数字图像处理技术作业实验
数字图像处理——实验ppt课件
实验五——参考答案
15
实验五——参考答案
• f=imread(‘strawberries_fullcolor.tif');
• [x1,map1]=rgb2ind(f,8,'nodither');
• figure,imshow(x1,map1);
• title('ind nodither');
i1=imfilter(i,w1,'replicate'); i2=imfilter(i,w2,'replicate'); figure,imshow(i1); title('rgb平滑'); figure,imshow(i2) title('rgbr锐化'); •(1)
• (1) h=rgb2hsi(i); H=h(:,:,1); S=h(:,:,2); I=h(:,:,3); h1=imfilter(h,w1,'replicate');%平滑全部三个分量 I2=imfilter(I,w1,'replicate');%仅平滑亮度分量 h2=cat(3,H,S,I2); hi1=hsi2rgb(h1); hi2=hsi2rgb(h2); hi1=min(hi1,1); hi2=min(hi2,1); figure,imshow(hi1); title('平滑全部三个分量') figure,imshow(hi2); title('仅平滑亮度分量')
title('频域滤波')
11
实验四
1. 使用imnoise2()生成右图, 理解各参数的作用。
12
实验四
数字图像处理实验报告——图像分割实验
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
数字图像处理实验报告
细的边缘可能会忽略。Laplace算子在边缘检测时它的锐化模板能锐化图像。
实验一灰度图像直方图统计
一、实验目的
掌握灰度图像直方图的概念和计算方法,了解直方图的作用和用途。提高学生编程能力,巩固所学知识。
二、实验内容和要求
(1)用Photoshop显示、了解图像平均明暗度和对比度等信息;
(2)用MatLab读取和显示一幅灰度图像;
(3)用MatLab编写直方图统计的程序。
三、实验步骤
end
end
end
end
figure(300);
plot(His_Image);
title('图像的灰度直方图');
4.显示图像的灰度直方图。
四、思考题
1)直方图可以反映图像的哪些特性?
灰度直方图只能反映图像的灰度分布情况,不能反映图像的像素位置;一幅图像对应唯一的灰度直方图。
2)如何使直方图曲线光滑?如何识别直方图的峰和谷?
使用“滤镜→风格化”的“查找边缘”,“等高线”等可以提取图像的边缘,改变参数,提取图像的最佳边缘。
原始图像
查找边缘
等高线法
四、思考题
1)通过实习,中值滤波和均匀平滑在去图像噪声上各有什么特点,试比较两种方法异同。
中值滤波的特点是它对图像噪声的抑制效果好,在抑制图像噪声的同时能有效保护边缘少受模糊。均匀平滑的特点是让图像噪声柔和一点,也更加模糊。两种方法都对图像噪声有很好抑制效果好,但是中值滤波是保护图像边缘的同时去除噪声,中值滤波容易去除孤立点、线的噪声同时保持图象的边缘,但对高斯噪声无能为力。均匀平滑的思想是通过将一点和周围8个点作平均,从而去除突然变化的点,滤掉噪声,其代价是图象有一定程度的模糊。
数字图像处理 实验(修改版)
1. 读入bmp格式的灰度图像和彩色图像(见本目录下的Lena_g.bmp和Lena_c.bmp图像),在屏幕上显示,然后以新文件名保存。
2. 向灰度图像(Lena_g.bmp)叠加椒盐噪声,显示原图像和加噪后的图像。
3. 对叠加了椒盐噪声的Lena灰度图像,运用3*3的模板进行平均滤波和中值滤波,显示原图像、加噪图像和两种滤波结果图像。
4. 读入Lena灰度图像(如图1所示),对Lena图像进行直方图均衡化,显示原图像和均衡化后的图像5. 图2所示图像 f1(m,n)的大小为256×256,中间亮条为128×32,暗处=0,亮处=100。
对其进行离散傅里叶变换(DFT):①显示原图f1(m,n)和f1的频谱幅值图;②若将f1(m,n)顺时针旋转90 度得到f2(m,n),试显示f2的频谱幅值图,并与f1的频谱幅值图进行比较;③令f3(m,n)=f1(m,n)+f2(m,n),显示f3的频谱幅值图,并与f1 f2的频谱幅值图进行比较(要求:离散傅里叶变换函数可以根据教材的公式自己实现,速度慢点没关系。
也可以使用网上的快速傅里叶变换(FFT)的源码,来进行这三个步骤。
)图1 Lena图像图2说明:一共12个学时的实验。
写5个实验报告,每题1个。
内容包括:实验目的、实验要求、实验内容(算法、流程图、操作步骤、关键说明等)、实验结果、实验分析、心得体会。
源程序统一刻盘交给我,不用打印出来。
使用C++语言实现。
可以参考网上开源代码,但为了加深大家对算法的理解,尽量自己实现。
图1和图2分别对应图像文件lena.jpg 1.jpg,在本目录中有。
如果全部自己实现,工作量比较大,可以三人一个小组分工完成,但是每人还是要交5个实验报告。
图形用户界面可以用最简单的基于对话框的形式。
数字图像处理实验报告
数字图像处理实验报告实验⼀、图像的显⽰与格式变换1、实验⽬的1)熟悉常⽤的图像⽂件格式与格式转换;2)熟悉图像矩阵的显⽰⽅法(灰度、索引、⿊⽩、彩⾊);3)熟悉图像矩阵的格式转换2、实验内容练习图像读写命令imread和imwrite并进⾏图像⽂件格式间的转换。
特别是索引图像与1,4,8,16⽐特图像的存储与转换。
3、实验步骤a.⽤图像读命令(imread)从你的硬盘中读取图像(cameramen.tif);b.⽤图像显⽰功能(imshow)将刚读⼊的图像显⽰在⼀图像窗中;c.显⽰颜⾊条功能(colorbar)在图像的左边画⼀条颜⾊亮度显⽰条;d.⽤(imfinfo)功能得到(gray.bmp)图像的相关信息;e.⽤(colormap )获取当前图像的调⾊板,观察调⾊板中的颜⾊设置;f.⽤(getimage)功能从坐标轴取得当前图像数据;g.⽤(imagesc)功能显⽰图像从64-128的灰度值;h. ⽤(immovie)功能将⼀个4-D 图像创建多帧索引图的电影动画;i. ⽤(warp)功能将图像('testpat1.tif)显⽰到纹理映射柱⾯;思考:怎样让(cameraman.tif)图像如下图⼀样显⽰?四.实验结果及代码a.代码:>>X=imread(‘cameraman.tif’)b.代码:>>y=imshow(X)显⽰的图像为:c、代码:>>I = colorbar('cameraman.tif')H=imshow('cameraman.tif')显⽰的图像为d、代码:>>info=imfinfo(‘gray.bmp')显⽰结果为:Filename: [1x71 char]FileModDate: '16-Apr-2010 11:23:52'FileSize: 107786Format: 'bmp'FormatV ersion: 'V ersion 3 (Microsoft Windows 3.x)' Width: 409Height: 259BitDepth: 8ColorType: 'indexed'FormatSignature: 'BM'NumColormapEntries: 256Colormap: [256x3 double]RedMask: []GreenMask: []BlueMask: []ImageDataOffset: 1078BitmapHeaderSize: 40NumPlanes: 1CompressionType: 'none'BitmapSize: 106708HorzResolution: 0V ertResolution: 0NumColorsUsed: 0NumImportantColors: 0e、代码:>>x=imread(‘256.bmp’)color1=colormap %获取当前图象的调⾊板image (x)info=imfinfo(’256.bmp’)color2=info.Colormap %注意观察调⾊板有多少种颜⾊colormap(color2)f、代码:>>I=getimageg、代码:>> imagesc(x,[64 128])h、代码:>> load mri;mov = immovie(D,map); movie(mov,3)显⽰图像为:i.源代码:>>[x,y,z]=cylinder;I= imread('testpat1.tif');warp(x,y,z,I),图像显⽰为:思考:代码:>>X=inread('cameramen.tif'); Y=[X X];[x,-y,z]=cylinder;I=imread(Y);warp(x,y,z,I)显⽰图像为:实验⼆、图像增强⼀、实验⽬的1.理解图像直⽅图的含义;2.了解直⽅图的应⽤;3.掌握直⽅图均衡化的实现⽅法。
数字图像处理实验
数字图像处理实验实验报告要求:实验报告应包含实验名称、实验内容、思想及原理、算法设计、代码设计及实现、实验结果及分析、结论等内容。
实验结果必须包括原图像、结果图像和必要的数据图像。
实验1 直方图均衡化编码实现直方图均衡化算法(不能使用第三方直方图均衡化函数)。
代码如下:a=imread('e:\b.jpg');%读取图像b=rgb2gray(a); %转化为灰度图像imshow(b); %显示原图c=histeq(b); %直方图均衡化subplot(121),imshow(a);subplot(122),imshow(c); %显示处理后的图像图像如下:实验2 频率域滤波图像中含有周期性干扰,设计使用频率域分析方法检测和去除图像周期性干扰的算法(可以使用第三方傅里叶变换和反变换函数)。
代码如下:%频率域滤波clc;close all;f=imread('salt.bmp');f=im2double(f);F=fft2(double(f));%傅里叶变换F=fftshift(F);%将变换的原点移到频率矩形的中心[M,N]=size(f);%理想低通滤波D0=input('输入截止频率');h1=zeros(M,N);for i=1:Mfor j=i:Nif(sqrt(((i-M/2)^2+(j-N/2)^2))<D0)h1(i,j)=1;endendendG1=F.*hl;61=ifftshift(G1);g1=real(ifft2(G1));subplot(2,3,1);imshow(f);title('原图');subplot(2,3,2);imshow(g1);title('理想低通滤波’);%巴特沃斯低通滤波n=input('巴特沃斯滤波器的阶数 n=');n1=fix(M/2);n2=fix(N/2);h2=zeros(M,N);for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h2=1./(1+(d./D0).^(2*n));endendG2=F.*h2;G2=ifftshift(G2);g2=real(ifft(G2));subplot(2,3,1);imshow(f);title('原图'); subplot(2,3,4);imshow(g3);title('低通滤波'); 图像如下:原图巴特沃斯低通理想低通实验3彩色图像去噪对RGB彩色空间和HIS彩色空间去噪效果进行比较分析。
数字图像处理—实验一
数字图像处理—实验一一.实验内容:图像灰度变换二.实验目的:学会用Matlab 软件对图像灰度进行变换;感受各种不同的灰度变换方法对最终图像效果的影响。
三.实验步骤:1.获取实验用图像:Fig3.10(b).jpg. 使用imread 函数将图像读入Matlab 。
2.产生灰度变换函数T1,使得:0.3rr < 0.35s = 0.105 + 2.6333(r – 0.35) 0.35 ≤ r ≤ 0.651 + 0.3(r – 1)r > 0.65用T1对原图像Fig3.10(b).jpg 进行处理,打印处理后的新图像。
3.产生灰度变换函数T2,使得:s =用T2对原图像Fig3.10(b).jpg 进行处理,打印另一处理后的新图像。
4.分别用 s = r 0.6; s = r 0.4; s = r 0.3 对Fig3.08(a).jpg 图像进行处理。
为简便起见,请使用Matlab 中的imadjust 函数。
5.对Fig3.04(a).jpg 图像实施反变换(Negative Transformation )。
s =1-r; 6.对Fig3.10(b).jpg 图像实施灰度切片(Gray-level slicing )。
具体要求如下:当0.2 ≤ r ≤ 0.4时,将r 置为0.6, 当r 位于其他区间时, 保持其灰度与原图像一样。
四.实验报告要求:用imshow, plot 等函数生成各类图像,提交原图像和各种变换函数的曲线,以及按各种变换函数处理后的图像。
实验报告上的其他内容,按常规实验报告要求办。
胡小平2005-10-27。
数字图像处理实验报告
数字图像处理实验报告标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-数字图像处理实验报告一、实验名称图像读取和图像直方图统计二、实验目的1.强化巩固《数字图像处理》课程中学习的知识,将理论用于实践。
2.学会利用C++程序语言实现数字图像处理中的“图像读取”和“图像直方图统计”功能,加深对这门课程的理解。
3.为以后更进一步学习数字图像处理的知识打下基础。
三、实验工具安装有VC 软件的电脑一台四、实验步骤(分实验一和实验二)(一)实验一:图像的读取1.按照实验指导书中的构建DIB函数库的方法,将此函数库的代码写进文本文档中,并另存为相应的“.cpp”文件和“.h”文件。
2.新建以“Miaoqi”为名字的工程,设置好相应选项。
3.接下来,在该工程中各个文件中添加相应代码。
点击“FileView”即可打开查看。
1)在“”中添加2)点击“查看”—“建立类向导”,添加“ON_WM_ERASEBKGND()”,“ON_COMMAND(ID_EDIT_COPY,OnEditCopy)”,“ON_COMMAND(ID_EDIT_PASTE,OnEditPaste)”,“ON_UPDATE_COMMAND_UI(ID_EDIT_COPY,OnUpdateEditCopy”, “ON_UPDATE_COMMAND_UI(ID_EDIT_ PASTE,OnUpdateEditPaste”。
并在中设置页数为1。
3)阅读实验指导书50页到页的内容,打开,完成以下函数相应代码的添加,以实现相应函数功能。
“void MiaoqiView::OnDraw(CDC*pDC)”,“BOOL MiaoqiView::OnEraseBkgnd(CDC*pDC) ”,“LRESULT MiaoqiView::OnDoRealize(WPARAM wParam, LPARAM)”,“void MiaoqiView::OnEditCopy()”,“void MiaoqiView::OnInitialUpdate() ”,“void MiaoqiView::CalcWindowRect(LPRECT lpClientRect, UINT nAdjustType)”,“void MiaoqiView::OnEditPaste() ”,“void CMiaoqiView::OnUpdateEditCopy(CCmdUI* pCmdUI) ”,“void CMiaoqiView::OnUpdateEditPaste(CCmdUI* pCmdUI)”,“void CChildFrame::ActivateFrame(int nCmdShow)”等。
数字图像处理实验报告
数字图像处理实验报告班级:学号:姓名:实验一DTF变换与余弦变换一、实验内容:用Matlab对某幅图像进行图像的离散付里叶变换、离散余弦变换二、实验目的:1. 掌握傅立叶变换2. 理解频域变换的通用公式3. 掌握离散余弦变换三、实验原理:f=imread(C:\);F=fft2(f);F=fft2(f,P,Q);S=abs(F);Fc=fftshift(F);S2=log(1+abs(Fc));F=ifftshift(Fc);F=ifft2(F);F=real(ifft2(F));dct2f()/idct2()imshow四、源程序:%傅里叶变换clear all;clc;x=imread('C:\Users\K\Desktop\matlab experiment\windows.jpg');y=imread('C:\Users\K\Desktop\matlab experiment\windows1.jpg');subplot(3,2,1);imshow(x);title('x 原图');subplot(3,2,2);imshow(y);title('y 原图');% 傅里叶变换qf=fft2(double(x));lf=fft2(double(y));%取幅度和相位qf1=abs(qf);qf2=angle(qf);lf1=abs(lf);lf2=angle(lf);%进行重建qfr=qf1.*cos(qf2)+qf1.*sin(qf2).*i;lfr=lf1.*cos(lf2)+lf1.*sin(lf2).*i;xr=uint8(abs(ifft2(qfr)));yr=uint8(abs(ifft2(lfr)));subplot(3,2,3);imshow(xr,[]);title('x幅谱与相谱重建'); subplot(3,2,4);imshow(yr,[]);title('y幅谱与相谱重建'); qfrm=qf1.*cos(lf2)+qf1.*sin(lf2).*i;lfrm=lf1.*cos(qf2)+lf1.*sin(qf2).*i;xr1=uint8(abs(ifft2(qfrm)));yr1=uint8(abs(ifft2(lfrm)));subplot(3,2,5);imshow(xr1,[]);title('x幅谱与y相谱重建'); subplot(3,2,6);imshow(yr1,[]);title('y幅谱与x相谱重建');%余弦变换x1=rgb2gray(x);y1=rgb2gray(y);figure(2);subplot(3,2,1);imshow(x1);title('x 原图');subplot(3,2,2);imshow(y1);title('y 原图');dctxchange=dct2(x1);dctychange=dct2(y1);subplot(3,2,3);imshow(log(abs(dctxchange)),[]);title('x图余弦变换幅频');subplot(3,2,4);imshow(log(abs(dctychange)),[]);title('y图余弦变换幅频');subplot(3,2,5);imshow(log(angle(dctxchange)),[]);title('x图余弦变换相频');subplot(3,2,6);imshow(log(angle(dctychange)),[]);title('y图余弦变换相频');%重建dctxchange1=abs(dctxchange);dctxchange2=angle(dctxchange);dctychange1=abs(dctychange);dctychange2=angle(dctychange);figure(2)dctxchanger=dctxchange1.*cos(dctxchange2)+dctxchange1.*sin(dctxch ange2).*i;dctychanger=dctychange1.*cos(dctychange2)+dctychange1.*sin(dctych ange2).*i;dctxchanger=uint8(abs(idct2(dctxchanger)));dctychanger=uint8(abs(idct2(dctychanger)));subplot(221);imshow(dctxchanger,[]);title('x幅谱与相谱重建');subplot(222);imshow(dctychanger,[]);title('y幅谱与相谱重建');dctxchanger=dctxchange1.*cos(dctychange2)+dctxchange1.*sin(dctych ange2).*i;dctychanger=dctychange1.*cos(dctxchange2)+dctychange1.*sin(dctxchange2).*i;dctxchanger1=uint8(abs(idct2(dctxchanger)));dctychanger1=uint8(abs(idct2(dctychanger)));subplot(223);imshow(dctxchanger1,[]);title('x幅谱与y相谱重建');subplot(224);imshow(dctychanger1,[]);title('y幅谱与x相谱重建');五、实验结果:实验二图像点操作一、实验内容:用Matlab对某幅图像进行反变换、对数变换、指数变换、分段线性变换二、实验目的:理解并掌握图像点运算处理三、实验原理:为了突出感兴趣的目标或灰度区间 相对抑制那些不感兴趣的目标或灰度区间常采用分段线性变换法。
数字图像处理实验报告
《数字图像处理》实验报告专业:软件工程*名:***学号: S********* 指导老师:***2019年 12 月 28 日信息学部软件学院目录实验一、BMP文件的读写 (1)1 实验目的与实验内容 (1)2 实验原理 (1)3 实验关键代码 (1)4 实验运行结果 (3)5 总结 (4)实验二、图像缩放 (4)1 实验目的及内容 (4)2 实验原理 (5)3 实验关键代码和运行结果 (6)4 结果分析 (8)实验三、直方图均衡 (9)1 实验目的及内容 (9)2 实验原理 (9)3 实验关键代码和实验结果 (10)4 思考题 (11)5结果分析 (12)实验四、图像滤波 (12)1 实验目的及内容 (12)2 图像滤波的原理 (12)3 实验关键代码及结果 (13)实验五、图像的灰度映射 (17)1 实验目的及内容 (17)2 实验关键代码及结果 (17)3 不同参数的变换结果 (20)附录一 (17)实验要求:用 c/c++语言编程实现以下功能实验环境:Windows10开发工具:CodeBlocks实验一、BMP文件的读写1 实验目的与实验内容1.1灰度 BMP 图像的读写:(1) 读入 lena.bmp 文件;(2) 通过文件内容得出文件大小,位图数据起始字节,图像长、宽以及每像素的位数等信息;(3) 提取出原图像中的位图数据,另存为 lena.raw, 并通过 photoshop 打开该文件,查看所读取的数据。
(4)仅取原始图像左上角 1/4 的数据,另存一个 lenas.bmp 图像,在photoshop 中打开查看效果。
1.2 彩色 BMP 图像读写(1) 读入文件 lena_C.bmp 文件;(2) 通过文件内容得出文件大小,位图数据起始字节,图像长、宽以及每像素的位数等信息;(3) 提取出原图像中的位图数据,另存为 lena_C.raw, 并通过 photoshop 打开该文件,查看所读取的数据。
数字图像处理实验
数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。
通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。
实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。
(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。
这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。
(3) 图像的变换,以便于图像的频域处理。
实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。
该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。
要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。
2、灰度拉伸灰度拉伸和灰度线性变换相似。
不同之处在于它是分段线性变换。
表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。
要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。
3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。
要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。
4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。
实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。
数字图像处理实验报告
[键入公司名称]数字图像处理实验报告班级:姓名:学号:目录实验一:matlab数字图像处理初步 (3)一.实验目的 (3)二.实验内容 (3)三.实验步骤 (3)实验二:图像的傅立叶变换 (7)一.实验目的 (7)二.实验原理 (7)三.实验内容 (8)四.实验步骤 (8)实验三:数字图像的频域滤波 (9)一.实验目的 (9)二.实验原理 (9)三.实验内容 (10)四.实验步骤 (11)实验四:图象旋转 (14)一.实验目的 (14)二.实验原理 (14)三.实验内容 (14)四.实验步骤 (14)实验五: 图象压缩 (16)一. 实验目的 (16)二.实验内容 (16)二.实验步骤 (16)实验一:matlab数字图像处理初步一.实验目的1、学习在matlab环境下对图像文件的I/O操作,为读取各种格式的图像文件和后续进行图像处理打下基础2、熟悉matlab操作环境3、熟悉matlab的一些指令语句二.实验内容利用matlab为用户提供的专门函数从图像格式的文件中读/写图像数据、显示图像,以及查询图像文件的信息三.实验步骤1、利用imshow显示MATLAB自带的图像在控制台输入>> I=imread('H:\a.bmp');>> imshow(I)弹出窗口显示图像2、用(imfinfo)功能得到图像的相关信息;>> info=imfinfo('autumn.tif');>> info结果为Filename: Filename: 'D:\MATLAB7\toolbox\images\imdemos\autumn.tif' FileModDate: '04-Dec-2000 21:57:54'FileSize: 213642Format: 'tif'FormatVersion: []Width: 345Height: 206BitDepth: 24ColorType: 'truecolor'FormatSignature: [73 73 42 0]ByteOrder: 'little-endian'NewSubfileType: 0BitsPerSample: [8 8 8]Compression: 'Uncompressed'PhotometricInterpretation: 'RGB'StripOffsets: [30x1 double]SamplesPerPixel: 3RowsPerStrip: 7StripByteCounts: [30x1 double]XResolution: 72YResolution: 72ResolutionUnit: 'Inch'Colormap: []PlanarConfiguration: 'Chunky'TileWidth: []TileLength: []TileOffsets: []TileByteCounts: []Orientation: 1FillOrder: 1GrayResponseUnit: 0.0100MaxSampleValue: [255 255 255]MinSampleValue: 0Thresholding: 13、利用显示颜色条功能(colorbar)在图像的左边画一条颜色亮度显示条>> colorbar(I)显示结果为4、读取一幅RGB彩色图像,将其转换为灰度图像,并在同一窗口显示原图>>RGB=imread('autumn.tif'); [m,n,p]=size(RGB) ; %矩阵大小>>I=rgb2gray(RGB) ; % 真彩色图像转换为灰度图像>>I1=im2bw(I) ; % 灰色图像二值画>>I2=~I1; %对二值图像取反>>subplot(1,2,1),imshow(RGB); >>subplot(1,2,2),imshow(I); >>figure % 新建个图形窗口>>subplot(1,3,1),imshow(I); >>subplot(1,3,2),imshow(I1); >>subplot(1,3,3),imshow(I2); 结果为:实验二:图像的傅立叶变换一.实验目的1、理解离散傅立叶变换的基本原理2、掌握应用MATLAB语言进行FFT及逆变换的方法二.实验原理Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。
数字图像处理技术作业实验
2也可以针对自己感兴趣的图像自定题目。
3可参考教材1.4节:数字图像处理的应用和发展中所列举的图像处理的例子。
要求:字数>1500;参考文献>3篇
实验三:图像的点运算
1图像的分段线性点运算
2图像的非线性点运算:对数变换和幂次变换
实验四:图像的几何运算-图像平移、镜像、旋转
作业二:编写程序,找出两幅图像中不同的地方,并在不同处用方框标出
内容包括:
1 XX图像识别的意义
2 XX图像识别系统组成及图像的处理过程
3 XX图像识别的优点和局限性或缺点
4 图像识别的应用
题目选择:
1可以使用下列选题,
指纹识别、面部识别、虹膜识别、声音识别、手形识别、签名识别、击键识别、牙齿识别、步态识别、红外温谱图、人耳识别、视网膜识别、掌纹识别、多生物特征识别融合、味纹图像识别、基因识别等。
周次
1
2
3
4
班名10210E0110210E02
实验一:熟悉MATLAB软件开发环境
选择一个自己喜欢的彩色数字图像,或者是自己的彩色电子照片,编写简单的程序对图像进行处理,并且熟悉下列函数:
1图像文件的读写imread,imwrite
2彩色图像转换为灰度图像rgb2gray
3彩色图像转换为黑白图像im2bw
4图像显示imshow imtool
5多幅图像显示subplot
实验二:图像的代数运算-差影法
1编写程序,制作两个彩色块图。
背景色块:大小相同,底色相同或不同;每个色块图中包含一个目标色块;位置不同,大小相同或不同
2两图做减法
数字图像处理四个实验
数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割实验五形态学运算3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
数字图像处理实验报告
数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。
本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。
二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。
三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。
这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。
2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。
在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。
3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。
我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。
4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。
我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。
5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。
通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。
四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。
在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。
数字图像处理实验(全完整答案)
实验一常用MATLAB图像处理命令一、实验目得1、熟悉并掌握MATLAB工具得使用;2、实现图像得读取、显示、代数运算与简单变换。
二、实验环境MATLAB 6。
5以上版本、WIN XP或WIN2000计算机三、常用函数●读写图像文件1 imreadimread函数用于读入各种图像文件,如:a=imread('e:\w01。
tif')2 imwriteimwrite函数用于写入图像文件,如:imwrite(a,’e:\w02。
tif’,’tif')3imfinfoimfinfo函数用于读取图像文件得有关信息,如:imfinfo('e:\w01、tif’)●图像得显示1imageimage函数就是MATLAB提供得最原始得图像显示函数,如:a=[1,2,3,4;4,5,6,7;8,9,10,11,12];image(a);2 imshowimshow函数用于图像文件得显示,如:i=imread('e:\w01、tif');imshow(i);title(‘原图像’)%加上图像标题3 colorbarcolorbar函数用显示图像得颜色条,如:i=imread(’e:\w01。
tif');imshow(i);colorbar;4 figurefigure函数用于设定图像显示窗口,如:figure(1); /figure(2);5 subplot把图形窗口分成多个矩形部分,每个部分可以分别用来进行显示、Subplot(m,n,p)分成m*n个小窗口,在第p个窗口中创建坐标轴为当前坐标轴,用于显示图形、6 plot绘制二维图形plot(y)Plot(x,y)xy可以就是向量、矩阵。
图像类型转换1rgb2gray把真彩图像转换为灰度图像i=rgb2gray(j)2 im2bw通过阈值化方法把图像转换为二值图像I=im2bw(j,level)Level表示灰度阈值,取值范围0~1(即0.n),表示阈值取自原图像灰度范围得n%3 imresize改变图像得大小I=imresize(j,[m n])将图像j大小调整为m行n列图像运算1imadd两幅图像相加,要求同样大小,同种数据类型Z=imadd(x,y)表示图像x+y2 imsubstract两幅图像相减,要求同样大小,同种数据类型Z=imsubtract(x,y) 表示图像x-y3 immultiplyZ=immultiply(x,y) 表示图像x*y4 imdivideZ=imdivide(x,y) 表示图像x/y四、实验内容(请将实验程序填写在下方合适得位置,实验图像结果拷屏粘贴)1、读入一幅RGB图像,变换为灰度图像与二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像与灰度图像,注上文字标题。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告实验⼀数字图像基本操作及灰度调整⼀、实验⽬的1)掌握读、写图像的基本⽅法。
2)掌握MATLAB语⾔中图像数据与信息的读取⽅法。
3)理解图像灰度变换处理在图像增强的作⽤。
4)掌握绘制灰度直⽅图的⽅法,理解灰度直⽅图的灰度变换及均衡化的⽅法。
⼆、实验内容与要求1.熟悉MATLAB语⾔中对图像数据读取,显⽰等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。
1)将MATLAB⽬录下work⽂件夹中的forest.tif图像⽂件读出.⽤到imread,imfinfo等⽂件,观察⼀下图像数据,了解⼀下数字图像在MATLAB中的处理就是处理⼀个矩阵。
将这个图像显⽰出来(⽤imshow)。
尝试修改map颜⾊矩阵的值,再将图像显⽰出来,观察图像颜⾊的变化。
2)将MATLAB⽬录下work⽂件夹中的b747.jpg图像⽂件读出,⽤rgb2gray()将其转化为灰度图像,记为变量B。
2.图像灰度变换处理在图像增强的作⽤读⼊不同情况的图像,请⾃⼰编程和调⽤Matlab函数⽤常⽤灰度变换函数对输⼊图像进⾏灰度变换,⽐较相应的处理效果。
3.绘制图像灰度直⽅图的⽅法,对图像进⾏均衡化处理请⾃⼰编程和调⽤Matlab函数完成如下实验。
1)显⽰B的图像及灰度直⽅图,可以发现其灰度值集中在⼀段区域,⽤imadjust函数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰度直⽅图与原灰度直⽅图的区别。
2) 对B 进⾏直⽅图均衡化处理,试⽐较与源图的异同。
3) 对B 进⾏如图所⽰的分段线形变换处理,试⽐较与直⽅图均衡化处理的异同。
图1.1 分段线性变换函数三、实验原理与算法分析1. 灰度变换灰度变换是图像增强的⼀种重要⼿段,它常⽤于改变图象的灰度范围及分布,是图象数字化及图象显⽰的重要⼯具。
数字图像处理实验报告通用
数字图像处理实验报告通用数字图像处理实验报告通用数字图像处理是现代科学技术发展过程中的一个重要方向,它广泛地涉及到了计算机、数学、物理、电子等多个学科。
数字图像处理实验是数字图像处理领域中不可或缺的重要研究手段之一。
为了更好地展示实验结果和数据,以下是数字图像处理实验报告通用模板,以供参考。
1. 实验目的本次实验的目的是掌握数字图像处理的基本概念、算法以及其应用,在实践中学习数字图像处理的基础操作和技巧。
通过实验,学生可以更深入地理解数字图像处理的原理,并掌握数字图像处理应用的方法和技术。
2. 实验原理数字图像处理是将数字信号处理和图像处理结合起来的技术。
主要基于数字通信和数字信号处理原理,将二维图像进行数字化,并对其进行处理,实现图像的获取、传输、分析和显示等功能。
3. 实验流程(1) 图像获取和预处理:获取需要处理的图像,并进行基本的预处理,包括降噪、锐化、自适应增强等。
(2) 图像增强:通过滤波、直方图均衡化、灰度拉伸等操作,增强图像的亮度、对比度等特征。
(3) 图像变换:包括几何变换(旋转、平移、缩放等)、色彩空间变换(RGB空间、HSV空间等)等。
(4) 特征提取和分类:从图像中提取出感兴趣的特征,进行分类判别、目标检测等。
(5) 结果展示和分析:将处理后的图像结果进行展示和分析,分析图像特征和处理效果。
4. 实验结果(1) 原始图像(2) 预处理后的图像(3) 增强后的图像(4) 变换后的图像(5) 提取出的特征及分类结果(6) 结果展示和分析5. 实验总结通过本次实验,我们对数字图像处理的基本概念、算法和应用有了更深的理解,并掌握了数字图像处理的基础操作和技巧。
对于未来的科学研究和工程技术领域,数字图像处理具有广泛的应用前景,我们有信心在这个领域不断深耕,为社会的发展进步做出更大的贡献。
数字图像处理实验内容与要求
数字图像处理实验内容与要求
一、实验题
实验内容:共5道题,要求选择任意一种编程语言,编写程序,实现以下算法。
1.编写程序,实现在空间域的图像增强处理。
请设计1-2个参数,通过鼠标或键盘实时连续改变图像的亮度和对比度。
2.编写程序,实现空间域的图像平滑和锐化。
用户可自己定义模板的大小和参数,以获得最佳的平滑和锐化效果。
3.编写程序,实现图像直方图的均衡化处理。
输入一幅图像,获得它的直方图,作均衡化处理后,获得新的直方图和直方图均衡化后的效果。
要求能显示图像均衡化前后的直方图和图像。
4.编写程序,实现频率域的图像滤波。
输入一幅图像,分别采用理想、高斯、Butterworth三种高低通滤波器滤波,比较它们的结果。
5.编程程序,输入一幅具有椒盐噪声的图像,通过滤波,消除噪声,获得较好的噪声去除效果。
二、基本要求
1.上述程序中,关键问题不能调用程序库中的函数或子程序。
2.每一道题为18分。
功能全部正确,可得18分。
功能基本正确,为13-15分;功能完全错误为0分。
其它情况酌情给分;
3.五道题全部完成,且功能全部正确可得90分。
4.上述五道题如果能很好地集成在一个统一的界面下,另加5-10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
4
实验三:图像的点运算
1 图像的分段线性点运算
2 图像的非线性点运算:对数变换和幂次变换
实验四:图像的几何运算-图像平移、镜像、旋转
作业二:编写程序,找出两幅图像中不同的地方,并在不同处用方框标出
要求:对两幅找茬图像进行对比,找出图像中不同的地方,并在不同处用方框标出。
试验图
参考步骤:
1 对左右两幅图像进行帧相减
2 统计不同处的个数、位置坐标以及不同区域的大小
3 在所有不同区域按照目标大小向外扩5个像素的地方用红色线画出
方框。