七年级数学三角形的高中线与角平分线练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1.2 三角形的高、中线与角平分线

7.1.3 三角形的稳定性

基础过关作业

1.以下说法错误的是()

A.三角形的三条高一定在三角形内部交于一点

B.三角形的三条中线一定在三角形内部交于一点

C.三角形的三条角平分线一定在三角形内部交于一点

D.三角形的三条高可能相交于外部一点

2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()

A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定

3.如图1,BD=1

2

BC,则BC边上的中线为______,△ABD的面积=_____的面积.

(1) (2) (3)

4.如图2,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.5.下列图形中具有稳定性的是()

A.梯形 B.菱形 C.三角形 D.正方形

6.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.

7.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?

综合创新作业

8.(综合题)如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.

9.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).

10.(创新题)如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .

11.(2004年,陕西)如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高,•且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( )

A .150°

B .130°

C .120°

D .100°

培优作业

12.(探究题)(1)如图7-1-2-9,AD 是△ABC 的角平分线,

DE ∥AB ,DF ∥AC ,EF 交AD 于点O .请问:DO 是△DEF 的角平分线吗?如果是,请给予证明;如果不是,请说明理由.

(2)若将结论与AD 是△ABC 的角平分线、DE ∥AB 、DF ∥AC 中的任一条件交换,•所得命题正确吗?

13.(开放题)要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n 边形木架呢?

14.(趣味题)《三国演义》中有关木牛流马的叙述:

“孔明即手书一纸,付众观看,众将环绕而视.造木牛之法云:‘方腹曲头,一脚四足;头入领中,舌着于腹.载多而行少,独行者数十里,群行者二十里.曲者为牛头,双者为牛脚,横者为牛领,转者为牛足,覆者为牛背,方者为牛腹,垂者为牛舌,曲者为牛肋,刻者为牛齿,立者为牛角,细者为牛鞅,摄者为牛轴.牛仰双辕,人行六尺,牛行四步.’每牛载十人所食一月之粮,人不大劳,牛不饮食.”

你知道木牛流马中运用了什么数学知识吗?

数学世界

探险家的“难极”

有一个探险家,挖空心思想出一个“难极”来.

什么是探险家的“难极”呢?

一般情况下,如果从某地出发,先往北走100公里,再往东走100公里,然后往南走100公里,这时,终止地总要在出发地正东100公里处.

而若从某地出发,先往北走100公里,再往东走100公里,然后往南走100•公里,能正好回到原来的出发地.这个出发地被探险家称其为“难极”.

你知道探险家的“难极”在哪里吗?

答案:

1.A 点拨:锐角三角形的三条高在三角形内部交于一点,•直角三角形的三条高交于直角顶点,钝角三角形的三条高在三角形外部交于一点. 2.B 3.AD ;△ACD 4.BD ,CE ,OF 5.C 6.解:∵AD 为△ABC 的中线, ∴BD=CD ,

∴△ABD 与△ACD 的周长之差为:

(AB+BD+AD )-(AC+CD+AD )=AB-AC=5-3=2(cm ).

7.解:∵∠BAD=∠CAD ,∴AD 是△ABC 的角平分线,DE 是△BEC 的角平分线. ∵AD ⊥BC ,垂足为点D ,∴AD 是△ABC 的高,DE 是△BEC 的高. ∵BD=CD ,∴AD 是△ABC 的中线,DE 是△BEC 的中线. 点拨:本题是考查三角形的角平分线、中线和高的概念. 8.解:设AB=AC=2x ,则AD=CD=x . (1)AB+AD=15,BC+CD=6时, 有2x+x=15,解得x=5. ∴2x=10,BC=6-5=1.

(2)当BC+CD=15,AB+AD=6时, 有2x+x=6,解得x=2. ∴2x=4,BC=15-2=13.

∵4+4>13,∴此时构不成三角形.

∴这个等腰三角形的腰长及底边长分别为10,1.

点拨:要注意检验结果是否满足三角形三边关系定理.

9.解:方案1:如答图1,在BC 上取D 、E 、F ,使BD=ED=EF=FC ,连接AE 、ED 、•AF .

(1) (2) (3)

方案2:如答图2,分别取AB 、BC 、CA 的中点D 、E 、F ,连接DE 、EF 、DF . 方案3:如答图3,分别取BC 的中点D ,CD 的中点E ,AB 的中点F ,连接AD 、AE 、DF .同学们,你还有别的方法吗?试试看. 点拨:三角形面积计算公式为

1

2

×底×高,因此解题的关键是找出底、高分别相等的四个三角形.

10.解:∵AD 是△ABC 的边BC 上的中线,

相关文档
最新文档