ETM 遥感不同波段的意义及用途1解析
不同光谱波段对地球大气层探测的意义
不同光谱波段对地球大气层探测的意义地球大气层是人类赖以生存的重要环境之一,同时也涉及到许多军事、研究等领域的信息获取,因此对地球大气层的实时监测与探测至关重要。
而不同的光谱波段也是地球大气层探测的关键。
一、可见光谱波段可见光是人类肉眼可以观察到的一种电磁辐射,波长范围是400-700纳米。
然而,在大气层中,可见光受到气溶胶、云层、水汽等物质的干扰,导致信号强度并不稳定。
因此,可见光谱波段并不适于大气成分和气象数据的定量研究。
二、红外光谱波段红外光谱波段波长范围主要分为近红外波段(700-2500纳米)、中红外波段(2500-25000纳米)和远红外波段(25000-1000000纳米)。
其中近红外波段主要用于表征地球表面的地貌、植被覆盖、土地利用等信息,中红外波段能检测到大气中的化学键振动信息,比较适于大气成分、气溶胶等的探测,而远红外波段则主要用于探测大气中的温室气体信息。
三、紫外光谱波段紫外光波段包括短波紫外(200-300纳米)和长波紫外(300-400纳米),其主要应用领域为大气氧气、氮气等物质的探测。
其中,短波紫外主要用于探测臭氧、硫化物、氮氧化物等有毒气体、空气质量以及大气臭氧分布情况等信息,是国内外环保、航空、科学研究机构使用广泛的光谱波段。
四、微波光谱波段微波光谱波段波长范围广泛,通常从1毫米到1厘米,用于探测地球大气的遥感技术,包括大气温度、水汽、云和降水等信息。
在微波光谱波段中,被称为“微波窗口”的区域(23.8-36.5GHz和50.2-57.2GHz)是用于探测大气中水汽含量、云和降水等的主要波段,因其在大气中传输较稳定,具有高精度、高分辨率等优点,成为遥感的热点领域。
总的来说,不同光谱波段各有其特点和应用领域,掌握这些特点并选择合适的波段进行探测,有利于更加精准地获取地球大气层的信息,为环保、气象、科学研究等领域提供重要帮助。
不同波段组合说明
Landsat8 ETM+7个不同波段组合说明Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
如表1是国外公布的OLI波段合成的简单说明。
表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。
对比表3,可以将表1和表2的组合方案结合使用。
表1:OLI波段合成741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。
为该区优选找矿靶区提供遥感依据。
743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
Landsat_、MSS、TM和ETM+简介和应用
Landsat MSS/TM/ETM 简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射8颗,Landsat6与1993.1发射失败。
卫星参数Landsat1Landsat2Landsat3Landsat4Landsat5Landsat7Landsat8发射时间1972.7.231975.1.121978.3.51982.7.161984.31999.4.152013.2.11覆盖周期18天18天18天16天16天16天16天扫幅宽度185km185km185km185km185km185km170 180km波段数44477811机载传感器MSS MSS MSS MSS、TM MSS、TM ETM+OLI、TIRS运行情况1978退役1976年失灵,1980年修复,1982年退役1983年退役1983年TM传感器失效,退役2011年11月停止服务2003.5月出现故障运行至今ETM+:主题成像仪Landsats7波段波长(微米)分辨率(米)主要作用ETM+Band1蓝绿波段0.45-0.5230用于水体穿透,分辨土壤植被Band2绿色波段0.52-0.6030分辨植被Band3红色波段0.63-0.6930处于叶绿素吸收区域,用于观测道路/裸露土壤/植被种类效果很好Band4近红外0.76-0.9030用于估算生物数量,TM:MSS:二、常用波段组合:(一)321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。
(二)432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。
举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。
TM与ETM
各个波段的特征TM1 0.45-0.52um蓝波段:对叶绿素和叶色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
TM2 0.52-0.60um,绿波段:对健康茂盛植物的反射敏感,对绿的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。
在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了 75.6%。
从单时相遥感影像的分类来讲,这种分类精度只相当于中等水平。
但若从多时相图像的角度来看,这一精度则相当于在采用分类后比较法时,每一景图像的平均分类精度需达到 86.9% 的水平②,而这种分类精度,特别是在山区,其实已经是比较好的了。
TM3 0.62-0.69UM ,红波段:叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面。
TM4 0.76-0.96UM近红外波段:对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于目视调查,作物长势测量,水域测量,生物量测定及水域判别。
TM51.55-1.75UM中红外波段:对植物含水量和云的不同反射敏感,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,可判断含水量和雪、云。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
TM61.04-1.25UM远红外波段:可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,作温度图,植物热强度测量。
TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物。
TM、ETM+数据介绍
各个波段的特征B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别;B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。
=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近自然色彩。
对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。
一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。
可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。
(完整word版)遥感影像的波段组合及用途
遥感影像的波段组合及用途高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。
若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚;若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况;若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像;若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。
遥感影像时相的选择:遥感影像的成像季节直接影响专题内容的解译质量。
对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。
例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。
高分辨率影像的选择:分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。
随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。
法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。
SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。
Landsat TM、ETM+数据介绍
TM各个波段的特征B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别;B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。
=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近自然色彩。
对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。
一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。
可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。
Landsat陆地卫星TM遥感影像数据介绍
Landsat陆地卫星遥感影像数据简介“地球资源技术卫星”计划最早始于1967年,美国国家航空与航天局(NASA)受早期气象卫星和载人宇宙飞船所提供的地球资源观测的鼓舞,开始在理论上进行地球资源技术卫星系列的可行性研究。
1972年7月23日,第一颗陆地卫星(Landsat_1)成功发射,后来发射的这一系列卫星都带有陆地卫星(Landsat)的名称。
到1999年,共成功发射了六颗陆地卫星,它们分别命名为陆地卫星1到陆地卫星5以及陆地卫星7,其中陆地卫星6的发射失败了。
Landsat陆地卫星系列遥感影像数据覆盖范围为北纬83o到南纬83o之间的所有陆地区域,数据更新周期为16天(Landsat 1~3的周期为18天),空间分辨率为30米(RBV和MSS传感器的空间分辨率为80米)。
目前,中国区域内的Landsat陆地卫星系列遥感影像数据(见图1)可以通过中国科学院计算机网络信息中心国际科学数据服务平台QQ电子网免费获得()。
Landsat 陆地卫星在波段的设计上,充分考虑了水、植物、土壤、岩石等不同地物在波段反射率敏感度上的差异,从而有效地扩充了遥感影像数据的应用范围。
在基于Landsat遥感影像数据的一系列应用中,计算植被指数和针对Landsat ETM off影像的条带修复为最常用同时也是最为基础的两个应用。
因此,中国科学院计算机网络信息中心基于国际科学数据服务平台,提供了1)基于Landsat 数据的多种植被指数提取。
2)对Landsat ETM SLC-off影像数据的条带修复。
图1 Landsat 遥感影像中国区示意图数据特征(1)数据基本特征Landsat陆地卫星包含了五种类型的传感器,分别是反束光摄像机(RBV),多光谱扫描仪(MSS),专题成像仪(TM),增强专题成像仪(ETM)以及增强专题成像仪+(ETM+),各传感器拍摄影像的基本特征如下:(2)数据主要参数Landsat陆地卫星携带的传感器,在南北向的扫描范围大约为179km,东西向的扫描范围大约为183km,数据输出格式是GeoTIFF,采取三次卷积的取样方式,地图投影为UTM-WGS84南极洲极地投影。
LandsatTM、ETM+数据介绍
LandsatTM、ETM+数据介绍TM各个波段的特征B1 为蓝⾊波段,该波段位于⽔体衰减系数最⼩的部位,对⽔体的穿透⼒最⼤,⽤于判别⽔深,研究浅海⽔下地形、⽔体浑浊度等,进⾏⽔系及浅海⽔域制图;B2 为绿⾊波段,该波段位于绿⾊植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物⽣产⼒,对⽔体具有⼀定的穿透⼒,可反映⽔下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可⽤于区分植物类型、覆盖度、判断植物⽣长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、⽔⽂等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的⾼反射区,反映了⼤量的植物信息,多⽤于植物的识别、分类,同时它也位于⽔体的强吸收区,⽤于勾绘⽔体边界,识别与⽔有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个⽔体吸收带之间,对植物和⼟壤⽔分含量敏感,从⽽提⾼了区分作物的能⼒,此外,在该波段上雪⽐云的反射率低,两者易于区分,B5 的信息量⼤,应⽤率较⾼;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可⽤于作物与森林区分、⽔体、岩⽯等地表特征识别;B7 为短波外波段,波长⽐ B5 ⼤,是专为地质调查追加的波段,该波段对岩⽯、特定矿物反应敏感,⽤于区分主要岩⽯类型、岩⽯⽔热蚀变,探测与交代岩⽯有关的粘⼟矿物等;B8 为全⾊波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较⼴,空间分辨率较其他波段⾼,因⽽多⽤于获取地⾯的⼏何特征。
=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近⾃然⾊彩。
对浅⽔透视效果好,可⽤于监测⽔体的浊度、含沙量、⽔体沉淀物质形成的絮状物、⽔底地形。
⼀般⽽⾔:深⽔深兰⾊;浅⽔浅兰⾊;⽔体悬浮物是絮状影象;健康植被绿⾊;⼟壤棕⾊或褐⾊。
可⽤于⽔库、河⼝及海岸带研究,但对⽔陆分界的划分不合适。
landsat、mss、tm和etm+简介和应用
Landsat MSS/TM/ETM 简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射8颗,Landsat6与1993.1发射失败。
卫星参数Landsat1Landsat2Landsat3Landsat4Landsat5Landsat7Landsat8发射时间1972.7.231975.1.121978.3.51982.7.161984.31999.4.152013.2.11覆盖周期18天18天18天16天16天16天16天扫幅宽度185km185km185km185km185km185km170 180km波段数44477811机载传感器MSS MSS MSS MSS、TM MSS、TM ETM+OLI、TIRS运行情况1978退役1976年失灵,1980年修复,1982年退役1983年退役1983年TM传感器失效,退役2011年11月停止服务2003.5月出现故障运行至今ETM+:主题成像仪Landsats7波段波长(微米)分辨率(米)主要作用ETM+Band1蓝绿波段0.45-0.5230用于水体穿透,分辨土壤植被Band2绿色波段0.52-0.6030分辨植被Band3红色波段0.63-0.6930处于叶绿素吸收区域,用于观测道路/裸露土壤/植被种类效果很好Band4近红外0.76-0.9030用于估算生物数量,TM:MSS:二、常用波段组合:(一)321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。
(二)432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。
举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。
Landsat卫星MSSTMETM数据——波段组合
Landsat卫星MSS/TM/ETM数据——波段组合321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。
432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。
举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。
蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。
由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。
因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。
此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。
451:信息量最丰富的组合,TM图像的光波信息具有3~4维结构,其物理含义相当于亮度、绿度、热度和湿度。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。
第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。
计算各种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。
第7波段只是在探测森林火灾、岩矿蚀变带及土壤粘土矿物类型等方面有特殊的作用。
最佳波段组合选出后,要想得到最佳彩色合成图像,还必须考虑赋色问题。
人眼最敏感的颜色是绿色,其次是红色、蓝色。
LandsatMSSTM和ETM简介和应用
Landsat MSS/TM/ETM 简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射7颗。
目前,一、传感器简介(一)Landsat 7 ETM1、产品描述美国陆地卫星7号(Landsat-7)于1999年4月15日由美国航空航天局(NASA)发射升空,其携带的主要传感器为增强型主题成像仪(ETM+)。
Landsat-7除了在空间分辨率和光谱特性等方面保持了与Landsat-5的基本一致外,又增加了许多新的特性,因而受到了各国用户的普遍重视和欢迎。
自发射升空至今,已为用户提供了大量高质量的图像数据。
Landsat-7每16天扫瞄同一地区,即其16天覆盖全球一次。
2003年5月31日(21:42:35GMT),Landsat-7ETM+机载扫描行校正器(Scan Lines Corrector,简称SLC)突然发生故障,导致获取的图像出现数据重叠和大约25%的数据丢失,因此日之后Landsat7的所有数据都是异常的,需要采用SLC-off模型校正。
另外,以及之间的数据是没有获得。
Landsat 7 ETM+影像数据包括8个波段(波段设计),band1-band5和band7的空间分辨率为30米,band6的空间分辨率为60米,band8的空间分辨率为15米,南北的扫描范围大约为170km,东西的扫描范围大约为183km。
L7 SLC-on是指日Landsat 7 SLC故障之前的数据产品。
L7 SLC-off是指日Landsat 7S LC故障之后的异常数据产品。
(二)Landsat 4-5 TM1、产品描述Landsat主题成像仪(TM)是Landsat4和Landsat5携带的传感器,从1982年发射至今,其工作状态良好,几乎实现了连续的获得地球影像。
Landsat-4和Landsat5同样每16天扫瞄同一地区,即其16天覆盖全球一次。
不同波段组合说明
Landsat8 ETM+7个不同波段组合说明Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
如表1是国外公布的OLI波段合成的简单说明。
表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。
对比表3,可以将表1和表2的组合方案结合使用。
表1:OLI波段合成741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。
为该区优选找矿靶区提供遥感依据。
743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
ETM+遥感不同波段的意义及用途1
ETM+遥感不同波段的意义及用途741741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
7421992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、42假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。
为该区优选找矿靶区提供遥感依据。
743我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。
754对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。
从而可用作分析湖泊水位变化的地理规律754陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。
并称此种合成的图像为陆地卫星标准假彩色图像。
在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。
541XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、 TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。
Landsat-MSSTM和ETM简介和应用
Landsat-MSSTM和ETM简介和应用LANDSAT是美国NASA的陆地卫星计划(1975年前称“地球资源技术卫星-ERTS”),从1972年开始发射第一颗卫星LANDSAT-1,已发射7颗。
目前,在役服务的是Landat5和Landat7。
卫星参数发射时间覆盖周期扫幅宽度波段数机载传感器Landat11972.7.2318天185km4MSSLandat21975.1.1218天185km4MSS1976年失灵,运行情况1978退役1980年修复,1982年退役1983年退役Landat31978.3.518天185km4MSSLandat41982.7.1616天185km7MSS、TM1983年TM传感器失效,在役服务退役发射失败Landat51984.316天185km7MSS、TMLandat6Landat71993.1————1999.4.1516天185km8ETM+2003.5月出现故障一、传感器简介(一)Landat7ETM1、产品描述美国陆地卫星7号(Landat-7)于1999年4月15日由美国航空航天局(NASA)发射升空,其携带的主要传感器为增强型主题成像仪(ETM+)。
Landat-7除了在空间分辨率和光谱特性等方面保持了与Landat-5的基本一致外,又增加了许多新的特性,因而受到了各国用户的普遍重视和欢迎。
自发射升空至今,已为用户提供了大量高质量的图像数据。
Landat-7每16天扫瞄同一地区,即其16天覆盖全球一次。
2003年5月31日(21:42:35GMT),Landat-7ETM+机载扫描行校正器(ScanLineCorrector,简称SLC)突然发生故障,导致获取的图像出现数据重叠和大约25%的数据丢失,因此2003.5.31日之后Landat7的所有数据都是异常的,需要采用SLC-off模型校正。
另外,2003.05.31-2003.07.14以及2003.07.03-2003.09.17之间的数据是没有获得。
ETM+ 影像湿地遥感信息提取的最佳波段选择
ETM+影像湿地遥感信息提取的最佳波段选择——以扎陵湖、鄂陵湖地区为例杜新远①戚浩平①孙永军③(1. 东南大学交通学院测绘工程系,南京210096;2. 中国国土资源航空物探遥感中心,北京100083)摘要:本文针对湿地遥感信息的特点,根据最佳指数法的理论依据,由相关系数矩阵,将ETM+各波段进行分组,再结合各波段的主要用途,使波段的所有组合方式由84种减少为6种,大大减少了计算最佳指数的运算量。
最后根据实验,选取波段453组合方式作为假彩色合成影像的RGB波段。
关键词:湿地;最佳波段;OIF;波段用途湿地是世界三大生态系统之一,湿地研究是当今世界科学研究的热点问题之一。
遥感技术由于具有大面积同步观测、数据综合性、可比性、经济性并允许重复观察等特点,在湿地调查,湿地动态监测及湿地保护中有着广泛的应用。
但是由于目前信息的自动提取技术还不成熟,主要还是以目视解译为主。
所以如何选用影像的最佳波段组合,合成假彩色影像,是提高目视解译精度的基础。
本文以扎陵湖、鄂陵湖地区ETM+影像为基础,探讨了ETM+影像湿地遥感信息提取的最佳波段选择问题,为湿地的解译工作打下了基础。
1 研究区概况扎陵湖、鄂陵湖地区地处青藏高原亚寒带的半干旱地区,海拔4100~4500m之间,这一地区湖泊沼泽众多,河谷开阔,冰川广布,水系发育,支流众多,是重要的湿地资源。
2 ETM+数据特征LANDSAT 7 卫星于1999年发射,装备有Enhanced Thematic Mapper Plus(ETM+)设备,ETM+被动感应地表反射的太阳辐射和散发的热辐射,有8个波段的感应器,覆盖了从红外到可见光的不同波长范围,各波段的主要参数见表1。
LANDSAT 7 的一些总体数据:①7个光谱波段和一个全色波段; ②观察宽度达185km ;③15、30、60、80米精度 ;④离地705km太阳同步轨道; ⑤16天运行周期 ;⑥覆盖范围为南北纬81°之间区域。
遥感平台波段设计及应用
02 遥感平台波段设计的技术 细节
可见光波段
可见光波段范围
通常在380-780nm之间,是人类视觉可感知的 波长范围。
可见光遥感应用
用于拍摄地物表面颜色和纹理,如卫星遥感影 像。
可见光波段特点
受天气和时间影响较小,但容易受到大气散射和吸收的影响。
红外波段
红外波段范围
通常在770-1000000nm之间,超出可见光 范围。
红外遥感应用
用于探测地物温度和热辐射,如红外热像仪。
红外波段特点
能够穿透云层和大气,但容易受到大气中水 蒸气和二氧化碳的影响。
微波波段
微波波段范围
通常在1mm-1m之间,位于长波和短波之间。
微波遥感应用
用于穿透云层和地表,探测地物内部结构和成分,如雷达遥感。
微波波段特点
不受天气和时间影响,能够穿透云层和地表,但分辨率较低。
随着科技的不断进步,遥感技术将不 断创新和发展,提高数据获取和处理
的能力。
智能化发展
遥感技术将向着智能化方向发展,实 现自动化、智能化的数据处理和分析。
应用领域的拓展
随着遥感技术的不断发展,其应用领 域也将不断拓展,为人类提供更广泛
的服务。
感谢您的观看
THANKS
根据遥感平台和传感器的不同,遥感波段可以分为可见光、近红外、中红外、 热红外等类型。
遥感波段设计的重要性
提高遥感图像的分辨率和识别精度
01
合理的波段设计可以更好地突出地物的特征差异,从而提高遥
过不同波段的组合和融合,可以综合利用多种遥感数据,提
通过分析遥感影像中的地貌、地表形变 等信息,监测滑坡、泥石流等地质灾害 风险区,预警灾害发生。
02
不同波段组合说明
Landsat8 ETM+7个不同波段组合说明Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
如表1是国外公布的OLI波段合成的简单说明。
表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。
对比表3,可以将表1和表2的组合方案结合使用。
表1:OLI波段合成741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。
为该区优选找矿靶区提供遥感依据。
743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
遥感传感器三个比较MSS TM ETM+
1从评价遥感数据常用的4个分辨率指标比较MSS,TM,ETM+MSS,TM,ETM+这三个传感器的各自的作用不一样,我们在使用的时候也有选择性。
如果要求空间分辨率高的级得使用ETM+,如果要求时间分辨率高的,三个传感器都差不了多少,除了MSS有18天,其他的都是16天。
如果要选择辐射分辨率高的传感器,可以选择适合的。
此外,三个的波段分辨率也不是全部相同,每个传感器有相应的波段范围,在巫妖的弊端范围内选择合适的传感器进行工作。
波段范围长,说明各波段的反射都能接受,面积小也能看清楚,而其他波段范围小,只能靠增大面积来增加分辨率,所以ETM+中的PAN在这方面比较好,在选择是可以利用这点优势。
从上面的表格中也很清楚的比较了三个传感器在四个分辨率的差别,但是也可以看出ETM+相对来说最好,但是也不一定,知识从整体上来说,还是得根据需要来选择适合的传感器。
2、有关BSQ通用栅格数据格式都会存储为二进制的字节流,通常它将以BSQ (按波段顺序:BSQ是最简单的存储格式,它将影像同一波段的数据逐行存储下来,再以相同的方式存储下一波段。
如果要获取影像单个波谱波段的空间点(X,Y)的信息,那么采用BSQ方式存储是最佳的选择)BSQ易于获取单波谱波段的单点信息。
遥感数据的通用格式用户从遥感卫星地面站获得的数据一般为通用二进制数据,外加一个说明性头文件.其中,generic binary数据主要包含三种数据类型:BSQ格式,BIP格式,BIL 格式. 1.BSQ (band sequential)数据格式BSQ是按波段顺序依次排列的数据格式. 数据排列遵循以下规律: 第一波段位居第一,第二波段位居第二, 第n波段位居第n位.在每个波段中,数据依据行号顺序依次排列,每一列内,数据按像素顺序排列。
sentinel波段
sentinel波段Sentinel是一种广泛应用于遥感领域的波段,其重要性和实用性已得到广泛认可。
Sentinel波段是欧洲空间局(ESA)的Copernicus计划的一部分,该计划旨在为全球用户提供高质量的地球观测数据。
Sentinel波段由一系列不同的卫星传感器组成,每个传感器针对不同类型的观测应用进行了优化。
每个传感器具有特定的光谱范围和分辨率,以满足各种遥感数据需求。
以下是一些与Sentinel波段相关的参考内容:1. Sentinel-1: Sentinel-1是一种合成孔径雷达(SAR)传感器,主要用于地表观测和监测。
它提供了全天候和全地球的雷达影像,可用于监测海冰、地表变形、洪水等自然灾害情况。
2. Sentinel-2: Sentinel-2是一种多光谱传感器,可以捕捉不同波长的光线,用于土地覆盖分类、农作物监测和森林保护等应用。
它对植被、土壤、水体等地表特征有很高的分辨率,可以提供高质量的地表信息。
3. Sentinel-3: Sentinel-3是一种陆地和海洋监测传感器,用于监测海洋生态系统、物种迁徙、海洋温度、盐度和海流等参数。
它可以提供全球覆盖的海洋数据,对于气候变化和海洋研究非常重要。
4. Sentinel-5P: Sentinel-5P是一种大气监测传感器,主要用于监测大气组分如臭氧、二氧化氮、二氧化碳和甲烷等。
它能够提供高精度的大气污染数据,对于全球大气环境监测和排放控制具有重要意义。
5. Sentinel-6: Sentinel-6是一种海面高度测量传感器,用于监测全球海平面的变化情况。
它可以提供高精度的海测数据,对于海洋气候研究和海洋生态系统的监测至关重要。
Sentinel波段的数据对于地球科学研究、自然灾害监测、环境保护和气候研究等领域具有重要意义。
通过分析和利用Sentinel波段的数据,我们可以更好地理解地球的变化和人类活动对地球环境的影响。
这些数据对于制定环境政策、灾害防控和可持续发展至关重要,使我们能够更好地保护和管理地球资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ETM+遥感不同波段的意义及用途
741
741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
742
1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、42假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C 类5处。
为该区优选找矿靶区提供遥感依据。
743
我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。
这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;
同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。
754
对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。
从而可用作分析湖泊水位变化的地理规律
754
陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。
并称此种合成的图像为陆地卫星标准假彩色图像。
在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。
541
XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。
543
例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。
543
波段选取及主成份分析我们的研究采用1995年8月2日的TM数据。
对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯,而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象数据,用于自动识别分类。
543
742
该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。
解译为目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假彩色片(7、4、2波段合成》为参考片种。
432
卫星遥感图像示蓝藻暴发情况,我们先看一看蓝藻爆发时遥感监测机理。
蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。
由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。
因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。
此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。
453
本研究遥感信息源是中国科学院卫星遥感地面接收站于1995年10月接收美国MSS卫星遥感TM波段4(红)、波段5(绿)、波段3(蓝)CCT磁带数据制作的1∶10万和1∶5万假彩色合成卫星影像图。
图上山地、丘陵、平原台地等喀斯特地貌景观及各类用地影像特征分异清晰。
成像时期晚稻接近收获,且稻田中不存积水,因此耕地类型中的水田色调呈粉红色;旱地由于作物大多收获,且土壤水分少而呈灰白色;菜地则由于蔬菜长势好,色调鲜亮并呈猩红色。
园地色调呈浅褐色,且地块规则整齐、轮廓清晰。
林地中乔木林色调呈深褐色,而分布于喀斯特山地丘陵等地区的灌丛则呈黄到黄褐色。
牧草地大多呈黄绿色调。
建设用地中的城镇
呈蓝色;公路呈线状,色调灰白;铁路呈线条状,色调为浅蓝;机场跑道为蓝色直线,背景草地呈蓝绿色;在建新机场建设场地为白色长方形;备用旧机场为白色色调,外形轮廓清晰、较规则。
水库和河流则都呈深蓝色调。
453
采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。
451
453
TM图像的光波信息具有3~4维结构,其物理含义相当于亮度、绿度、热度和湿度。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。
第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。
计算0种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。
第7波段只是在探测森林火灾、岩矿蚀变带及土壤粘土矿物类型等方面有特殊的
作用。
最佳波段组合选出后,要想得到最佳彩色合成图像,还必须考虑赋色问题。
人眼最敏感的颜色是绿色,其次是红色、蓝色。
因此,应将绿色赋予方差最大的波段。
按此原则,采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。
例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。
――《TM图像的光谱信息特征与最佳波段组合》-戴昌达,环境遥感,1989.12
472
在采用TM4、7、2波段假彩色合成和1:4 计算机插值放大技术方面,在制作1:5万TM影像图并成1:5万工程地质图、塌岸发展速率的定量监测以及在单张航片上测算岩(断) 层产状等方面,均有独到之处。