2018重庆二诊理科数学答案
2018届重庆市南开中学高三二诊模拟理科数学试题及答案
重庆南开中学高2018届高三二诊模拟考试数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1、设i 是虚数单位,则复数1iz i=-+的虚部是( ) A 、2i - B 、12-C 、12D 、2i2、已知命题:,2lg p x R x x ∃∈->,命题2:,0q x R x ∀∈>,则( ) A 、命题p q ∨是假命题 B 、命题p q ∧是真命题 C 、命题()p q ∧⌝是真命题 D 、命题()p q ∧⌝是假命题3、已知等比数列{}n a 的公比2q =,且462,,48a a 成等差数列,则{}n a 的前8项和为( )A 、127B 、255C 、511D 、10234、若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A 、180B 、120C 、90D 、455、已知菱形ABCD 的边长4,150ABC ∠= ,若在菱形内任取一点,则该点到菱形的四个顶点的距离均大于1的概率为( )A 、4πB 、14π-C 、8πD 、18π-6、若抛物线()2:20C y px p =>上一点到焦点和x 轴的距离分别为5和3,则此抛物线的方程为( )A 、22y x =B 、)24y x = 或C 、22y x =或218y x =D 、23y x=)24y x =7、某程序框图如图所示,现分别输入下列四个函数()f x ,则可以输出()f x 的是( )A 、()11212x f x =+- B 、()1lg 21xf x x x -=-+ C 、()1212x x f x x =--D 、()32f x x x=--8、已知ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,若1b a c b -=-=且2C A =,则cos C =( )A 、12B 、14C 、16D 、189、已知某几何体的三视图如图所示,过该几何体最短两条棱的中点作平面α,使得α平分该几何体的体积,则可以作此种平面α ( ) A 、恰好1个 B 、恰好2个 C 、至多3个 D 、至少4个10、数列{}n a ()2014,n n N ≥∈满足:120120i i i a a a +++++< ,其中1,2,,2012i n =- ,120130j j j a a a +++++> ,其中1,2,,2013j n =- ,则满足条件的数列{}n a 的项数n 的最大值为( )A 、4025B 、4026C 、20132D 、20142第II 卷(非选择题,共100分)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分。
重庆市(非市直属校)2018届高三第二次质量调研抽测数学理试题(解析版)
高2018届高三学业质量调研抽测(第二次)理科数学试题卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知是虚数单位,则复数的虚部是A. B. C. D.【答案】A【解析】由题得=所以的虚部是-1.故选A.2. 已知集合,则A. B. C. D.【答案】B【解析】由题得={x|}={x|x≥3或x≤-1}.所以={x|-1<x<3},所以=.故选B.3. 已知,,,则,,的大小关系为A. B.C. D.【答案】D【解析】由题得=所以.故选D.4. 一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为A. B. C. D.【答案】A【解析】由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是∴几何体的体积是.故选A.5. 在中,角所对应的边分别是,若,则角等于A. B. C. D.【答案】D【解析】∵,∴(a﹣b)(a+b)=c(c+b),∴a2﹣c2﹣b2=bc,由余弦定理可得cosA=∵A是三角形内角,∴A=故选D.6. 利用我国古代数学名著《九章算法》中的“更相减损术”的思路,设计的程序框图如图所示.执行该程序框图,若输入的值分别为6,9,0,则输出的A. B. C. D.【答案】B【解析】模拟执行程序框图,可得:a=6,b=9,i=0,i=1,不满足a>b,不满足a=b,b=9﹣6=3,i=2,满足a>b,a=6﹣3=3,i=3,满足a=b,输出a的值为3,i的值为3.故选B.7. 已知实数满足如果目标函数的最大值为,则实数A. B. C. D.【答案】B【解析】由题得不等式组对应的可行域如图所示:由目标函数得,当直线经过点A时,直线的纵截距最大,z最大.联立方程所以2+2-m=0,所以m=4. 故选B.8. 为培养学生分组合作能力,现将某班分成三个小组,甲、乙、丙三人分到不同组.某次数学建模考试中三人成绩情况如下:在组中的那位的成绩与甲不一样,在组中的那位的成绩比丙低,在组中的那位的成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是A. 甲、丙、乙B. 乙、甲、丙C. 乙、丙、甲D. 丙、乙、甲【答案】C【解析】因为在组中的那位的成绩与甲不一样,在组中的那位的成绩比乙低.所以甲、乙都不在B组,所以丙在B组. 假设甲在A组,乙在C组,由题得甲、乙、丙三人按数学建模考试成绩由高到低排序是乙、丙、甲.假设甲在C组,乙在A组,由题得矛盾,所以排序正确的是乙、丙、甲.故选C.9. 已知圆,点,两点关于轴对称.若圆上存在点,使得,则当取得最大值时,点的坐标是A. B. C. D.【答案】C【解析】由题得圆的方程为设由于,所以由于表示圆C上的点到原点距离的平方,所以连接OC,并延长和圆C相交,交点即为M,此时最大,m也最大.故选C.10. 将函数的图象向左平移个单位,再向上平移1个单位,得到图象.若,且,则的最大值为A. B. C. D.【答案】C【解析】将函数的图象向左平移个单位,得到,再向上平移1个单位,得到因为,g(x)的最大值为3,所以=3,因为,所以所以所以的最大值为故选C.点睛:本题的一个关键之处是对且的转化.要从g(x)的最大值为3,推理出这里是解题的关键.11. 已知双曲线的左、右焦点分别为,以为圆心的圆与双曲线在第一象限交于点,直线恰与圆相切于点,与双曲线左支交于点,且,则双曲线的离心率为A. B. C. D.【答案】B【解析】设,在三角形中,在直角三角形中,故选B.点睛:本题的关键是寻找关于离心率的方程,一个方程是中的勾股定理,另外一个是直角三角形中勾股定理,把两个方程结合起来就能得到离心率的方程. 12. 已知函数,在其定义域内任取两个不等实数、,不等式恒成立,则实数的取值范围为A.B.C.D.【答案】A【解析】因为不等式恒成立,所以,a>0.由题得所以由于抛物线开口向上,定义域为故选A.点睛:本题关键是对不等式恒成立的转化,注意观察变形可以转化为在上恒成立,后面的问题就迎刃而解了.二、填空题:本题共4个小题,每小题5分,共20分。
高考最新-2018届重庆市高三联合诊断性考试(第二次)数
2018届重庆市高三联合诊断性考试(第二次)数 学(理科试卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(球的表面积公式 24R S π= 其中R 表示球的半径 球的体积公式 334R V π=球 其中R 表示球的半径一、选择题:(本大题12个小题,每小题5分,共60分.)1.集合},02|{},,01|{22R x x x x B R x x x A ∈>-+=∈>-=集合,则A 、B 满足的关系是( )A .A ≠⊂BB .B ≠⊂AC .A=BD .A ⊆B 或B ⊆A 2.已知x x f 26log )(=,则)8(f 等于( )A .21 B .34 C .8D .183.设)(x f 是定义在R 上的最小正周期为π35的函数,⎪⎩⎪⎨⎧∈-∈=),0[cos )0,32[sin )(ππx xx xx f ,则)316(π-f 的值为( )A .-21 B .21 C .23-D .234.函数)01(11)(2≤≤---=x x x f ,则函数)(1x f y -=的图象是 ( )5.设公比为q (|q|<1)的等比数列{}n a 的前n 项和为S n ,且n n S p ∞→=lim .则下列命题正确的是( )A .1-⋅=n n qp aB .)1(nn q p a -=C .)1(nn q p S -=D .qq p S nn --=1)1( 6.设a 、b 是不共线的两个非零向量,已知.2,,2b a CD b a BC b p a AB -=+=+=若A 、B 、D 三点共线,则p 的值为( )A .1B .2C .-2D .-17.在7)1(+ax 的展开式中,x 3项的系数是x 2项系数与x 5项系数的等比中项,则a 值为( )A .510B .925C .35D .3258.平面M 、N 都垂直于平面γ,且M ∩γ=a ,N ∩γ=b.给出四个命题:①若b a ⊥,则M ⊥N ;②若a //b ,则M//N ;③若M ⊥N ,则b a ⊥;④若M//N ,则a //b.以上命题中,正确命题的个数为 ( )A .4B .3C .2D .19.计算21lim 231--+-→x x x x 的值为( )A .31 B .0C .-31 D .91-10.球面上有三个点,其中任意两点的球面距离都等于大圆周长的61,经过这三个点的小圆的周长为4π.那么这个球的半径为 ( )A .34B .32C .2D .411.已知椭圆E 的离心率为e ,两焦点为F 1,F 2.抛物线C 以F 1为顶点,F 2为焦点.P 为两曲线的一个交点.若e e PF PF 则.||||21=的值为( )A .33 B .23C .22D .3612.某火车站在节日期间的某个时刻候车旅客达到高峰,此时旅客还在按一定的流量到达.如果只打开三个检票口,需要半小时才能使所有滞留旅客通过检票口,如果打开六个检票口则只需10分钟就能让所有滞留旅客通过.现要求在5分钟内使所有滞留旅客通过,则至少同时需要打开的检票口数为(假设每个窗口单位时间内的通过量相等)( ) A .9 B .10 C .11 D .12第Ⅱ卷(非选择题 共90分)二、填空题:(本大题4个小题,每小题4分,共16分,只填结果,不要过程).13.已知|163|,12++-+=z z z i z 则= . 14.设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F 1、F 2是左右焦点,若0212=⋅F F PF , |PF 1|=6,则该双曲线的方程为 . 15.已知向量)2sin 5,2cos2(B A B A +-=的模为B A tan tan ,223⋅则的值为 . 16.定义一种“*”运算:对于*N n ∈满足以下运算性质,(1)2*2=1;(2)(2n+2)*2=3(2n*2).则用含n 的代数式表示2n*2为 . 三、解答题:(本大题6个小题,共74分,必需写出必要的文字说明、推理过程或计算步骤).17.(12分)已知函数54)(23+++=bx ax x x f 的图象在x =1处的切线方程为.12x y -=(1)求函数)(x f 的解析式; (2)求函数)(x f 在[-3,1]上的最值.18.(12分)已知函数),(23cos cos sin 3)(2R x R x x x x f ∈∈+-⋅=ωωωω的最小正周期为π,且图象关于直线6π=x 对称.(1)求)(x f 的解析式;(2)若函数)(1x f y -=的图象与直线y=a 在[0,2π]上只有一个交点,求实数a 的取值范围.19.(12分)在直角梯形P1DCB中,P1D//CB,CD⊥P1D,且P1D=6,BC=3,DC=6,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置,使二面角P—CD—B成45°角.设E、F分别是线段AB、PD的中点.(1)求证:AF//平面PEC;(2)求PC与底面所成角的正弦值.20.(12分)设事件A 发生的概率为P ,若在A 发生的条件下发生B 的概率为P ′,则由A产生B 的概率为P ·P ′.根据这一事实解答下题.一种掷硬币走跳棋的游戏:棋盘上有第0、1、2、……、100,共101站,一枚棋子开始在第0站(即P 0=1),由棋手每掷一次硬币,棋子向前跳动一次.若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站.直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束.已知硬币出现正、反面的概率相同,设棋子跳到第n 站时的概率为P n .(1)求P 1,P 2,P 3;(2)设)1001(1≤≤-=-n P P a n n n ,求证:数列{}n a 是等比数列; (3)求玩该游戏获胜的概率.21.(12分)已知两个动点A 、B 和一个定点M ),(00y x 均在抛物线)0(22>=p px y 上.设F 为抛物线的焦点,Q 为对称轴上一点,若|||,||,|,0)21(FM 且=⋅+成等差数列.(1)求的坐标;(2)若||OQ =3,||,2||求=的取值范围.22.(14分)已知)].([)(,*2),()(,2)(1123x g f x g N n n x f x g ax x x f n n -=∈≥=-=时且当 (1)若1)1(=f 且对任意*N n ∈,都有,)(00x x g n =求所有x 0组成的集合; (2)若3)1(>f ,是否存在区间A ,对*N n ∈,当且仅当A x ∈时,就有,0)(<x g n如果存在,求出这样的区间A ,如果不存在,说明理由.数学试题(理科)评分标准及参考答案一、选择题:(本大题12个小题,每小题5分,共60分)BACBC DBADB AC 二、填空题:(本大题4个小题,每小题4分,共16分) 13.2; 14.422=-y x ; 15.91; 16.3n —1 三、解答题:(本大题6个小题,共74分)17.(12分)解:(1)∵1)(,212)(2==++='x x f y b ax x x f 在而处的切线方程为x y 12-=,…………2分∴.18,312541221212)1()1(12-=-=⇒⎩⎨⎧-=+++-=++⇒⎩⎨⎧-='=-=b a b a b a f f k …………5分故,.51834)(23+--=x x x x f …………6分 (2)∵)32)(1(618612)(2-+=--='x x x x x f 令,0)(='x f 解得驻点为 .23,121=-=x x …………7分 那么)(x f 的增减性及极值如下: ………………9分∵驻点11-=x 属于[-3,1],且,12)1(,76)3(,16)1(-=-=-=-f f f 又…………11分∴)(x f 在[-3,1]上的最小值为-76,最大值为16.…………12分 18.(12分)解:(1)∵23cos cos sin 32+-⋅x x x ωωω =23)2cos 1(212sin 23++-x x ωω…………2分 =1)62sin(+-πωx ………………3分由f (x )的周期为,1|2|2,±=⇒=∴ωπωππ……4分 ∴1)62sin()(+-±=πx x f ………………5分1)当16s in)6(,1)62s in ()(,1+=+-==πππωf x x f 时不是最大或最小值,其图象不关于6π=x 对称,舍去.……………………………………………6分2)当012s i n )6(,1)62s i n()(,1=+-=++-=-=πππωf x x f 时是最小值,其图象关于6π=x 对称.………………………7分故,)62sin(1)(π+-=x x f 为所求解析式.…………………………………………8分(2)∵)62sin()(1π+=-=x x f y 在同一坐标系中作出)62sin(π+=x y 和y=a 的图象:……………………………………10分 由图可知,直线y=a 在1)21,21[=-∈a a 或时,两曲线只有一个交点, ∴.1)21,21[=-∈a a 或……………………12分 19.(12分)解法一:设PC 中点为G ,连FG.……1分∵FG//CD//AE ,且GF=AE CD =21∴AEGF 是平行四 边形,……2分∴AF//EG ,EG ⊂平面PEC ,∴AF//平面PEC.…………4分 (2)连接AC. ∵BA ⊥AD ,BA ⊥AP 1,∴BA ⊥AD ,BA ⊥AP …………5分∴BA ⊥平面PAD …………①…………6分又CD//BA ,∴CD ⊥PD ,CD ⊥AD ,∴∠PDA 是二面角P —CD —B 的平面角,∴∠PDA=45°.…………8分又PA=AD=3,∴△PAD 是等腰直角三角形,∴PA ⊥AD …………②…………9分由①、② ∴PA ⊥平面ABCD ,∴AC 是PC 在底面上的射影.…………10分∵PA=3,1563222=+=+=DC AD AC ,∴623152=+=PC , 则46623sin ==∠PCA ,∴PC 与底面所成角的正弦值为.46…………12分 解法二:(1)设线段PC 的中点为G ,连结EG.…………1分 ∵)(2121++=+=+= ==+=++=++21…………2分 ∴AF//EG ,又EG ⊂平面PEC ,AF ⊆平面PEC ,…………3分∴AF//平面PEC.…………4分(2)∵BA ⊥P 1D ,∴BA ⊥平面PAD …………①………………6分又CD//BA ,∴CD ⊥PD ,CD ⊥AD ,∴∠PDA 是二面角P —CD —B 的平面角,∠PDA=45°.………8分 又PA=AD=3,∴△PAD 是等腰直角三角形,∴PA ⊥AD …② 由①、② ∴PA ⊥平面ABCD ,………………9分设PA 与PC 所成的角为)20(πθθ≤< 则PC 与平面ABCD 所成的角为.2θπ-……10分 ∵又知,-+=-=、、两两互相垂直,且.6993)(cos 6||,3||||++-+==⇒===AP AB AD PA AB AD AP θ4666=⋅=APAP ………………11分 故知PC 与底面所成角的正弦值为46.………………12分 20.(12分)解:(1)∵P 0=1,∴.8521432121,43212121,21321=⨯+⨯==+⨯==P P P ……3分(2)棋子跳到第n 站,必是从第n -1站或第n -2站跳来的)1002(≤≤n , 所以212121--+=n n n P P P ………………5分 ∴)(212121212111--------=++-=-n n n n n n n P P P P P P P …………6分 ∴.21),1002(210111-=-=≤≤-=-P P a n a a n n 且…………7分 故{}n a 是公比为21-,首项为21-的等比数列.)1001(≤≤n …………8分 (3)由(2)知,9921a a a +++ =(P 1-P 0)+( P 2-P 1)+…+ (P 99-P 98)=992)21()21()21(-++-+-= ………………10分 ).211(323)21(11009999099-=⇒-+-=-⇒P P P ………………11分 故,获胜的概率为).211(3210099-=P …………12分 21.(12分)解:(1)设.2||,2||,2||),,(),,(2012211p x p x FM p x y x B y x A +=+=+=则…1分 由|||,|,|FA 成等差数列,有.2)2()2()2(2210210x x x p x p x p x +=⇒+++=+…………2分 ∵,2,2222121px y px y ==两式相减,得.2212121y y p x x y y k AB +=--=…………3分 设AB 的中点为,0)21(),2,(210=⋅++y y x N ∴NQ 是AB 的垂直平分线,设).0,(Q x Q …………4分 ∴.1202,1,0221021021-=+⋅--+-=⋅--+=y y p x x y y k k x x y y k Q AB NQ Q NQ 得由…………5分∴,0p x x Q += ∴).0,(0p x Q +…………6分(2)由.2,122,3,2||,3||000==⇒=+=+==p x p x p x 且得……7分 ∴抛物线为)0)(1(2:.42≠-=-=N NN y x y y y AB x y 为又直线…………8分 ∴有.0422)14(2222=-+-⇒-=-N N N N y y y y y y y y ……9分 ∴,16)42(4411||4222N N N AB y y y k -=--⋅+=…………10分由,0,220≠<<-⇒>∆N N y y 且…………11分 ∴||的取值范围为(0,4).…………12分22.(14分)解:(1)由.1211)1(=⇒-=⇒=a a f ………………1分∴232)(x x x f -=……2分 当,0)12(2)()(020*********=--⇒=-==x x x x x x x f x g ∴.2110000-===x x x 或或…………4分由题设,,)()]([)(000102x x f x g f x g ===……5分 假设00)(x x g k =,……6分 当n=k+1时,,)()]([)(00001x x f x g f x g k k ===+∴1)(00+==k n x x g n 对时也成立.……………………………………8分 ∴当0010)(x x g x =满足时,就有.)(00x x g n =∴所有x 0组成的集合为}.21,1,0{-………………………………………………9分(2)若.132)1(-<⇒>-=a a f …………………………………………10分 令,20)2(,02)()(2231a x a x x ax x x f x g <⇔<-<-==得…………11分 对于.2)(0)]([0)(,211a x g x g f x g n n n n <⇔<⇔<≥--…………12分∴若对,0)(*<∈x g N n n 有必须且只须.0)(1<x g …………13分 ∴).2,(a A -∞=…………………………………………14分。
2018届重庆市高考第二次诊断性考试提前模拟数学(理)试题含答案
论即可);
( 2)甲、乙、丙三人竞猜下一届中国代表团和俄罗斯代表团中的哪一个获得的金牌数多
(假设两国代表团获得的金牌数不会相等) ,规定甲、乙、丙必须在两个代表团中选一个,已
知甲、乙猜中国代表团的概率都为
4 ,丙猜中国代表团的概率为 5
3 ,三人各自猜哪个代表团 5
第 30 届伦敦 第 29 届北京 第 28 届雅典 第 27 届悉尼 第 26 届亚特兰大
中国
38
51
32
28
16
俄罗斯
24
23
27
32
26
( 1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过
茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结
A . ( ,1)
B. ( ,1]
C. (2, )
D . [2, )
2.(江津)若复数 z1 a i ( a R ), z2 1 i ,且 z1 为纯虚数,则 z1 在复平面内所对应 z2
的点位于(
)
A .第一象限
B.第二象限
C.第三象限
D .第四象限
3.(实验中学)在数列 { an} 中, “对任意的 n N * , an2 1 an an 2 ”是 “数列 { an} 为等比数列 ”
。
三、解答题(共 6 小题,共 70 分.解答应写出文字说明,演算步骤或证明过程)
17.(大足)(本小题满分 12 分)将函数 f (x) 2sin(x ) 3 cos x 在区间 (0, 3
部极值点按从小到大的顺序排成数列 { an} (n N ) .
( 1)求数列 { an } 的通项公式;
( 2)设 bn
2018年重庆市高考数学二诊试卷
2018年重庆市高考数学二诊试卷(理科)一、选择题(本题共12小题,每小题5分) 1.若复数iia 213++(R a ∈,i 是虚数单位)是纯虚数,则a 的值为( ) A.23 B.23- C.6 D.-62.已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合B C U ⋂A =( )A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}3.已知向量)21(,-=a ,)1-(,m b =,)23(-=,c ,若c b a ⊥-)(,则m 的值是( ) A.27 B.35C.3D.-34.直线2:+=my x l 与圆02222=+++y y x x 相切,则m 的值为( )A.1或-6B.1或-7C.-1或7D.1或71-5.甲盒子中装有2个编号分别为1,2的小球,乙盒子中装有3个编号分别为1,2,3的小球,从甲、乙两个盒子中各随机取一个小球,则取出的两个小球的编号之和为奇数的概率为( ) A.32 B.21 C.31 D.616.一个几何体的三视图如图,该几何体的表面积为( )A.280B.292C.360D.3727.设0>w ,函数2)3sin(++=πwx y 的图象向右平移34π个单位后与原图象重合,则w 的最小值是( ) A.32 B.34 C.23D.38.如果执行右面的程序框图,输入46==m n ,,那么输出的p 等于( )A.720B.360C.240D.1209.若54cos -=α,α是第三象限的角,则2tan 12tan1αα-+=( ) A.-21 B.21C.2D.-2 10.在区间],[ππ-内随机取两个数分别记为b a ,,则函数222)(b ax x x f -+=+2π有零点的概率( )A.8-1πB.4-1πC.2-1πD.23-1π11.设双曲线的左准线与两条渐近线交于A 、B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为( ) A.)20(, B.)122(, C.)21(, D.)2(∞+,12.记函数)(x f (e x e≤<1,e=2.71828…是自然对数的底数)的导数为)('x f ,函数)(')1()(x f ex x g -=只有一个零点,且)(x g 的图象不经过第一象限,当e x 1>时,ex x x f 11ln 1ln 4)(>+++,0]1ln 1ln 4)([=+++x x x f f ,下列关于)(x f 的结论,成立的是( )A.)(x f 最大值为1B.当e x =时,)(x f 取得最小值C.不等式0)(<x f 的解集是(1,e )D.当11<<x e时,)(x f >0二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=.14.设等差数列{a n}的前n项和为S n,若,则=.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)记S n为等比数列{a n}的前n项和,若S k≥30(2k+1),求正整数k的最小值.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅰ)求二面角C1﹣AC﹣E的余弦值.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:Ⅰ)的数据,如表:x25891 1y 121887(Ⅰ)求y关于x的回归方程=x+;(Ⅰ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6Ⅰ,用所求回归方程预测该店当日的营业额.(Ⅰ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中,=,=﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅰ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅰ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].[选修4-4:坐标系与参数方程].22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅰ)求曲线C1上的点与曲线C2上的点的距离的最小值.[选修4-5:不等式选讲].23.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅰ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.2018年重庆市高考数学二诊试卷(理科)参考答案与试题解析一、选择题DADBB CCBAB CA二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=9.【考点】平面向量数量积的运算.【分析】由已知结合平面向量是数量积运算求得答案.【解答】解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.14.设等差数列{a n}的前n项和为S n,若,则=9.【考点】等差数列的性质;定积分的简单应用.【分析】先利用定积分求得,再根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵=(x2+x)|02=5,∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)【考点】线性回归方程.【分析】利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程y=bx+a,通过x=2,利用回归直线方程,推测该家庭的月储蓄.【解答】解:(1)由题意知,n=10,==8,=y i=2,b===0.3,a=﹣b=2﹣0.3×8=﹣0.4,∴线性回归方程为y=0.3x﹣0.4,当y=2时,x=8,故答案为:8.16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为2.【考点】直线与圆的位置关系.【分析】把两个圆的方程相减与圆O1联立可得x2+y2=9,令4y﹣3x=t,则y=,代入可得25x2+6tx+t2﹣144=0,由△≥0,可得﹣15≤t≤15,再利用P到直线l的距离为=,即可求出点P与直线l上任意一点M之间的距离的最小值.【解答】解:∵ac=8,=,∴=,故两圆的圆心O1(a,b)、圆心O2(c,d)、原点O三点共线,不妨设==k,则c=,b=ka,d=kc=.把圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1相减,可得公共弦的方程为(2c﹣2a)x+(2d﹣2b)y=c2﹣a2,即(﹣2a)x+(﹣2•ka)y=﹣a2,即2(﹣a)x+2k(﹣a)y=(+a)(﹣a),当a≠±2时,﹣a≠0,公共弦的方程为:2x+2ky=+a,即:2ax+2kay=a2+8,即:2ax+2by=a2+8.O1:(x﹣a)2+(y﹣b)2=b2+1,即x2+y2=2ax+2by﹣a2+1,再把公共弦的方程代入圆O1的方程可得x2+y2=9 ①.令4y﹣3x=t,代入①可得25x2+6tx+t2﹣144=0.再根据此方程的判别式△=36t2﹣100(t2﹣144)≥0,求得﹣15≤t≤15.==,故当4y﹣3x=t=﹣15时,点P到直线l:3x﹣4y﹣25=0的距离取得最小值为2.当a=±2时,由条件可得a=c,b=d,此时,两圆重合,不合题意.故答案为:2.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)记S n为等比数列{a n}的前n项和,若S k≥30(2k+1),求正整数k的最小值.【考点】等比数列的前n项和;等比数列的通项公式.【分析】(Ⅰ)推导出数列{a n}是首项为2,公比为4的等比数列,由此能求出数列{a n}的通项公式.(Ⅰ)先求出等比数列{a n}的前n项和S n=,从而得到≥30(2k+1),由此能求出正整数k的最小值.【解答】解:(Ⅰ)∵列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列,∴,即a2=8,∴,解得a1=2,∴数列{a n}是首项为a1=2,公比为q==4的等比数列,∴.(Ⅰ)∵数列{a n}是首项为2,公比为4的等比数列,∴等比数列{a n}的前n项和S n==,∵S k≥30(2k+1),∴≥30(2k+1),即2×(2k)2﹣90×2k﹣92≥0,解得2k≥46或2k≤﹣1(舍),∴正整数k的最小值为6.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅰ)求二面角C1﹣AC﹣E的余弦值.【考点】二面角的平面角及求法;棱柱的结构特征.【分析】(1)以D为原点,DA为x轴,DB为y轴,过D垂直于平面ABC的直线为z轴,建立空间直角坐标系,利用向量法能求出线段B1E的长.(2)求出平面ACE的法向量和平面ACC1的法向量,利用向量法能求出二面角C1﹣AC﹣E的余弦值.【解答】解:(1)以D为原点,DA为x轴,DB为y轴,过D垂直于平面ABC的直线为z轴,建立空间直角坐标系,D(0,0,0),B(0,,0),B1(0,,4),A(,0,0),C1(﹣,0,4),设E(0,,t),=(0,﹣,0),=(﹣,,t),=(﹣4,0,4),设平面AC1E的法向量为=(x,y,z),则,取x=1,得=(1,,1),∵BD∥平面AC1E,∴=﹣=0,解得t=.∴E(0,,),∴线段B1E的长|B1E|=4﹣=.(2)C(﹣,0,0),=(﹣4,0,0),=(﹣,,),设平面ACE的法向量=(a,b,c),则,取b=15,得=(0,15,﹣),平面ACC1的法向量=(0,1,0),设二面角C1﹣AC﹣E的平面角为θ,cosθ===.∴二面角C1﹣AC﹣E的余弦值为.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:Ⅰ)的数据,如表:x258911y1210887(Ⅰ)求y关于x的回归方程=x+;(Ⅰ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6Ⅰ,用所求回归方程预测该店当日的营业额.(Ⅰ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中,=,=﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.【考点】线性回归方程;正态分布曲线的特点及曲线所表示的意义.【分析】(I)利用回归系数公式计算回归系数,得出回归方程;(II)根据的符号判断,把x=6代入回归方程计算预测值;(III)求出样本的方差,根据正态分布知识得P(3.8<X<13.4)=P(3.8<X<10.2)+P(10.2<X<13.4).【解答】解:(I)解:(I)=×(2+5+8+9+11)=7,=(12+10+8+8+7)=9.=4+25+64+81+121=295,=24+50+64+72+77=287,∴==﹣=﹣0.56.=9﹣(﹣0.56)×7=12.92.∴回归方程为:=﹣0.56x+12.92.(II)∵=﹣0.56<0,∴y与x之间是负相关.当x=6时,=﹣0.56×6+12.92=9.56.∴该店当日的营业额约为9.56千元.(III)样本方差s2=×[25+4+1+4+16]=10,∴最低气温X~N(7,10),∴P(3.8<X<10.2)=0.6826,P(0,6<X<13.4)=0.9544,∴P(10.2<X<13.4)=(0.9544﹣0.6826)=0.1359.∴P(3.8<X<13.4)=P(3.8<X<10.2)+P(10.2<X<13.4)=0.6826+0.1359=0.8185.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅰ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.【考点】椭圆的简单性质.【分析】(I)由题意可得A(﹣a,0),B(0,b),求得AB的斜率和方程,运用点到直线的距离公式解方程可得a,b,进而得到椭圆方程;(Ⅰ)讨论当直线l的斜率不存在和为0,不为0,设出直线l的方程为y=kx+t,代入椭圆方程可得(1+6k2)x2+12ktx+6t2﹣6=0,运用韦达定理和中点坐标公式,由两直线的夹角公式,结合基本不等式,可得最小值,由直线和圆相切的条件:d=r,进而得到直线方程.【解答】解:(I)由题意可得A(﹣a,0),B(0,b),k AB==,直线AB的方程为y=x+b,由题意可得=,解得b=1,a=,即有椭圆的方程为+y2=1;(Ⅰ)当直线l的斜率不存在时,即有OM⊥l,夹角为90°;当直线l的斜率为0时,不符合题意;设直线l的方程为y=kx+t,代入椭圆方程可得(1+6k2)x2+12ktx+6t2﹣6=0,可得x1+x2=﹣,可得中点M(﹣,),又直线l与圆x2+y2=1相切,可得=1,即1+k2=t2,可得OM的斜率为k'=﹣,直线l和OM的夹角的正切为、|=|﹣k﹣|,当k<0时,﹣k﹣≥2=,当k=﹣时,夹角取得最小值.求得t2=,解得t=±,可得直线l的方程为y═﹣x±,当k>0时,可得k=时,夹角取得最小值.求得t2=,解得t=±,可得直线l的方程为y═±x±,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅰ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)讨论f(x)的单调性,很容易想到求导数的办法,通过导函数f′(x)的符号判断单调性,注意到导函数中二次函数的部分,判别式的值以及m的符号判断即可.(Ⅰ)g(x)=f(x)﹣x﹣5恰有两个零点,转化为方程有两个解,转化为两个函数有两个交点.判断直线经过的顶点,通过f(x)的导数,曲线的斜率,推出m 的范围.【解答】解:(Ⅰ)f(x)=(x2﹣x+)e mx,其中实数m≠0.可得f′(x)=(mx2﹣x+)e mx,其中实数m≠0.∵e mx>0,∴f′(x)的符号,只与mx2﹣x+的符号有关.令y=mx2﹣x+,m≠0,△=1﹣4m=﹣7<0.当m>0时,y>0恒成立,此时f′(x)>0,恒成立.函数在R上是增函数.当m<0时,y<0恒成立,此时f′(x)<0,恒成立.函数在R上是减函数.(Ⅰ)g(x)=f(x)﹣x﹣5恰有两个零点,即f(x)=x+5恰有两个解,也就是f(x)=(x2﹣x+)e mx,与g(x)=x+5有两个交点.因为g(x)=x+5恒过(0,5),当m=1时,f(x)=(x2﹣3x+5)e x,经过(0,5),并且f′(x)=(x2﹣x+2)e x,此时f′(0)=2,g(x)=2x+5的斜率也为2,如图:当m>1时.两个函数有两个交点.当m∈(0,1)时,f(x)经过(0,),,此时两个函数至多有一个交点.当m<0时,两个函数都是减函数,m=﹣1时,两个函数的图象如图:m<﹣1时,两个函数有两个交点.综上,m<﹣1或m>1.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].[选修4-4:坐标系与参数方程].22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅰ)求曲线C1上的点与曲线C2上的点的距离的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.(I)曲线C1的参数方程为(α为参数),由x=【分析】=sinα+cosα,两边平方代入即可得出曲线C1的普通方程.曲线C2的极坐标方程为ρ2=4ρsinθ﹣3,把ρ2=x2+y2,y=ρsinθ代入可得曲线C2的普通方程.(II)x2+y2﹣4y+3=0配方为:x2+(y﹣2)2=1,圆心C2(0,2),设P(x0,y0)为曲线C1上的任意一点,则y0=,可得|PC|2=+=+,利用二次函数的单调性即可得出.【解答】解:(I)曲线C1的参数方程为(α为参数),由x===sinα+cosα,两边平方可得:x2=1+sin2α=y,∴曲线C1的普通方程为y=x2.曲线C2的极坐标方程为ρ2=4ρsinθ﹣3,把ρ2=x2+y2,y=ρsinθ代入可得:x2+y2=4y﹣3,∴曲线C2的普通方程为:x2+y2﹣4y+3=0.(II)x2+y2﹣4y+3=0配方为:x2+(y﹣2)2=1,圆心C2(0,2),设P(x0,y0)为曲线C1上的任意一点,则y0=,则|PC|2=+=+=﹣3+4=+,当=时,|PC|min=.∴曲线C1上的点与曲线C2上的点的距离的最小值为﹣1.[选修4-5:不等式选讲].23.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅰ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,写出分段函数,即可解f(x)>2的解集;(Ⅰ)先用绝对值三角不等式将问题等价为:f(x)min=|a||≥a2﹣3a﹣3,再分类讨论求解即可.【解答】解:(Ⅰ)当a=1时,f(x)=|x﹣1|+|x﹣2|.x≤1时,f(x)=﹣x+1﹣x+2=3﹣2x,由不等式f(x)>2可得x<;1<x<2时,f(x)=x﹣1﹣x+2=1由不等式f(x)>2可得x∈∅;x≥2时,f(x)=x﹣1+x﹣2=2x﹣3,由不等式f(x)>2可得x>;∴不等式f(x)>2的解集为(﹣∞,)Ⅰ(,+∞);(Ⅰ)因为不等式f(x)≥a2﹣3a﹣3对x∈R恒成立,所以,f(x)min≥a2﹣3a﹣3,根据绝对值三角不等式,|x﹣a|+|x﹣2a|≥|(x﹣a)﹣(x﹣2a)|=|a|,即f(x)min=|a|,所以,|a||≥a2﹣3a﹣3,分类讨论如下:①当a≥0时,a≥a2﹣3a﹣3,即a2﹣4a﹣3≤0,∴2﹣≤a≤2+,此时0≤a≤2+;②当a<0时,﹣a≥a2﹣3a﹣3,即a2﹣2a﹣3≤0,∴﹣1≤a≤3,此时﹣1≤a<0.综合以上讨论得,实数a的取值范围为:[﹣1,2+].。
重庆市2018届高三第二次质量调研抽测数学理试题含答案
(Ⅰ)求这 40 名男生中身高在172cm (含172cm )以上的人数; (Ⅱ)从这 40 名男生中身高在172cm 以上(含172cm )的人中任意抽取 2 人,该
D.
0,
9 4
二、填空题:本题共 4 个小题,每小题 5 分,共 20 分。把答案填写在答题卡相应位
置上.
13.已知向量 a ,b 满足 a 3 ,b 8 ,a b a 3 ,则 a 与 b 的夹角为
.
14.在二项式
(x3
1 x2
)n
A. 1
B.1
C. i
D. i
2.已知集合 A {x | y x2 2x 3}, B {1,0,1, 2,3} ,则 (ðR A) B
A.{0,1}
B.{0,1, 2}
C.{1, 0,1}
D. {1, 3}
3.已知
a
(
1 2
)
1 3
,
b
log2
3
,
c
log4
.
18.(本小题满分 12 分)
据调查显示,某高校 5 万男生的身高服从正态分布 N 168,9 ,现从该校男生 中随机抽取 40 名进行身高测量,将测量结果分成 6 组:[157,162) ,162,167 , 167,172 ,,177 ,177,182 ,182,187,并绘制成如图所示的频率
值为
A.
B. 2
C. 3
D. 4
11.已知双曲线
C
:
x2 a2
y2 b2
1 (a
重庆市2018届高三4月调研测试(二诊)数学理试题+Word版含解析
2018年普通高等学校招生全国统一考试4月调研测试卷理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】B【解析】由集合,所以或,所以,故选B.2. 复数满足,则()A. B. C. D.【答案】A【解析】由,则,故选A.3. 设等差数列的前项和为,若,,则()A. B. C. D.【答案】B【解析】由题意,设等差数列的首项为,公差为,则,解得,所以,故选B.4. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】由,可得或,即或,所以是成立的必要不充分条件,故选B.5. 已知定义域为的偶函数在上单调递增,且,,则下列函数中符合上述条件的是()A. B.C. D.【答案】C.....................函数的图象关于原点对称,所以函数为奇函数,不满足题意;函数,即函数的值域为,不满足题意,故选C.6. 已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.【答案】A【解析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.7. 中国古代名著《孙子算经》中的“物不知数”问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”即“有数被三除余二,被五除余三,被七除余二,问该数为多少?”为解决此问题,现有同学设计如图所示的程序框图,则框图中的“”处应填入()A. B. C. D.【答案】A【解析】由题意可知,该程序框图的功能是使得实数,使得除余,被除余,被七除余的数值,其中表示除除余的数,再使得除余,被除余的数,所以是除余的数,所以判断框应填入,故选A.8. 如图,在矩形中,,,两个圆的半径都是1,且圆心,均在对方的圆周上,在矩形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.【答案】D【解析】如图所示,分别连接,则分别为边长为的等边三角形,所以其面积分别为,其中拱形的面积为,所以阴影部分的面积为,所以概率为,故选D.9. 设函数与的图象在轴右侧的第一个交点为,过点作轴的平行线交函数的图象于点,则线段的长度为()A. B. C. D.【答案】C【解析】由方程组,即,即,即,又,联立得,解得或(舍去),则,又因为,故选C.10. 某几何体的三视图如图所示,其正视图为等腰梯形,则该几何体的表面积是()A. B. C. D.【答案】C【解析】根据给定的三视图,可得原几何体如图所示,其中面表示边长分别为和的矩形,其面积为,和为底边边长为,腰长为的等腰三角形,其高为,所以面积为,面和面为全等的等腰梯形,上底边长为,下底边长为,高为,所以面积为,所以几何体的表面积为,故选C.11. 已知双曲线(,)的左右焦点分别为,,点在双曲线的左支上,与双曲线的右支交于点,若为等边三角形,则该双曲线的离心率是()A. B. C. D.【答案】D【解析】由题意得,设,,则由双曲线的定义可知且解得,在中,由余弦定理得,即,所以,故选D.点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).12. 已知函数,,若,,则的最小值是()A. B. C. D.【答案】B【解析】由题意,即,即,设,则,若时,,函数单调递增,无最大值,不适合题意;当时,令,解得,当时,,函数单调递增,当时,,函数单调递减,所以,即,即令,则,所以,设,则,若,则,此时单调递减,无最大值;所以,由,得,此时,解得,所以的小值为,故选B.点睛:本题主要考查导数在函数中的应用,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、圆等知识联系; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 某公司对一批产品的质量进行检测,现采用系统抽样的方法从100件产品中抽取5件进行检测,对这100件产品随机编号后分成5组,第一组号,第二组号,…,第五组号,若在第二组中抽取的编号为24,则在第四组中抽取的编号为__________.【答案】64【解析】设在第一组中抽取的号码为,则在各组中抽取的号码满足首项为,公差为的等差数列,即,又第二组抽取的号码为,即,所以,所以第四组抽取的号码为.14. 已知实数,满足若目标函数在点处取得最大值,则实数的取值范围为__________.【答案】【解析】由题意,画出约束条件所表示的平面区域,如图所示,把目标函数,化为,可得当直线在轴的截距越大时,目标函数取得最大值,直线的斜率为,又由目标函数在点处取得最大值,由图象可知,,即,即实数的取值范围是.15. 根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为__________(用数字作答).【答案】36【解析】由题意可知,可分为两类:一类:甲乙在一个地区时,剩余的三类分为两组,再三组派遣到三个地区,共有种不同的派遣方式;另一类:甲乙和剩余的三人中的一个人同在一个地区,另外两人分别在两个地区,共有种不同的派遣方式;由分类计算原理可得,不用的派遣方式共有种不同的派遣方式.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.16. 设集合,,记,则点集所表示的轨迹长度为__________.【答案】【解析】由题意,圆的圆心在圆上运动,当变化时,该圆在绕着原点转动,集合表示的区域如下图所示的环形区域,直线恰好与环形的小圆相切,所以所以表示的是直线截圆所得弦长,又原点到直线的距离为,所以弦长为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设函数.(1)求的单调递减区间;(2)在中,若,,求的外接圆的面积.【答案】(1) 单调递减区间为, (2)【解析】试题分析:(1)由三角恒等变换的公式,化简得,利用正弦型函数的图象与性质,即可求解单调递减区间;(2)由(1)中求解,利用正弦定理求解外接圆的直径,即可求解外接圆的面积.试题解析:(1),令,解得,,单调递减区间为,.(2),,,外接圆直径,,外接圆面积.18. 重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有天为“最优选择”,求的分布列和数学期望.【答案】(1)16.96,(2)【解析】试题分析:(1)由题可得如下用车花费与相应频率的数表,利用平均数的计算公式,求得平均数,即可估计平均每天的用车费用;(2)由题意,确定可能的取值,根据二项分布求解取每个值的概率,列出分布列,利用二项分布的期望公式,即可求解数学期望.试题解析:(1)由题可得如下用车花费与相应频率的数表:估计小刘平均每天用车费用为.(2)可能的取值为0,1,2,用时不超过45分钟的概率为0.8,,,,,.19. 如图,在三棱柱中,,平面,侧面是正方形,点为棱的中点,点、分别在棱、上,且,.(1)证明:平面平面;(2)若,求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)根据题意,推得,进而得到平面,再利用面面垂直的判定定理,证得平面平面;(2)以为原点,,分别为,,轴建立空间直角坐标系,求得平面和平面法向量为,,即可利用向量的夹角公式,求解向量的夹角,进而得到二面角的余弦值.试题解析:(1)设,则,,,,,,又,所以,,,,为直三棱柱,∴平面,∴,平面,平面平面.(2)由,以为原点,,分别为,,轴建立空间直角坐标系,,,设平面的法向量为,由解得.平面的法向量,设所求二面角平面角为,.20. 椭圆:的左右焦点分别为,,左右顶点分别为,,为椭圆上的动点(不与,重合),且直线与的斜率的乘积为.(1)求椭圆的方程;(2)过作两条互相垂直的直线与(均不与轴重合)分别与椭圆交于,,,四点,线段、的中点分别为、,求证:直线过定点,并求出该定点坐标.【答案】(1) (2)见解析,经过定点为【解析】试题分析:(1)根据题意,列出方程,求解的值,即可求得椭圆的方程;(2)设直线:,联立椭圆方程,求得的坐标,由题设若直线关于轴对称后得到直线,则得到的直线与关于轴对称,得该定点一定是直线与的交点,进而求得直线过定点.试题解析:(1)设,由题,整理得,,整理得,结合,得,,所求椭圆方程为.(2)设直线:,联立椭圆方程,得,得,,∴,,由题,若直线关于轴对称后得到直线,则得到的直线与关于轴对称,所以若直线经过定点,该定点一定是直线与的交点,该点必在轴上.设该点为,,,由,得,代入,坐标化简得,经过定点为.点睛:本题主要考查椭圆的方程与性质、直线与圆锥曲线的位置关系,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知函数,(,).(1)若,,求函数的单调区间;(2)若函数与的图象有两个不同的交点,,记,记,分别是,的导函数,证明:.【答案】(1) 在上单调递增,在上单调递减(2)见解析【解析】试题分析:(1)由题意,得到,求得,利用导数即可判定函数单调性,求解单调区间;(2)由化简,进而化简得,由,,得到,不妨设,令,利用函数的导数,证得,即可作出证明.试题解析:(1),,在上单调递增,在上单调递减.(2),,,,,即,,不妨设,令(),下证,即,即,,,所以,∴,.点睛:本题主要考查导数在函数中的应用,不等式证明等问题,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、圆等知识联系; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (4)考查数形结合思想的应用.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的极坐标方程和的直角坐标方程;(2)记曲线和在第一象限内的交点为,点在曲线上,且,求的面积.【答案】(1) (2)20【解析】试题分析:(1)现把曲线化为普通方程,再根据极坐标与直角坐标的互化公式,即可得到曲线的极坐标方程,同时也化的曲线的直角坐标方程;(2)联立方程组,求解,,进而得到点的坐标,即可求解的面积.试题解析:(1)由题:,,即,:.(2)联立和,得,,设,由,,得,,.23. 选修4-5:不等式选讲已知函数.(1)若关于的不等式有解,求实数的取值范围;(2)若正实数,满足,当取(1)中最大值时,求的最小值.【答案】(1) (2)【解析】试题分析:(1)由绝对值的三角不等式,求解的最小值,得出关于实数的不等式,即可求解实数的取值范围;(2)当时,利用基本不等式,即可求得的最小值.试题解析:(1),时等号成立,∴的最小值为,,,.(2)时,,∴,,时等号成立.。
2018年普通高等学校招生全国统一考试数理答案(重庆市二诊 )
2018年普通高等学校招生全国统一考试4月调研测试卷 理科数学参考答案一、选择题1~6 BABBCA 7~12 ADCCDB第(12)题提示:由ln 1x a ax b +++≤得0a >,即ln 10ax x a b --++≥,令()ln 1h x ax x a b =--++,1()h x a x '=-,()h x 在1(0)a , 上递减,在1()a+∞, 上递增, min 1()()ln 20h x h a a b a ==-++≥,ln 21b a a a+-≥, 令ln 2()1x u x x +=-,2ln 1()x u x x +'=,max 1()()1u x u e e ==-, 所以1b e a -≥ 二、填空题(13)64 (14)1[)3-+∞, (15)36 (16)第(16)题提示:圆22(3sin )(3cos )1x y αα+++=的圆心(3sin 3cos )αα--, 在圆229x y +=上,当α改变时,该圆在绕着原点转动,集合A 表示的区域是如右图所示的环形区域,直线34100x y ++=恰好与环形的小圆相切,所以A B 所表示的是直线34100x y ++=截圆2216x y +=所得的弦长.三、解答题(17)(本小题满分12分)解:(Ⅰ)π1()cos(2)sin 22sin 2sin 2622f x x x x x x =--=+-2πsin(2)3x =+ 令π2π3π2π22π232k x k +++≤≤,解得π5πππ1212k x k -+≤≤,k Z ∈ 单调递减区间为π5π[ππ]1212k k -+, ,k Z ∈ (Ⅱ)2π1sin()32C +=,2π5π36C +=,π6C =, 外接圆直径28sin AB r C ==,4r =,外接圆面积16πS = (18)(本小题满分12分)解:估计小刘平均每天用车费用为140.2160.36180.24200.16220.0416.96⨯+⨯+⨯+⨯+⨯=(Ⅱ)ξ可能的取值为0,1,2用时不超过45钟的概率为0.8,~(20.8)B ξ,0022(0)0.80.20.04P C ξ==⋅=,1112(1)0.80.20.32P C ξ==⋅=22020.8 1.6E ξ=⋅=(19)(本小题满分12分)解:(Ⅰ)设8AB =,则13A M =,2AN =,16A N =,1tan 2AN NEA AE ∠==, 111tan 2A M MNA AN ∠==,1NEA MNA ∠=∠, 又π2NEA ENA ∠=-∠,所以1π2MNA ENA ∠=-∠,MN EN ⊥ BC AC =,CE AB ⊥, 111ABC A B C -为直三棱柱,∴CE ⊥平面11AA B B , ∴MN CE ⊥,MN ⊥平面CEN ,平面CMN ⊥平面CEN . (Ⅱ)由AC BC ⊥,以C 为原点1CB CA CC , , 分别为x y z ,, 轴建立空间直角坐标系. 8)M ,(02)N , 设平面CMN 的法向量为1()n x y z = , , ,由11104)0n CM n n CN ⎧⋅=⎪⇒=-⎨⋅=⎪⎩ 平面1CNA 的法向量2(100)n = , , 设所求二面角平面角为θ,1212cos ||||n n n n θ⋅==⋅ (20)(本小题满分12分)解:(Ⅰ)设P 00()x y , ,由题22222200002221x y a y x a a b b+=⇒-=- 2220000003443y y x a y x a x a ⋅=-⇒-=--+ 结合1c =得,24a =,23b =所求椭圆方程为22143x y += (Ⅱ)设直线:(1)AB y k x =-,联立椭圆方程223412x y +=得 2222(43)84120k x k x k +-+-= 得222218424343M k k x k k =⋅=++,23(1)43M M k y k x k =-=-+ ∴22244433N k x k ==++,2213()13(1)433N N k k y x k k ⋅-=--=-=++由题,若直线AB 关于x 轴对称后得到直线A B '',则得到的直线M N ''与MN 关于x 轴对称, 所以若直线MN 经过定点,该定点一定是直线M N ''与MN 的交点,该点必在x 轴上. 设该点为P (0)s , ,()M M MP s x y =-- , ,()M N M N NM x x y y =-- ,由//MP NM 得N M M N M Nx y x y s y y -=-,代入,M N 坐标化简得47s = 经过定点为4(0)7,(21)(本小题满分12分)解:(Ⅰ)2()ln 23F x x x x =--,1(41)(1)()43x x F x x x x-+'=--=- ()F x 在1(0)4, 上单调递增,在1()4+∞, 上单调递减. (Ⅱ)20000000121()()(2)ax bx f x g x ax b x x --''-=-+= 22212121212002()()1212()222x x x x a x x b x x ax bx a b ++-+-+--=--= 2111ln ax bx x +=,2222ln ax bx x +=,111212121221221()()()ln ()ln x x a x x x x b x x a x x b x x x x +-+-=⇒++=- 121212112121122221()()ln ln 1x x x x x x a x x b x x x x x x x x +++++==⋅-- 不妨设12x x >,令1()ln 1x h x x x +=-(1)x >, 下证12(1)44()ln 2ln 2ln 21111x x h x x x x x x x x +-=>⇔>=-⇔+>-+++ 4()ln 1u x x x =++,22214(1)()(1)(1)x u x x x x x -'=-=++,所以()(1)2u x u >= ∴21212()()2a x x b x x +++>,00()()f x g x ''<(22)(本小题满分10分)解:(Ⅰ)由题21:4C y x =,22sin 4cos ρθρθ=,即2sin 4cos ρθθ=2:C 225x y x +=(Ⅱ)联立24y x =和225x y x +=得1A x =,2A y = 设2()4m B m , ,由OA OB ⊥,21824m m m =-⇒=-,(168)B -,1||||202AOB S OA OB ∆=⋅==(23)(本小题满分10分)解:(Ⅰ)222|2||||(2)()||2|x x a x x a a -+----=-≥,2x =时等号成立∴()f x 的最小值为2|2|a -,2|2|a a -≤,22a a a --≤≤,[12]a ∈,(Ⅱ)2a =时,211112()(2)()(1m n m n m n +=+++≥∴1132m n +≥ 22m n ==,时等号成立.。
2018年重庆高考数学模拟试卷(理科)Word版含解析
2018年重庆高考模拟试卷(理科数学)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1} B.{x|x>1} C.{x|0<x<1} D.∅2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设平面α与平面β相交于直线l,直线a在平面α内,直线b在平面β内,且b⊥l,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,则不等式f(x﹣1)<1的解集为()A.{x|0<x<2} B.{x|﹣1<x<1} C.{x|0<x<1} D.{x|﹣2<x<2}5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺6.设点O是边长为1的正△ABC的中心(如图所示),则(+)•(+)=()A.B.﹣ C.﹣ D.7.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.8.设实数x,y满足约束条件,已知z=2x+y的最大值是7,最小值是﹣26,则实数a的值为()A.6 B.﹣6 C.﹣1 D.19.如图,把圆周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记=x,直线AM与x轴交于点N(t,0),则函数t=f(x)的图象大致为()A .B .C .D .10.一个几何体的三视图如图所示,该几何体的体积为( )A .B .C .D .11.已知F 是双曲线C :﹣=1(a >0,b >0)的右焦点,O 是双曲线C 的中心,直线y=x 是双曲线C 的一条渐近线,以线段OF 为边作正三角形AOF ,若点A 在双曲线C 上,则m 的值为( )A .3+2B .3﹣2C .3+D .3﹣12.设函数f (x )=ax 3+bx 2+cx+d 有两个极值点x 1,x 2,若点P (x 1,f (x 1))为坐标原点,点Q (x 2,f (x 2))在圆C :(x ﹣2)2+(y ﹣3)2=1上运动时,则函数f (x )图象的切线斜率的最大值为( )A .3+B .2+C .2+D .3+二、填空题:本大题共4小题,每小题5分.13.已知函数y=f (x+1)﹣1(x ∈R )是奇函数,则f (1)= .14.在二项式(+2x )n 的展开式中,前3项的二项式系数之和等于79,则展开式中x 4的系数为 .15.已知直线l 1:x+2y=a+2和直线l 2:2x ﹣y=2a ﹣1分别与圆(x ﹣a )2+(y ﹣1)2=16相交于A ,B 和C ,D ,则四边形ABCD 的内切圆的面积为 .16.在四边形ABCD 中,AB=7,AC=6,,CD=6sin ∠DAC ,则BD 的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n }中,a 1=1,a 2=3,其前n 项和为S n ,且当n ≥2时,a n+1S n ﹣1﹣a n S n =0.(1)求证:数列{S n }是等比数列,并求数列{a n }的通项公式;(2)令b n =,记数列{b n }的前n 项和为T n ,求T n .18.某班级举办知识竞赛活动,现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对1道,则获得二等奖.某同学进入决赛,每道题答对的概率p 的值恰好与频率分布表中不少于80分的频率的值相同.(1)求该同学恰好答满4道题而获得一等奖的概率; 的数学期望.19.某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD﹣EFGH材料切割成三棱锥H﹣ACF.(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.(i)甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高.请你根据甲工程师的思路,求该三棱锥的高.(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t 的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).20.已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y)(﹣2<x<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t 的值.若不存在,说明理由.21.已知函数f(x)=aln(x+b),g(x)=ae x﹣1(其中a≠0,b>0),且函数f(x)的图象在点A(0,f (0))处的切线与函数g(x)的图象在点B(0,g(0))处的切线重合.(1)求实数a,b的值;(2)记函数φ(x)=xf(x﹣1),是否存在最小的正常数m,使得当t>m时,对于任意正实数x,不等式φ(t+x)<φ(t)•e x恒成立?给出你的结论,并说明结论的合理性.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求|FA|•|FB|的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.2018年重庆高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=ln(1﹣x)},集合N={y|y=e x,x∈R(e为自然对数的底数)},则M∩N=()A.{x|x<1} B.{x|x>1} C.{x|0<x<1} D.∅【考点】对数函数的定义域;交集及其运算.【分析】分别求出M、N的范围,在求交集.【解答】解:∵集合M={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},N={y|y=e x,x∈R(e为自然对数的底数)}={y|y>0},∴M∩N={x|0<x<1},故选C.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得sinθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设平面α与平面β相交于直线l,直线a在平面α内,直线b在平面β内,且b⊥l,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】分析题可知:在题目的前提下,由“a⊥b”不能推得“α⊥β”,由面面垂直的性质定理可由“α⊥β”推出“a⊥b”,从而可得答案.【解答】解:由题意可得α∩β=l,a⊂α,b⊂β,若再满足a⊥b,则不能推得α⊥β;但若满足α⊥β,由面面垂直的性质定理可得a⊥b故“a⊥b”是“α⊥β”的必要不充分条件.故选B4.若f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,则不等式f(x﹣1)<1的解集为()A.{x|0<x<2} B.{x|﹣1<x<1} C.{x|0<x<1} D.{x|﹣2<x<2}【考点】其他不等式的解法.【分析】由条件利用函数的单调性以及图象的对称性可得﹣1<x﹣1<1,由此求得x的范围.【解答】解:∵f(x)为偶函数,且当x∈[0,+∞)时,f(x)=,故f(x)在[0,+∞)上单调递增,在(﹣∞,0]上单调递减.则由不等式f(x﹣1)<1,结合函数的单调性可得|x﹣1|<1,即﹣1<x﹣1<1,求得0<x<2,故选:A.5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺【考点】旋转体(圆柱、圆锥、圆台).【分析】设圆锥的底面半径为r,由题意和圆柱的体积公式列出方程,求出r,由圆的周长公式求出圆柱底面周长.【解答】解:设圆锥的底面半径为r,由题意得,πr2×13=2000×1.62,解得r≈9(尺),所以圆柱底面周长c=2πr≈54(尺)=5丈4尺,故选:B.6.设点O是边长为1的正△ABC的中心(如图所示),则(+)•(+)=()A.B.﹣ C.﹣ D.【考点】平面向量数量积的运算.【分析】根据三角形的重心的性质及向量加法平行四边形法则、向量数乘的几何意义便可得出,,从而根据条件进行向量数量积的运算即可求出的值.【解答】解:根据重心的性质,,=;又;∴====.故选C.7.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】分别计算奖票的所有排列情况和第四次活动结束的抽取方法即可.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.8.设实数x,y满足约束条件,已知z=2x+y的最大值是7,最小值是﹣26,则实数a的值为()A.6 B.﹣6 C.﹣1 D.1【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得a值.【解答】解:先作出对应的平面区域如图,∵z=2x+y的最大值是7,最小值是﹣26,∴作出2x+y=7和2x+y=﹣26的图象,由图象知2x+y=7与x+y ﹣4=0相交于C ,2x+y=﹣26与3x ﹣2y+4=0相交于B ,由得,即C (3,1),由得,即B (﹣8,﹣10),∵B ,C 同时在直线x ﹣ay ﹣2=0上,∴得,得a=1,故选:D .9.如图,把圆周长为1的圆的圆心C 放在y 轴上,顶点A (0,1),一动点M 从A 开始逆时针绕圆运动一周,记=x ,直线AM 与x 轴交于点N (t ,0),则函数t=f (x )的图象大致为( )A .B .C .D .【考点】函数的图象.【分析】根据动点移动过程的规律,利用单调性进行排除即可得到结论.【解答】解:当x 由0→时,t 从﹣∞→0,且单调递增,由→1时,t 从0→+∞,且单调递增,∴排除A ,B ,C , 故选:D .10.一个几何体的三视图如图所示,该几何体的体积为( )A .B .C .D .【考点】由三视图求面积、体积.【分析】根据三视图知该几何体是四棱锥,且是棱长为2的正方体一部分,画出直观图,由正方体的性质、分割法、柱体和椎体的体积公式求出该几何体的体积.【解答】解:根据几何体的三视图得:该几何体是四棱锥M ﹣PSQN , 且四棱锥是棱长为2的正方体的一部分, 直观图如图所示:由正方体的性质得, 所以该四棱锥的体积为:V=V 三棱柱﹣V 三棱锥=×22×2﹣××22×2=, 故选A .11.已知F 是双曲线C :﹣=1(a >0,b >0)的右焦点,O 是双曲线C 的中心,直线y=x 是双曲线C 的一条渐近线,以线段OF 为边作正三角形AOF ,若点A 在双曲线C 上,则m 的值为( )A .3+2B .3﹣2C .3+D .3﹣【考点】双曲线的简单性质.【分析】根据正三角形的性质,结合双曲线的性质求出,m=,A (c , c ),将A 点的坐标代入双曲线方程可得到关于m 的方程,进行求解即可.【解答】解:∵F (c ,0)是双曲线C :﹣=1(a >0,b >0)的右焦点,直线y=是双曲线C 的一条渐近线,又双曲线C 的一条渐近线为y=x ,∴m=,又点A 在双曲线C 上,△AOF 为正三角形,∴A (c ,c ),∴﹣=1,又c 2=a 2+b 2,∴﹣=1,即+m ﹣﹣=1,∴m 2﹣6m ﹣3=0,又m >0,∴m=3+2. 故选:A .12.设函数f (x )=ax 3+bx 2+cx+d 有两个极值点x 1,x 2,若点P (x 1,f (x 1))为坐标原点,点Q (x 2,f (x 2))在圆C :(x ﹣2)2+(y ﹣3)2=1上运动时,则函数f (x )图象的切线斜率的最大值为( )A .3+B .2+C .2+D .3+ 【考点】利用导数研究函数的极值.【分析】先求出c=0,d=0,得到x 2=﹣>0,f (x 2)=>0,判断出a <0,b >0,得到k max =,根据二次函数的性质求出的最大值,从而求出k 的最大值即可.【解答】解:f′(x )=3ax 2+2bx+c ,若点P (x 1,f (x 1))为坐标原点, 则f′(0)=0,f (0)=0,故c=0,d=0,∴f′(x )=3ax 2+2bx=0,解得:x 2=﹣,∴f (x 2)=,又Q (x 2,f (x 2))在圆C :(x ﹣2)2+(y ﹣3)2=1上,∴x 2=﹣>0,f (x 2)=>0,∴a <0,b >0,∴k max =﹣=,而表示⊙C 上的点Q 与原点连线的斜率,由,得:(1+k 2)x 2﹣(6k+4)x+12=0,得:△=0,解得:k=,∴的最大值是2+,∴k max =3+,故选:D .二、填空题:本大题共4小题,每小题5分.13.已知函数y=f (x+1)﹣1(x ∈R )是奇函数,则f (1)= 1 . 【考点】函数奇偶性的性质.【分析】直接利用函数的奇偶性的性质求解即可.【解答】解:函数y=f (x+1)﹣1(x ∈R )是奇函数,可知x=0时,y=0, 可得0=f (1)﹣1, 则f (1)=1. 故答案为:1.14.在二项式(+2x )n 的展开式中,前3项的二项式系数之和等于79,则展开式中x 4的系数为 .【考点】二项式系数的性质.【分析】由=79,化简解出n=12.再利用二项式定理的通项公式即可得出.【解答】解:∵=79,化为n 2+n ﹣156=0,n ∈N *. 解得n=12.∴的展开式中的通项公式T r+1==22r ﹣12x r ,令r=4,则展开式中x 4的系数==.故答案为:.15.已知直线l 1:x+2y=a+2和直线l 2:2x ﹣y=2a ﹣1分别与圆(x ﹣a )2+(y ﹣1)2=16相交于A ,B 和C ,D ,则四边形ABCD 的内切圆的面积为 8π . 【考点】直线与圆的位置关系.【分析】由直线方程判断出两条直线垂直,联立后求出交点坐标后可得:交点是圆心,求出四边形ABCD 的边长和形状,再求出内切圆的半径和面积.【解答】解:由题意得直线l 1:x+2y=a+2和直线l 2:2x ﹣y=2a ﹣1,则互相垂直,由得,,∴直线l 1和直线l 2交于点(a ,1),∵圆(x ﹣a )2+(y ﹣1)2=16的圆心是(a ,1),∴四边形ABCD 是正方形,且边长是,则四边形ABCD 的内切圆半径是2,∴内切圆的面积S==8π,故答案为:8π.16.在四边形ABCD 中,AB=7,AC=6,,CD=6sin ∠DAC ,则BD 的最大值为 8 .【考点】正弦定理.【分析】由CD=6sin ∠DAC ,可得CD ⊥AD .点D 在以AC 为直径的圆上(去掉A ,B ,C ).可得:当BD 经过AC 的中点O 时取最大值,利用余弦定理可得:OB ,可得BD 的最大值=OB+AC . 【解答】解:由CD=6sin ∠DAC ,可得CD ⊥AD . ∴点D 在以AC 为直径的圆上(去掉A ,B ,C ). ∴当BD 经过AC 的中点O 时取最大值, OB 2=32+72﹣2×3×7cos ∠BAC=25, 解得OB=5,∴BD 的最大值=5+AC=8.故答案为:8.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n }中,a 1=1,a 2=3,其前n 项和为S n ,且当n ≥2时,a n+1S n ﹣1﹣a n S n =0. (1)求证:数列{S n }是等比数列,并求数列{a n }的通项公式;(2)令b n =,记数列{b n }的前n 项和为T n ,求T n .【考点】数列的求和;等比数列的通项公式. 【分析】(1)利用递推关系与等比数列的通项公式即可证明.(2)当n ≥2时,b n ==,又.利用“裂项求和”方法即可得出. 【解答】(1)证明:当n ≥2时,a n+1S n ﹣1﹣a n S n =0.∴,∴,又由S 1=1≠0,S 2=4≠0,可推知对一切正整数n 均有S n ≠0,则数列{S n }是等比数列,公比q==4,首项为1.∴.当n ≥2时,a n =S n ﹣S n ﹣1=3×4n ﹣2,又a 1=S 1=1,∴a n =.(2)解:当n ≥2时,b n ===,又.∴,则,当n ≥2时,b n =,则,n=1时也成立.综上:.18.某班级举办知识竞赛活动,现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对1道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率的值相同.(1)求该同学恰好答满4道题而获得一等奖的概率;的数学期望.分布列.【分析】(1)由频率分布表的性质和频率=能求出结果.(2)(1)先求出p=0.4,由此能求出该同学恰好答满4道题而获得一等奖的概率.(2)该同学答题个数为2,3,4,即X=2,3,4,分别求出相应的概率,由此能求出X的分布列和E(X).【解答】解:(1)由频率分布表的性质得:d==50,a==0.44,b=50﹣8﹣22﹣14=6,c==0.12.…(2)由(1)得p=0.4…(1)…(2)该同学答题个数为2,3,4,即X=2,3,4,,…E(X)=2×0.16+3×0.192+4×0.648=3.488…19.某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD﹣EFGH材料切割成三棱锥H﹣ACF.(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.(i)甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高.请你根据甲工程师的思路,求该三棱锥的高.(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t 的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).【考点】点、线、面间的距离计算;程序框图;直线与平面平行的判定.【分析】(Ⅰ)证法一:利用线面平行的判定证明MK∥平面ACF,MN∥平面ACF,从而可得平面MNK∥平面ACF,利用面面平行的性质可得MG∥平面ACF;证法二:利用线面平行的判定证明MG∥平面ACF;(Ⅱ)(i)建立空间直角坐标系,求出平面ACF的一个法向量,求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H﹣ACF的高(ii)t=2.【解答】(Ⅰ)证法一:∵HM=MA,HN=NC,HK=KF,∴MK∥AF,MN∥AC.∵MK⊄平面ACF,AF⊂平面ACF,∴MK∥平面ACF,同理可证MN∥平面ACF,…∵MN,MK⊂平面MNK,且MK∩MN=M,∴平面MNK∥平面ACF,…又MG⊂平面MNK,故MG∥平面ACF.…证法二:连HG并延长交FC于T,连接AT.∵HN=NC,HK=KF,∴KN∥FC,则HG=GT,又∵HM=MA,∴MG∥AT,…∵MG⊄平面ACF,AT⊂平面ACF,∴MG∥平面ACF.…(Ⅱ)解:(i)如图,分别以DA,DC,DH所在直线为x轴,y轴,z轴建立空间直角坐标系O﹣xyz.则有A(3,0,0),C(0,2,0),F(3,2,1),H(0,0,1).…,.设平面ACF的一个法向量,则有,解得,令y=3,则,…∴,…∴三棱锥H﹣ACF的高为.…(ii)t=2.…20.已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y)(﹣2<x<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【考点】圆锥曲线的轨迹问题;利用导数研究曲线上某点切线方程.【分析】(1)用坐标表示,,从而可得+,可求|+|,利用向量的数量积,结合M(x,y)满足|+|=•(+)+2,可得曲线C的方程;(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=分类讨论:①当﹣1<t<0时,l∥PA,不符合题意;②当t≤﹣1时,,,分别联立方程组,解得D,E的横坐标,进而可得△QAB与△PDE的面积之比,利用其为常数,即可求得结论.【解答】解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得+=(﹣2x,2﹣2y),∴|+|=,•(+)+2=(x,y)•(0,2)+2=2y+2.由题意可得=2y+2,化简可得 x2=4y.(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=<2,∴∵﹣2<x①当﹣1<t<0时,,存在x∈(﹣2,2),使得∴l∥PA,∴当﹣1<t<0时,不符合题意;②当t≤﹣1时,,,∴l与直线PA,PB一定相交,分别联立方程组,,解得D,E的横坐标分别是,∴∵|FP|=﹣∴=∵∴=×∈(﹣2,2),△QAB与△PDE的面积之比是常数∵x∴,解得t=﹣1,∴△QAB与△PDE的面积之比是2.21.已知函数f(x)=aln(x+b),g(x)=ae x﹣1(其中a≠0,b>0),且函数f(x)的图象在点A(0,f (0))处的切线与函数g(x)的图象在点B(0,g(0))处的切线重合.(1)求实数a,b的值;(2)记函数φ(x )=xf (x ﹣1),是否存在最小的正常数m ,使得当t >m 时,对于任意正实数x ,不等式φ(t+x )<φ(t )•e x 恒成立?给出你的结论,并说明结论的合理性.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值. 【分析】(1)求出f (x )的导数,求得切线的斜率和方程;求得g (x )的导数,求得切线的斜率和方程,由切线重合,可得方程,解得a ,b ;(2)等价变形可构造函数,则问题就是求m (t+x )<m (t )恒成立.求出m (x )的导数,令h (x )=lnx+1﹣xlnx ,求出导数,单调区间,运用零点存在定理可得h (x )的零点以及m (x )的单调性和最值,结合单调性,即可判断存在.【解答】解:(1)∵f (x )=aln (x+b ),导数,则f (x )在点A (0,alnb )处切线的斜率,切点A (0,alnb ),则f (x )在点A (0,alnb )处切线方程为,又g (x )=ae x ﹣1,∴g'(x )=ae x ,则g (x )在点B (0,a ﹣1)处切线的斜率k=g'(0)=a ,切点B (0,a ﹣1), 则g (x )在点B (0,a ﹣1)处切线方程为y=ax+a ﹣1,由,解得a=1,b=1;(2),构造函数,则问题就是求m (t+x )<m (t )恒成立.,令h (x )=lnx+1﹣xlnx ,则,显然h'(x )是减函数,又h'(1)=0,所以h (x )在(0,1)上是增函数,在(1,+∞)上是减函数,而,h (1)=ln1+1﹣ln1=1>0,h (e )=lne+1﹣elne=1+1﹣e=2﹣e <0,所以函数h (x )=lnx+1﹣xlnx 在区间(0,1)和(1,+∞)上各有一个零点, 令为x 1和x 2(x 1<x 2),并且有在区间(0,x 1)和(x 2,+∞)上,h (x )<0, 即m'(x )<0;在区间(x 1,x 2)上,h (x )>0,即m'(x )>0, 从而可知函数m (x )在区间(0,x 1)和(x 2,+∞)上单调递减,在区间(x 1,x 2)上单调递增.m (1)=0,当0<x <1时,m (x )<0; 当x >1时,m (x )>0,还有m (x 2)是函数的极大值,也是最大值,题目要找的m=x 2, 理由:当t >x 2时,对于任意非零正数x ,t+x >t >x 2, 而m (x )在(x 2,+∞)上单调递减,所以m (t+x )<m (t )一定恒成立,即题目要求的不等式恒成立;当0<t <x 2时,取x=x 2﹣t ,显然m (t+x )=m (x 2)>m (t ),题目要求的不等式不恒成立,说明m 不能比x 2小;综合可知,题目所要求的最小的正常数m 就是x 2,即存在最小正常数m=x 2,当t >m 时,对于任意正实数x ,不等式m (t+x )<m (t )•e x 恒成立.[选修4-4:坐标系与参数方程]22.已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=12,且曲线C 的左焦点F 在直线l 上.(Ⅰ)若直线l 与曲线C 交于A 、B 两点.求|FA|•|FB|的值;(Ⅱ)设曲线C 的内接矩形的周长为P ,求P 的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I )求出曲线C 的普通方程和焦点坐标,将直线l 的参数方程代入曲线C 的普通方程利用根与系数的关系和参数的几何意义得出;(II )设矩形的顶点坐标为(x ,y ),则根据x ,y 的关系消元得出P 关于x (或y )的函数,求出此函数的最大值.【解答】解:(I )曲线C 的直角坐标方程为x 2+3y 2=12,即.∴曲线C 的左焦点F 的坐标为F (﹣2,0).∵F (﹣2,0)在直线l 上,∴直线l 的参数方程为(t 为参数).将直线l 的参数方程代入x 2+3y 2=12得:t 2﹣2t ﹣2=0,∴|FA|•|FB|=|t 1t 2|=2.(II )设曲线C 的内接矩形的第一象限内的顶点为M (x ,y )(0,0<y <2),则x 2+3y 2=12,∴x=.∴P=4x+4y=4+4y .令f (y )=4+4y ,则f′(y )=.令f′(y )=0得y=1,当0<y <1时,f′(y )>0,当1<y <2时,f′(y )<0.∴当y=1时,f (y )取得最大值16.∴P 的最大值为16.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【考点】绝对值不等式的解法.【分析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.【解答】解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].。
2018年全国II卷理科数学(含答案)
19。(1) y x 1 (2) (x 3)2 ( y 2)2 4 或 (x 11)2 ( y 6)2 144
20。(1)略 (2) 2 21
21
21.(1)略 (2) e2
4
22.(1) C : x2 y2 1 4 16
l : y tan x 2 tan
23。(1) [2, 3] (2) (, 6] U[2, )
55
C. 3 4 i
55
D. 3 4 i
55
2.已知集合 A x ,y x2 y2≤3,x Z ,y Z ,则 A 中元素的个数为( )
A.9
B.8
3.函数
f
x
ex
ex x2
的图象大致是(
C.5 )
D.4
rr
r
rr
r rr
4.已知向量 a,b 满足,| a | 1, a b 1,则 a (2a b) ( )
16.已知圆锥的顶点为 S ,母线 SA , SB 所成角的余弦值为 7 , SA 与圆锥底面所成角为 45 .若
8
△SAB 的面积为 5 15 ,则该圆锥的侧面积为_________. 三、解答题(共 70 分,解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题。
每个试题考生都必须作答,第 22、23 题为选考题,考生根据要求作答)
A. 1
5
B. 5
6
C. 5
5
D. 2
2
10.若 f x cos x sin x 在 a ,a 是减函数,则 a 的最大值是( )
A.
4
B.
2
C. 3
4
D.
11.已知 f x 是定义域为 , 的奇函数,满足 f 1 x f 1 x .若 f 1 2 ,则
重庆市2018届高三下学期二模理科数学试题(附解析)
重庆市2018届高三下学期二模理科数学试题(附解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}6,5,4,3,2,1=U ,集合{}3,5,1=A ,集合{}Z x x x x B ∈≤--=,0)4)(2(|,则()U A B =ð( )A .{}1,6B .{}6C .{}63,D .{}1,3 2.在复平面内,复数Z 所对应的点的坐标为)(4,3,则ZZ=( ) A .i 5453-B .i 5354-C .i 5453+D .i 5354+3.已知数列{}n a 为等差数列,其前n 项和为n S ,若6482=-+a a a ,则11=S ( ) A .132B .108C .66D .不能确定4.某车间为了规划生产进度提高生产效率,记录了不同时段生产零件个数x (百个)与相应加工总时长y (小时)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为05.07.0ˆ+=x y ,则下列结论错误..的是( ) A .加工总时长与生产零件数呈正相关 B .该回归直线一定过点)5.2,5.3(C .零件个数每增加1百个,相应加工总时长约增加0.7小时D .m 的值是2.855.已知函数⎪⎩⎪⎨⎧≥<≤=1,4sin 10,2)(x x x x f x π,则=-+)7log 3()2(2f f ( )A .87B .157C .158D .2276.某几何体的三视图如图所示,其侧视图为等边三角形,则该几何体的体积为( )A .3263+πB .43+πC .32123+πD .432+π7.已知25tan 1tan =+αα,)2,4(ππα∈,则)42sin(πα-的值为( ) A .1027-B .102C .102-D .1027 8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的2,2==n x ,则输出的=S ( )A .8B .10C .12D .229.已知向量b a ,5==+的取值范围是( ) A .]5,0[B .]25,5[C .]7,25[D .]10,5[10.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12F F 、,以O 为圆心,12F F 为直径的圆与椭圆在第一象限相交于点P ,且直线OP 的斜率为3,则椭圆的离心率为( )A .13-B .213- C .22 D .23 11.已知实数b a ,满足不等式1)1(22≤-+b a ,则点)1,1(-A 与点)1,1(--B 在直线01=++by ax 的两侧的概率为( ) A .43B .32C .21D .3112.已知函数mx x x x f ++=233)(,)0(,)1ln()(>++=n nx x x g ,若函数)(x f 的图像关于点)1,1(--对称,且曲线)(x f 与)(x g 有唯一公共点,则=+n m ( )A .3B .5C .7D .9第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若51(2)(1)ax x++展开式中常数项为12,则实数a 等于 .14.甲、乙、丙三个同学在看c b a ,,三位运动员进行“乒乓球冠军争夺赛”.赛前,对于谁会得冠军进行预测,甲说:不是b ,是c ;乙说:不是b ,是a ;丙说:不是c ,是b .比赛结果表明,他们的话有一人全对,有一人对一半错一半,有一人全错,则冠军是 .15.已知三棱锥ABC P -的外接球的球心为O ,⊥PA 平面ABC ,AB AC ⊥,2AB AC ==,1PA =,则球心O 到平面PBC 的距离为 .16.如图,在平面四边形ABCD 中,ACD ∆的面积为3,132-==BC AB ,,135120=∠=∠BCD ABC ,,则=AD .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)有如下数阵,,,,,)2,2,2()2,2,2()2,2()2(:12154332-+n n n 其中第n 个括号内的所有元素之和记为n a .(1)求数列{}n a 的通项公式;(2)令22(1)log (4)n n n n b n a =-⋅+-,求数列{}n b 的前100项和100S .18.(12分)当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.重庆2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分,某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率; (2)若该校初三年级所有学生的跳绳个数X 服从正态分布),(2σμN ,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差1692≈S (各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果 四舍五入到整数)(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和期望.附:若随机变量X 服从正态分布),(2σμN ,则6826.0)(=+<<-σμσμX P ,)22(σμσμ+<<-X P .9974.0)33(9544.0=+<<-=σμσμX P ,19.(12分)如图,在矩形ABCD 中,点G F E 、、分别为CD 和AB 的三等分点,其中AD AG AB 33==23=,现将ADE ∆和BCF ∆分别沿BF AE ,翻折到AME ∆和BNF ∆的位置,得到一个以、、、、、M F E B A N 为顶点的空间五面体.(1)证明//:MN 平面;ABCD(2)若2=MG ,求平面AME 与平面EGN 所成锐二面角的余弦值.20.(12分)在平面直角坐标系xOy 中,已知两定点11(0,)(0,)33M N -,,平面内的动点P 在y 轴上的射影为1P ,且1||||MN MP NM NP +=+,记点P 的轨迹为C . (1)求点P 的轨迹方程C ;(2)设点),1,2(),1,0(A F 以A 为圆心,||AF 为半径的圆A 与直线1-=y 相切于点,B 过F 作斜率大于0的直线与曲线C 在第一象限交于点Q ,与圆A 交于点.H 若直线QB QA QH ,,的斜率成等差数列,且E 为QB 的中点,求QFB ∆和QHE ∆的面积比.21.(12分)已知函数()ln ().au x x a R x=-∈ (1)若曲线)(x u 与直线0=y 相切,求a 的值. (2)若,21e a e <<+设,ln |)(|)(xxx u x f -=求证:()f x 有两个不同的零点12,x x ,且 21x x e -<.(e 为自然对数的底数)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,已知曲线M 的参数方程为12cos 12sin x y ββ=+⎧⎨=+⎩β(为参数),以原点为极 点,x 轴正半轴为极轴建立极坐标系,直线1l 的极坐标方程为=θα,直线2l 的极坐标方程为=+2πθα.(1)写出曲线M 的极坐标方程,并指出它是何种曲线;(2)设1l 与曲线M 交于C A 、两点,2l 与曲线M 交于D B 、两点,求四边形ABCD 面积的取值范围.23.(10分)【选修4-5:不等式选讲】 已知函数)()(R x x x f ∈=.(1)求不等式4)1()1(≤++-x f x f 的解集;M (2)若,,M b a ∈证明.4)()(2:+≤+ab f b a f2018届重庆市高三第二次模拟考试卷数学(理)答案一、选择题. 1-5:BACDB 6-10:ADDBA 11、12:CB二、填空题.13.2 14.C 15.66 16.22三、解答题.17.解:(1)n a =.2421)21(2222121n n n n n n n-=--=++-+ ………… 5分(2)222log (4)(1)(1)n n n n n b a n n n =-+-⋅=+-⋅.10100)14(2)1001(100501100=-++⋅=∴∑=k k S ……………… 12分18.解:(1)两人得分之和不大于35分,即两人得分均为17分,或两人中1人17分,1人18分,;16502921001121626=+=C C C C P ……………… 3分 (2)18508.02101.020030.019034.018012.017006.0160=⨯+⨯+⨯+⨯+⨯+⨯=X (个)5分 又,13,1692≈≈s S 所以正式测试时,182,13,195=-∴==σμσμ (ⅰ),8413.026826.011)182(=--=>∴ξP 16836.168220008413.0≈=⨯∴(人) … 7分(ⅱ)由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,即,125.0)5.01()0(),5.0,3(~303=-⋅==∴C P B ξξ122233333(1)0.5(10.5)0.375,(2)0.5(10.5)0.375,(3)0.50.125;P C P C P C ξξξ==⋅⋅-===⋅⋅-===⋅=∴ξ的分布列为.5.15.03)(=⨯=X E ……… 12分19.解:(1)⊄AB CD AB ,// 平面//,AB EFNM ∴平面,EFNM 又⊂AB 平面,ABNM 平面 ABNM 平面,MN EFNM =;//AB MN ∴⊄MN 平面//,MN ABCD ∴平面.ABCD ……………… 5分(2)取AE 中点,O 连接,,,MG OG MO 由勾股定理逆定理易证,OG MO ⊥O ME MA ,= 为AE 中点,.AE MO ⊥∴又⊥∴=OM O OG AE , 平面,ABCD如图,分别以OM OG OA 、、为z y x 、、轴建立空间直角坐标系 显然平面AME 的一个法向量()0,1,01=n ,)0,0,1(-E ,).0,1,0(G法一:取BF 中点记为H ,由(1)知//MN 平面,ABCD 故N 到平面ABCD 的距离,1===NH OM dN 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法二:连接,,HN OH 由(1)知,//AB MN 又,//,//OH MN AB OH ∴ 由 ,552cos cos =∠=∠HMN MHO 可得,22=MN 即OHNM 为矩形. N 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法三:由最小角定理可得,3,21cos cos cos π=∠∴=∠∠=∠MAB EAG MAO MAB可得,2AG MN =().1,2,22-=+=+=∴AG OM MN OM ON设平面EGN 的一个法向量为()),1,2,1(),0,1,1(,,,2-===z y x n则有⎩⎨⎧=++-=+020z y x y x ,可取().3,1,12-=n设平面AME 与平面EGN 所成锐二面角为θ .1111cos cos ==∴θ…… 12分 20.解:(1)设(,)P x y ,则1(0,)P y121(0,)(0,)(0,1)33MN MP y y ∴+=++=+,21(0,)(,)(,1)33NM NP x y x y +=-+-=- 由1||||MN MP NM NP +=+可得222(1)(1)y x y +=+-即24x y =.24C x y ∴=的轨迹方程为:. ……… 4分 (2)设2(,)4t Q t ,由2,QF QB QA k k k +=得222111444222t t t t t t -+-+=--,得2t =+t =舍) Q ∴,1,QF k =………… 8分90QFB ∴∠=且易得(2,3)H ,11(31)422QFB S FQ FB ∴=⋅=⋅+⋅+……………… 10分 又1112222222QHE QHB S S HB ∆∆===,: 2.QFB QHE S S ∴==…… 12分 21.解:(1)设切点)0,(0x P ,)('2x x a x u -+=.,002x a x x a k -=∴=-+=∴ 又切点在函数)(x u 上,,0)(0=∴x u 即,1ln 0ln 000-=⇒=-x x x a.1,10ea e x -=∴=∴ ……………… 4分(2)证明:不妨设12x x <, 21()0a u x x x'=--<,所以()u x 在(0,)+∞上单调递减, 又()10,(2)ln 202a au e u e e ee=->=-<, 所以必存在0(,2)x e e ∈,使得0()0u x =,即,ln 00x x a =⎪⎩⎪⎨⎧>--≤<--=∴00,ln ln 0,ln ln )(x x x x x a x x x x x x x ax f . 6分①当00x x <≤时,222211ln ln (1)1(1)()0a x x x a x x a f x x x x x x---+---+'=---=≤<, 所以()f x 在区间0(0,]x 上单调递减,注意到1()10a f e ee=-->,00000ln ln ()ln 0x x a f x x x x x =--=-<所以函数()f x 在区间0(0,]x 上存在零点1x ,且10e x x <<. ………… 9分 ②当0x x >时,22211ln ln (1)()0a x x x a f x xx x x -++-'=+-=> 所以()f x 在区间0(,)x +∞上单调递增,又0ln ln ln )(0000000<-=--=x x x x x a x x f , 且ln 21ln 241411(2)ln 2ln 21ln 20222252522a e f e e e e e e e e e=-->--->->->, 所以()f x 在区间0(,2)x e 上必存在零点2x ,且022x x e <<.综上,()f x 有两个不同的零点1x 、2x ,且21212x x x x e e e -=-<-=. ……… 12分22.解:(1)由12cos 12sin x y ββ=+⎧⎨=+⎩(β为参数)消去参数β得:22(1)(1)4x y -+-=,将曲线M 的方程化成极坐标方程得:2-2(sin cos )20ρρθθ+-=, ∴曲线M 是以)1,1(为圆心,2为半径的圆. …………… 5分(2)设12||,||OA OC ρρ==,由1l 与圆M 联立方程可得22(sincos )20ρραα-+-=1212+=2(sin cos )=2ρρααρρ∴+⋅-,,∵O ,A ,C 三点共线,则12||||AC ρρ=-==①, ∴用+2πα代替α可得||BD =, 121,=2ABCD l l S ⊥∴⋅四边形2sin 2[0,1]ABCD S α∈∴∈四边形. ……………… 10分23.解:(1)2,1112,112,1x x x x x x x -<-⎧⎪-++=-≤<⎨⎪≥⎩由];2,2[411-=⇒≤++-M x x ……………… 5分 (2)法一:要证42+≤+ab b a ,只需证()()2244a b ab +≤+,即证()222484816a ab b ab ab ++≤++,ab ab 88≤只需证()2224416a b ab +≤+,即证()()22440a b --≥由(1),2,2≤≤b a :上式显然成立,故原命题得证. 法二:b a b a +≥+ ,∴要证42+≤+ab b a 只需证422+≤+ab b a ,即证()()220a b --≥ 由(1),2,2≤≤b a :上式显然成立,故原命题得证.。
2018届重庆市高考第二次诊断性考试提前模拟数学(理)试题有答案
七校高2018级第二次诊断性考试提前模拟数学(理科)试题第I 卷(选择题,60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(铜梁)设集合(){}2log 2A x y x ==-,{}2|320B x x x =-+<,则B C A =() A .(,1)-∞B .(,1]-∞C .(2,)+∞D .[2,)+∞2.(江津)若复数1z a i =+(a R ∈),21z i =-,且12z z 为纯虚数,则1z 在复平面内所对应的点位于() A .第一象限B .第二象限C .第三象限D .第四象限3.(实验中学)在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的() A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(綦江)已知函数()3log ,0()1,02017x m x f x x +⎧≥⎪=⎨<⎪⎩的零点为3,则((6)2)f f -=()A .1B .2C .12017D .20175.(江津)不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为M ,不等式组220x y y x-+≥⎧⎨≥⎩表示的点集记为N ,在M 中任取一点P ,则P N ∈的概率为( ) A .732B .932C .916D .7166.(实验中学)一个几何体的三视图如图所示,那么 这个几何体的表面积是() A .1623+ B .1625+ C .2023+D .2025+7.(长寿)若双曲线2222:1(0,0)x y C a b a b-=>>的渐近线与圆22430x y y +-+=相切,则该双曲线C 的离心率为() A .23B .2C .3D .238.(大足)在ABC △中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb +的值为() A .22B .2C .2D .49.(铜梁)如图所示,程序框图的算法思路源于我国 古代数学名著《九章算术》中“更相减损术”.已 知MOD 函数是一个求余函数,记),(n m MOD 表示m 除以n 的余数,例如2)3,8(=MOD .若 输入m 的值为48时,则输出i 的值为() A .7 B .8C .9D .1010.(合川)已知三棱锥P-ABC 的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且PA=PB=PC=2,则球O 的体积为() A .123π B .82πC .43πD. 4π11.(大足)定义在(0,+)上的函数f (x )满足f (x )0,()f x '为f (x )的导函数,且2 f (x )()xf x '<<3f(x )对任意x (0,+)恒成立,则(3)(4)f f 的取值范围是() A .)94,278(B .)169,278(C .)6427,278(D .)169,6427( 12.(长寿)对于0>c ,当非零实数b a ,满足,02222=-+-c b ab a 且使b a +最大时,则cb a 543+-的最小值为() A .41-B .41C .21D .31-第Ⅱ卷(非选择题,90分)本卷包括必考题和选考题两部分。
重庆市梁平区2018届高三二调12月理科数学试题含
高2018届第二次调研考试理科数学试题第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
每小题只有一项是符合题目要求的)1. 已知集合,,则中元素的个数为()A. 3B. 2C. 1D. 0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2. 设复数z满足,则()A. B. C. D. 2【答案】C【解析】∵,∴故选:C3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问塔底几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯()A. 3盏B. 9盏C. 192盏D. 9384盏【答案】C【解析】由题意可得最下面层数灯的盏数最多,设最下层有盏灯,结合题意可得:,且,据此排除ABD选项.本题选择C选项.4. 为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为,据此估计其身高为()A. 167B. 176C. 175D. 180【答案】B【解析】由题意可得:,且:,则回归方程为:,据此预测:该班某学生的脚长为,据此估计其身高为.本题选择B选项.5. 已知,“函数有零点”是“函数在上为减函数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】函数有零点,则函数与函数有交点,则:,函数在上为减函数,则,据此可得“函数有零点”是“函数在上为减函数”的必要不充分条件.本题选择B选项.6. 已知函数f (x)=Asin(ωx+φ)+b(A>0,ω>0)的图象如图所示,则f (x)的解析式为()A. B.C. D.【答案】D【解析】结合函数图像可得:,,结合周期公式有:,且当时,,令可得:,据此可得函数的解析式为:.本题选择D选项.点睛:已知f(x)=A sin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.7. 函数的图象恒过定点,若点在直线上,其中,则的最小值为()A. B. 5C. D.【答案】C【解析】令,则可得:,据此可得:点在直线上,故:,则:.当且仅当时等号成立.综上可得:的最小值为.本题选择C选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 已知[x]表示不超过..整数。
重庆市2017-2018学年高考数学二诊试卷(理科) Word版含解析
2017-2018学年重庆市高考数学二诊试卷(理科)一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.设集合A={x||x|<3},B={x|2x>1},则A∩B=()A.(﹣3,0)B.(﹣3,3)C.(0,3)D.(0,+∞)2.已知为纯虚数,则实数a的值为()A.2 B.﹣2 C.﹣D.3.设单位向量,的夹角为,=+2,=2﹣3,则在方向上的投影为()A.﹣B.﹣C.D.4.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2﹣c2=ab=,则△ABC 的面积为()A.B.C.D.5.在区间[1,4]上任取两个实数,则所取两个实数之和大于3的概率为()A.B.C.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.37.执行如图所示的程序框图,若输入t的值为5,则输出的s的值为()A.B.C.D.8.若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A.e﹣B.2e﹣C.e D.2e9.设x,y满足约束条件,若z=ax+y的最大值为3a+9,最小值为3a﹣3,则a的取值范围是()A.a≤﹣1 B.a≥1 C.﹣1≤a≤1 D.a≥1或a≤﹣110.已知双曲线﹣=1的离心率为,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为,其中O为坐标原点,则双曲线的焦距为()A.2B.2C.2D.211.设正三棱锥A﹣BCD的所有顶点都在球O的球面上,BC=1,E、F分别是AB,BC的中点,EF⊥DE,则球O的半径为()A.B.C.D.12.设D,E分别为线段AB,AC的中点,且•=0,记α为与的夹角,则下述判断正确的是()A.cosα的最小值为B.cosα的最小值为C.sin(2α+)的最小值为D.sin(﹣2α)的最小值为二、填空题:本大题共有4小题,每小题5分.13.若(+)4展开式的常数项和为54,且a>0,则a=______.14.将函数y=sinx+cosx的图象向右平移φ(φ>0)个单位,再向上平移1个单位后,所得图象经过点(,1),则φ的最小值为______.15.设函数f(x)在[1,+∞)上为增函数,f(3)=0,且g(x)=f(x+1)为偶函数,则不等式g(2﹣2x)<0的解集为______.16.过直线l:x+y=2上任意点P向圆C:x2+y2=1作两条切线,切点分别为A,B,线段AB 的中点为Q,则点Q到直线l的距离的取值范围为______.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设数列{a n}的各项为正数,且a1,22,a2,24,…,a n,22n,…成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为等比数列{a n}的前n项和,若S k≥30(2k+1),求正整数k的最小值.18.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=4,BC=,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;(Ⅰ)求线段B1E的长;(Ⅱ)求二面角C1﹣AC﹣E的余弦值.19.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单x(单位:℃)的数据,如表:(Ⅰ)求y关于x的回归方程=x+;(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数,δ2近似为样本方差s2,求P(3.8<X<13.4)附:①回归方程=x+中,=,=﹣b.②≈3.2,≈1.8.若X~N(μ,δ2),则P(μ﹣δ<X<μ+δ)=0.6826,P(μ﹣2δ<X<μ+2δ)=0.9544.20.已知椭圆C: +=1(a>b>0)的左顶点为A,上顶点为B,直线AB的斜率为,坐标原点O到直线AB的距离为.(I)求椭圆C的标准方程;(Ⅱ)设圆O:x2+y2=b2的切线l与椭圆C交于点P,Q,线段PQ的中点为M,求直线l的方程,使得l与直线0M的夹角达到最小.21.设f(x)=(x2﹣x+)e mx,其中实数m≠0.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若g(x)=f(x)﹣x﹣5恰有两个零点,求m的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲].22.如图,四边形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC (Ⅰ)求证:A,B,C,P四点共圆;(Ⅱ)若∠CAD=,AB=1,求四边形ABCP的面积.[选修4-4:坐标系与参数方程].23.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以O为原极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ﹣3(Ⅰ)求曲线C1与曲线C2在平面直角坐标系中的普通方程;(Ⅱ)求曲线C1上的点与曲线C2上的点的距离的最小值.[选修4-5:不等式选讲].24.已知函数f(x)=|x﹣a|+|x﹣2a|(Ⅰ)当a=1时,求不等式f(x)>2的解集;(Ⅱ)若对任意x∈R,不等式f(x)≥a2﹣3a﹣3恒成立,求a的取值范围.2017-2018学年重庆市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。
【高三数学试题精选】2018高三数学理第二次质量调研抽测试题(重庆市附答案)
所以椭圆的方程为…………………………………………………………………5分
(2)设,联立方程,得,
解得,
所以,,……………………7分
∴,
分子
……………………………10分
∴,∴.…………………………………………………………12分
21(1)因为,由题意可知在上恒成立
得,……………………………………………………………………2分
令,,
解得在单调递增,单调递减,所以,
所以………………………………………………………………………………………………4分
(2)函数有两个极值点,
即有两个不同的零点,且均为正,
令,由可知
在是增函数,在是减函数,……………………………………………6分
22解(1)曲线,……………………………………………………………1分
把,,代入,
得,
化简得,曲线的极坐标方程为,…………………………………………………3分
曲线的极坐标方程为,
所以曲线的普通方程为…………………………………………………5分
(2)依题意可设
所以,…………………………………………………………………………………6分
2018高三数学理第二次质量调研抽测试题(重庆市附答案)
5
高5不等式选讲】(本小题满分10分)
已知函数
(Ⅰ)当时,解不等式;
(Ⅱ)设为正实数,且,其中为函数的最大值,求证
高2018届高三学业质量调研抽测(第二次)
理科数学答案
一、选择题
1—5ABDAD 6—10BBccc 11—12BA
二、填空题
13 14 20 15 16
2018年高考重庆数学理科真题答案
2018年普通高等学校招生全国统一考试理科数学参考答案一、选择题1.D2.A3.B4.B5.A6.A12.D11.C 8.C 9.C 10.A 7.B二、填空题116.15. 14.9 13. 40?x2y?2三、解答题)分17. (12d. ,由题意得的公差为)设解:(1153a?3?d?}{a1n d=2. 由得7?a?1. 的通项公式为所以9?2?an}a{nn. 2()由()得12216Sn(4)???8n??n n n16. =4所以当取得最小值,时,最小值为?S n)18.(12分年的环境基础设施投资额的预测)利用模型①1解:(该地区,2018 值为(亿元). ?y?19?226.1??30.4?13.5利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元). ?y?256.517.5?99??9(2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数t13.5?y?30.4?据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010可以较好地描述2010年至2016年的数据建立的线性模型?y?99?17.5t年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)分19.(12.l的方程为. 1)由题意得,解:(0)??1)(ky?kF(1,0)(x设,)x,y,y),B(A(x2211y?k(x?1),?得由.. ,故2?xx?016???16k?212k2?44k所以.22220k??4)kxx??(2k?2x4y??2?42k??1)1)?(x?||BF|?(x?|AB|?|AF212k2?k44由题设知,解得(舍去),.11k??k?8?2k l的方程为因此.1x?y?ABAB的垂直平分线方程的中点坐标为1)得,所以(2)由(2)(3,为,即. 5???(x?3)xyy?2??设所求圆的圆心坐标为,则)x,y(00y??x?5,?x?3,x?11,00???解得或00??2?(y?x?1)y?2y??6.200(x?1)?16.????000?2因此所求圆的方程为或. 2222144?6)?11)???3)2)?(y?(?16y(xx(20.(12分)为的中点,解:(1)因为,所以,且.ACOPAP?CP?OACAC?4?32?OP2,所以为等腰直角三角形,因为连结.ABCOB△AC?BC?AB21.且,ACOB?2?AC?OB2由知.222OB?POPB?OB?OP..平面由知ABCPO?AC,OP?OP?OB ruuu轴正方向,建立空间直的方向为2)如图,以为坐标原点,(x O OB.角坐标系xyzO?ruuu取平面知得由已),3?0,(0,22,32)((2,0,A0),?(0,C2,0),P0,2,0),,(AP0,O(0,0),0,Bruuu.的法向量PAC(2,0,0)OB?ruuu.设,则,0)?a?AM(a,42)?a?,0)(0?aM(a,2.设平面的法向量为PAM)zy(x,,n?ruuuuruu?0?23z?2y?得,,可取由0?n?AP?n?0,AM)n?(3(a?4),3a,?a?0??a)yax?(4??ruuuruuu4)3(a?23. 所以由已知得.?cosOB,n?|cosOB|,n2222aa??4)?323(a4|?|233a4所以.,.解得(舍去)4?a??a=32222a?34)23(a?a?ruuu ruuu334834,所以又所以. .3)2?PC(0,2,??n,?,,)cosPC??n(43333. 与平面所以所成角的正弦值为PC PAM4分)12(.21.【解析】(1)当时,等价于.x?21f(x)?1a?0?(x??1)e1设函数,则.x2?x2?x?2e(??x)??(x??2x(gx)?(x??1)e1)e1)?1xg'(当时,,所以在单调递减.)(0,0??g(x)g'(x)?1x?而,故当时,,即.1x)?f(0?g(xg(0)?0)0x?(2)设函数.x2?e)ax?1?h(x在只有一个零点当且仅当在只有一个零点.)(0,h(xf(x))(0,??)??(i)当时,,没有零点;)(?0xhh(x)0a?(ii)当时,.x?0?a2)eax(x?h'(x)?当时,;当时,.0?h'(xx?(2,??))x?(0,2)?h'(x)0所以在单调递减,在单调递增.)2)??h(x)(2,(0,4a在的最小值.故是)[0,??h(x)??1h(2)2e2e①若,即,在没有零点;)(0,h(x)??h(2)?0?a42e,在,即只有一个零点;②若)(0,(x)0h(2)???h?a42e,由于,所以,即在③若有一个零点,2)0?(x)h(0)?1(0,hh(2)?a433311616a16aa.由(1)知,当时,,所以0??1?1??1???1?ah(4)0x?2x x?e故在有一个零点,因此在有两个零4a2a24aae))(e(2点.)(0,h(x)??(hx)(2,4a)2e在只有一个零点时,综上,.)??xf()(0,?a4分)10(]:坐标系与参数方程4-4选修[.22.【解析】(1)曲线的直角坐标方程为.C1??164??,的22yx直角坐标方程为当时,tan??x?2y?tan?0cos?l当时,的直角坐标方程为.?1?0xcos?l(2)将的参数方程代入的直角坐标方程,整理得关于的方程t Cl.①22???0?)tt?4(2cos??sin(1?3cos8)因为曲线截直线所得线段的中点在内,所以①有两个解,设2)(1,CCl为,,则.0?t?ttt2121??)4(2cossin?,故又由①得,于是直线的斜率????t?t0sin2cos??l212?3cos1?.?2??ktan?23.[选修4-5:不等式选讲](10分)2x?4,x??1,??f(x)?2,?1?x?2,时,(【解析】1)当1?a???2x?6,x?2.?可得的解集为.}3?x0?{x|?2xf()?(2)等价于.4|??||x??f(x)12|x?a而,且当时等号成立.故等价于.4|?1|a?2)a2?x|?a||x?|?|?2|f(x?2?x a的取值范围是.由,所以或可得)6]???(4|?|a2?,??[2,2?a??6a。
高三数学-2018年重庆市渝东片区高三第二次诊断性考试
2018年重庆市渝东片区高三第二次诊断性考试理科数学试题卷数学试题(理科)分选择题和非选择题两部分。
满分150分,考试时间为120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须准确填写所选番号,并填写在答题卡的相应位置。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卷上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+如果事件A B 、相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-第一部分(选择题 共50分)一、选择题(本题共10个小题,每小题5分,共50分)在每小题给出的四个备选项中,只有一项是符合题目要求的。
请将正确答案前的番号填在答题卡相应位置上。
1、若()2,1P -为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程为 A .230x y +-= B .30x y --= C .10x y +-= D .250x y --=2、设复数z 1z等于A 12i -B 12i +C .12D .12 3、在ABC ∆中,lgsin ,lgsin ,lgsin A B C 成等差数列,是三边,,a b c 成等比数列的 A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分又不必要条件 4、已知()f x 是定义在R 的奇函数,当0x <时,()12xf x ⎛⎫= ⎪⎝⎭,那么()()1108f f --+-的值为A .2B .3C .3-D .2-5、设i j , 是平面直角坐标系(坐标原点为O )内分别与x 轴、y 轴方向相同的两个单位向量,且42,34OA i j OB i j =+=+ ,则OAB ∆的面积等于A .15B .10C .7.5D .56、在直二面角l αβ--中,直线a α⊂,直线,,b a b β⊂与l 斜交,则A .a 不能和b 垂直,a 也不能和b 平行B .a 可能和b 垂直,也可能a ∥bC .a 不能和b 垂直,但可能a ∥bD .a 不能和b 平行,但可能a b ⊥7、若抛物线的顶点坐标是()1,0M ,准线l 的方程是220x y --=,则抛物线的焦点坐标为A .62,55⎛⎫- ⎪⎝⎭B .62,55⎛⎫- ⎪⎝⎭C .42,55⎛⎫ ⎪⎝⎭D .42,55⎛⎫- ⎪⎝⎭8、某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的总利润分别为P 和Q (万元),且它们与投入资金x (万元)的关系是:),04xP Q a=>;若不管资金如何投放,经销这两种商品或其中之一种所获得的利润总不小于5万元,则a的最小值应为A.BC.5 D.9、如果消息A发生的概率为()P A,那么消息A所含的信息量为()()21logI AP A=。
【数学】重庆市(非市直属校)2018届高三第二次质量调研抽测数学理试题 含答案(1)
高2018届高三学生学业调研抽测(第二次)文科数学试题卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}0,1,2,3,320A B x x==->,则下列正确的是()A.{}0,1A B⋂= B.A B⋂=∅ C.32 A B x x⎧⎫⋃=<<⎨⎬⎩⎭D.32 A B x x⎧⎫⋃=<⎨⎬⎩⎭2.设复数21izi+=+(i为虚数单位),则z的虚部是()A.12B.12- C.12i- D.12i3.已知等差数列{}n a的前n项和为n S,若24642a a a++=,则7S=()A.98 B.49 C.14 D.1474.设向量()(),2,1,1a x b==-,且()a b b+⊥,则x的值为()A.2 B.1 C.1- D.05.如图程序框图的算法思路源于我国宋元时期数学名著《算数启蒙》中关于“松竹并生”的问题(注“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等).若输入的,a b分别为8,4,则输出的n=()A.2 B.3 C.4 D.56. 已知双曲线()222104x y m m-=>) A..3 D7.设实数,x y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则2z x y =+的最大值为( )A .2B .3C .72D .6 8.已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .1B .12C .13D .16 9.函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>><)的图象如图所示,为了得到2sin 2y x=的图象,只需将()f x 的图象( )A.向左平移12π个单位长度 B.向右平移12π个单位长度 C.向右平移6π个单位长度 D.向左平移6π个单位长度 10.为培养学生分组合作能力,现将某班分成,,A B C 三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在B 组中的那位的成绩与甲不一样,在A 组中的那位的成绩比丙低,在B 组中的那位的成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是( )A.甲、丙、乙B.乙、甲、丙C.乙、丙、甲D.丙、乙、甲11. 在ABC ∆中,角,,A B C 所对应的边分别是,,a b c ,若()sin sin sin cos 0C A B B +-=,2,a c ==B =( )A .12πB .6π C.4π D .3π 12.已知抛物线2:4C y x =的焦点为F ,点()1,2M -,过点F 且斜率为k 的直线与抛物线C 交于,A B 两点,若90AMB ∠=︒,则k =( )A .2BC .1D 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若直线0x y +=与圆()222x m y -+=相切,则正数m = .14.曲线()2ln f x x x =+在点()()1,1f 处的切线方程为 . 15.已知0,,tan 324ππαα⎛⎫⎛⎫∈+=- ⎪ ⎪⎝⎭⎝⎭,则cos 4πα⎛⎫-= ⎪⎝⎭ . 16. 已知函数()21ln 2f x a x x =+,在其定义域内任取两个不等实数12,x x ,不等式()()12123f x a f x a x x +-+≥-恒成立,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设各项均为正数的等比数列{}n a 的前n 项和为n S ,已知131,7a S ==.(1)求{}n a 的通项公式;(2)若数列{}n b }满足n n b na =,求数列{}n b 的前n 项和n T .18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点.(1)求证://PB 平面AEC ;(2)若2,3AP AB ==,四棱锥P ABCD -的体积V =A 到平面PCD 的距离.19.随着国家“二孩”政策的开放,许多人想生育“二孩”.现从70个年龄在3050岁已生育“一孩”的妇女中展开调查:3040岁的妇女中有25人不愿意生育“二孩”,有15人愿意生育“二孩”,而4050岁的妇女中有25人不愿意生育“二孩”,有5人愿意生育“二孩”.(1)从70人中按照生育“二孩”的意愿进行分层抽样,抽取7人进行原因调查. ①求抽取的7人中愿意生育“二孩”的人数;②现从7人中抽2人,求抽到的2人不愿意生育“二孩”的概率;(2)根据以上数据,填写22⨯列联表,并判断是否有90%的把握认为生育“二孩”的意愿与年龄有关.参考数据:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.20. 已知椭圆()2222:10x y C a b a b +=>>,点⎭在C 上. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点,O 为坐标原点,且OP OQ ⊥,求OPQ ∆面积的最小值.21.已知函数()ln a x b f x x +=(其中2a ≤且0a ≠),且()f x 的一个极值点为1x e=. (1)求函数()f x 的单调区间;(2)若函数()f x 与函数()22g x a x x=+--的图象在(]0,2上有且只有一个交点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩ (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为24sin 3ρρθ-=.(1)求曲线1C 的极坐标方程和2C 的直角坐标方程;(2)直线3πθ=与曲线12,C C 分别交于第一象限内的,A B 两点,求AB .23.选修4-5:不等式选讲已知函数()()21f x tx tx t R =--+∈.(1)当1t =时,解不等式()1f x ≤;(2)设,,a b c 为正实数,且a b c m ++=,其中m 为函数()f x 的最大值,求证:3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
4月调研测试卷
理科数学
参考答案
一、选择题1~6BABBCA
7~12ADCCDB
第(12)题提示:由ln 1x a ax b +++≤得0a >,即ln 10ax x a b --++≥,令()ln 1h x ax x a b =--++,
1()h x a x '=-
,()h x 在1(0)a , 上递减,在1()a +∞, 上递增,min 1()(ln 20h x h a a b a ==-++≥,ln 2
1b a a a +-
≥,令ln 2()1x u x x +=-,2
ln 1()x u x x +'=,max 1
()(1u x u e e
==-,所以1b
e
a -≥二、填空题(13)64
(14)1
[)
3
-+∞, (15)36
(16)3
第(16)题提示:圆2
2
(3sin )(3cos )1x y αα+++=的圆心(3sin 3cos )αα--, 在圆2
2
9x y +=上,
当α改变时,该圆在绕着原点转动,
集合A 表示的区域是如右图所示的环形区域,直线34100x y ++=恰好与环形的小圆相切,所以A B 所表示的是直线34100x y ++=截圆2
2
16x y +=所得的弦长.
三、解答题
(17)(本小题满分12分)解:(Ⅰ)π31()cos(2)sin 2cos 2sin 2sin 2622f x x x x x x =-
-=+-2π
sin(2)3
x =+令π2π3π2π22π232k x k +++≤≤,解得π5π
ππ1212
k x k -+
≤≤,k Z ∈单调递减区间为π5π
[ππ]1212
k k -+, ,k Z
∈(Ⅱ)2π1sin()32C +=,2π5π36C +=
,π
6
C =,外接圆直径28sin AB
r C
==,4r =,外接圆面积16π
S =(18)(本小题满分12分)
解:(Ⅰ)由题可得如下用车花费与相应频率的数表
花费1416182022频率
0.2
0.36
0.24
0.16
0.04
估计小刘平均每天用车费用为140.2160.36180.24200.16220.0416.96
⨯+⨯+⨯+⨯+⨯=
(Ⅱ)ξ可能的取值为0,1,2
用时不超过45钟的概率为0.8,~(20.8)
B ξ, 0022(0)0.80.20.04P
C ξ==⋅=,1112(1)0.80.20.32P C ξ==⋅=2202(2)0.80.20.64
P C ξ==⋅=ξ
012
P 0.04
0.320.64
20.8 1.6
E ξ=⋅=(19)(本小题满分12分)
解:(Ⅰ)设8AB =,则13A M =,2AN =,16A N =,1
tan 2
AN NEA AE ∠=
=,111
tan 2A M MNA AN ∠=
=,1NEA MNA ∠=∠,又π2NEA ENA ∠=-∠,所以1π
2MNA ENA ∠=-∠,MN EN
⊥BC AC =,CE AB ⊥,
111ABC A B C -为直三棱柱,∴CE ⊥平面11AA B B ,
∴MN CE ⊥,MN ⊥平面CEN ,平面CMN ⊥平面CEN .
(Ⅱ)由AC BC ⊥,以C 为原点1CB CA CC
, , 分别为x y z , ,
轴建立空间直角坐标系.
3252
(8)22
M , ,(0
2)N ,
设平面CMN 的法向量为1()n x y z =
, , ,
由11104)0
n CM n n CN ⎧⋅=⎪⇒=-⎨⋅=⎪⎩
平面1CNA 的法向量2(100)n =
, , 设所求二面角平面角为θ,1212310
cos 10||||
n n n n θ⋅==⋅
(20)(本小题满分12分)
解:(Ⅰ)设P 00()x y , ,由题222222
0000222
1x y a y x a a b b
+=⇒-=-222
00000034
43
y y x a y x a x a ⋅=-⇒-=--+结合1c =得,2
4a =,2
3
b =所求椭圆方程为22
143
x y +=(Ⅱ)设直线:(1)AB y k x =-,联立椭圆方程2
2
3412x y +=得
2222(43)84120
k x k x k +-+-=得222218424343M k k x k k =⋅=++,2
3(1)43M M k y k x k =-=-+∴222444433N k x k k ==++,2
213(13(1)4433N N k k y x k k k
⋅-=--=-=++
由题,若直线AB 关于x 轴对称后得到直线A B '',则得到的直线M N '
'与MN 关于x 轴对称,所以若直线MN 经过定点,该定点一定是直线M N ''与MN 的交点,该点必在x 轴上.
设该点为P (0)s , ,()M M MP s x y =-- , ,()M N M N NM x x y y =--
, 由//MP NM 得N M M N M N
x y x y s y y -=-,代入,M N 坐标化简得47s =
经过定点为4
(0)
7
, (21)(本小题满分12分)
解:(Ⅰ)2
()ln 23F x x x x =--,1(41)(1)
()43x x F x x x x
-+'=
--=-()F x 在1(04, 上单调递增,在1
()4
+∞, 上单调递减.(Ⅱ)20000000
121
()()(2)ax bx f x g x ax b x x --''-=-+=
22
212121212002()()1212()222
x x x x a x x b x x ax bx a b ++-+-+--=--=
2111ln ax bx x +=,2222ln ax bx x +=,11121212122122
1
()()()ln
()ln x x a x x x x b x x a x x b x x x x +-+-=⇒++=-1
212121
121211222
2
1
()()ln ln 1x x x x x x
a x x
b x x x x x x x x +++++==--不妨设12x x >,令1
()ln 1
x h x x x +=
-(1)x >,下证12(1)44
()ln 2ln 2ln 2
1111
x x h x x x x x x x x +-=>⇔>=-⇔+>-+++4
()ln 1u x x x =+
+,222
14(1)()(1)(1)x u x x x x x -'=-=++,所以()(1)2u x u >=∴21212()()2a x x b x x +++>,00()()
f x
g x ''<(22)(本小题满分10分)
解:(Ⅰ)由题21:4C y x =,2
2
sin 4cos ρθρθ=,即2
sin 4cos ρθθ
=2:C 225x y x
+=(Ⅱ)联立2
4y x =和2
2
5x y x +=得1A x =,2
A y =设2
()4
m B m ,由OA OB ⊥,218m m m =-⇒=-,(168)B -,
1||||20
2AOB S OA OB ∆=⋅==
(23)(本小题满分10分)
解:(Ⅰ)2
2
2
|2||||(2)()||2|x x a x x a a -+----=-≥,2x =时等号成立
∴()f x 的最小值为2|2|a -,2|2|a a -≤,22a a a --≤≤,[12]a ∈,
(Ⅱ)2a =时,21111
2(
)(2)()(1m n +=++≥
∴
113
2
m n +≥22m n =-=-,时等号成立.。