长沙理工大学大学物理练习册振动与波答案

合集下载

大学物理振动与波练习题与答案

大学物理振动与波练习题与答案
(3) 波速 c ? (4) t 3 秒时 x 3.5 厘米处的质点的振动速度 v ?
【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2

大学物理 第5章 振动和波动习题解答

大学物理 第5章 振动和波动习题解答

第5章 振动和波动5-1 解:(1))s rad (105.050===m kωmax 222max 100.040.4(m/s)100.044(m/s )v A a A ωω==⨯===⨯=(2) 设cos()x A t ωϕ=+,则d sin()d xv A t tωωϕ==-+ 2222d cos()d x a A t x t ωωϕω==-+=-当x=0.02m 时,cos()1/2,sin()3/2t t ωϕωϕ+=+=±,所以20.230.346(m/s)2(m/s )1(N)v a F ma =⨯==-==-(3) 作旋转矢量图,可知:π2ϕ=-π0.04c o s (10)2x t =-5 解:A=0.04(m) 0.7(rad/s)0.3(rad)10.11(Hz)8.98(s)2πT ωϕωνν==-====5-3 证明:如图所示的振动系统的振动频率为1212πk k mυ+=式中12,k k 分别为两个弹簧的劲度系数,m为物体的质量。

解: 以平衡位置为坐标原点,水平向右为x 轴正方向。

设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有0202101=+-x k x k当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为11022012()()()F k x x k x x k k x =-++-=-+由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++=上式表明此振动系统的振动为简谐振动,且振动的圆频率为12k k x mω+=振动的频率为 1212π2πk k mων+==5-4解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。

右液面偏离原点为至x 时,振动系统所受回复力为:22ππ242d d g F x g x ρρ=-⋅⋅=-振动角频率 2π2d gm ρω=振动周期 222ππmT d gρ=5-5解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机习题5-4 图械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案
所以

显然f点的速度大于零,所以取负值,解得
tf= -T/12.
从f点到达a点经过的时间为T/4,所以到达a点的时刻为
ta= T/4 +tf= T/6,
其位相为

由图可以确定其他点的时刻,同理可得各点的位相.
4.3如图所示,质量为10g的子弹以速度v= 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求:
[解答](1)设物体的简谐振动方程为
x = Acos(ωt + φ),
其中A= 0.12m,角频率ω =2π/T= π.
当t =0时,x= 0.06m,所以
cosφ= 0.5,
因此
φ= ±π/3.
物体的速度为
v= dx/dt= -ωAsin(ωt + φ).
当t =0时,
v= -ωAsinφ,
由于v> 0,所以sinφ< 0,因此
大学物理学(上)
第四,第五章习题答案
第4章振动
P174.
4.1一物体沿x轴做简谐振动,振幅A= 0.12m,周期T= 2s.当t= 0时,物体的位移x= 0.06m,且向x轴正向运动.求:
(1)此简谐振动的表达式;
(2)t=T/4时物体的位置、速度和加速度;
(3)物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.
φ= -π/3.
简谐振动的表达式为
x= 0.12cos(πt –π/3).
(2)当t=T/4时物体的位置为
x= 0.12cos(π/2–π/3)
= 0.12cosπ/6 = 0.104(m).

振动和波综合标准答案

振动和波综合标准答案

振动和波综合标准答案一、单选题:本大题共6小题,第1小题为3分;从第2小题到第6小题每题4分小计20分;共计23分。

1、◆标准答案:A★ 试题提示:再经T/2时,A.b的运动情况应与原来的运动情况相反,即a点振动到x轴下方的最低点,b恰好通过平衡位置向下运动,并以此画出A.b 间的波形.2、◆标准答案:C3、◆标准答案:D4、◆标准答案:C★ 试题详解:如图A错.周期T满足:0.15s=T,T=0.1s.0.25s相当于周期.故2m处质点此时y轴位移为0,B错.0.1s后,波到达10m处,故C对.10m处质点第一次到达y轴最大位移,用时.波源质点只通过了0.5m路程,D错.5、◆标准答案:D6、◆标准答案:B二、填空题:本大题共11小题,从第7小题到第12小题每题4分小计24分;第13小题为5分;从第14小题到第17小题每题6分小计24分;共计53分。

7、◆标准答案:各个时刻,各个质点★ 试题详解:各个时刻,各个质点8、◆标准答案:29、★ 试题详解: 0,向下10、◆标准答案:2.5,011、★ 试题详解: 16cm,+2cm12、◆标准答案:[3,2],613、◆标准答案:0.2414、★ 试题详解: 16cm/s,如下图所示15、◆标准答案:1000/316、◆标准答案:-4,0.117、◆标准答案:[0,1]、[3,4]三、多选题:本大题共10小题,第18小题为3分;从第19小题到第27小题每题4分小计36分;共计39分。

18、◆标准答案:BD★ 试题提示:波长有三种可能,如图所示,可以看出这三种可能的波长是λ1=2x0,λ2= x0,λ3=2x0/3.经过时间t,a点从平衡位置第一次到达正的最大位移处,说明它的振动周期有两种可能,分别是 T1=4t,T2=4t/3.根据公式v=λ/T,似乎有6种可能的速率,但经过计算,只有5种可能的数值,具体计算过程同学们可以自己去完成.如果经过时间t,b点也到达正的最大位移处,说明只能是中间图所示的情况,即波长λ2=x0,这列波的波速只可能是x0/4t或3x0/4t,选项A不对而选项B正确.如果经过时间t,b点到达负的最大位移处,则可能是两侧图所示的情况,即波长值有两种可能,即λ1=2x0或λ3=2x0/3.这列波的波速可能是x0/2t、3x0/2t、x0/6t三种情况,选项C不对.如果这列波的波速是x0/6t,经过时间t,b点一定到达负的最大位移处,选项D 正确.本题特别强度了波动过程中的两个周期性,计算结果不是唯一的,必须根据题目的具体条件去认真分析.)19、◆标准答案:BD20、◆标准答案:BD21、◆标准答案:ABC★ 试题详解:由题图中看出质点振动的周期T=0.5s,故波的频率f==2Hz,A对.由于P、Q两质点振动反向,故它们之间的距离为,由于波长大于它们之间距离,即n只能取0,即=2m,故=4m,B正确,由v=f知v=4×2=8(m/s),C对.无法确定波的传播方向,D错.22、◆标准答案:AB★ 试题详解:解题过程:从振动图象中知,周期T=4s,又知在t =0时刻,a质点在波谷,b质点在平衡位置且向y轴正方向运动,根据波由a 传向b,可知ab间距离x与波长的关系为即得波长λ的通式波速v=,则波速的通式为案为A、B.思路点拨:从题设条件和图形中,知周期T和波传播方向,确定此波属于单向传播问题.又知道在t=0时刻,a在波谷,b在平衡位置向y轴正方向运动.可是ab间距离x与波长λ关系不明确,波长λ是多值问题,周期T一定,波速也是多值问题,分别列出波长和波速的通式,再分析讨论便可得本题结果.小结:本题属于周期T确定,两点间距离与波长关系不明确,引起波长和波速的多值问题.若本题又未明确波沿直线ab向右传播,还需讨论波向左传播的情况,使题目变成双向多解问题.23、◆标准答案:BD24、◆标准答案:ABD25、◆标准答案:BD26、◆标准答案:ACD27、◆标准答案:ABC★ 试题提示:虽然波速v=λ/T,但不是“最大波速=最大波长/最大周期”.四、作图题:本大题共3小题,第28小题为5分;第29小题为6分;第30小题为8分;共计19分。

C1(振动与波答案)

C1(振动与波答案)
u
C1
解: 动 力 学 表 征 式 : F kx
运 动 学 表 征 式 : y A c os[ ( t
x
x
)]
u :波沿传播方向传播距离落后的时间 u
x
u

:波沿传播方向传播距离落后的相位。
振动波动练习题(二) 三、1
大 学 物 理 练 习 册 振 动 波 动
如图所示,以P点在平衡位置向正方向运动作为计时零 点,已知圆频率为ω,振幅为A,简谐波以速度u向轴 的正方向传播,试求:(1)P点的振动方程。(2) 波动方程 u P · 解: t 0, x p 0, v p 0 p O
5 x B 5 m , B 点 的 振 动 方 程 : y B 5 c os t 20 x B 为 原 点 的 波 动 方 程 : y A 5 c os t 20 4 5
10m O A (a) 5m B -5 (b) O 0.5 1.5 t/s
2 3
C1

Ek 1 2
3 8

2
8 27

E k1
27 32
解:
kA
1 2
kx
2
4 9
kA
2
Ek2
3 8
kA
2
E k 2 / E k 1 27 : 32
答案:D
振动波动练习题(一) 二、1
大 学 物 理 练 习 册 振 动 波 动
如图所示,有一条简谐振动曲线,请写出: 振幅A = _____cm,周期T=_____s,圆频率ω=______,初 相位φo=______,振动表达式x =_______cm,振动 速度表达式υ=_______ cm/s,振动加速度表达式a =___________cm/s2,t =3s的相位______。

振动、波动部分答案(新)

振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。

*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。

练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。

若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。

2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。

3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。

已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。

大学物理习题及解答(振动与波、波动光学)

大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。

假如使物体上下振动,且规定向下为正方向。

〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。

〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。

题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。

其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。

解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。

而此时弹簧的伸长量m l 2108.9-⨯=∆。

如此弹簧的劲度系数l mg l F k ∆=∆=//。

系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。

由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。

如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。

题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。

此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。

曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。

长沙理工大学大学物理练习册振动与波答案

长沙理工大学大学物理练习册振动与波答案
回首页 回上页 下一页


2
T

u
5s
故波动方程为

t x y 0.04 cos[2 ( ) ]( SI ) 5 0.4 2 xP 0.20m
P处质点的振动方程为 t 0.2 yP 0.04 cos[2 ( ) ] 5 0.4 2 3 0.04 cos(0.4 t )( SI ) 2
2 A 0.057m 2
⑶ 平衡位置 x 0
EP 0
1 2 Ek mv E 2
v 0.8 m s
回首页 回上页 下一页
振动与波 练习三
一、选择题
1. (B) 2. (D) 3. (B)
二、填空题 4. 125rad s 338m s 17.0m
5.
下一页
结 束
振动与波 练习一
一、选择题
1. (B) 2. (D) 3. (C)
二、填空题
4. 5.

0.05m


2

3
0.205
或 • 36.90
回首页
回上页
下一页
三、计算题
6. 有一轻弹簧,当下端挂一个质量 m1 10 g的物体平衡时,伸 长量为4.9cm。用这个弹簧和质量 m2 16 g 的物体组成一弹 簧振子。取平衡位置为原点,向上为x轴的正方向。将 m2 从 平衡位置向下拉 2cm后,给予向上的初速度 v0 5 cm s 并开 始计时,试求 m2的振动周期和振动的数值表达式 解:设弹簧原长为l 悬挂 m1后弹簧伸长量为l
合振动为
y y1 y2 A合 cos(2t )
回首页 回上页 下一页
y1、y2振动反相

振动和波课后习题答案

振动和波课后习题答案

− kxc − f = mxc
(1)
fR = (1 mR2 )θ = 1 mR2 xc
2
2R
(2)
由(2)式可得
f
=
1 2 mxc
代入(1)式得:

kxc

1 2
mxc
=
mxc
推出
3 2
mxc
+
kxc
=
0
k
m
题 6.9 图
ω = 2k 3m
6.10 如题 6.10 图所示,弹簧的倔强系数为 k,定滑轮的质量为 m’,半径为 R,转动惯量为 I,物体的质量为 m。轴处摩擦不计,弹簧和绳的质量也不计,绳与滑轮间无相对滑 动。(1)试求这一振动系统的振动频率,(2)如果在弹簧处于原长时由静止释放物体 m,m 向下具有最大速度时开始计时,并令 m 向下运动为 x 的正坐标,试写出 m 的振 动表达式。
2
2
(4) < Ek
>=< E p
>=
E 2
=
1 KA2 4
=
1 mω 2A2 4
=
4 ×10−6π 2 (J )
ห้องสมุดไป่ตู้
(5) t = 0.1s 时,ϕ = 8π + π = 25 π ; 33
t = 10s 时,ϕ = 80π + π = 241π 。 33
6.14 在阻尼振动中,量τ = 1 叫做弛豫时间。(1)证明 τ 的量纲是时间;(2)经过时间 τ δ
∵ m1 x1 = m2 x2
x
=
m1 + m2 m2
x1
Δx1 + Δx2 = Δx
mm1

大学物理活页答案(振动和波)

大学物理活页答案(振动和波)

大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。

11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。

大学物理学振动与波动习题答案

大学物理学振动与波动习题答案

大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x = -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v< 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x= -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f= 0,根据运动方程,可得cos(2)03tTππ-=图6.2所以232f t Tπππ-=±. 显然f 点的速度大于零,所以取负值,解得 t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=. 由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m).4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为图4.3图4.4A===初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1+ k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母(b)图4.5ω,不要将两者混淆.4.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。

长沙理工大学物理练习册答案个人整理编号携带版

长沙理工大学物理练习册答案个人整理编号携带版

一选择5501 一物体做简谐振动,B 12∫2AW 2 2776 轻质弹簧下挂一个小盘 D 3π/2~2π之间3023 一弹簧振子,当 C 两种情况都可做间谐运动3254 一质点作简谐振动,周期为T D T 123042 一个质点作简谐振动,振幅为B5311 一质点作简谐振动,已知振动周期为T B T 23066 机械波的表达式为y=0.03cos6π(t+0.01x ) B 其周期为13s 3407 横波以波速u 沿x 轴 D D 点振动速度小于零3574 一平面简谐波,其振幅为A ,频率为v ,B y=Acos<2πv(t-t0)+1/2π>3087 一平面简谐波在弹性煤质中传播 C 动能越大 势能越大3433 如图所示,两列波长为入的相干波 D 最长的,中间r1-r23308 在波长为入的驻波中,两个相邻 B 入/23612 在双逢干涉实验中,若单色光源S B 中央明条纹向上移动,且条纹间距不变3169 用白光光源进行双缝实验,若用一个纯红色D不产生干涉条纹3171 在双缝干涉实验中,两条缝的宽度原来是相等的 C干涉条纹的间距不变,但原极小处的强度不再为零3162 在真空中波长为入的单色光,在折射率为n的透明介质中A 1.5入5526 如图所示,折射率为n2,厚度为e的透明介质A2n2e 3185 在图示三种透明材料构成的牛顿环装置中,D右半部暗,左半部明3516 在迈克耳孙干涉仪的一支光路中,放入一片折射率为n D入/2(n-1)3631 在夫琅禾费单缝衍射实验中,对于给定的入射 B对应的衍射角变大3632 如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为C 1.0x10负6次方3355 一束波长为入的平行单色光垂直入射到一单缝AB上,装置如图B入3520 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面D振动的相干叠加3214 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现B换一个光栅常数较大的光栅3215 若用衍射光栅准确测定一单色可见光的波长,在下列 D 1.0x10-3mm3635 在光栅光谱中,假如所有偶数级次的猪极大都恰好 B a=b3173 在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹,若在两缝后放一个偏振片,则B干涉条纹的间距不变,但明文的亮度减弱3368 一束光强为I0 的自然光垂直穿过两个B I0/43246 一束光是自然光和线偏振光的混合光A 1/23545 自然光以60度的入射角照射到某两介质交界面时 D 部分偏振光且折射角是30度4569 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自 C p1=p24468 一定量某理想气体按pv2=恒量的规律膨胀, B将降低4304 两个相同的容器,一个盛氢气,一个盛氦气(被视为 B 10J4256 在标准状态下,任何理想气体在1m3 中含有的分子数等于B 6.02x10的21次方4014 温度、压强相同的氦气和氧气,它们分子的平均动能 C w相等,而平均平动动能不相等4011 已知氢气与氧气的温度相同,请判断哪个说法正确 D氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大5052 速率分布函数f(v)的物理意义为B速率分布在v附近的单位速率间隔中的分子数占总分子数的百分比4290 已知一定量的某种理想气体,在温度为T1与T2时 Bvp1>vp2,f(vp1)<f(vp2)4048 一定量的理想气体,在温度不变的条件下,当体积增大时,B Z减小而入增大4054 在一个体积不变的容器中,储有 B v=2v0 z=2z0 入=入04579 对于理想气体系统来说,在下列过程中,那个过程系统所吸收的热量 D 等压压缩过程5067 一定量的理想气体,经历某个过程后,温度升高了,C (3)该理想气体系统的内能增加了4330 用下列两种方法(1)使高温B三角形n1<n25069 某理想气体分别进行了如图所示的两个卡诺循环:Bn<n’,Q>Q’4672 设有下列过程:(1)用活塞D(1)用活塞(4)一个不受空气阻力4595 关于热工转换和热量传递过程A只有(2)一切热机的效率都只能够小于1 (4)热量从高温物体向低温物体传递是不可逆的8015 有下列几种说法:(1)所有惯性系 D三种说法都是正确的4351 宇宙飞船相对于地面以速度v A c△t4359 (1)对某观察者来说(2)在某惯性系中发生于同一时刻A(1)同时(2)不同时4724 a粒子在加速器中A 2倍4725 把一个静止质量为m0的粒子,由静止B 0.25m0c2 4726 已知电子的静能为0.51mev ,若电子的动能为 C 0.5 4177 根据相对论力学,动能为0.25mev C 0.75c4183 已知某单色光照射到一金属表面A入<=hc/(eu.)4185 已知一单色光照射在钠表面上,测得D 3550A4383 用频率为v 的单色光照射某种金属时,逸出D hv+Ek 4197 由氢原子理论知,当大量 C 三种波长的光4190 要使处于基态的氢原子受激发后C 10.2ev4241 若a粒子(电荷为2e)在磁感应强度为B均匀磁场中A h/(2eRB)4211 不确定关系式△x △px>=h 表示在x方向上D粒子位置和动量不能同时确定二填空题3009 一弹簧振子做简谐振动(1)振子在负的最大位移处,则初相为π(2)振子在平衡位置向正方向运动,则初相为32π 或-π2(3)A/2处,且向负方向,初相为π/33817 一简谐振动的表达式为x=Acos(3t+φ),A=0.05m 初相φ=-36.9°3050 两个同方向的简谐振动曲线 振幅为|A1-A2|或|A2-A1|,振动方程为(A2-A1)cos (2πTt+π/2) 3838 一个质点同时参与两个在同一直线, 振幅为1×10-2m 初相为 π63075 一平面简谐波的表达式为y=0.025cos(125t-0.37x),角频率w=125rad/s 波速u=338m/s 波长入=17.0m3863 已知平面简谐波的表达式为y=Acos(Bt-Cx),此波的波长是2πC,波速是B/C 振动相位差 Cd 3291 一平面简谐机械波在煤质中传播时,振动动能是5j3538 两相干波源S1和S2的振动方程分别是,合振幅是03594 简谐驻波中,在同一个波节两侧,相位差是π3178 一双缝干涉装置,在空气中观察时,间距将为0.75mm 3500在双缝干涉实验中,所用单色光波长为入=262.5mm ,间距d=0.45mm3378/3373 光强均为I0的两束相干光相遇,最大光强是4I03167 如图所示,假设有两个同相的相干点光源,相位差△φ=2π(n-1)eλ,e=4x1033702 一束波长为入=600nm,最小厚度应为113 nm3697 波长为入的平行单色光垂直照射到折射率为n的劈行膜上,厚度之差π2n7946 一平凸透镜,凸面朝下放在一平玻璃板上,厚度之差225nm3203 用迈克耳孙干涉仪测微小的位移。

大学物理2-1第六章(振动与波)习题答案

大学物理2-1第六章(振动与波)习题答案

精品习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm 。

现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时。

求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间。

[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系rad/s 07.74200m 1.0N/m 2001030602=====⨯=-m k A k ω设振动方程为 ()φ+=t x 07.7cos0=t 时 1.0=x φcos 1.01.0= 0=φ故振动方程为 ()m 07.7cos 1.0t x =(2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 2.0200400===k mg x精品因而有 ()N 3005.02.0200=-⨯=F(3)设第一次越过平衡位置时刻为1t ,则()107.7cos 1.00t = 07.5.01π=t第一次运动到上方5cm 处时刻为2t ,则()207.7cos 1.005.0t =- ()07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二经过点B ,若已知该质点在A 、B 两点具有相同的速率,且AB =10cm ,求:(1)质点的振动方程:(1)质点在A 点处的速率。

[解] 由旋转矢量图和||||b a v v =可知421=T s精品由于4/2s 8/1,s 81ππνων====-T精品(1) 以AB 的中点为坐标原点,x 轴指向右方。

t =0时, φcos 5A x =-=t =2s 时, φφωsin )2cos(5A A x -=+==由以上二式得 1tan =φ因为在A 点质点的速度大于零,所以43πφ-= cm x A 25cos /==φ所以,运动方程为:)SI ()4/34/cos(10252ππ-⨯=-t x(2)速度为: )434sin(41025d d 2πππ-⨯-==-t t x v 当t =2s 时 m/s 1093.3)434sin(41025d d 22--⨯=-⨯-==πππt t x v6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ; (2)速度为12s cm 时的位移。

长沙理工大学物理振动与波题库及答案

长沙理工大学物理振动与波题库及答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1.(D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]A/ -16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m .(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m . (B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为 (A) 0. (B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A.(C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 νx yO u(Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 1,1,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ1(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y .(B) }]/)([cos{00φω+--=u x x t A y .(C) }]/)[(cos{00φω+--=u x x t A y .(D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2c o s λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.x y t =t 0u O(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ. (D)π=-π+-k r r 2/)(22112λφφ. [ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为(A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A) 0 (B) π21 (C) π. (D) 5π/4.[ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.S(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是 )/(2c o s 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=.(B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=.(D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ.(B) )/(cos /000c z t H E x +=ωεμ.(C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ] 39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21c o s (1π+=t A x ω,)67c o s (2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15³10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1³10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t =2s 时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为 A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x的相位超前_______.x (cm)t (s)O - x (cm)56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零. (2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为: x 1 =______________________, x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,x (cm)t (s)O 12· --则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ .64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两 点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00³10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).-y (m)72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5³104 Hz ,波速为 1.5³103 m/s .在传播路径上相距5³10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波 在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21c o s (2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5³107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y =____________________.(真空介电常量ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20³10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85³10-12 F/m ,真空磁导率 μ 0 =4π³10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50³1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.z y x O98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI). 求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI). 求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ²m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ²m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100c o s (05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.O A116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求(1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00³10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70³10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00³103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45.2; 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,;58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略;O P61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ; 95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ; 98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φc o s m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05³10-2cos(11.2t -2.92) (SI)或 x = 2.05³10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3(2) )318s i n (1042π+π⨯π-==-t x v (SI) )318cos(103222π+π⨯π-==-t x a (SI) (3) 2222121A m kA E E E P K ω==+==7.90³10-5 J (4) 平均动能 ⎰=TK t m T E 02d 21)/1(v ⎰π+π⨯π-=-T t t m T 0222d )318(s i n )104(21)/1( = 3.95³10-5 J =E 21 同理 E E P 21== 3.95³10-5 J 106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ (3) )3110cos(10152π+⨯=-t x (SI) 107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。

II2_振动和波+详细解答

II2_振动和波+详细解答

振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。

为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。

下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。

f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。

(B )曲线2、1、3分别表示x 、v 、a 曲线。

(C )曲线1、3、2分别表示x 、v 、a 曲线。

(D )曲线2、3、1分别表示x 、v 、a 曲线。

(E )曲线1、2、3分别表示x 、v 、a 曲线。

(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。

3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。

关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。

大学物理D-06振动和波-参考答案

大学物理D-06振动和波-参考答案

B 2 ;波的周期为 B C lC ;此质元的初相位为
;波长为
2 C
;离波源距离为 l
lC 。
6.1.5 一平面简谐波沿 ox 轴正向传播,波动方程为 y A cos[ (t 振动方程为 为 2 1 二、选择题
x ) ] ,则 x L1 处质点的 u 4
y A cos[ (t
由 t=0 和 t=0.25 时的波形图,得
O
t
x
2 x x 2 10 (t ) ] 0.2 cos[2t x ] (2)波动表式为 y A cos[ ( t ) 0 ] 0.2 cos[ 1 0.6 2 3 2 u
O 点的振动表式为
y 0 | t 0 A cos 0 0 , v 0 | t 0 A sin 0 0 , 0
3 , 4
x1 x3振幅最大 。
2
0 20 , 0 20
5 3 (或 )时, x2 x3振幅最小 4 4
0 , 0 20 84 o 48时, x1 x 2 x3振幅最大 0 0
6.4.2
2
o

4

2
3

4

2
6.2.6 两相干平面简谐波沿不同方向传播,如图所示,波速均为 u 0.40m / s ,其中一列波在 A 点 引 起 的 振 动 方 程 为 y 1 A1 cos( 2 t

2
) ,另一列波在 B 点引起的振动方程为
y 2 A2 cos( 2 t
[ A ] (A)0; (B) /2; (C) ; (D)3 /2。 三、简答题

大学物理振动与波练习题与标准答案

大学物理振动与波练习题与标准答案

第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动;(4) 物体在平衡位置,向正方向运动。

求以上各种情况的谐振动方程。

【解】:π=π=ω45.02)m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π= (3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。

(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。

【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同?(2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。

虚线: )2t 21cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。

【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。

(1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向;(2) 画出经过1秒后的波形曲线。

振动与波动(习题与答案)

 振动与波动(习题与答案)

第10章振动与波动一.基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。

8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。

掌握波的相干条件。

能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要1. 简谐振动的动力学特征作谐振动的物体所受到的力为线性回复力,即取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为2. 简谐振动的运动学特征作谐振动的物体的位置坐标x与时间t成余弦(或正弦)函数关系,即由它可导出物体的振动速度)=tAv-ω+ωsin(ϕ物体的振动加速度)=tAa2cos(ϕ-+ωω3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。

周期与频率互为倒数,即ν=1T 或 T1=ν5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。

t=0时的相位称为初相,它由谐振动的初始条件决定,即应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t时刻它与x 轴的夹角为谐振动的相位ϕω+t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:⑴
E
Ek
EP
1 2
kA2
A 0.08m

Ek
1 kA2 2
sin2 (t
)
EP
1 2
kA2
cos2 (t
)
回首页 回上页 下一页
Ek EP
cos(t ) 2
2
x Acos(t )
2 A 0.057m 2
⑶ 平衡位置 x 0
EP 0
Ek
1 2
mv2
E
v 0.8m s
2.05102 cos(11.2t 3.36)(SI )
回首页 回上页 下一页
7. 一质量m 0.25kg的物体,在弹簧的力作用下沿x 轴运动, 平衡位置在原点。弹簧的劲度系数k 25N m1
⑴ 求振动的周期T 和角频率
⑵ 如果振幅A 15cm、t 0时物体位于x 7.5cm 处,且物
回首页 回上页 下一页
振动与波 练习三
一、选择题
1. (B) 2. (D) 3. (B)
二、填空题 4. 125rad s 338m s 17.0m
2
5. C B C Cd
回首页 回上页 下一页
三、计算题
6. 一横波沿绳子传播,其波的表达式为
y 0.05cos(100t 2 x)(SI )
⑴ 求此波的振幅、波速、频率和波长
回首页 回上页 下一页
t 0时
x0 Acos
v0 A sin
tg v0 0.223 x0
Ax02ຫໍສະໝຸດ v022.05 102
m
1 12.60 2 192.60
(2 167.40 )
由题意 2 192.60 3.36rad 或 ( 2.92rad)
振动表达式为
x 2.05102 cos(11.2t 192.60 )(SI )
体沿x轴反向运动,求初速v0 及初相
⑶ 写出振动的数值表达式
解:⑴ k 10 rad s
m
T 2 0.63s
⑵ x0 Acos v0 A sin
v0 A2 x02
回首页 回上页 下一页
由题意
由题意

v0 A2 x02 1.3m s
tg v0 1.733 x0
1
3
2
4 3
x0 0 v0 0
1
3
x 15102 cos(10t )(SI )
3
回首页 回上页 下一页
振动与波 练习二
一、选择题
1. (D) 2. (B) 3. (B)
二、填空题
4. A1 A2 A2 A1
x
A2 A1
cos( 2
T
t)
2
5. 1102m
6
回首页 回上页 下一页
三、计算题
⑵ xP 0.20m
P处质点的振动方程为
yP
0.04cos[2 ( t
5
0.2) 0.4
]
2
0.04cos(0.4t 3 )(SI )
2
回首页 回上页 下一页
8. 一平面简谐波沿Ox轴正方向传播,波的表达式为
y Acos 2 (t x )
而另一平面简谐波沿Ox轴负方向传播,波的表达式为
6. 一弹簧振子沿x轴做简谐振动(弹簧为原长时振动物体的位
置取作x轴原点)。已知振动物体最大位移为xm 0.4m,最 大恢复力为Fm 0.8N,最大速度为vm 0.8 m s,又知t 0 的初位移为0.2m,且初速度与所选 x轴方向相反
⑴ 求振动能量
⑵ 求此振动的表达式
解:⑴ Fm kA kxm
3
振动方程为
x 0.4cos(2t )(SI )
3
cos 1
2
回首页 回上页 下一页
7. 一物体质量为0.25kg,在弹性力作用下作简谐振动,弹簧的
劲度系数 k 25N m,1 如果起始振动时具有势能0.06J和动
能 0.02J,求
⑴ 振幅
⑵ 动能恰等于势能时的位移
⑶ 经过平衡位置时物体的速度
⑴ 写出x 0处质点的振动方程
⑵ 写出波的表达式
2
⑶ 画出t 1s时刻的波形曲线 解:⑴ 设 x 0处质点振动方程为
22
O
2
4 t(s)
y0 Acos(t 0 )
2
A 2 102 m
t 0时
2 102
2
2
A cos 0
rad s
0 0
3
3
(舍去)
T2
y0
2 102 cos( t )(SI )
⑵ 求绳子上各点质点的最大振动速度和最大振动加速度
⑶ 解:
求 x1 0.2m处和 x2 y 0.05cos 2 (
t
0.7m x)
处二质点振动的位相差
0.05cos100 (t x )
0.02
50
⑴ A 0.05m 1m 100 rad s
1 50Hz u 50m s
T
O
P 0.40
x (m)
0.20 0.60
A 0.04m u 0.08m s 0.04
0.40m
t 0时 O点处
y0 v0
Acos A sin
0
2
T
A
sin
0
回首页 回上页 下一页
2
T 5s
u
故波动方程为
y 0.04cos[2 ( t x ) ](SI )
5 0.4 2
2
⑵ v dy 2 Asin(2t )
dt
2
2 Acos(2t )
回首页 回上页 结 束
追求人生的美好!
我们的共同目标!
k Fm
xm
E
1 2
kA2
1 2
Fm xm
xm2
1 2
Fm xm 0.16J
⑵ 设振动的表达式为 x Acos(t )
A xm 0.4m
回首页 回上页 下一页
v A sin(t )
vm vm 2 rad s
A xm t 0时
x0 Acos 0.2m
v0 A sin 0
23
回首页 回上页 下一页

y
Acos[2 ( t
T
x)
0 ]
y 2 102 cos[2 ( t x) ](SI )
44 3
⑶ t 1s时刻的波形方程 y 2 102 cos( x 5 )(SI ) 26
y (102 m)
2
1 3 O 5 3 8 3
4 3
23
x(m)
62
2
回首页 回上页 下一页
振动与波 练习四
一、选择题
1. (C) 2. (D) 3. (B)
二、填空题 4. 5J
5. 0
6.
回首页 回上页 下一页
三、计算题
7. 图示一平面简谐波在t 0时刻的波形图,求
⑴ 该波的波动表达式
y (m) u 0.08m s
⑵ P处质点的振动方程
解:⑴ 设波动方程为
0.04
y Acos[2 ( t x ) ] T
⑵ vmax A 2 A 5 15.7 m s amax A2 4 2 2 A 500 2

2
( x2
x1 )
两振动反相
4.93103 m s2
回首页 回上页 下一页
7. 一简谐波沿Ox轴正方向传播,波长 4m,周期T 4s,已
知 x 0处质点的振动曲线如图所示 y (102 m)
簧振子。取平衡位置为原点,向上为x轴的正方向。将m2 从
平衡位置向下拉 2cm后,给予向上的初速度v0 5cm s 并开
始计时,试求 m2的振动周期和振动的数值表达式
解:设弹簧原长为l 悬挂m1后弹簧伸长量为l
kl m1g
k m1g 2 N m
l
换上 m2后
k 11.2rad s m2
T 2 0.56s
y 2Acos 2 (t x )
求:⑴ x 4处介质质点的合振动方程
⑵ x 4处介质质点的速度表达式
解:⑴ 在 x 4处
y1
A cos(2t
2
)
y2
2 A cos(2t
2
)
合振动为
y y1 y2 A合 cos(2t )
回首页 回上页 下一页
y1、y2振动反相
A合 A
2
y Acos(2t )
下一页 结 束
振动与波 练习一
一、选择题
1. (B) 2. (D) 3. (C)
二、填空题
4.
2
3
5. 0.05m
0.205
或 • 36.90
回首页 回上页 下一页
三、计算题
6. 有一轻弹簧,当下端挂一个质量m1 10g的物体平衡时,伸
长量为4.9cm。用这个弹簧和质量 m2 16g 的物体组成一弹
相关文档
最新文档