勾股定理计算出 AC=6,在依据三角形面积公式获得S△ BDC=S△ ADC,则S△BDC=S△ABC,即 CD? BE=? AC? BC,于是可计算出BE=,而后在 Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ ABC中,∵∠ ACB=90°,∴sinA== ,而 BC=8,∴AB=10,∵D是AB中点,∴ CD=AB=5;( 2)在 Rt △ABC中,∵ AB=10,BC=8,∴ AC==6,∵D是 AB中点,∴BD=5, S△BDC=S△ADC,∴S△BDC=S△ABC,即 CD? BE=? AC? BC,∴BE==,在 Rt△ BDE中, cos∠ DBE===,即 cos∠ABE的值为.【评论】本题考察认识直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考察了直角三角形斜边上的中线性质和三角形面积公式.32.( 2016? 启东市二模)如图,已知∠MON=25°,矩形 ABCD的边 BC在 OM上,对角线 AC⊥ON.当 AC=5时,求 AD的长.(参照数据: sin25 °=;cos25°=;tan25 °=,结果精准到)【剖析】延伸 AC交 ON于点 E,如图,利用互余计算出∠OCE=65°,再利用对顶角相等获得∠ ACB=∠OCE=65°,接着在 Rt△ ABC中利用∠ ACB的余弦可计算出 BC,而后依据矩形的性质即可获得AD的长.【解答】解:延伸 AC交 ON于点 E,如图,∵AC⊥ON,∴∠ OEC=90°,在 Rt△ OEC中,∵∠ O=25°,∴∠ OCE=65°,∴∠ ACB=∠OCE=65°,∵四边形 ABCD是矩形,∴∠ ABC=90°, AD=BC,在Rt△ABC中,∵cos∠ACB=,∴ BC=AC? cos65°=5× =,∴ AD=BC=.【评论】本题考察认识直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵巧因为勾股定理、互余关系和三角函数关系.33.(2016? 松阳县二模)一副直角三角板如图搁置,点C在 FD的延伸线上, AB∥CF,∠ F=∠ACB=90°,∠ E=45°,∠ A=60°, BC=10,试求 CD的长.【剖析】过点 B 作 BM⊥ FD于点 M,依据题意可求出BC的长度,而后在△ EFD中可求出∠ EDF=45°,从而可得出答案.【解答】解:过点 B 作 BM⊥FD于点 M,在△ ACB中,∠ ACB=90°,∠ A=60°, BC=10,∴∠ ABC=30°, AC=10,∵AB∥CF,∴BM=BC×sin30 °=10× =5,CM=BC×cos30°=15,在△ EFD中,∠ F=90°,∠ E=45°,∴∠ EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.【评论】本题考察认识直角三角形的性质及平行线的性质,难度较大,解答此类题目的重点依据题意成立三角形利用所学的三角函数的关系进行解答.34.(2016? 闸北区二模)已知:如图,在△ ABC中,∠ ABC=45°, AD是 BC 边上的中线,过点 D 作 DE⊥ AB于点 E,且 sin ∠DAB=,DB=3.求:(1) AB的长;(2)∠ CAB的余切值.【剖析】(1)在 Rt△BDE中,求得 BE=DE=3,在 Rt △ADE中,获得 AE=4,依据线段的和差即可获得结论;( 2)作 CH⊥AB 于 H,依据已知条件获得BC=6,由等腰直角三角形的性质获得BH=CH=6,依据三角函数的定义即可获得结论.【解答】解:(1)在 Rt △BDE中, DE⊥ AB,BD=3∠ABC=45°,∴BE=DE=3,在 Rt△ ADE中, sin ∠ DAB=, DE=3,∴ AE=4, AB=AE+BE=4+3=7;(2)作 CH⊥AB于 H,∵AD是BC边上是中线,BD=3,∴ BC=6,。

28.1 锐角三角函数 同步作业(含答案)

28.1 锐角三角函数 同步作业(含答案)

练习8 锐角三角函数一、自主学习1.如图28-1所示,△ABC 中,∠C=90°,BC=a 、AC=b ,AB=c ,则s inA=_________,cosB=_________,tanB=_________.图28-12.sin30°=________,sin45°=________,sin60°=______.cos30°=_________,cos45°=_________,cos60°=_________.tan30°=_________,tan45°=________,tan60°=________.二、基础巩固3.Rt △ABC 中,∠C=90°、AB=10、AC=8,则sinA=________,cosB=_______.4.Rt △ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,若sinA ∶sinB=1∶2,则a ∶b=________5.Rt △ABC 中,∠C=90°,若tanB=34,则sinA=________. 6.Rt △ABC 中,∠C=90°,BC=10,S △ABC =3350,则∠A=________. 7.Rt △ABC 中,∠C=90°,∠A=60°,两直角边之和为14,则它的斜边长为_________. 8.若α为锐角,且tanα=3,则∠cosα=__________.9.计算︒︒+︒60sin 30cos 60tan =_______________. 10.计算cos 245°+tan30°·cos30°=__________. 11.Rt △ABC 中,∠C=90°,a=15,sinB=41,则b=__________. 12.△ABC 中,∠B=45°,∠C=60°,AC=4,则AB=__________.三、能力提高13.Rt △ABC 中,CD 是斜边AB 上的高,若AB=a ,∠B=α,则AD 等于( )A.asin 2αB.acos 2αC.asinα·cosαD.atanα14.若cosα≤23,则锐角α的取值范围是( ) A.0°<α≤30° B.α≥30° C.α≤60° D.30°≤α<90°15.Rt △ABC 中,CD 是斜边AB 上的高,若AD=2,BD=8,则tanA=( )A.4B.2C.21 D.41 16.菱形ABCD 中,对角线AC=10,BD=6,则sin 2A =( )[来源:Z|xx|] A.53 B.54 C.34343 D.34345 17.Rt △ABC 中,∠C=90°,则sin 2A+cos 2A 的值等于( )A.1B.2sin 2AC.(sinA+cosA)2D.018.计算︒+︒︒-︒46tan 2160cos 30sin 45cos 的值是( ) A.213- B.212- C.1 D.0 19.已知sinα·cosα=81,且α为锐角,则cosα-sinα的值为( ) A.23 B.23- C.43 D.23或23- 20.已知α为锐角,且tan α=3,则ααααsin cos 2cos 2sin +-的值为( ) A.31 B.41 C.51 D.61 四、模拟链接21.如图28-2所示,△ABC 中,∠B=90°、∠A=15°,试求tan75°的值.图28-122.计算:sin30°-sin45°·cos45°+sin60°·tan30°-tan45°·cos60°23.观察:sin30°=cos60°=21,且30°+60°=90° sin45°=cos45°=22,且45°+45°=90° sin60°=cos30°=23,且60°+30°=90° 若∠α+∠β=90°,且∠α、∠β为0°—90°范围内的任意两锐角,试确定sinα与cosβ之间的大小关系并说明理由.24.△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b ,c ,且718a b c a -=+,81=--a c b c 求sinA 、tanB 的值.参考答案一、自主学习1.如图28-1所示,△ABC 中,∠C=90°,BC=a 、AC=b ,AB=c ,则s inA=_________,cosB=_________,tanB=_________.图28-1 答案:c a c a ab 2.sin30°=________,sin45°=________,sin60°=______.cos30°=_________,cos45°=_________,cos60°=_________.tan30°=_________,tan45°=________,tan60°=________. 答案:21 22 23 23 22 21 23 1 3 二、基础巩固3.Rt △ABC 中,∠C=90°、AB=10、AC=8,则sinA=________,cosB=_______. 答案:53 53 4.Rt △ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,若sinA ∶sinB=1∶2,则a ∶b=________ 答案:1∶25.Rt △ABC 中,∠C=90°,若tanB=34,则sinA=________. 答案:53 6.Rt △ABC 中,∠C=90°,BC=10,S △ABC =3350,则∠A=________. 答案:60°7.Rt △ABC 中,∠C=90°,∠A=60°,两直角边之和为14,则它的斜边长为_________. 答案:314-14 8.若α为锐角,且tanα=3,则∠cosα=__________.答案:21 9.计算︒︒+︒60sin 30cos 60tan =_______________. 答案:310.计算cos 245°+tan30°·cos30°=__________.答案:111.Rt △ABC 中,∠C=90°,a=15,sinB=41,则b=__________. 答案:112.△ABC 中,∠B=45°,∠C=60°,AC=4,则AB=__________. 答案:62三、能力提高13.Rt △ABC 中,CD 是斜边AB 上的高,若AB=a ,∠B=α,则AD 等于( )A.asin 2αB.acos 2αC.a sinα·cosαD.atanα 答案:A14.若cosα≤23,则锐角α的取值范围是( ) A.0°<α≤30° B.α≥30° C.α≤60° D.30°≤α<90° 答案:D15.Rt △ABC 中,CD 是斜边AB 上的高,若AD=2,BD=8,则tanA=( )A.4B.2C.21 D.41 答案:B16.菱形ABCD 中,对角线AC=10,BD=6,则sin 2A =( )[来源:Z|xx|] A.53 B.54 C.34343 D.34345 答案:C17.Rt △ABC 中,∠C=90°,则sin 2A+cos 2A 的值等于( )A.1B.2sin 2AC.(sinA+cosA)2D.0 答案:A18.计算︒+︒︒-︒46tan 2160cos 30sin 45cos 的值是( ) A.213- B.212- C.1 D.0 答案:B19.已知sinα·cosα=81,且α为锐角,则cosα-sinα的值为( ) A.23 B.23- C.43 D.23或23- 答案:D20.已知α为锐角,且tan α=3,则ααααsin cos 2cos 2sin +-的值为( ) A.31 B.41 C.51 D.61 答案:C四、模拟链接21.如图28-2所示,△ABC 中,∠B=90°、∠A=15°,试求tan75°的值.图28-1答案:2+322.计算:sin30°-sin45°·cos45°+sin60°·tan30°-tan45°·cos60°答案:023.观察:sin30°=cos60°=21,且30°+60°=90° sin45°=cos45°=22,且45°+45°=90° sin60°=cos30°=23,且60°+30°=90° 若∠α+∠β=90°,且∠α、∠β为0°—90°范围内的任意两锐角,试确定sinα与cosβ之间的大小关系并说明理由.答案:sinα=cosβ提示:以α、β为两内角构造直角三角形)24.△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b ,c ,且718a b c a -=+,81=--a c b c 求sinA 、tanB 的值.答案:sinA=135,tanB=512. 。

秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学

秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学

第二十八章 锐角三角函数28.1 锐角三角函数第1课时 正弦01基础题知识点1 已知直角三角形的边长求锐角的正弦值如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.1.(某某中考)在Rt △ABC 中,∠C=90°,AC =12,BC =5,则sin A 的值为(D )A.512B.125 C.1213D.5132.已知△ABC 中,AC =4,BC =3,AB =5,则sin A =(A )A.35B.45C.53D.343.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是(A )A.35B.45C.34D.43第3题图 第4题图4. 如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sin A =35.5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是34.6.根据图中数据,求sin C 和sin B 的值.解:在Rt△ABC 中,BC =AB 2+AC 2=34, ∴sinC =AB BC =53434,sinB =AC BC =33434.7.如图所示,在Rt △ABC 中,∠ACB=90°,a∶c=2∶3,求sin A 和sin B 的值.解:在Rt△ABC 中,∠ACB =90°,a∶c =2∶3,设a =2k ,c =3k.(k>0)∴b =c 2-a 2=5k. ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =53.知识点2 已知锐角的正弦值,求直角三角形的边长8.(来宾中考)在△ABC 中,∠C=90°,BC =6,sin A =23,则AB 边的长是9.9.(某某中考)在△ABC 中,AB =AC =5,sin ∠ABC=0.8,则BC =6.易错点 对正弦的概念理解不清10.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定02中档题11.已知Rt △ABC∽Rt △A′B′C′,∠C=∠C′=90°,且AB =2A′B′,则sin A 与sin A′的关系为(B )A .sin A =2sin A ′ B.sin A =sin A ′ C .2sin A =sin A ′ D.不确定12.如图,在Rt △ABC 中,∠C=90°,AB =2BC ,则sin B 的值为(C )A.12B.22C.32D .1 13.在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c ,c =3a ,则sin A 的值是(A )A.13B.233 C .3 D .以上都不对14.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为点 D.若AC =5,BC =2,则sin ∠ACD 的值为(A )A.53 B.255 C.52 D.23第14题图 第16题图15.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =12.16.(某某中考)如图,⊙O 的直径CD =10 cm ,且AB⊥CD,垂足为P ,AB =8 cm ,则sin ∠OAP=35.17.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧OC 上一点,求∠OBC 的正弦值.解:连接OA 并延长交⊙A 于点D ,连接CD.∴∠OBC =∠ODC, ∠OCD =90°.∴sin∠OBC =sin∠ODC =OC OD =510=12.03综合题18.(某某中考)如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1=1;sin 2A 2+sin 2B 2=1;sin 2A 3+sin 2B 3=1.(1)观察上述等式,猜想:在Rt△ABC 中,∠C =90°,都有sin 2A +sin 2B =1;(2)如图4,在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sin A =513,求sin B .解:(2)∵在Rt△ABC 中,∠C =90°,sinA =a c ,sinB =b c ,∴sin 2A +sin 2B =a 2+b 2c2.∵∠C =90°, ∴a 2+b 2=c 2. ∴sin 2A +sin 2B =1.(3)∵sinA =513,sin 2A +sin 2B =1,且sinB >0,∴sinB =1-(513)2=1213.第2课时 锐角三角函数01基础题 知识点1 余弦如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.1.(某某中考)如图,在Rt △ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是(A )A.35B.45C.34D.432.在Rt △ABC 中,∠C=90°,cos A =35,AC =6 cm ,那么BC 等于(A )A .8 cm B.245 cmC.185 cm D.65cm 3.在△ABC 中,∠C=90°,AC =2,BC =1,求cos A 和cos B 的值.解:∵∠C =90°,AC =2,BC =1,∴AB =AC 2+BC 2=22+12= 5.cosA =AC AB =25=255,cosB =BC AB =15=55.知识点2 正切如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=a b.4.(某某中考)在Rt △ABC 中,∠C=90°,AB =5,BC =3,则tan A 的值是(A )A.34B.43C.35D.455.在4×4的正方形的网格中画出了如图所示的格点△ABC,则tan ∠ABC 的值为(D )A.31313 B.21313 C.32 D.23第5题图 第6题图6.(某某中考)如图,在△ABC 中,∠C=90°,AC =2,BC =1,则tan A 的值是12.7.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为115.知识点3 锐角三角函数∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.8.(某某中考)如图,在Rt △ABC 中,∠C=90°,BC =15,tan A =158,则AB =17.第8题图 第9题图9.(崇左中考)如图,在Rt △ABC 中,∠C=90°,AB =13,BC =12,则下列三角函数表示正确的是(A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =12510.在Rt △ABC 中,∠C=90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sinA =BC AB =2425,cosA =AC AB =725,tanA =BC AC =247.02中档题11.在△ABC 中,若三边BC ,CA ,AB 满足BC∶CA∶AB=5∶12∶13,则cos B =(C )A.512 B.125C.513 D.121312.(某某中考)在Rt △ABC 中,∠C=90°,若sin A =35,则cos B 的值是(B )A.45B.35C.34D.4313.将△AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点A 的坐标为(2,1),则tan ∠A′OB′的值为(A )A.12B .2 C.55 D.255第13题图 第14题图14.(某某中考)如图,在Rt △ABC 中,∠ACB=90°,AC =8,BC =6,CD⊥AB ,垂足为D ,则tan ∠BCD 的值是34.15.(某某中考)如图,在半径为3的⊙O 中,直径AB 与弦CD 交于点E ,连接AC ,B D.若AC =2,则cos D =13.16.(某某中考)如图,在△ABC 中,CD⊥AB,垂足为D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt△ACD 中,CD =6,tanA =32,∴CD AD =6AD =32,即AD =4. 又AB =12,∴BD =AB -AD =8.在Rt△BCD 中,BC =CD 2+BD 2=10.∴sinB =CD BC =610=35,cosB =BD BC =810=45.∴sinB +cosB =35+45=75.17.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23.设CD =2x ,CF =3x (x>0),∴DF =CF 2-CD 2=5x. ∴tan∠DCF =DF CD =5x 2x =52.03综合题18.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作c tan α,即c tan α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)c tan 30°=3;(2)如图,已知tan A =34,其中∠A 为锐角,试求c tan A 的值.解:∵tanA =34,且tanA =BC AC,∴设BC =3x ,AC =4x. ∴ctanA =AC BC =4x 3x =43.第3课时 特殊角的三角函数值01基础题知识点1 特殊角的三角函数值填写下表:30° 45° 60° sin α 12 22 32 cosα 32 22 12 tanα33131.已知∠A=30°,下列判断正确的是(A )A .sin A =12B .cos A =12C .tan A =12D .cot A =122.计算:cos 230°=(D )A.12B.14C.32D.34 3.(某某中考)计算:cos 245°+sin 245°=(B )A.12B .1 C.14 D.224.计算:tan 45°+2cos 45°=2. 5.计算:(1)sin 30°+cos 45°; 解:原式=12+22=1+22.(2)cos30°·tan30°-tan 245°; 解:原式=32×33-12=12-1=-12. (3)22sin45°+sin60°·cos45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角6.(某某中考)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是(D )A .30° B.45° C.60° D.90° 7.如果在△ABC 中,sin A =cosB =22,那么下列最确切的结论是(C ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形8.已知α为锐角,且cos (90°-α)=12,则α=30°.9.在△ABC 中,∠C=90°,AC =2,BC =23,则∠A=60°.知识点3 用计算器计算三角函数值10.用计算器计算cos 44°的结果(精确到0.01)是(B )A .0.90B .0.72C .0.6911.如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是(D )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=12.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sinA =sin18°36′≈0.319 0,cosA =cos18°36′≈0.947 8, tanA =tan18°36′≈0.336 5.13.已知下列正(余)弦值,用计算器求对应的锐角(精确到0.1°).(1)sin α=0.822 1; 解:α≈55.3°.(2)cos β=0.843 4. 解:β≈32.5°.02中档题14.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是(B )A.(32,12) B.(-32,-12)C.(-32,12) D.(-12,-32)15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D)A.40° B.30° C.20° D.10°16.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为(D)A.12B.33C.22D.3217.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=2,则点B的坐标为(C) A.(2,1) B.(1,2)C.(2+1,1) D.(1,2+1)第17题图第18题图18.(某某中考)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接C B.若⊙O的半径为2,∠ABC=60°,则BC=8.19.计算:(1)(某某中考改编)2 0180+(-1)2-2tan45°+4;解:原式=1+1-2×1+2=2.(2)(-1)-2+|2-3|+(π-3.14)0-tan60°+8.解:原式=1+(3-2)+1-3+2 2=2+ 2.20.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0, 得x 1=1,x 2= 3.由题意知tanA =1或tanA = 3.∴∠A =45°或60°.21.(原创题)如图,在等腰△ABC 中,AB =AC =1.(1)若BC =2,求△ABC 三个内角的度数; (2)若BC =3,求△ABC 三个内角的度数.解:(1)∵AB =AC =1,BC =2,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∠B =∠C =45°.(2)过点A 作AD⊥BC,垂足为D.∵AB =AC =1,AD⊥BC, ∴BD =12BC =32.∴cosB =BD AB =321=32.∴∠B =30°.∴∠C =30°,∠BAC =120°.03综合题22.(某某中考)一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如:sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24. 解直角三角形及其应用 28. 解直角三角形01基础题知识点1 已知两边解直角三角形如图,已知两边:(1)已知a ,b ,则c =a 2+b 2,sin A =cos B =a c,sin B =cos A =bc ,tan A =a b ,tan B =b a;(2)已知a ,c ,则b =c 2-a 2,sin A =cos B =a c ,sin B =cos A =b c ,tan A =a b ,tan B =b a. 1.在△ABC 中,∠C=90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cos A 的值是(A )A.35B.45C.43D.543.在Rt △ABC 中,∠C=90°,a =20,c =202,则∠A=45°,∠B =45°,b =20. 4.如图,在Rt △ABC 中,∠C=90°,已知BC =26,AC =62,解此直角三角形.解:∵tanA =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边一锐角解直角三角形如图,已知一边一角:(1)已知a ,∠A ,则∠B =90°-∠A ,c =a sinA ,b =a tanA; (2)已知c ,∠A ,则∠B =90°-∠A ,a =c·sinA .5.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB =8,则BC 的长是(D )A.433B .4C .8 3D .4 36.在Rt △ABC 中,∠C=90°,tan A =43,BC =8,则△ABC 的面积为(C )A .12B .18C .24D .487.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC =32,则AC =24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8.(教材9下P 73例2变式)如图,在Rt △ABC 中,∠C=90°,∠B=55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:根据题意,∠A =90°-∠B =90°-55°=35°. 根据正弦定义,sinB =AC AB,则AB =AC sinB =4sin55°≈4.9.根据正切的定义,tanB =AC BC,则BC =AC tanB =4sin55°≈2.8.所以△ABC 的另一个锐角度数为35°,另一条直角边长为2.8,斜边长为4.9. 易错点 忽视钝角三角形而致错9.在△ABC 中,AB =23,AC =2,∠B=30°,则BC 的长为2或4.02中档题10. 如图,在△AB C 中,∠C=90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC的长是(A )A .4 cmB .6 cmC .8 cmD .10 cm11.(某某中考)在△ABC 中,AB =122,AC =13,cos B =22,则BC 边长为(D )A .7B .8C .8或17D .7或1712.(某某中考)如图,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =43.第12题图 第13题图13.(某某中考)如图,在菱形ABCD 中,DE⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是2.14.(某某中考)如图,在△ABC 中,BD⊥AC,AB =6,AC =53,∠A=30°.(1)求BD 和AD 的长; (2)求tan C 的值.解:(1)∵BD⊥AC,∴∠ADB =∠BDC =90°.在Rt△ADB 中,AB =6,∠A =30°,∴BD =12AB =3.∴AD =3BD =3 3.(2)CD =AC -AD =53-33=23, 在Rt△BDC 中,tanC =BD CD =323=32.15.(某某中考)如图,在四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC 的长; (2)若sin A =45,求AD 的长.解:(1)∵在Rt△ABE 中,∠ABE =90°,∠A =60°,AB =6,tanA =BE AB,∴BE =6·tan60°=6 3.∵在Rt△CDE 中,∠CDE =90°,∠E =90°-60°=30°, CD =4, ∴CE =2CD =8.∴BC =BE -CE =63-8.(2) ∵在Rt△ABE 中,∠ABE =90°,sinA =45,∴BE AE =45. 设BE =4x ,则AE =5x (x >0).∵AE 2-BE 2=AB 2,∴(5x )2-(4x )2=62.∴x =2. ∴BE =8,AE =10.∵在Rt△CDE 中,∠CDE =90°,CD =4,tanE =CD ED ,而在Rt△ABE 中,tanE =AB BE =68=34,∴CD ED =34. ∴ED =43CD =163.∴AD =AE -ED =143.03综合题16. 如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,且sin B =22,tan A =12,AC =3 5. (1)求∠B 的度数与AB 的长; (2)求tan ∠CDB 的值.解:(1)作CE⊥AB 于E ,设CE =x , 在Rt△ACE 中,∵tanA =CE AE =12,∴AE =2x.∴AC =x 2+(2x )2=5x. ∴5x =35,解得x =3. ∴CE =3,AE =6.在Rt△BCE 中,∵sinB =22, ∴∠B =45°.∴△BCE 为等腰直角三角形. ∴BE =CE =3. ∴AB =AE +BE =9.(2)∵CD 是边AB 上的中线,∴BD =12AB =4.5.∴DE =BD -BE =-3=1.5. ∴tan∠CDE =CEDE=错误!=2,即tan∠CDB 的值为2.28.2.2 应用举例第1课时 与视角有关的解直角三角形应用题01基础题知识点1 利用解直角三角形解决简单问题1. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B=36°,则中柱AD(D 为底边中点)的长是(C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米第1题图 第2题图2.(教材9下P 74例3变式)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q.若∠QAP=α,地球半径为R ,则航天飞船距离地球表面最近距离AP =Rsinα-R. 3.(某某中考)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).如图,在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)解:过点C 作CD⊥AB,垂足为D.∵∠CAB =30°, ∴AD =3CD. ∵∠CBA =60°,∴DB =33CD. ∵AB =AD +DB =30,∴3CD +33CD =30. ∴CD =1523=152×1.73≈13(米).答:河的宽度约为13米.知识点2 解与视角有关的实际问题4.(教材9下P 75例4变式)(某某中考)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为(A )A .160 3 mB .120 3 mC .300 mD .160 2 m5.(某某中考)如图,两幢建筑物AB 和CD ,AB⊥BD,CD⊥BD,AB =15 m ,CD =20 m ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B ,E ,D 在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1 m ,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:由题意,得∠AEB =42°,∠DEC =45°.∵AB⊥BD,CD⊥BD,∴在Rt△ABE 中,∠ABE =90°. ∵AB =15,∠AEB =42°, tan∠AEB =ABBE ,∴BE =15tan42°=503.在Rt△DEC 中,∠CDE =90°,∠DEC =45°,CD =20.∴ED =CD =20.∴BD =BE +ED =503+(m ).答:两幢建筑物之间的距离BD 约为36.7 m.易错点 混淆三点函数的数量关系而导致错误6.(某某中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为(C )A.30tanα米 B .30sinα米 C .30tanα米 D .30cosα米 02中档题7. (某某中考)某某市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=CE AE ,∴CE=AE·tan60°=153米.在Rt△ABE中,tan∠BAE=BEAE=17+15315,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.8.(某某中考)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)解:(1)由题意知∠ABP=30°,AP=97,∴AB=APtan∠ABP =97tan30°=9733=973≈168.答:主桥AB的长度约为168 m.(2)∵∠ABP=30°,AP=97,∴PB=2PA=194.又∵∠DBC=∠DBA=90°,∠PB A=30°,∴∠DBP=∠DPB=60°.∴△PBD是等边三角形.∴DB=PB=194.在Rt△BCD中,∵∠C=80°36′,∴BC=DBtanC =194tan80°36′≈32.答:引桥BC的长约为32 m.03综合题9.(六盘水中考)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5米;②小明的影长CE=1.7米;③小明的脚到旗杆底部的距离BC=9米;④旗杆的影长BF=7.6米;⑤从D点看A点的仰角为30°.请你选择需要的数据,求出旗杆的高度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)情况一:选用①,②,④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.则△ABF∽△DCE.∴ABDC=FBEC.又∵DC =1.5 m ,FB =7.6 m ,EC =1.7 m ,∴AB≈6.7 m.即旗杆高度约为6.7 m. 情况二: 选用①,③,⑤. 过D 点作DG⊥AB 于G 点, ∵AB⊥FC,DC⊥FC,∴四边形BCDG 为矩形. ∴CD =BG =1.5 m ,DG =BC =9 m.在Rt△AGD 中,∠ADG =30°,tan30°=AG DG,∴AG =3 3 m.又AB =AG +GB ,∴AB =33+(m).∴旗杆高度约为6.7 m.第2课时 与方位角、棱角有关的解直角三角形应用问题01基础题知识点1 解与方位角有关的实际问题1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是(A )A .250米B .2503米 C.50033米 D .5002米第1题图 第2题图2.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.则船继续航行50海里与钓鱼岛A的距离最近.3.(某某中考)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)解:过P作PC⊥AB于C,在Rt△APC中,AP = 200 m,∠ACP =90°,∠PAC =60°.∴PC= 200×sin60°=200 ×32=1003(m).∵在Rt△PBC中,sin37°=PCPB ,∴PB=PCsin37°=错误!≈288(m).答:小亮与妈妈相距约288米.知识点2解与坡角有关的实际问题4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为(A) A.12米 B.43米C.53米 D.63米第4题图第5题图5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是35米.6.(教材9下P77练习T2变式)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BEAE=错误!,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=3CF=203米.∴AD=AE+EF+FD=50+6+203(米).答:坝底AD的长度约为米.02中档题7.(某某中考)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意,得∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD.∴BC =AC =200海里.在Rt△ACD 中,设CD =x ,则AC =2x ,AD =AC 2-CD 2=(2x )2-x 2=3x. 在Rt△ABD 中,AB =2AD =23x ,BD =AB 2-AD 2=(23x )2-(3x )2=3x.又∵BD =BC +CD ,∴3x =200+x ,解得x =100.∴AD =3x =1003≈173.2.海里>170海里,且D 处距离A 处最近,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.8.(某某中考)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡角为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1 790 m .如图,DE∥BC,BD =1 700 m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1 m )解:过点D 作DF⊥BC 于点F ,延长DE 交AC 于点M. 由题意,得EM ⊥AC,DF =CM ,∠AEM =29°, 在Rt△DFB 中,sin80°=DFBD,∴DF =BDsin80°.AM =AC -CM =1 790-1 700sin80°.在Rt△AME 中,sin29°=AM AE,∴AE =AM sin29°=1 790-1 700sin80°sin29°(m ),答:斜坡的长度约为238.9 m. 03综合题9.(黔东南中考)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学测量学校附近一电线杆的高,如图,已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m ,参考数据:2≈1.4,3≈1.7)解:延长AD交BC的延长线于点G,过点D作DH⊥BG,垂足为点H,则∠G=30°.∵在Rt△DHC中,∠DCH=60°,CD=4,∴C H=CD·cos∠DCH=4×cos60°=2.DH=CD·sin∠DCH=4×sin60°=2 3.又∵DH⊥BG,∠G=30°,∴HG=DHtanG =23tan30°=6.∴CG=CH+HG=2+6=8.设AB=x m.又∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x.∴BG=ABtanG =xtan30°=3x.∵BG-BC=CG,∴3x-x=8.解得x≈11 m.答:电线杆的高(AB)约为11 m.小专题17解直角三角形的实际应用1.(某某月考)如图,在一次测量活动中,小华站在离旗杆底部(B)处6 m的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5 m.试帮助小华求出旗杆AB的高度.(结果精确到0.1 m,3≈1.732)解:过点E作EC⊥AB于C.∵CE=BD=6 m,∠AEC=60°,∴AC=CE·tan60°=6×3=63(m).∴AB=AC+DE=+=(m).答:旗杆AB的高度约为11.9 m.2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我国海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).解:(1)如图.(2)AB=30×=15(海里).在Rt△ABC中,tan∠BAC=BC AB ,∴BC=AB·tan∠BAC=AB·tan30° =15×33=53(海里).答:钓鱼岛C 到B 处距离为53海里.3.(某某中考)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道A B.如图,在山外一点C 测得BC 距离为200 m ,∠CAB =54°,∠CBA =30°,求隧道AB 的长.(参考数据: sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,结果精确到个位)解:过点C 作CD⊥AB 于D ,在Rt△BCD 中,∵∠B =30°,BC =200,∴CD =12BC =100,BD =1003≈173.在Rt△ACD 中,∵tan∠CAB =CD AD ,∴AD =100tan54°≈72.∴AB =AD +BD≈245.答:隧道AB 的长约为245米.4.(黔东南中考)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,2,3≈1.73,4≈2.24)解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD =12米,∠DCE =60°, ∴DE =CD·sin60°=12×32=63(米), CE =CD·cos60°=12×12=6(米).易知:四边形DEE′D′是矩形.∴DE =D′E′=63米. ∵∠D′CE′=39°,∴CE′=D′E′tan39°≈错误!≈12.8,∴EE′=CE′-CE =-6=(米). ∴DD′=EE′=米.答:学校至少要把坡顶D 向后水平移动米才能保证教学楼的安全.5.(某某中考)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF⊥BC 于F ,∠CDF=45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)解:设BM =x 米.∵∠CDF =45°,∠CFD =90°, ∴CF =DF =x 米.∴BF =BC -CF =(4-x )米. ∴EN =DM =BF =(4-x )米.∵AB =6米,DE =MN =1米,BM =x 米, ∴AN =AB -MN -BM =(5-x )米.在△AEN 中,∠ANE =90°,∠EAN =31°,∴EN =AN·tan31°,即4-x =(5-x ). ∴x =2.5.答:DM 和BC 的水平距离BM 的长度约为米.6.(某某中考)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面距离BD 的长为0.6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m ,参考数据:2≈1.41,sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h =m ; (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?解:过C 点作CM⊥DF,CE⊥OD,垂足分别为M ,E ,∵在Rt△CEO 中,∠CEO =90°, ∠COE =55°, ∴cos∠COE =OEOC.∴OE =OC·cos∠COE =3·cos55°≈1.7 m. ∴ED =3+-=(m ).∴CM =ED =1.9 m <2 m.∴此人是安全的.章末复习(八) 锐角三角函数01分点突破知识点1 求锐角三角函数值1.如图,在Rt △ABC 中,∠BAC=90°,AD⊥BC 于点D ,则下列结论不正确的是(C )A .sinB =AD AB B .sin B =AC BC C .sin B =AD ACD .sin B =CD AC第1题图第3题图2.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是(D )A.13B .3 C.24D .2 2 3.如图,在△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cos C =23.知识点2 特殊角的三角函数值(某某2016T19、2015T19、2014T19) 4.在△ABC 中,若(3tan A -3)2+|2cos B -3|=0,则△ABC 为(A )A .直角三角形B .含60°角的任意三角形C .等边三角形D .顶角为钝角的等腰三角形5.(某某中考改编)计算:(π-2 016)0+|1-2|+2-1-2sin 45°=12.知识点3 解直角三角形及其应用(某某2017T22、2016T21、2015T21、2014T21、2013T21) 6.在△ABC 中,∠C =90°,AB =2,BC =3,则tan A 2=33.7.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)解:过点A 作AH⊥CD,垂足为H. 则AB =DH =米,BD =AH =6米.在Rt△ACH 中,∵∠CAH =30°,tan∠CAH =CH AH,∴CH =AH·tan∠CAH =6·tan30°=23(米). ∴CD =CH +HD =(23+)米.在Rt△CDE 中,∵∠CED =60°,sin∠CED =CD CE,∴CE =CDsin60°=4+3(米).答:拉线CE 的长约为米.02中考题型演练8.(某某中考)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是(A )A .5米B .6米C .6.5米D .12米第8题图 第9题图9.(某某中考) △ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列四个选项中,错误的是(C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=110.(某某中考)如图,⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的半径为33.第10题图 第12题图11.(某某中考) △ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是213或153.12.(某某中考)如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为1002米.(结果保留根号)13.(某某中考)如图,一楼房AB 后有一座假山,其坡度为i =1∶3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)解:过点E 作EF⊥BC 的延长线于点F ,EH⊥AB 于点H , 在Rt△CEF 中,∵i =EFCF=13=tan∠ECF, ∴∠ECF =30°.∴EF =12CE =10米,CF =103米.∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt△AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米. ∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米.14.(某某中考)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)解:(1)过点B作BH⊥CA,交CA的延长线于点H.∵∠MBC=60°.∴∠CBA=30°.∵∠NAD=30°,∴∠BAC=120°.∴∠C=180°-∠BAC-∠CBA=30°.∴BH=BC·sin∠BCA=150×12=75海里.答:B点到直线CA的距离是75海里.(2)∵在Rt△BDH中,BD=752海里,BH=75海里,∴DH=BD2-BH2=75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH=3,∴AH=253海里.∴AD=DH-AH=(75-253)海里.答:执法船从A到D航行了(75-253)海里.。

28.1 锐角三角函数 题目

28.1 锐角三角函数 题目
2、已知:α为锐角,且满
足 3tan 数。 3、在Rt△ABC中,∠C=90°,化简
2
-4tan + 3 =0 ,求α的度
1-2sinAcosA
知识回顾 1.在Rt△ABC中,∠C=90°,AC=4,BC=3,则
AB= 5 ,sinA = 3 tanA = 4 .
cosB=
5
3 5
, cosA=
A
D
C
E
B
你能利用直角三角形的三边关系得到 sinA的取值范围吗?
0<sin A<1
正弦函数 如图,在Rt△ABC中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦(sine),记作 B sinA 即
A的对边 a sin A 斜边 c
斜边 A
c
a 对边 C
b
例如,当∠A=30°时,我们有
c a A b ┌ C
300
450
450

600

P13 习题1.3 3题
独立 作业
3.如图,身高1.5m的小丽用一个两锐角分别是300和600 的三角尺测量一棵树的高度.已知她与树之间的距离为 5m,那么这棵树大约有多高?
做一做P8 6
知识的内在联系
如图:在Rt△ABC中,∠C=900,AC=10, cos 求:AB,sinB. 怎样 思考?
cos45 tan45 (2) sin 45
(3)tan450.sin450-4sin300.cos450+cos2300

练习
1.求下列各式的值: (1)1-2 sin30°cos30° (2)3tan30°-tan45°+2sin60°
cos60 1 (3) 1 sin 60 tan30

第28章《锐角三角函数》好题集(01):28.1 锐角三角函数

第28章《锐角三角函数》好题集(01):28.1 锐角三角函数

第28章《锐角三角函数》好题集(01):28.1锐角三角函数第28章《锐角三角函数》好题集(01):28.1 锐角三角函数选择题22.(2001•黑龙江)已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程(b+c)x2﹣2ax+c﹣b=03.(2001•河北)已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程的两根4.已知α是锐角,且点A(,a),B(sinα+cosα,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,5.(2010•临沂)菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是(),﹣)2+,﹣)6.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积是()7.(2002•崇文区)如图,菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α,则下列式子正确的是()=8.(2010•兰州)如图,正三角形的内切圆半径为1,那么三角形的边长为()C D9.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C D10.(2008•昆明)如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为().C D.11.如图a是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的tan∠DHF的度数是().C.12.(2010•漳州)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是().C D.13.(2010•孝感)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是().C D.15.(2010•包头)已知在Rt△ABC中,∠C=90°,sinA=,则tan B的值为().C D.16.(2009•绥化)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是().C D.17.(2008•淄博)如图,在Rt△ABC中,tanB=,BC=2,则AC等于()18.(2008•内江)如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA等于().C D.19.(2008•海南)如图所示,Rt△ABC∽Rt△DEF,则cosE的值等于().C D.20.(2008•甘南州)在正方形网格中,∠α的位置如图所示,则sinα的值为().C D..C D..C D.23.(2006•辽宁)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为().C D.24.(2006•丽水)如图,sinA=().C D.25.(2006•海南)三角形在正方形网格纸中的位置如图所示.则sinα的值是().C D.26.(2005•南京)如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是().C D.cosB=28.(2000•嘉兴)在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是().C D.29.(2004•云南)在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于().C D..C D.第28章《锐角三角函数》好题集(01):28.1 锐角三角函数参考答案与试题解析选择题2﹣,2.(2001•黑龙江)已a、b、c分别为△ABC中∠A、∠B、∠C的对边,若关于x的方程(b+c)x2﹣2ax+c﹣b=03.(2001•河北)已知等腰三角形三边的长为a、b、c,且a=c.若关于x的一元二次方程的两根,,×﹣×=2a=4.已知α是锐角,且点A(,a),B(sinα+cosα,b),C(﹣m2+2m﹣2,c)都在二次函数y=﹣x2+x+3的图象上,,抛物线开口向下,可知,开口向下,(5.(2010•临沂)菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是(),﹣)2+,﹣),2+,纵坐标为,)6.如图,菱形ABCD的边长为10cm,DE⊥AB,sinA=,则这个菱形的面积是()sinA=,易得,7.(2002•崇文区)如图,菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α,则下列式子正确的是()==;=;=;==8.(2010•兰州)如图,正三角形的内切圆半径为1,那么三角形的边长为()C D,AB=2AD=29.(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=().C DODA=10.(2008•昆明)如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为().C D.AB BC ABx===11.如图a是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的tan∠DHF的度数是().C..C D..13.(2010•孝感)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是().C D.A=15.(2010•包头)已知在Rt△ABC中,∠C=90°,sinA=,则tan B的值为().C D.,tanB=,设.=sinA==,==16.(2009•绥化)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是().C D.17.(2008•淄博)如图,在Rt△ABC中,tanB=,BC=2,则AC等于()=,∴××18.(2008•内江)如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA等于().C D.cosA=.19.(2008•海南)如图所示,Rt△ABC∽Rt△DEF,则cosE的值等于().C D..20.(2008•甘南州)在正方形网格中,∠α的位置如图所示,则sinα的值为().C D.,=..C D.==5=.C D.=23.(2006•辽宁)在Rt△ABC中,∠C=90°,sinA=,则cosB的值为().C D.=sinA=24.(2006•丽水)如图,sinA=().C D.=.25.(2006•海南)三角形在正方形网格纸中的位置如图所示.则sinα的值是().C D.,斜边为=5= 26.(2005•南京)如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是().C D.=.,,28.(2000•嘉兴)在Rt△ABC中,CD是斜边AB上的高线,已知∠ACD的正弦值是,则的值是().C D.,即可求出ACD==29.(2004•云南)在△ABC中,∠C=90°,如果tanA=,那么sinB的值等于().C D.,=.C D.= =.菁优网 ©2010-2013 菁优网参与本试卷答题和审题的老师有:HJJ ;Liuzhx ;蓝月梦;zhjh ;zhehe ;星期八;CJX ;未来;MMCH ;Linaliu ;hbxglhl ;haoyujun ;自由人;ln_86;zzz ;bjf ;心若在;zcx (排名不分先后)菁优网2013年3月15日。

人教版九年级下册数学 28.1--28.2随堂练习题含答案

人教版九年级下册数学 28.1--28.2随堂练习题含答案

28.1锐角三角函数一.选择题1.计算sin230°+cos260°的结果为()A.B.C.1D.2.在Rt△ABC中,∠C=90°,cos A=,则sin A=()A.B.C.D.3.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sin A的值()A.扩大100倍B.缩小C.不变D.不能确定4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cos B==()A.B.C.D.5.下列式子正确的是()A.cos60°=B.cos60°+tan45°=1C.tan60°﹣=0D.sin230°+cos230°=6.规定:sin(﹣x)=﹣sin x,cos(﹣x)=cos x,cos(x+y)=cos x cos y﹣sin x sin y,给出以下四个结论:(1)sin(﹣30°)=﹣;(2)cos2x=cos2x﹣sin2x;(3)cos(x﹣y)=cos x cos y+sin x sin y;(4)cos15°=.其中正确的结论的个数为()A.1个B.2个C.3个D.4个7.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.8.若角α,β都是锐角,以下结论:①若α<β,则sinα<sinβ;②若α<β,则cosα<cosβ;③若α<β,则tanα<tanβ;④若α+β=90°,则sinα=cosβ.其中正确的是()A.①②B.①②③C.①③④D.①②③④9.在△ABC中,∠A,∠B都是锐角,tan A=1,sin B=,你认为△ABC最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形10.因为cos60°=,cos240°=﹣,所以cos240°=cos(180°+60°)=﹣cos60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=﹣cosα,由此可知:cos210°=()A.﹣B.﹣C.﹣D.﹣二.填空题11.已知α是锐角,且sin(α+15°)=,那么tanα=.12.如图,已知Rt△ABC中,斜边AB的长为m,∠B=40°,则直角边AC的长是.13.如图,边长为1的小正方形网格中,点A,B,C,D,E均在格点上,半径为2的⊙A 与BC交于点F,则tan∠DEF=.14.在Rt△ABC中,∠C=90°,cos A=,则BC:AC:AB=.15.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.三.解答题16.计算:3tan30°+cos230°﹣2sin60°17.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.18.(1)在△ABC中,∠B=45°,cos A=.求∠C的度数.(2)在直角三角形ABC中,已知sin A=,求tan A的值.参考答案一.选择题1.解:sin230°+cos260°=()2+()2=+=.故选:A.2.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=.故选:C.3.解:锐角A的三角函数值随着∠A角度的变化而变化,而角的大小与边的长短没有关系,因此sin A的值不会随着边长的扩大而变化,故选:C.4.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=3,∴BC==,∴cos B==.故选:C.5.解:A.cos60°=,故本选项不符合题意;B.cos60°+tan45°=+1=1,故本选项不符合题意;C.tan60°﹣=﹣=﹣=0,故本选项符合题意;D.sin230°+cos230°=1,故本选项不符合题意;故选:C.6.解:(1),故此结论正确;(2)cos2x=cos(x+x)=cos x cos x﹣sin x sin x=cos2x﹣sin2x,故此结论正确;(3)cos(x﹣y)=cos[x+(﹣y)]=cos x cos(﹣y)﹣sin x sin(﹣y)=cos x cos y+sin x sin y,故此结论正确;(4)cos15°=cos(45°﹣30°)=cos45°cos30°+sin45°sin30°===,故此结论错误.所以正确的结论有3个,故选:C.7.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.8.解:①∵sinα随α的增大而增大,∴若α<β,则sinα<sinβ,此结论正确;②∵cosα随α的增大而减小,∴若α<β,则cosα>cosβ,此结论错误;③∵tanα随α的增大而增大,∴若α<β,则tanα<tanβ,此结论正确;④若α+β=90°,则sinα=cosβ,此结论正确;综上,正确的结论为①③④,故选:C.9.解:由题意,得∠A=45°,∠B=45°.∠C=180°﹣∠A﹣∠B=90°,故选:B.10.解:∵cos(180°+α)=﹣cosα,∴cos210°=cos(180°+30°)=﹣cos30°=﹣.故选:C.二.填空题11.解:∵sin60°=,∴α+15°=60°,解得,α=45°,∴tanα=tan45°=1,故答案为:1.12.解:在Rt△ABC中,sin B=,∴AC=AB•sin B=m sin40°,故答案为:m sin40°.13.解:由题意可得:∠DBC=∠DEF,则tan∠DEF=tan∠DBC==.故答案为:.14.解:在Rt△ABC中,∠C=90°,∵cos A==,设AC=2x,则AB=3x,∴BC==x,∴BC:AC:AB=:2:3.15.解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,故答案为:72°.三.解答题16.解:原式===.17.解:∵在Rt△ABC中,∠C=90°,∴tan A==.∵BC=2,∴=,AC=6.∵AB2=AC2+BC2=40,∴AB=.18.解:(1)∵在△ABC中,cos A=,∴∠A=60°,∵∠B=45°,∴∠C=180°﹣∠B﹣∠A=75°;(2)∵sin A==,设BC=4x,AB=5x,∴AC=3x,∴tan A===.28.2 解直角三角形及其应用(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在中,,,,则的长度为()A. B. C. D.2. 在高为米的楼顶测得地面上某目标的俯角为,那么楼底到该目标的水平距离是()A. B. C. D.3. 如图,利用标杆测量建筑物的高度,如果标杆长为米,若,米,则楼高是()A.米B.米C.米D.米4. 如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,这时,海轮所在的处与灯塔的距离为()A.海里B.海里C.海里D.海里5. 在直角中,=,=,,下列判断正确的是()A.=B.C.=D.=6. 如图,,,于点,则的长为()A. B. C. D.7. 如图,为了测量小河的宽度,小明从河边的点处出发沿着斜坡行走米至坡顶处,斜坡的坡度为=,在点处测得小河对岸建筑物顶端点的俯角=,已知建筑物的高度为米,则小河的宽度约为(精确到米,参考数据:=,=,=)()A.米B.米C.米D.米8. 如图,等腰的底角为,底边上的高,则腰、的值为()A. B. C. D.9. 在中,是斜边上的高,如果,,那么等于()A. B. C. D.10. 如图,小明同学在东西方向的环海路处,测得海中灯塔在北偏东方向上,在处东米的处,测得海中灯塔在北偏东方向上,则灯塔到环海路的距离米.A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 小明同学从地出发沿北偏东的方向到地,再由地沿南偏西的方向到地,则________.12. 在中,,,,则的值是________.13. 在中,,若,,则________.14. 一次综合实践活动中,小明同学拿到一只含角的三角板和一只含角的三角板,如图放置恰好有一边重合,则的值为________.15. 如图,已知是等腰底边上的高,且.上有一点,满足.那么的值是________.16. 某市为了美化环境,计划在如图所示的三角形空地上种植草皮,已知这种草皮每平方米售价为元,则购买这种草皮至少需要________元.17. 如图,水平面上有一个坡度的斜坡,矩形货柜放置在斜坡上,己知.,,则点离地面的高为________.(结果保留根号)18. 如图,测量河宽(河的两岸平行),在点测得,,则河宽约为________.(用科学计算器计算,结果精确到)19. 如图,设,,为射线上一点,于,于,则等于________ (用、的三角函数表示)20. 如图,某飞机于空中处探测得地面目标,此时飞行高度米,从飞机上看地面控制点的俯角为,那么飞机到控制点的距离是________米.三、解答题(本题共计6 小题,共计60分,)21. 如图,在中,,是高,,求证:.22. 一艘轮船由西向东航行,在处测得小岛的方位角是北偏东,又航行海里后,在处测得小岛的方位角是北偏东,若小岛周围海里内有暗礁,则该船一直向东航行有无触礁的危险?23. 某航班在某日凌晨从甲地(记为)起飞,沿北偏东方向出发,以的速度直线飞往乙地,但飞机在当日凌晨左右在处突然改变航向,沿北偏西方向飞到处消失,如果此航班在处发出求救信号,又测得在的北偏西方向,求与求救点的距离(结果保留整数,参考数据:,).24. 如图,某中心广场灯柱被钢缆固定,已知米,且.(1)求钢缆的长度;(2)若米,灯的顶端距离处米,且,则灯的顶端距离地面多少米?25. 已知:在四边形中,,,,,(1)求的值;(2)求的长.26. 某校兴趣小组想测量一座大楼的高度.如图,大楼前有一段斜坡,已知的长为米,它的坡度=,在离点米的处,用测角仪测得大楼顶端的仰角为,测角仪的高为米,求大楼的高度约为多少米?(结果精确到米)(参考数据:,,,.)参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:在中,,、∵,∴.故选.2.【答案】B【解答】∵=,=,∴==.3.【答案】B【解答】解:如图,∵在中,,米,,∴(米).又∵米,∴米.又∵在直角中,,,∴(米)故选:.4.【答案】A【解答】解:过点作于点,由题意可得出:,,(海里),故(海里),则(海里).故选5.【答案】D【解答】∵在直角中,=,=,,,∴,∴,∵,,∴,6.【答案】C【解答】解:∵,∴,∴,∵,∴.故选.7.【答案】B【解答】作交的延长线于,作于,则四边形为矩形,∴=,==,设=米,∵斜坡的坡度为=,∴=米,由勾股定理得,=,解得,=,∴=米,=米,∴===,在中,,则,∴==(米),8.【答案】C【解答】解:∵等腰的底角为,底边上的高,∴.故选.9.【答案】C【解答】解:.故选.10.【答案】C【解答】解:∵,.又∵,∴.∴.在直角中,.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:如图:由题意知,,,∴.故答案为: .12.【答案】【解答】解:作于,如图,∵,∴,在中,,∵,∴,∵,∴,∴,在中,,∴.故答案为.13.【答案】【解答】解:在中,∵,∴为斜边.∴.14.【答案】【解答】解:作于,如图,设,在中,∵,∴,在中,∵,∴,∴,在中,,在中,,∴••,•,∴.故答案为.15.【答案】【解答】解:作于,如图,∵为等腰三角形,为高,∴,∴设,,而,∴,∵,∴,∴,即,∴,,∴,在中,∴.故答案为.16.【答案】【解答】解:如图,作边的高,设与的延长线交于点,∵,∴,∴,∵,∴,∵每平方米售价元,∴购买这种草皮的价格为元.故答案为:.17.【答案】【解答】解:作,垂足为,且与相交于.∵,,∴,∴,∵,∴,∴,,设,则,∴,∴,∴.故答案是:.18.【答案】【解答】解:在中,∵,,∴故答案为.19.【答案】【解答】解:∵于,于,∴,∴,,∴.故答案为:.20.【答案】【解答】解:在直角中,,,∴.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】证明:∵,,∴,∴,∵,,∴,∴,∵,∴.【解答】证明:∵,,∴,∴,∵,,∴,∴,∵,∴.22.【答案】解:如图所示:由题意可得:,,则,,故,则(海里),可得:海里海里.则该船一直向东航行有触礁的危险.【解答】解:如图所示:由题意可得:,,则,,故,则(海里),可得:海里海里.则该船一直向东航行有触礁的危险.23.【答案】解:过点作于点,由题意可得:,,则,,∵,∴,∵,∴∴,则..【解答】解:过点作于点,由题意可得:,,则,,∵,∴,∵,∴∴,则..24.【答案】解:(1)在中,,∴设,,∴,解得,∴米,米.(2)如图,过点作于点.∵,∴,∴(米),∴(米).∴灯的顶端距离地面米.【解答】解:(1)在中,,∴设,,∴,解得,∴米,米.(2)如图,过点作于点.∵,∴,∴(米),∴(米).∴灯的顶端距离地面米.25.【答案】解:(1)如图,作于点.∵在中,,,∴,,∵,∴.∴∵,∴.∵,,∴.∴.(2)如图,作于点.在中,,,∴.∵在中,,∴.∴.∴在中,由勾股定理得:.【解答】解:(1)如图,作于点.∵在中,,,∴,,∵,∴.∴∵,∴.∵,,∴.∴.(2)如图,作于点.在中,,,∴.∵在中,,∴.∴.∴在中,由勾股定理得:.26.【答案】大楼的高度约为米.【解答】延长交直线于点,过点作,垂足为点.∵在中,=,∴设=,则,=.又∵=,∴=,∴=,=.∵=,∴=.∵在中,,∴=(米),∵=,∴==.∵=,∴==.。

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)

人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。

必刷基础练【28.1 锐角三角函数】(解析版)

必刷基础练【28.1 锐角三角函数】(解析版)

2022-2023学年九年级数学下册考点必刷练精编讲义(人教版)基础第28章《锐角三角函数》28.1 锐角三角函数知识点01:锐角三角函数的定义1.(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tan A=2,BC=8,则AC等于( )A.6B.16C.12D.4解:∵∠C=90°,∴tan A==2,∴AC=BC=×8=4.故选:D.2.(2022秋•晋州市期中)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.3.(2022秋•浦东新区期中)在Rt△ABC中,∠C=90°,BC=9,AC=6,下列等式中正确的( )A.tan A=B.sin A=C.cot A=D.cos A=解:∵AB2=BC2+AC2,∴AB2=62+92=117,∴AB=3;A、tan A===,故A不符合题意;B、sin A===,故B不符合题意;C、cot A===,故C符合题意;D、cos A===,故D不符合题意,故选:C.4.(2022秋•杨浦区期中)在Rt△ABC中,∠C=90°,BC=1,AB=3,下列各式中,正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,BC=1,AB=3,∴AC===2,∴sin A==,cos A==,tan A===,cot A==2.故选:A.5.(2022秋•黄浦区期中)在Rt△ABC中,∠C=90°,BC=3,AB=4,那么下列各式中正确的是( )A.sin A=B.cos A=C.tan A=D.cot A=解:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin A==,cos A==.tan A===,cot A==.故选:A.6.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是 .解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴sin B==,故答案为:.7.(2021秋•牡丹江期末)在△ABC中,∠A,∠C都是锐角,cos A=,sin C=,则∠B= 60° .解:∵∠A,∠C都是锐角,cos A=,sin C=,∴∠A=60°,∠C=60°,∴∠B=180°﹣∠A﹣∠C=60°,故答案为:60°.8.(2022春•衡阳月考)如图,在△ABC中,∠C=90°,AB=13,AC=12,则tan B= .解:∵∠C=90°,AB=13,AC=12,∴BC==5,∴tan B==.故答案为:.9.(2022秋•惠山区校级期中)在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.=9,求△ABC的周长.(2)tan A=2,S△ABC解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,∵S=9,△ABC∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.10.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.知识点02:锐角三角函数的增减性11.(2022•五通桥区模拟)若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.12.(2022•路南区二模)梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关解:根据锐角三角函数值的变化规律,知sin A的值越大,∠A越大,梯子越陡.故选:A.13.(2022秋•晋江市期中)比较大小:tan50° < tan60°.解:∵50°<60°,∴tan50°<tan60°,故答案为:<.14.(2021秋•淮阴区期末)比较大小:sin50° < sin60°(填“>”或“<”).解:由于50°<60°,根据一个锐角的正弦值随着角度的增大而增大可得,sin50°<sin60°,故答案为:<.15.用锐角α的三角函数的定义去说明(1)0<sinα<1(2)0<cosα<1(3)tanα>sinα解:(1)sinα=,0<a<c,0<1,即0<sinα<1;(2)cosα=,0<b<c,0<<1,即0<cosα<1;(3)tanα=,sinα=,由0<b<c,得>,即tanα>sinα.16.(2019春•西湖区校级月考)如图,半径为4的⊙O内一点A,OA=.点P在⊙B上,当∠OPA最大时,求PA的长.解:如图,作OE⊥PA于E,∵sin∠OPA=,∴OE的值取最大值时,sin∠OPA的值最大,此时∠OPA的值最大,∵OE≤OA,∴当OE与OA重合时,即PA⊥OA时,∠OPA的值最大.如图,∵在直角△OPA中,OA=2,OP=4,∴PA==2.知识点03:同角三角函数的关系17.(2022春•巴东县期中)x为锐角,,则cos x的值为( )A.B.C.D.解:∵sin2x+cos2x=1,,∴cos x===.故选:B.18.(2021秋•舟山期末)在直角△ABC中,已知∠C=90°,sin A=,求cos A=( )A.B.C.D.2解:∵sin2A+cos2A=1,∴cos A==.\故选:C.19.(2021•温江区校级开学)计算:(cos230°+sin230°)×tan60°= .解:原式=[()2+()2]×=,故答案为:.20.(2021秋•金牛区校级期中)在△ABC中,∠C=90°,tan A=2,则sin A+cos A= .解:如图,∵tan A=2,∴设AB=x,则BC=2x,AC==x则有:sin A+cos A=+=+=.故答案为:.21.(2020秋•万州区校级期中)计算:sin225°+cos225°﹣tan60°= 1﹣ .解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.22.(2021秋•鄞州区校级月考)计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.23.(2021秋•绥宁县月考)计算:(1)sin230°+tan60°﹣sin245°+cos230°;(2)+(1+π)0﹣2cos45°﹣|1﹣|.解:(1)原式=()2+﹣()2+()2=+﹣+=+;(2)原式=2+1﹣2×﹣+1=2+1﹣﹣+1=2.24.(2022秋•蓬莱区期中)计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.知识点04:互余两角三角函数的关系25.(2022秋•芝罘区期中)在Rt△ABC中,∠C=90°,下列等式成立的是( )A.sin A=sin B B.cos A=cos B C.sin A=cos B D.tan A=tan B 解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:C.26.(2021秋•怀化期末)已知锐角α,且sinα=cos38°,则α=( )A.38°B.62°C.52°D.72°解:∵锐角α,且sinα=cos38°,sin A=cos(90°﹣∠A),∴sinα=cos(90°﹣α)=cos38°,∴90°﹣α=38°,解得:α=52°.故选:C.27.(2021秋•怀宁县期末)在Rt△ABC中,∠C=90°,cos A=,则sin B= .解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.28.(2020秋•肥东县期末)已知α为锐角,则sinα﹣cos(90°﹣α)= 0 .解:∵α为锐角,∴sinα=cos(90°﹣α),∴sinα﹣cos(90°﹣α)=0.故答案为0.29.(2019秋•双流区期末)已知,在Rt△ABC中,∠C=90°,若sin A=,则tan B= .解:如图.在Rt△ABC中,∵sin A==,∴设BC=x,AB=3x,则AC==2x,故tan B===.故答案为:.30.(2017•吴兴区校级二模)已知cos45°=,求cos21°+cos22°+…+cos289°的值.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.31.化简下列各式:(1)4cos2(90°﹣θ)+4sin2(90°﹣θ)+4(2).解:(1)原式=4sin2θ+4cos2θ+4=4(sin2θ+cos2θ)+4=4+4=8;(2)原式=﹣1=﹣1=1+tan2θ﹣1=tan2θ.知识点05:特殊角的三角函数值32.(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=,∴∠β=60°.故选:B.33.(2021秋•梁平区期末)式子2cos30°﹣tan45°﹣的值是( )A.0B.2C.2D.﹣2解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选:A.34.(2022秋•乳山市校级月考)在△ABC中,∠A=105°,∠B=45°,sin C的值是( )A.B.C.1D.解:∵∠A=105°,∠B=45°,∴∠C=180°﹣∠A﹣∠C=30°,∴sin C=sin30°=.故选:A.35.(2022秋•虎丘区校级期中)已知∠α为锐角,且sinα=,则∠α= 60° .解:∵∠α为锐角,sinα=,∴∠α=60°.故答案为:60°.36.(2022秋•东平县校级月考)若(3tan A﹣)2+|2sin B﹣|=0,则以∠A、∠B为内角的△ABC的形状是 直角三角形 .解:∵(3tan A﹣)2+|2sin B﹣|=0,∴3tan A﹣=0,2sin B﹣=0,则tan A=,sin B=,∴∠A=30°,∠B=60°,∴以∠A、∠B为内角的△ABC的形状是直角三角形.故答案为:直角三角形.37.(2022秋•铁西区期中)在△ABC中,若sin A=,∠A,∠B都是锐角,则∠C的度数是 75° .解:∵,∠A,∠B都是锐角,∴∠A=45°,∠B=60°,∴∠C=180°﹣45°﹣60°=75°,故答案为:75°.38.(2022秋•垦利区期中)在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 105° .解:∵|sin A﹣|+(﹣cos B)2=0,∴sin A﹣=0,﹣cos B=0,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.39.(2022秋•黄浦区期中)计算:.解:原式=﹣=cot30°﹣1﹣=﹣1﹣=﹣1﹣(+1)=﹣1﹣﹣1=﹣2.40.(2022秋•莱西市期中)计算:(1);(2)cos60°﹣2sin245°+tan230°﹣sin30°.解:(1)原式===﹣1﹣=﹣;(2)原式=﹣2×()2+×()2﹣=﹣1+﹣=﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.锐角三角函数一、课前预习 (5分钟训练)1.如图1所示,某斜坡AB 上有一点B′,B′C′、BC 是边AC 上的高,则图中相似的三角形是______________,则B′C′∶AB′=______________,B′C′∶AC′=______________.2.在Rt△ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )A.没有变化B.都扩大5倍C.都缩小5倍D.不能确定 3.在△ABC 中,∠C=90°,sinA=3/5,则sinB 等于( )A.2/5 B.3/5 C.4/5 D.3/4 二、课中强化(10分钟训练)1.在Rt△ABC 中,∠C=90°,已知tanB=25,则cosA 等于( )A.25 B.35 C.552 D.322.如果α是锐角,且sinα=54,那么cos(90°-α)的值为( )A.54 B.43 C.53D.513.在△ABC 中,∠C=90°,AC=2,AB=5,则cosB 的值为( )A.210 B.510 C.515D.51534.在Rt△ABC 中,∠C=90°,sinA=5/13,BC=15,则AC=______________.5.如图2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.三、课后巩固(30分钟训练)1.如图3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan 2A 等于( )A.53B.54C.343 D.3452.如果sin 2α+cos 230°=1,那么锐角α的度数是( ) A.15° B.30° C.45° D.60° 3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是________________. 4.在Rt△ABC 中,斜边AB=22,且tanA+tanB=22,则Rt△ABC 的面积是___________.5.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且a=3,c=5,求∠A、∠B 的三角函数值.6.在Rt△ABC 中,∠C=90°,a、b 、c 分别是∠A、∠B、∠C 的对边,且b=6,tanA=1,求c.7.如图28-1-1-5,在Rt△ABC 中,∠C=90°,sinA=53,D 为AC 上一点,∠BDC=45°,DC =6 cm ,求AB 、AD 的长.图28-1-1-58.如图28-1-1-6,在△ABC 中,AB=AC,AD⊥B C 于D 点,BE⊥AC 于E 点,AD=BC,BE=4.求:(1)tanC 的值;(2)AD 的长.图28-1-1-62. 特殊角的三角函数值1.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.122.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55°D.tan45°>sin45°3.计算2sin30°-2cos60°+tan45°的结果是().A.2 BCD.14.已知∠A为锐角,且cosA≤12,那么()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30°D.30°≤∠A<90°5.在△ABC中,∠A、∠B都是锐角,且sinA=12,ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.Rt△ABC中,∠ACB=90°,CD⊥AB于D,BC=3,AC=4,设∠BCD=a,则tana的值为().A.34B.43C.35D.457.当锐角a>60°时,cosa的值().A.小于12B.大于12CD.大于18.在△ABC中,三边之比为a:b:c=12,则sinA+tanA等于().A1.2B C9.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,•则∠CAB等于()A.30°B.60°C.45°D.以上都不对10.sin272°+sin218°的值是().A.1 B.0 C.12D11)2+│=0,则△ABC().A.是直角三角形B.是等边三角形C.是含有60°的任意三角形D.是顶角为钝角的等腰三角形12.设α、β均为锐角,且sinα-cosβ=0,则α+β=_______.13.cos45sin301cos60tan452︒-︒︒+︒的值是_______.14.已知,等腰△ABC•的腰长为•底为30•°,•则底边上的高为______,•周长为______.15.在Rt△ABC中,∠C=90°,已知cosA=________.16.正方形ABCD边长为1,如果将线段BD绕点B旋转后,点D落在BC的延长线上的点D′处,那么tan∠BAD′=________.17.在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,得AB ACCD CD-的值为_______.18.求下列各式的值.(1)sin30°·cos45°+cos60°;(2)2sin60°-2cos30°·sin45°(3)2cos602sin302︒︒-; (4)sin45cos3032cos60︒+︒-︒-sin60°(1-sin30°).(5)tan45°·sin60°-4sin30°·cos45°·tan30°(6)sin45tan30tan60︒︒-︒+cos45°·cos30°参考答案一、课前预习 (5分钟训练)1.如图28-1-1-1所示,某斜坡AB 上有一点B ′,B ′C ′、BC 是边AC 上的高,则图中相似的三角形是______________,则B ′C ′∶AB ′=______________,B ′C ′∶AC ′=______________.图28-1-1-1解析:由相似三角形的判定得△AB ′C ′∽△ABC ,由性质得B ′C ′∶AB ′=BC ∶AB ,B ′C ′∶AC ′=BC ∶AC.答案:△AB ′C ′∽△ABC BC ∶AB BC ∶AC2.在Rt △ABC 中,如果边长都扩大5倍,则锐角A 的正弦值、余弦值和正切值 ( )A.没有变化B.都扩大5倍C.都缩小5倍D.不能确定 解析:三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 答案:A3.在△ABC 中,∠C =90°,sinA=53,则sinB 等于( ) A.52 B.53 C.54 D.43 解析:sinA=53,设a=3k,c=5k,∴b=4k.∴sinB=5454==k k c b .答案:C二、课中强化(10分钟训练)1.在Rt △ABC 中,∠C=90°,已知tanB=25,则cosA 等于( )A.25 B.35 C.552 D.32解析:tanB=25,设b=5k,a=2k.∴c=3k.∴cosA=3535==k k c b .答案:B2.如果α是锐角,且sin α=54,那么cos(90°-α)的值为( ) A.54 B.43 C.53 D.51 解析:cos(90°-α)=sin α=54.答案:A3.在△ABC 中,∠C =90°,AC=2,AB=5,则cosB 的值为( )A.210 B.510 C.515 D.5153解析:由勾股定理,得BC=3,∴cosB=51553==AB BC . 答案:C4.在Rt △ABC 中,∠C=90°,sinA=135,BC=15,则AC=______________. 解析:∵sinA=135=AB BC ,BC=15,∴AB=39.由勾股定理,得AC=36. 答案:365.如图28-1-1-2,△ABC 中,AB =AC =6,BC =4,求sinB 的值.图28-1-1-2分析:因为三角函数值是在直角三角形中求得,所以构造直角三角形就比较重要,对于等腰三角形首先作底边的垂线.解:过A 作AD ⊥BC 于D, ∵AB=AC,∴BD=2.在Rt △ADB 中,由勾股定理,知AD=24262222=-=-BD AB ,∴sinB=322=AB AD . 三、课后巩固(30分钟训练)1.如图28-1-1-3,已知菱形A BCD ,对角线AC=10 cm,BD=6 cm,,那么tan2A 等于( )图28-1-1-3A.53B.54C.343 D.345解析:菱形的对角线互相垂直且平分,由三角函数定义,得tan 2A =tan ∠DAC=53. 答案:A2.如果sin 2α+cos 230°=1,那么锐角α的度数是( )A.15°B.30°C.45°D.60°解析:由sin 2α+cos 2α=1,∴α=30°. 答案:B3.如图28-1-1-4,在坡度为1∶2.5的楼梯表面铺地毯,地毯长度至少是________________.图28-1-1-4解析:坡度=BCAC,所以BC=5,由割补法知地毯长=AC+BC =7(米). 答案:7米4.在Rt △ABC 中,斜边AB=22,且tanA+tanB=22,则Rt △ABC 的面积是___________.解析:∵tanA=AC BC ,tanB=BCAC,且AB 2=BC 2+AC 2,由tanA+tanB=22,得AC BC +BC AC=22,即AC ·BC=28.∴S△ABC=24.答案:245.在Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且a=3,c=5,求∠A 、∠B 的三角函数值.解:根据勾股定理得b=4,sinA=53,cosA=54,tanA=43;sinB=54,cosB=53,tanB=34. 6.在Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且b=6,tanA=1,求c.解:由三角函数定义知a=btanA ,所以a=6,根据勾股定理得c=26.7.如图28-1-1-5,在Rt △ABC 中,∠C =90°,sinA=53,D 为AC 上一点,∠BDC =45°,DC =6 cm ,求AB 、AD 的长.图28-1-1-5解:如题图,在Rt △BCD 中,∠BDC =45°, ∴BC =DC =6.在Rt △ABC 中,sinA=53, ∴AB BC =53. ∴AB=10. ∴AC=2222610-=-BC AB =8.∴AD=AC-CD=8-6=2.8.如图28-1-1-6,在△ABC 中,AB=AC,AD ⊥B C 于D 点,BE ⊥AC 于E 点,AD=BC,BE=4.求:(1)tanC 的值;(2)AD 的长.图28-1-1-6解:(1)∵AB=AC,AD ⊥BC, ∴AD =BC =2DC. ∴tanC=2.(2)∵tanC=2,BE ⊥AC,BE=4,∴EC=2. ∵BC 2=BE 2+EC 2, ∴BC=52.∴AD=52.第2课时作业设计(答案)一、1.C 2.B 3.D 4.B 5.B 6.A 7.A 8.A 9.B 10.A 11.A二、12.90° 1321- 14.33 155 162 173三、18.(1)222362;(2);(3)1;(4);424+-- (5)32; (6)0。

相关文档
最新文档