全等三角形知识点及应用题
全等三角形的实际应用
D . 角角边
( 1 ) 题 意分析 : 本题考查全等三角形的判定 。 ( 2 ) 解题思路 : 新 的数学课程标准加强 了数学知 识的实践与综合应用 ,从各 地的中考应用题可 以看 出, 它 已不再局 限于传统而古 老的列方程 ( 组) 解应 用题这类题 目,而是呈现了建模 方式 多元化 的新特 点, 几何应用题就是其 中之一 。 本 题利 用全 等三角形
1 . 翻 折
如 图( 1 ) , D B O C  ̄D E O D, D B O C 可 以看 成 是 由 D E O D 沿直线A0 翻折 1 8 0 。 得到 的;
A
例2 如 图 , A、 曰 两点分 别位于一 个池塘 的两侧 , 池 塘 西边有 一座假 山D, 在D B 的 中点C 处 有一 个雕 塑 , 张 倩 从 点A出 发 , 沿 直 线AG 一 直向前经过点C 走 到 点E, 并 使C E = C A, 然后 她测量点 到假 山D的距离 ,  ̄ , q D E 的 长度就是A、 B 两点之间的距离 。 ( 1 ) 你能说 明张倩 这样做 的根据 吗? ( 2 ) 如果张倩恰好未带测 量工具 , 但是知道点A 和假 山 、 雕 塑分别相距2 0 0 米、 1 2 0 米, 你 能帮助她 确 定A 日 的长度范 围吗? ‘ ( 3 ) 在第二 问的启 发下 , 你能“ 已知 三角形 的一
思路分析 :
C
E
பைடு நூலகம்
B
F
( 3 )
( 1 ) 题意分析 : 本题考三角形全等三角形的应用 。 ( 2 ) 解题思路 : 欲求AB 的距离 , 但 不宜测 量 , 实 际生活中这种情况 较多 ,我们可 以用学过 的知识来
如图 ( 3 ) , D D E F  ̄D A C B, D D E F  ̄ 以看 成是 由 D A C B 沿C B 方 向平 行 移 动 而 得 到 的 。 ( 作者单位 : 江 西省 新 余 市渝 水 区姚 圩 中学 )
七年级下册全等三角形习题
全等三角形的运用Ⅰ判断全等的条件直接现成的情况。
例1. 如图,在△ABC 和△EFG 中,已知AB=GE,AC=GF ,∠A=∠G,可以判断△ABC 和△GEF 能全等吗?为什么 ? 解:(1(2)理由:在△ABC 和△GEF 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已知)已知)GFAC G A GE AB ()(SAS GEFABC ∆≅∆∴例2. 如图,已知,AB=AC,AD=AE,问∠B=∠C解:(1)∠B (2)理由:在△ABD 和△ACE 中()()()()()()⎪⎩⎪⎨⎧===)(ACAB)(ACEABD ∆≅∆∴∴∠B=∠C( ) 例3 如图,∠∠B=∠C,问AD 为什么 ? 解:(1)AD ⊥BC 。
(2)理由:在△ABD 和△ACD 中∵ ∠BAD=∠CAD ( ) ____=______ ( ) ____=______ ( ) ∴△ABD ≌△ACD ( )∴∠ADB=∠ADC ( ) ∵∠ADB+∠ADC=180°( ) ∴∠ADB=∠ADC=90°∴AD ⊥BC ( ) Ⅱ判断全等的条件不够,需要转化条件的情况。
例4,已知,如图,A B ∥ DE,AC ∥DF,BE=CF 问△ABC 和△DEF 能全等吗? ∠A=∠D 吧?为什么 ? 解:(1)△ABC 和△DEF 能全等 并且∠A=∠D(2)理由:∵A B ∥ DE ( )∴∠B=∠1 ( ) ∵A C ∥ DF ( )∴∠2= ( )∵BE=CF ( )∴BE+EC=CF+EC ( ) 即 = 在△ABC 和△DEF 中∵ ∠B= ( )____=______ ( ) ____=______ ( )∴△ABC ≌△DEF ( )∴∠A=∠D ( ) 例 5 ,已知,如图 AB=AD,AC=AE,∠BAE=∠DAC , 可以 判断△ABC 和△ADE 能全等吗?为什么 ? 解:(1)△ABC 和△ADE 能全等。
12.1全等三角形全等三角形的性质(教案)
本节课旨在让学生在掌握全等三角形知识的基础上,全面提升学科核心素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
(1)全等三角形的定义:理解全等三角形的含义,掌握全等三角形的判定条件。
-举例:强调全等三角形是大小和形状完全相同的三角形,要求学生对SSS、SAS、ASA、AAS、HL五种判定方法熟练掌握。
2.教学难点
(1)全等三角形的判定方法的区分与应用:学生容易混淆SSS、SAS、ASA、AAS、HL五种判定方法,不知道在具体情况下如何选择。
-举例:通过典型例题和练习,帮助学生区分各种判定方法,并指导他们在实际问题中灵活运用。
(2)全等三角形性质的应用:学生在解决问题时,往往不知道如何运用全等三角形的性质。
-举例:针对这一问题,设计不同类型的题目,指导学生运用全等三角形的观察和想象全等三角形的过程中,可能存在一定的困难。
-举例:利用几何画板、实物模型等教具,帮助学生培养空间想象能力。
(4)团队合作能力的培养:学生在小组讨论和合作探究过程中,可能存在沟通不畅、分工不明确等问题。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定方法和在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对全等三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节课后,我进行了深入的思考。首先,我发现学生们对全等三角形的定义和性质的理解程度参差不齐。在讲授过程中,我尽量用简单明了的语言解释全等三角形的判定方法,并通过实例让学生们更好地理解。但我也意识到,对于一些学生来说,这些概念仍然难以消化。在今后的教学中,我需要更加关注这部分学生,采用更为直观和生动的方式,帮助他们真正掌握全等三角形的判定方法和性质。
八年级数学上册期末复习资料
初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF=。
知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
人教版初中数学八年级上册第12章全等三角形综合应用题解析
原创百度文库VIP 专属文档,侵权必究!GEAC FB A BD C 全等三角形综合应用经典题解析1、已知:如图,四边形ABCD 中,AB=CD ,∠A=∠D ,求证:∠B=∠C.2、如图,AP 平分∠EAF ,PC ⊥AE 于点C ,PB ⊥AF 于点B ,AP 交BC 于点H . 求证:AP·BC=2AB·PB.3、已知:如图,DC ∥AB ,且DC=AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC . (2)除△EBC 外,请再写出两个与△AED 的面积相等的三角形.4、如图,在△ABC 中,BG=CG ,∠ACG=∠ABG ,求证:AG ⊥BC .5、如图,已知AB =DC ,AC =DB ,BP =CP ,求证:AP =DP.6、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF.7、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB. 求证:(1)AM=AN ;(2)AM ⊥AN.8、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.9、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠BAF=∠EAF.10、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C.AB CD AEC O B P C AD FA NEM BA BCPE H CF DABE ABC G原创百度文库VIP 专属文档,侵权必究!CA EB D F11、已知:AD 平分∠BAC ,CD=DE ,EF//AB ,求证:EF=AC.12、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE.13、如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上,求证:BC=AB+DC.14、已知△ABC 中,AB=AC ,∠A=100°,∠B 的平分线交AC 于D ,求证:AD+BD=BC.15、如图所示,AB ∥CD ,在AB 、CD 、BC 上各有一点E 、F 、P ,且BE =CF ,P 是BC的中点,试说明三点E 、F 、P 恰好在一条直线上.16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC -AB=2BE.18、如图,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .19、已知:如图,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF.20、如图,在四边形ABCD 中,∠A=60º,AD+BC=AB=CD=2,求该四边形的面积.C AB D E B DC C B A DE DABCA FB E D C1 2 AB EC C F DP•A EB ••C原创百度文库VIP 专属文档,侵权必究!P DA CB21、如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=75°,∠BDC=30°,求∠DBC的度数.22、P 是∠BAC 平分线AD 上一点,AC >AB ,求证:PC -PB <AC -AB.23、如图,P 是∠MAN 平分线上一点,PB ⊥AM 于点B ,点C 、D 分别在AM 、AN 上,∠ACP+∠ADP=180°,若AB=3cm ,求AC+AD 的长.24、如图在正方形ABCD 中,M 是AB 的中点,MN ⊥MD ,BN 平分∠CBE ,求证:MD=MN.25、如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F. 求证:(1)AE=BD ;(2)GF ∥BE.26、如图,△ABC 中,AB=AC ,点E 在AB 上,点F 在AC 延长线上,BE=CF ,连接EF ,交BC 于点D ,求证:DE=DF.27、如图,∠AOB=30°,OA=1,OB=3,点M 、N 分别为∠AOB 两边上的动点,求AN+NM+MB 的最小值.28、已知等边△ABC 内一点M ,AM=1,BM=3,CM=2,求∠AMC.29、如图,四边形ABCD 中AB ∥CD ,AB≠CD ,BD=AC ,求证:AD=BC.30、如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证:(1)△AEF ≌△CEB ;(2)AF =2CD .A B D C AD ACMB AD BCEA M EAFA D EB CN A C MP B原创百度文库VIP 专属文档,侵权必究!M DC ENE A BM D CN31、在△ABC 中,∠ACB=90°,BC=AC,直线MN 经过点C,且AD ⊥MN 于D,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD+BE. (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请证明; 若不成立,说明理由.32、求证:等腰三角形底边上任意一点到两腰的距离之和等于腰上的高.33、如图,在△ABC 中,CA=CB ,∠ACB=90°,E 、F 分别是CA 、CB 边上的点且AE=2CE ,将BF=2CF ,△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN ,连接AM ,BN .(1)求证:AM=BN ;(2)当MA ∥CN 时,若AC=3,求AM 的长.34、如图,在长方形ABCD 中,AB=5,BC=7,点E 是AD 上一个动点,把△BAE 沿BE 向长方内部折叠,当点A 的对应点A1恰落在∠BCD 的平分线上时,求CA1的长.【提示:若a·b =0,则a =0或b =0】35、如图,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点 E ,与CD 相交于点F ,点H 是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF=AC ; (2)求证:CE=0.5BF ;(3)CE 与BG 存在怎样的数量关系?试证明你的结论.36、如右图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C′的位置上,(1)若AB=4,BC=8, 求重合部分△EBD 的面积;(2)若CD=2,∠ADB=30°,求DE 的长.37、正方形ABCD 和正方形AEFG 有公共顶点A ,将正方形AEFG 绕点A 按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF ,BF ,如图。
七年级数学下册第四章三角形5利用全等三角形测距离同步
解析 理由(lǐyóu)如下:在△ABC和△EDC中, ∵∠ABC=∠EDC,BC=CD,∠ACB=∠ECD, ∴△ABC≌△EDC,∴DE=AB.即DE的长就是AB的长.
知识点 利用三角形全等测距离
测量距离
例 小强为了(wèi le)测量一幢高楼的高度AB,在旗杆CD与楼之间选定一点P. 测得在P点观察旗杆顶C的视线PC与地面的夹角∠DPC=36°,测得在P 点观察楼顶A的视线PA与地面的夹角∠APB=54°,量得P到楼底的距离 PB与旗杆的高度相等,均为10米,量得旗杆与楼之间的距离为DB=36米, 如图4-5-1,小强计算出了楼高,楼高AB是多少米?
∴按BO的距离(jùlí)炮轰德军兵营时,炮弹恰好落入德军兵营Q处,这样法军
能命中目标.
2021/12/12
第二十四页,共三十六页。
一、填空题
1.(2017山东青岛胶州期末,17,★☆☆)如图4-5-5,
小明要测量水池的宽AB,但没有足够长的绳子,
聪明的他想了如下办法:先在地上取一个可以
直接到达A点和B点的点C,连接AC并延长(yáncháng)到D,
述、分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索
解决问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形
成论证思路、进行数学推理、构建抽象结构的思维基础.
直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助
几何直观理解问题,运用空间想象认识事物.
2021/12/12
2021/12/12
第二十页,共三十六页。
2.如图4-5-4,七年级数学兴趣小组要测量河中 浅滩B(可看成一点)与对岸A之间的距离.先在 另一岸边确定点C,使C,A,B三点在同一条直线上, 再在AC的垂直方向上作线段CD,取CD的中点O, 然后过点D作DF⊥CD,使F,O,A三点在同一条直 线上,在DF上取一点E,使E,O,B三点也在同一条 直线上.那么EF的长就是浅滩B与对岸A之间的 距离,你能说出同学们这样做的根据吗?
全等三角形及其性质
【要点分析】一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若A C AB ''⊥,则BAC ∠的度数是____________.5、如图,已知△ABE ≌△ACD,AB=AC ,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC=( )A 120°B 60°C 50°D 70°6、 △''OA B 是由△OAB 绕点O 逆时针旋转60°得到的,那么△''OA B 与△OAB 是什么关系?若∠AOB=40°,∠B=30°,则∠'A 与'AOB 是多少度?【巩固提升】1.如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.EDCBA A 'B 'BAO2.如图:△ABF≌△DCE,写出相等的线段.3.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.4.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长5.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC= .6.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.7.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.8.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC 于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.9.如图,已知△ABC≌△EFC,且CF=5,AC=12,∠EFC=50°,求∠E的度数和AB的长9.10.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?11.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.12.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,则∠P= 度,DE= cm.13.如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)14.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.15.如图△ABC≌△DBC,∠A=110°,则∠D= .16..如图,△AOC≌△BOD,试证明AC∥BD.17.如图,已知△ABD≌△ACE.求证:BE=CD.18.如图,Rt△ABC≌Rt△FDE,AB=8cm,BC=6cm,将△ABC沿射线DE的方向以2cm/秒的速度平移,在平移过程中,是否存在某个时刻t,使△AEF成为等腰三角形,若存在,请求出t值;若不存在,请说明理由.一、选择题1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上C——都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7. 如图,在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,______<______<_______(填边).FE DCBA8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14.已知:如图,△ABC ≌△DEF ,且B ,E ,C ,F 四点在一条直线上,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.() (2分钟)一. 选择题1. 下列说法正确的是( )A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等T ——回顾小结D. 所有的等边三角形都全等2. 如图所示,若△ABC ≌△DEF ,则∠E 等于( )AB C D EF30°50°第2题A. 30°B. 50°C. 60°D. 100°3. (2006年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°4. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 85. 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( )12ABCD第5题A. ∠1=∠2B. AC =CAC. ∠B =∠DD. AC =BC6. 如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( )ABCD C'第6题A. △ADCB. △BDC ´C. △ADC ´D. 不存在7. 下图中,全等的图形有( )第7题A BCD E 第3题A. 2组B. 3组C. 4组D. 5组 8. △ABC 与△DFE 是全等三角形,A 与D 对应,B 与F 对应,则按标有字母的线段计算,图中相等的线段有( )第8题A BCDE FA. 1组B. 2组C. 3组D. 4组二. 填空题9. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.10. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.A BCD第10题 11. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.ABC DE 第11题 12. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D的对应角是__________,图中相等的线段有__________.AB CDO第12题13. 如图所示,△APB 与△CPD 全等.A B C D P 第13题(1)相等的边是:AB =CD ,__________,__________; (2)相等的角是:∠A =∠C ,__________,__________; (3)△APB 如何变换得到△CPD ?________________________________________. 14. 下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.A BCD EF三. 解答题15. 如图所示,已知△ABD ≌△ACE ,∠B =∠C ,试指出这两个三角形的对应边和对应角.ABCDEO16. 如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?AB CD EF17. 如图所示,△ABC ≌△AEC ,B 和E 是对应顶点,∠B =30°,∠ACB =85°,求△AEC 各内角的度数.ABCE18. (实际应用题)如图所示,用同样粗细,同种材料的金属构制两个全等三角形,△ABC和△DEF,已知∠B=∠E,∠C=∠F,AC的质量为25克,EF的质量为30克,求金属丝AB的质量的取值范围.AB CDE F19. (探究题)如图所示,△ABC绕顶点A顺时针旋转,若∠B=40°,∠C=30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A在同一直线上?(原△ABC是指开始位置)(2)再继续旋转多少度时,点C、A、C'在同一直线上?A BC B'C'20. (阅读与探究)如图(1)所示,把△ABC沿直线BC移动线段BC那样长的距离可以变到△ECD的位置;如图(2)所示,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图(3)所示,以点A为中心,把△ABC旋转180°,可以变到△AED的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换.问题:如图(4),△ABC≌△DEF,B和E、C和F是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)AB CD(2)AB CD E(3)AB C(4)DE F。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
初二数学知识点归纳总结
初二数学知识点归纳总结第十一章全等三角形一、知识框架二、知识概念1。
全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2。
全等三角形的性质:全等三角形的对应角相等、对应边相等。
3。
三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4。
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)。
②、回顾三角形判定,搞清我们还需要什么。
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一、知识框架二、知识概念1。
对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2。
性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3。
等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4。
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
三角形全等的条件 要点全析
三角形全等的条件·要点全析1.探索三角形全等的条件三角形有三条边,三个内角共六个基本元素,全等三角形的六个元素都分别对应相等.反过来,如果两个三角形的三组边对应相等并且三组角也对应相等.那么它们必定可以重合,根据定义,它们一定全等.但是,判定两个三角形全等真的需要六个条件吗?探索发现:两个三角形满足一个条件(一条边或一个内角相等)或两个条件都不能确定它们是否全等,而满足三个适当的条件就可以判定两三角形全等.2.三角形全等的条件一:“SSS ”或“边边边”(1)SSS :三边对应相等的两个三角形全等,简写成“边边边”或“SSS ”.(2)书写格式:如图13-2-1.在△ABC 和△A ′B ′C ′中,①⎪⎩⎪⎨⎧'''''',=,=,=C B BC C A AC B A AB ② ∴ △ABC ≌△A ′B ′C ′(SSS ).③(3)书写格式的步骤分三步:第一步:指出在哪两个三角形中.如上边的①,在△ABC 和△A ′B ′C ′中. 第二步:按条件中的边角顺序列出三个条件.如上边的②. 第三步;写出结论,如上边的③,△ABC ≌△A ′B ′C ′(SSS ).【说明】①第一步中,两个三角形之间的“和”不能写成“≌”,也不能取消.②第二步中,大括号内的三个条件的书写是有顺序的,必须与判定条件一致,并且注意边、角字母的对应.一般前一个三角形的边、角写在等号的左边,另一个三角形的对应边、角写在右边.③写结论时,注意对应顶点写在对应位置上,并在后面的括号内注明判定条件的简写,如“SSS ”或“边边边”.例如:如图13-2-2.已知AB =AC ,D 为BC 中点.试说明∠B =∠C 是否成立,为什么?解:∠B =∠C 成立.∵ D 为BC 中点,∴ BD =CD .在△ABD 和△ACD 中,⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=AD AD CD BD AC AB∴ △ABD ≌△ACD (SSS ).∴ ∠B =∠C (全等三角形的对应角相等).【说明】①在本例中使用了证明的格式.②在本例中的最后两步中有两个“∴”符号,前一个“∴”,是由前面大括号内的三个条件得出的.后一个“∴”,是将前一个“∴”当成了“∵”,然后推出后一个“∴”,这里省略了一步:∵△ABD ≌△ACD .因此,今后在书写中要注意.3.三角形全等的条件二:“边角边”或“SAS ”(1)SAS :有两边和它们的夹角对应相等的两个三角形全等,简记为“SAS ”.(2)表达格式为在△ABC 和△DEF 中(图13-2-3)⎪⎩⎪⎨⎧∠∠,=,=,=EF BC DEF ABC DE AB∴ △ABC ≌△DEF (SAS ).例如:如图13-2-4中,AD 、BC 相交于点O .OA =OD ,OB =OC ,那么AB =DC 是否成立.解:∵ AD 、BC 相交于点O ,∴ ∠AOB =∠DOC (对顶角相等).在△AOB 和△DOC 中,⎪⎩⎪⎨⎧∠∠(已知)=(已证),=(已知),=OC OB DOC AOB OD OA∴ △AOB ≌△DOC (SAS ).∴ AB =DC【说明】本题中,书写三条件时,应该按边、角、边的顺序,将两边的夹角放在中间,用括号括起来;或者写成一行,也按边、角、边的顺序,将两边的夹角放在中间,再推出两个三角形全等.4.三角形全等的条件三:“角边角”或“ASA ”(1)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA ”.(2)表达格式:如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=DEF B DE AB D A ∴ △ABC ≌△DEF (AAS ).5.三角形全等的条件四:“角角边”或“AAS ”(1)有两角和一边对应相等的两个三角形全等,简写成“角角边”或“AAS ”.(2)表达格式,如图13-2-5,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=EF BC D A DEF B ∴ △ABC ≌△DEF (AAS ).例如:如图13-2-6中,AB ∥CD ,AE ∥DF ,AB =CD .求证:AE =DF .证明:∵ AB ∥CD ,∴ ∠ABC =∠DCB .∵ AE ∥DF ,∴ ∠AEB =∠DFC .在△ABE 和△DCF 中,⎪⎩⎪⎨⎧∠∠∠∠,=,=(已证),=DF AE DFC AEB DCF ABC∴ △ABE ≌△DCF (AAS ).∴ AE =DF .6.直角三角形全等的条件:“斜边、直角边”或“HL ”(1)HL :斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL ”.(2)表达格式:如图13-2-7,在△ABC 中,AD ⊥BC 于D ,AB =AC 在Rt △ABD 和Rt △ACD 中,⎩⎨⎧,=,=AD AD AC AB∴ Rt △ABD ≌Rt △ACD (HL )(3)直角三角形是三角形中的一种特殊情况,因此,它也可以用一般三角形全等的条件.如两条直角边对应相等,可用“SAS ”,一边一锐角对应相等可用“ASA ”或“AAS ”.它的特殊条件就是“斜边、直角边”.7.“角角角”与“边边角”在三角形全等的条件中,上面已说过的有:三边的SSS ,两边一角的SAS 和一边两角的ASA ,AAS ,那么“AAA ”和“SSA ”能否成为三角形全等的条件呢?(1)有三个角对应相等的两个三角形不一定全等,如图13-2-8,DE ∥BC ,则∠ADE =∠B ,∠AED =∠C ,∠A =∠A ,△ADE 与△ABC 有三角对应相等,但它们没有重合,所以不全等.(2)如图13-2-9,在△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等.也就是有两边和其中一边的对角对应相等的两个三角形不一定全等.8.证明的意义和步骤(1)证明的意义证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程,简单地说,证明就是推理过程.(2)证明的步骤证明一个命题为正确的时候,其步骤如下:①弄清命题的条件和结论,画出图形.②根据条件,结合图形,写出已知.③根据结论,结合图形、写出求证.④写出证明过程.证明一个命题不正确的时候,只需举出一个反例即可.例如:若a 2=b 2,则a =b .这是一个错误命题,证明如下.证明:∵ (-5)2=52=25,而-5≠5.∴ 若a 2=b 2,则a =b ,是一个错误命题.9.证明题目时常用的三种方法在探索三角形全等的过程中,经常要遇到条件不足或结论不易寻找等问题,如何分析条件与结论之间的关系,常用的分析方法有以下三种:(1)综合法就是从题目的已知条件入手,根据已学过的定义、定理、性质、公理等,逐步推出要判断的结论,有时也叫“由因导果法”.例如:如图13-2-10,在△ABC 中,D 是BC 的中点,DE ∥AB ,DF ∥AC ,分别交AC 、AB 于点E 、F .求证:BF =DE .分析:从已知条件到推出结论,其探索过程如下⇒⎪⎭⎪⎬⎫∠∠⇒⇒∠∠⇒C BDF AC DF CD BD BC D CDE B AB DE =∥=的中心是=∥△BFD ≌△DEC (ASA ) ⇒BF =DE (目标).以上这种由因导果的方法就是综合法.(2)分析法就是从要判断的结论出发,根据已学的定义、定理、公理、性质等,倒过来寻找能使结论成立的条件,这样一步步地递求,一直追溯到结论成立的条件与已知条件相吻合为止,有时也叫“执果索因法”.如上题,用分析法的探索过程如下:BF =DE ⇒△BFD ≌△DEC ⇒⎪⎩⎪⎨⎧⇒⇒∠∠⇒⇒⇒⇒∠∠已知∥=已知中点是=已知∥=AC DF C BDF BC D CD BD AB DE CDE B(3)分析—综合法在实际的思考过程中,往往需要使用这两种方法,先从结论出发,想一想需要什么条件,层层逆推,当思维遇到障碍时,再从条件出发,顺推几步,看可以得出什么结论,从而两边凑,直至沟通“已知”和“结论”的两个方面. 即:已知 中间条件 结论 综合法 分析法例如:如图13-2-11,在△ABC 中,AB =AC ,D 是BC 的中点,E 是AD 上任一点,连接EB 、EC ,求证:EB =EC .分析:本题比较复杂,可用上述的三个方法均可,现在以分析一综合法为例,说明分析过程.先用综合:由因导果.⇒⎪⎭⎪⎬⎫⇒CD BD D AD AD AC AB =为中心==△ABD ≌△ACD ⇒⎩⎨⎧∠∠∠∠.=,=CDA BDA CAD BAD再用分析:执果索因.EB =EC ⇒△ABE ≌△ACE ⇒⎪⎩⎪⎨⎧⇒∠∠⇒已知==已知=AE AE CAEBAE AC AB ⇒△ABD ≌△ACD . 证明:∵ D 是BC 的中心,∴ BD =CD . 在△ABD 和△ACD 中⎪⎩⎪⎨⎧(公共边),=(已证),=(已知),=AD AD CD BD AC AB∴ △ABD ≌△ACD (SSS ).∴ ∠BAD =∠CAD .在△ABE 和△ACE 中⎪⎩⎪⎨⎧∠∠(公共边)=(已证),=(已知),=AE AE CAE BAE AC AB∴ △ABE ≌△ACE (SAS ).∴ BE =CE (全等三角形的对应边相等).【说明】①本题证明过程中,后一次三角形全等,也可选△BDE ≌△CDE ,方法同上.②本题两次用到全等三角形,在分析中应找准三角形,理清思路.10.判定两个三角形全等方法的选择选择哪种方法判定两个三角形全等,要根据具体已知条件而定,见下表:已知条件寻找条件判定方法—边一角对应相等一边SAS一角SAS或AAS两角对应相等一边ASA或AAS两边对应相等一角SAS 一边SSS11.如何选择三角形判定全等在学过本节内容之后,经常会遇到判定两条线段相等,两个角相等的问题,而要判断它们相等,就要考虑选择三角形全等.如何选择三角形呢?可考虑以下四个方面:(1)可以从判断的结论(线段或角)出发,寻找这些结论在哪两个可能的全等三角形中,就试着判定两个三角形全等.(2)可以从题目的已知条件出发,看已知条件能确定哪两个三角形全等就判定它们全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后判定它们全等.(4)如果以上方法都行不通,可考虑添加辅助线的办法,构造三角形全等.例如:如图13-2-12,已知AB=AC,BD=CD,试判断∠B与∠C的关系,并说明理由.分析:要判断∠B与∠C的关系,先看∠B与∠C是否在两个全等三角形中,而此题没有两个全等三角形,只有一个四边形,目前由已知条件四边形ABDC,要创造三角形,可以连接AD或BC,那么连接谁更合适呢?若连接AD,则∠B、∠C分在左、右两个三角形中,若全等,则∠B=∠C,事实上,∠B=∠C,若连接BC,则∠B、∠C分在上、下两个三角形中,根据目前所学知识还不能确定∠B=∠C因此,连接AD较为合适.解:∠B=∠C连接AD,在△ABD和△ACD中,AB=AC,BD=CD,AD=AD(公共边),∴△ABD≌△ACD(SSS).∴∠B=∠C12.探索三角形全等时常作的辅助线在利用三角形全等进行解题时,有时题目所给条件不足或不明显,还需从题目本身或图形中挖掘它的隐含条件,还有的需加上一些辅助线,为解题铺路搭桥,起到很好的辅助作用,这些辅助线常见的有以下几种:(1)连接图形中的已知点,构造全等形.例如:如图13-2-13,已知AC 、BD 相交于O 点,且AB =CD ,AC =BD ,判断∠A 与∠D 的关系,并说明理由.解:∠A =∠D .连接BC ,在△ABC 与△DCB 中,AB =DC ,AC =DB ,BC =CB ,则△ABC ≌△DCB (SSS ).因此∠A =∠D .(2)取线段中点构造全等三角形.例如:如图13-2-14,已知在梯形ABCD 中,AB =DC ,∠A =∠D ,试判断∠ABC 与∠DCB 的关系,并说明理由.解:∠ABC =∠DCB .取AD 的中点N ,取月C 的中点M .连接MN 、BN 、CN ,则AN =DN ,BM =CM ,在△ABN 和△DCN 中,⇒⎪⎭⎪⎬⎫∠∠DC AB D A DN AN ===△ABN ≌△DCN ,则∠ABN =∠DCN ,NB =NC (全等三角形的对应角、对应边相等). 在△BMN 和△CMN 中,⇒⎪⎭⎪⎬⎫MN MN CM BM CN BN ===△BMN ≌△CMN , 则∠MBN =∠MCN (全等三角形的对应角相等).那么∠ABN +∠MBN =∠DCN +∠MCN .即∠ABC =∠DCB .【说明】在本题中,辅助线起到了很好的桥梁作用,为解题创造了条件.(3)有角平分线时,常在角两边截相等的线段,创造全等三角形.如图13-2-15,OC平分∠AOB,在OC上任取一点P,在OA、OB上截取OM=ON,连接PM、PN,那么,PM=PN.事实上,在△MOP和△NOP中,OM=ON,∠MOP=∠NOP,OP=OP,则△MOP≌△NOP(SSS).因此有PM=PN.(4)三角形中有中线时,常延长加倍中线,构造全等三角形.如图13-2-16,在△ABC中,AD为BC边上的中线,若延长AD至E,使AD=DE,连接B E,在△ACD和△EBD中,BD=CD,∠1=∠2,AD=ED,则△ACD≌△EBD,因此BE=AC13.利用全等三角形解决实际问题的步骤全等三角形在日常生活、科技生产中有很多的用途,在用它解决实际问题时可分以下几个步骤:(1)先明确实际问题与哪些知识有关,确定用哪些知识来解决.(2)根据实际问题画出图形.(3)结合图形写出已知和结论.(4)分析已知,找出解决问题的途径.(5)写出解决问题的过程(或探索过程).例如:如图13-2-17,要测河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D使CD=BC,再定出BF的垂线DE,使E、C、A三点在一条直线上,这时测得DE的长就是AB的长.你能用数学原理说明吗?分析:这是一个实际应用题,应先把其转化为数学问题,然后再解答.解:已知:AB⊥BF,DE⊥BF,A、C、E三点在一条直线上,BC=DC.判断AB与DE是否相等?在△ABC和△DEC中,由于AB⊥BF,DE⊥BF,则∠ABC=∠EDC=90°,又A、C、E三点在一条直线上,则∠ACB=∠ECD(对顶角).又BC=CD,则ABC≌△EDC(ASA),因此AB=DE.。
全等三角形经典例题与答案13道
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE ∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4 即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:CD=1/2AB延长CD与P,使D为CP中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点G CG∥EF,可得,∠EFD=∠CGD DE=DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB∴,∠EFD=∠1 ∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG 又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC∴∠EAD=∠CAD ∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。
全等三角形考试题及答案
全等三角形考试题及答案一、选择题1. 两个三角形全等的条件是:A. 两个角相等B. 三条边相等C. 两边夹一角相等D. 两角夹一边相等答案:D2. 已知△ABC≌△DEF,其中AB=DE,AC=DF,∠A=∠D,那么BC与EF 的关系是:A. BC=EFB. BC>EFC. BC<EFD. 不能确定答案:A二、填空题1. 如果两个三角形的对应边成比例,且对应角相等,则这两个三角形______。
答案:相似2. 在△ABC中,∠A=∠B=50°,则∠C=______。
答案:80°三、解答题1. 已知△ABC≌△DEF,且AB=5cm,BC=7cm,求DE的长度。
答案:DE=5cm2. 已知△ABC≌△DEF,且∠A=∠D=60°,∠B=∠E=50°,求∠C和∠F 的度数。
答案:∠C=∠F=70°四、证明题1. 已知△ABC≌△DEF,且∠A=∠D=90°,AB=DE,AC=DF,证明:BC=EF。
答案:根据直角三角形全等的判定定理HL,因为∠A=∠D,AB=DE,AC=DF,所以△ABC≌△DEF,因此BC=EF。
2. 已知△ABC≌△DEF,且∠A=∠D,∠B=∠E,证明:∠C=∠F。
答案:根据全等三角形对应角相等的性质,因为△ABC≌△DEF,所以∠C=∠F。
五、应用题1. 一块三角形的木板ABC需要与另一块三角形的木板DEF进行拼接,已知AB=DE,BC=EF,∠A=∠D,∠B=∠E,判断两块木板是否可以拼接。
答案:可以拼接,因为根据SAS判定定理,△ABC≌△DEF。
2. 已知一个等腰三角形ABC,其中AB=AC,∠A=50°,求∠B和∠C的度数。
答案:因为AB=AC,所以∠B=∠C,又因为三角形内角和为180°,所以∠B=∠C=(180°-50°)/2=65°。
全等三角形的性质与应用
1【知识要点】全等三角形的认识与性质 全等图形:能够完全重合的两个图形就是全等图形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.全等图形的对应边、对应角分别相等.这里符号“≌”表示全等,读作“全等于”. 全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.练一练已知两个三角形,按下面要求变换,并指出对应顶点,对应边,对应角, (1)把一个上面△DEF 沿着AB 边平移。
(2)把△DEF 沿AB 边的垂直平分线作轴反射; (3)把△DEF 绕点A 逆时针旋转30度; (4)把△DEF 绕点A 逆时针旋转180度 (5)把△DEF 绕AC 的中点旋转180度;寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).(D)(E)图1(E)(F)(F)2【典型例题】【例1】 如图所示,ABD CDB ∆∆≌,下面四个结论中,不正确的是( )A.ABD ∆和CDB ∆的面积相等B.ABD ∆和CDB ∆的周长相等C.A ABD C CBD ∠+∠=∠+∠D.AD BC ∥,且AD BC =DCBA【例2】 如图所示,AB AD =,BC DC =,E F 、在AC 上,AC 与BD 相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由.FAE P DCB【例3】 如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?AB CD EF【例4】如图所示,△ABC ≌△AEC ,B 和E 是对应顶点,∠B =30°,∠ACB =85°,求△AEC 各内角的度数.ABE【例5】△''OA B 是由△OAB 绕点O 逆时针旋转60°得到的,那么△''OA B 与△OAB 是什么关系?若∠AOB=40°,∠B=30°,则∠'A 与'AOB 是多少度?B 'BAO3【练习与拓展】全等三角形的性质练习1一. 选择题1. 下列说法正确的是( )A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等D. 所有的等边三角形都全等2. 如图所示,若△ABC ≌△DEF ,则∠E 等于( )AB C EF30°50°第2题A. 30°B. 50°C. 60°D. 100°3. (2006年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )ABCDE 第3题A. 15°B. 20°C. 25°D. 30°4. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 85. 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( )12ABCD第5题A. ∠1=∠2B. AC =CAC. ∠B =∠DD. AC =BC6. 如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( )AB CDC'第6题A. △ADCB. △BDC´C. △ADC´D. 不存在7. 下图中,全等的图形有()第7题A. 2组B. 3组C. 4组D. 5组8. △ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()第8题ABCDE FA. 1组B. 2组C. 3组D. 4组二. 填空题9. 已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.10. 如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.AB C第10题11. 如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.AB CD E第11题4512. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D 的对应角是__________,图中相等的线段有__________.AB CDO第12题13. 如图所示,△APB 与△CPD 全等.AB C D P 第13题(1)相等的边是:AB =CD ,__________,__________; (2)相等的角是:∠A =∠C ,__________,__________;(3)△APB 如何变换得到△CPD ?________________________________________.14. 下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.A BCD EF三. 解答题15. 如图所示,已知△ABD ≌△ACE ,∠B =∠C ,试指出这两个三角形的对应边和对应角.ABCDEO16. (实际应用题)如图所示,用同样粗细,同种材料的金属构制两个全等三角形,△ABC 和△DEF ,已知∠B =∠E ,∠C =∠F ,AC 的质量为25克,EF 的质量为30克,求金属丝AB 的质量的取值范围.AB C DE F。
19.2 三角形全等的条件(角边角)
如图:要测量河两岸相对的两点 的距离, 如图 要测量河两岸相对的两点A,B的距离 要测量河两岸相对的两点 的距离 可以在AB的垂线 上取两点C,D,使BC=CD, 的垂线BF上取两点 可以在 的垂线 上取两点 使 再定出BF的垂线 的垂线DE,使A,C,E在一条直线上 在一条直线上, 再定出 的垂线 使 在一条直线上 这时测得DE的长就是 的长,为什么 的长就是AB的长 为什么? 这时测得 的长就是 的长 为什么
变式练习
如图: ABC是等腰三角形, 如图:△ABC是等腰三角形, 是等腰三角形 AD、BE分别是 分别是∠ AD、BE分别是∠A、∠B的角平 分线, ABD和 BAE全等吗 全等吗? 分线,△ABD和△BAE全等吗? 试说明理由. 试说明理由.
若改为:AD、BE分别是两腰上 若改为:AD、BE分别是两腰上 的高, 的中线,ABD和△BAE全等吗? ABD和 BAE全等吗 全等吗? 全等吗? 的高,△ABD和 BAE全等吗 的中线,△ABD和△BAE全等吗? 试说明理由. 试说明理由.
分析:此题是实际应用题, 分析 此题是实际应用题, 此题是实际应用题 文字语言叙述的内容用符号 语言表示出来即是: 、 语言表示出来即是:AE、BD 相交于C点 相交于 点,且BC=CD, , AB⊥BD,ED⊥BD,垂足分 ⊥ , ⊥ , 别是B、 , 别是 、D,则AB=ED,由 , 分别是△ 于AB、ED分别是△ABC和 、 分别是 和 的边, △EDC的边,可考虑证 的边 △ABC≌△EDC ≌
图 19 。 2 。 7
把你们画的三角形与其他同学画的三角形进行比较, 所有的三角形都全等吗?
仔细观察
在△ABC 与△A'B'C'中,若 中若 AB=A‘B', ∠A=∠A', ∠B=∠B', ∠ ∠ 那么△ABC 与△A'B'C'全等吗 那么△ 全等吗? 全等吗
第十二章全等三角形章末复(教案)
-对全等三角形的知识点进行梳理
-引导学生探讨全等三角形在其他学科领域的应用
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的判定与性质的探讨,使学生能够运用逻辑思维进行推理,形成严谨的证明过程。
2.提升学生的空间想象力:通过全等三角形的作图与分析,培养学生的空间想象力,提高对几何图形的理解与识别能力。
2.全等三角形的性质
-对应角相等
-对应边相等
3.应用全等三角形解决实际问题的方法
-识别图形中的全等三角形
-利用全等三角形的性质进行计算
4.全等三角形的作图
-已知两边一角作全等三角形
-已知两角一边作全等三角形
5.综合习题
-设计具有代表性的习题,巩固全等三角形的判定与性质
-结合生活实际,设计应用题,培养学生的实际应用能力
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指在大小和形状上完全相同的两个三角形。它是解决几何问题的重要工具,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
-例:给出一个三角形ABC,其中AB=AC,点D是BC上的一个点,且BD=DC。要求证明三角形ABD全等于三角形ACD。
-突破方法:引导学生观察图形,识别出已知信息,然后选择合适的判定方法(SSS或SAS)进行证明。
-难点二:全等三角形的作图。学生在根据给定条件作全等三角形时,可能会对如何准确画出全等图形感到困难。
6.培养学生的几何审美观念:通过对全等三角形的学习,使学生感受几何图形的和谐美,提高对几何美的鉴赏能力。
全等三角形(分层作业)(解析版)docx
12.1全等三角形夯实基础篇一、单选题:1.观察下面的6组图形,其中是全等图形的有()A.3组B.4组C.5组D.6组【答案】B【解析】【分析】根据全等图形的定义进行判断即可.【详解】解:观察图①④⑤⑥四组图形经过平移、旋转、对折后能够完全重合,是全等图形,共4组,故选:B.【点睛】本题考查了全等图形的定义,能够完全重合的图形是全等形,难度不大.2.下列说法正确的是()A.全等三角形的周长和面积分别相等B.全等三角形是指形状相同的两个三角形C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【答案】A【解析】【分析】根据全等三角形的定义和性质依次分析各项即可判断.【详解】解:A ,全等三角形的周长和面积分别相等,说法正确,故此选项符合题意.B ,全等三角形是指形状相同的两个三角形,还有大小相等,故此选项不符合题意.C ,全等三角形是指面积相等的两个三角形,应大小相等形状相同,故此选项不符合题意.D ,所有的等边三角形都是全等三角形,大小不一定相等,故此选项不符合题意.故选:A .【点睛】本题主要考查了全等三角形的定义和性质,基础应用题,熟练掌握全等三角形的定义和性质是解此题的关键.3.在ABC 中,90C ,D E 、分别是BC ,AB 上的点,ΔΔΔADC ADE BDE ,则B Ð的度数()A .15B .20C .25D .30【答案】D【解析】【分析】根据ADE AD BDE C ,得CAD EAD B ,再利用直角三角形中两个锐角互余即可得出.【详解】解:∵ADE AD BDEC ∴CAD EAD B ,90C ∵,∴90CAD EAD B ,∴30B ,故选:D .【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.4.如图,ABC ADE △≌△,D 在BC 边上,35E ,30DAC ,则BDA 的度数为()A .35°B .40°C .50°D .65°【答案】D【解析】【分析】由ABC ADE △≌△可知35E C ,BDA 是△ADC 的一个外角,已知与它不相邻的两个内角,即可求出BDA 的度数.【详解】∵ABC ADE△≌△∴35E C∵在△AD C 中,30DAC ,35C∴BDA =30°+35°=65°故选:D【点睛】本题只要你考查了三角形的全等的性质,掌握全等三角形对应角相等以及三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.5.如图,ABE ACD ,下列等式不一定正确的是()A .AB ACB .BAD CAEC .BE CD D .AD DE【答案】D【解析】【分析】根据全等三角形的性质得出AB AC ,BE CD ,AD AE ,BAE CAD ,再逐个判断即可.【详解】解:ABE ACD ∵,AB AC ,BE CD ,AD AE ,BAE CAD ,BAE DAE CAD DAE ,BAD CAE ,即只有选项D 符合题意,选项A 、选项B 、选项C 都不符合题意;故选:D .【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.6.如图,若ABC ADE △△≌则下列结论中不成立...的是()A .BAD CAEB .BAD CDEC .DA 平分BDED .AC DE【答案】D【解析】根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.【详解】解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.二、填空题:7.一个三角形的三边为2、5、x+2y,另一个三角形的三边为2x+y、2、4,若这两个三角形全等,则x+y=_____.【答案】3【解析】【分析】根据全等三角形对应边相等相加即可得解.【详解】∵两个三角形全等,∴x+2y=4,2x+y=5,两式相加得:3x+3y=9,∴x+y=3.故答案为3.【点睛】本题考查了全等三角形的性质,比较简单,准确确定对应边是解题的关键.8.已知△ABC≌△DEF,∠A=40°,∠E=80°,则∠C=___.【答案】60°【解析】【分析】根据全等三角形的性质,得∠B=∠E=80°,再根据三角形内角和的性质计算,即可得到答案.【详解】∵△ABC≌△DEF,∴∠B=∠E=80°∵∠A=40°∴∠C=180°-∠A-∠B=60°故答案为:60°.【点睛】本题考查了全等三角形、三角形内角和的知识;解题的关键是熟练掌握全等三角形、三角形内角和的性质,从而完成求解.9.如图,已知△ABC与△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.【答案】72【解析】【分析】△AB C中,根据三角形内角和定理求得∠C=63°,那么∠C=∠E.根据相等的角是对应角,相等的边是对应边得出△ABC≌△DFE,然后根据全等三角形的对应角相等即可求得∠D.【详解】解:在△AB C中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC与△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案为72.【点睛】本题考查了全等三角形的性质;注意:题目条件中△ABC与△DEF全等,但是没有明确对应顶点.得出△ABC ≌△DFE 是解题的关键.10.如图,ACE BDF V V ≌.若AD =8,BC =3,则AB 的长是________.【答案】2.5【解析】【分析】根据全等三角形对应边相等可得AC BD ,再求出AB CD ,然后代入数据进行计算即可得解.【详解】解:ACE BDF ∵△≌△,AC BD ,AC BC BD BC ,即AB CD ,8AD ∵,3BC ,11()(83) 2.522AB CD AD BC .故答案为:2.5.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB CD 是解题的关键.11.如图,ABE ACD △≌△,50B ,60AEB ,则DAC ________.【答案】70°【解析】【分析】先根据三角形内角和定理求出∠BAE 的度数,然后根据全等三角形对应角相等解答即可.【详解】解:∵∠B =50°,∠AEB =60°,∴∠BAE =180°-∠B -∠AEB =180°-50°-60°=70°,∵△ABE ≌△ACD ,∴∠DAC =∠BAE =70°.故答案为:70°.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,准确找出对应角是解题的关键.12.如图,ABC ADE ,且120EAB ,30B ,10CAD ,CFD ____ .【答案】95【解析】【分析】由全等三角形的性质可得EAD CAB ,进而可求出55CAB ,然后利用三角形外交的性质求解即可.【详解】解:ABC ADE ∵ ,EAD CAB ,120EAB Q ,10CAD ,55EAD CAB ,10553095CFD FAB B ,故答案为:95.【点睛】本题考查了全等三角形的性质,三角形外角的性质,熟练掌握全等三角形的对应角相等是解答本题的关键.三、解答题:13.如图,△ABC ≌△ADE ,延长BC 交AD 、DE 于点F 和点G ,∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.【答案】90°,65°【解析】【分析】先根据全等三角形的性质得∠BAC =∠DAE ,由于∠DAE +∠CAD +∠BAC =120°,则可计算出∠CAB =55°,根据三角形外角性质可得∠DFB =∠BAF +∠B =90°,据此即可解答.【详解】解:∵△ABC ≌△ADE∴∠B =∠D =25°,∠EAD =∠CAB又∵∠EAB =120°∴∠CAB =(∠EAB -∠CAD )÷2=(120°-10°)÷2=55°,∵∠DFB =∠CAD +∠CAB +∠B∴∠DFB =10°+55°+25°=90°∴∠ACB =180°-∠B -∠CAB =180°-25°-55°=100°又∵∠DGB =∠DFB -∠D∴∠DGB =90°-25°=65°【点睛】本题考查了全等三角形的性质,三角形外角的性质,全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.14.如图,已知ADF CBE V V ,点B 、D 在线段EF 上.(1)线段AD 与BC 的数量关系是:_________,判断该关系的数学根据是:(用文字表达);(2)判断AD 与BC 之间的位置关系,并说明理由.【答案】(1)相等(或写AD BC ),全等三角形的对应边相等;(2)//AD BC ,见详解【解析】【分析】(1)根据全等三角形的性质即可解答(2)根据两个三角形全等得ADF CBE ,然后根据等角的补角相等,得出ADB CBD ,根据平行的判定条件:内错角相等,两直线平行即可证明【详解】(1)∵ADF CBEV V ∴AD =BC根据全等三角形的对应边相等故答案为:相等(或写AD BC )全等三角形的对应边相等(2)猜想://AD BC .理由:∵ADF CBE V V ,∴ADF CBE ,∵∠ADB =180°-∠ADF∠CBD =180°-∠CBE∴ADB CBD ,∴//AD BC故答案为//AD BC【点睛】本题考察全等三角形的性质:对应边相等,对应角相等,以及平行四边形的判定条件:内错角相等,两直线平行,熟练掌握性质和判定是解题的关键15.如图所示,D ,A ,E 在同一条直线上,BD ⊥DE 于D ,CE ⊥DE 于E ,且△ABD ≌△CAE ,AD =2cm ,BD =4cm ,求(1)DE 的长;(2)∠BAC 的度数.【答案】(1)6cm DE ;(2)90BAC【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)根据垂直的定义得到∠D =90°,求得∠DBA +∠BAD =90°,根据全等三角形的性质得到∠DBA =∠CAE 等量代换即可得到结论.(1)解:∵△ABD ≌△CAE ,AD =2cm ,BD =4cm ,∴AE =BD =4cm ,∴DE =AD +AE =6cm .(2)∵BD ⊥DE ,∴∠D =90°,∴∠DBA +∠BAD =90°,∵△ABD ≌△CAE ,∴∠DBA =∠CAE ∴∠BAD +∠CAE =90°,∴∠BAC =90°.【点睛】本题主要考查了全等三角形的性质,垂直的定义,熟练掌握全等三角形的性质是解题的关键.能力提升篇一、单选题:1.如图,已知ABC DEF ,CD 平分BCA ,若30A ,88CGF ,则E 的度数是()A .30B .50C .44D .34【答案】D【解析】【分析】根据角平分线的定义得到∠ACD =∠BCD =12∠BCA ,根据全等三角形的性质得到∠D =∠A =30°,根据三角形的外角性质、全等三角形的性质解答即可.【详解】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF-∠D=58°,∴∠BCA=116°,∴∠B=180°-30°-116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点睛】本题考查的是全等三角形的性质、三角形内角和定理,三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.∥,∠A=70°,AB=AC,2.如图,把△ABC沿线段DE折叠,使点B落在点F处;若AC DE则∠CEF的度数为()A.55°B.60°C.65°D.70°【答案】D【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出55B C ,利用平行线的性质可得出55DEB C ,则CEF 即可求.【详解】解:ABC ∵ 沿线段DE 折叠,使点B 落在点F 处,BDE FDE V V ,DEB DEF ,70A AB AC ,Q ,12180705)5(B C ,AC DE ∥∵,55DEB C DEF ,18070FEC DEB DEF ,故选:D .【点睛】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.3.如图,在正方形ABC D 中,AB =8cm ,延长BC 到点E ,使CE =2cm ,连接DE ,动点P 从点A 出发,以每秒2cm 的速度沿AB →BC →CD →DA 向终点A 运动.设点P 的运动时间为t 秒,当△PBC 和△DCE 全等时,t 的值为()A .3B .5C .9D .3或9【答案】D【解析】【分析】根据运动过程,根据点P 运动的位置和全等情况分类讨论,根据全等三角形的性质即可分别求解.【详解】解:如图甲所示,当1CBP DCE ≌时,12cm BP CE ,即822t ,解得3t ,如图甲所示,当2BCP DCE ≌时,22cmCP CE 即2282t ,解得9t ,故选:D .图甲图乙【点睛】本题考查了全等三角形的性质,根据全等三角形的对应情况分类讨论是解题关键.4.如图,将三角形ABC 沿AB 方向平移得到三角形DEF ,AD =CH =2,EF =4,下列结论:①BH ∥EF ;②AD =BE ;③∠A =∠EDF ;④∠C =∠BHD ;⑤阴影部分的面积为6.其中结论正确的序号是()A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤【答案】A【解析】【分析】根据平移的性质及全等三角形的性质判断即可.【详解】∵将△ABC沿AB方向平移得到△DEF,AD=CH=2,EF=4,∴BC∥EF,AB=DE,∴BH∥EF,①正确;∴AB﹣DB=DE﹣DB,∴AD=BE,②正确;③∵将三角形ABC沿AB方向平移得到三角形DEF,∴△ABC≌△DEF,∴∠A=∠EDF,③正确;∵BH∥EF,∴∠BHD=∠F,由平移性质可得:∠C=∠F,∴∠C=∠BHD,④正确;∵阴影部分的面积=△ABC的面积﹣△DBH的面积=6.⑤正确;故选:A.【点睛】本题考查了全等三角形的判定与性质,直角三角形的面积公式和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题:5.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.【答案】180°【解析】【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【详解】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:180°.【点睛】此题主要考查了全等三角形的性质以及三角形内角和定理,正确掌握全等三角形的性质是解题关键.6.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF 的位置AB =10,DO =4,平移距离为5,则阴影部分(即四边形DOCF )面积为__________.【答案】40【解析】【分析】根据全等三角形的性质得到S △ABC =S △DEF ,DE =AB =10,然后可以得出S 四边形DOCF =S 梯形ABEO ,根据梯形的面积公式计算,得到答案.【详解】解:∵△ABC ≌△DEF ,∴S △ABC =S △DEF ,DE =AB =10,∴S △ABC -S △OEC =S △DEF -S △OEC ,OE =DE -DO =6,∴S 四边形DOCF =S 梯形ABEO =12×(6+10)×5=40,故答案为:40.【点睛】本题考查的是平移的性质、全等三角形的性质和梯形的面积计算,熟练掌握是解题的关键.7.在平面直角坐标系中有两点 4,0A , 0,2B ,如果点C 在x 轴上方,由点B ,O ,C 组成的三角形与AOB 全等时,此时点C 的坐标为______.【答案】(4,2)或(-4,2)##(-4,2)或(4,2)【解析】【分析】根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.【详解】解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),∴OA=4,OB=2,∠AOB=90°∵△CBO≌△AOB∴CB=OA=4,OB=OB=2,∵点C在x轴上方∴当点C在第一象限时,C点坐标为(4,2)当点C在第二象限时,C点坐标为(-4,2)∴C的坐标可以为(4,2)或(-4,2).故填(4,2)或(-4,2).【点睛】本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.8.如图,已知 AB C中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.若当 BPD与 CQP全等时,则点Q运动速度可能为_____厘米/秒.【答案】1或1.6【解析】【分析】根据B C ,推出当 BPD 与 CQP 全等时,存在两种情况,①BPD CQP V V ≌②BPD CPQ △≌△,设运动时间为t 秒,点Q 的运动速度为v 厘米/秒,则BP t cm ,CQ vt cm , 10CP t cm ,再根据全等三角形对应边相等的性质解答即可.【详解】解:∵B C∴当 BPD 与 CQP 全等时,存在两种情况,①BPD CQP V V ≌②BPD CPQ △≌△设运动时间为t 秒,点Q 的运动速度为v 厘米/秒,则BP t cm ,CQ vt cm , 10CP t cm∵点D 是AB 中点,16AB cm∴8BD cm当BPD CQP V V ≌时,BP CQ∴t vt ,解得:1v 当BPD CPQ △≌△时,BP CP 、BD CQ∴108t t vt ,解得:51.6t v 综上所述:点Q 运动速度可能为1厘米/秒或1.6厘米/秒.故答案为:1或1.6.【点睛】本题考查了全等三角形对应边相等、对应角相等的性质,根据对应角相等分情况讨论是解答本题的关键.三、解答题:9.如图所示,ABC ADE ,AB AD ,AC AE ,BC 的延长线交DA 于点F ,交DE 于点G ,105AED ,15CAD ,30B ,求1 的度数.【答案】60°【解析】【分析】根据ABC ADE 推出105AED ACB ,30D B ,由此求出∠ACF 的度数,根据三角形的内角和定理得到1D CAD ACF ,代入数值求出答案.【详解】解:ABC ADE ∵,105AED ACB ,30D B ,180********ACF ACB ,由三角形的内角和定理得,1D CAD ACF ,1301575 ,解得160 .【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,邻补角的定义,三角形内角和定理,熟记三角形全等的性质是解题的关键.10.如图,,ABF CDE B ≌和D 是对应角,AF 和CE 是对应边.(1)写出ABF 和CDE △的其他对应角和对应边;(2)若30,40B DCF ,求EFC 的度数;(3)若10,2BD EF ,求BF 的长.【答案】(1)其他对应角为BAF 和DCE ,AFB 和CED ;其他对应边为AB 和,C D BF 和DE ;(2)70EFC ;(3)6BF .【解析】【分析】(1)根据全等三角形的性质,对应角相等,对应边相等,解答即可;(2)根据全等三角形的性质可得30D B ,运用三角形外角的性质即可解答;(3)根据全等三角形的性质可得BF DE ,进一步证明DF BE ,然后可得426BF BE EF .【详解】(1)其他对应角为:BAF 和DCE ,AFB 和CED ;其他对应边为:AB 和,C D BF 和DE ;(2)∵,30ABF CDE B ≌,∴30D B∵40DCF ,∴304070EFC D DCF ;(3)∵ABF CDE ≌△△,∴BF DE ,∴BF EF DE EF ,∴DF BE ,∴10,2BD EF ,∴ 110242DF BE ,∴426BF BE EF .【点睛】本题考查了全等三角形的性质,熟知全等三角形对应角相等,对应边相等是解本题的关键.。
全等三角形的性质和判定—找等边
全 对应元素:对应_顶__点__、对应 边 、对应 角 。
等 三
性质:全等三角形的对应边相等
、对应角相等 。
角 形
三边 (SSS) 三边分别相等的两个三角形全等
判定
两边
(SAS)
两边及其夹角分别相等的两个三 角形全等
一边
ASA 两角及其夹边分别相等的两个三
角形全等
AAS 两角分别相等且其中一组等角
的对边相等的两个三角形全等
找等边的方法4:由中点或中线得出线段相等。
三、当堂检测
【1】如图,已知:∠B=∠DEF,BC=EF, 补充一个条件求证:△ABC≌△DEF.
(1)若要以“SAS”为依据,还缺条件 AB=DE ; (2) 若要以“ASA”为依据,还缺条件∠ACB= ∠DEF ;
(3) 若要以“AAS”为依据,还缺条件 ∠__A _= _∠_D;
找等边的方法3:等边减等边其差相等。
【例2】如图,D是线段BE的中点,∠C=∠F, ∠B=∠E.试说明DC=DF。
解:DC=DF,理由如下, ∵D是线段BE的中点(已知), ∴ED=BD(中点的定义). 在△BCD和△EFD中, ∵ ∠C=∠F(已知)
∠B=∠E(已知) ED=BD(已证) ∴ △BCD≌△EFD(AAS) ∴DC=DF(全等三角形的对应边相等)
五、课外作业
1.如图,∠B=∠D,请添加一个条件(不 得添加辅助线)使得△ABC≌△ADC,并说 明理由.
2.如图:点C是AE的中点,∠A=∠ECD, AB=CD,求证:∠B=∠D.
同学们,再见!
AC=FE(已证) BC=DE(已证) ∴ △ABC≌△FDE(SSS) ∴∠ABC=∠FDE(全等三角形的对应角相等) ∴AB∥FD(内错角相等,两直线平行)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.三角形的基础知识
全等三角形
1、全等三角形的对应边相等,对应角相等。
全等三角形对应角的平分线相等。
全等三角形对应边上的高线、中线对应相等。
2、有两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”)。
3、有两多角和它们的夹边对应相等的两个三角形全等(简写成“ASA”)。
4、有两角和其中一角的对边相等的两个三角形全等(简写成“AAS”)。
5、有三条边对应相等的两个三角形全等(简写成“SSS”)。
6、有斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”)。
7、在角的平分线上的点到这个角的两边的距离相等。
8、到一个角的两边距离相等的点,在这个角的平分线上。
等腰三角形
1、等腰三角形
有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.
2、等腰三角形的性质
性质1:等腰三角形的两个底角相等(简写成“等边对等角”)
性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
特别的:(1)等腰三角形是轴对称图形.
(2)等腰三角形两腰上的中线、角平分线、高线对应相等.
3、等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
等边三角形
1、等边三角形
三条边都相等的三角形叫做等边三角形,也叫做正三角形.
2、等边三角形的性质
等边三角形的三个内角都相等,并且每一个内角都等于60°
3、等边三角形的判定方法
(1)三条边都相等的三角形是等边三角形;
(2)三个角都相等的三角形是等边三角形;
(3)有一个角是60°的等腰三角形是等边三角形.
直角三角形的性质
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
三角形中的边角不等关系
(1)在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大.(简称为:大边对大角)
(2)在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大.(简称为:大角对大边)
二.例题
例1. 如图1,已知AB =DE ,AB//DE ,AF =DC 。
试说明△ABC ≌△DEF 全等的理由。
图1
解:∵AB//DE ∴∠A =∠D 又AF =DC
∴AF +FC =FC +DC 即AC =DF
在△ABC 和△DEF 中,
⎪⎩⎪⎨⎧∠∠=(已证)
=(已证)=(已知)DF AC D
A DE A
B )(SAS DEF AB
C ∆≅∆∴
例2. 已知如图2,在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 的延长线上截取BM =AC ,在CF 的延长线上截取CN =AB ,请说明:(1)AM =AN 。
(2)AM ⊥AN 。
图2
解:(1)∵BE ,CF 为△ABC 的两条高。
∴∠AFC =∠AEB =90°(垂直定义)
∴∠BAC +∠ABE =∠BAC +∠ACF =90°
即ACF ABE ∠=∠
在△ABM 和△NCA 中,
⎪⎩⎪⎨⎧∠∠=(已知)
=(已证)=(已知)AC MB ACF
ABE AC AB
∆
∴
≅
ABM∆
(SAS
NCA
)
∴AN
AM=(全等三角形对应边相等)
BAM
=
∠(全等三角形对应角相等)
N∠
(2)︒
NAF
∠90
N
+
=
∠
∴∠BAM+∠NAF=90°
∴∠NAM=90°
即AM⊥AN。
例3.已知如图3中,AB=AC,E为AB上一点,F是AC延长线上一点,且BE =CF,EF交BC于点D,
图3
求证:DE=DF。
证法1:过点E作EG//AF交BC于点G,所以∠1=∠2,
所以∠EGD=∠DCF,又因为AB=AC,所以∠B=∠2,
所以∠1=∠B,故BE=EG,又因为BE=CF,
所以EG=CF,于是△DEG和△DFC中∠3=∠4,∠EGD=∠DCF,GE=CF。
故△DEG≌△DFC,所以DE=DF。
证法2:如图4,过点F作FM//BA交BC延长线于点M,所以∠B=∠M,因为AB=AC,所以∠B=∠1。
图4
所以∠1=∠M,∠1=∠2,所以∠M=∠2,故CF=MF
又因为BE=CF,所以BE=MF
在△EBD和△FMD中∠B=∠M,∠3=∠4,BE=MF
所以△EBD≌△FMD,故ED=DF
证法3:如图5,过点E作EG⊥BC于点G,过F作FH⊥BC交BC的延长线于点H
图5
所以∠EGB=∠H=∠EGD=90°
因为AB=AC ,所以∠B=∠3
因为∠3=∠4,所以∠B=∠4,
在△EBG 和△FCH 中,∠EGB=∠H ,∠B=∠4,BE=CF
所以△EBG ≌△FCH ,所以EG=FH ,
又因为∠EGD=∠H ,∠1=∠2,
所以△EGD ≌△FHD ,故ED=DF
例4. 如图6,在△ABC 中,AD 平分∠BAC ,AB+BD=AC ,
图6
求证:∠B :∠C 的值。
解:延长AB 到M ,使AM=AC ,连结DM 。
因为AC=AB+BD ,所以AM=AB+BD=AB+BM ,
所以BM=BD ,即∠M=∠BDM ,
因为AM=AC ,∠1=∠2,AD=AD ,
所以△AMD ≌△ACD 。
所以∠M=∠C ,
所以∠ABC=2∠M=2∠C ,即有∠ABC :∠C=2:1
三.家庭作业
1.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1)BC=DE ;(2) OB =OE .
O C E B D A
2.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C 在A、E的异侧, BD⊥AE于D, CE⊥AE于E 。
(1)试说明: BD=DE+CE.
(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 直接写结论,可不说明理由。
(3) 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 直接写结论,可不说明理由。