第12章无穷级数小结
无穷级数总结
无穷级数总结一、概念与性质1. 定义:对数列 u 1,u 2,L ,u n L , u n 称为无穷级数, u n 称为一般项;若部分和 n1数列{&}有极限S ,即limS n S ,称级数收敛,否则称为发散.n2. 性质① 设常数 c 0 ,则 u n 与 cu n 有相同的敛散性;n1n1② 设有两个级数 u n 与 v n ,若 u n s ,v n,则 (u n v n ) s ;n1n1n1n1n1若 u n 收敛,v n 发散,则 (u n v n ) 发散;n1n1n1若 u n ,v n 均发散,则(u n v n ) 敛散性不确定;n1n1n1③ 添加或去掉有限项不影响一个级数的敛散性;④ 设级数 u n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 u n 收敛的必要条件: lim u n 0 ;n1n注:①级数收敛的必要条件,常用判别级数发散;③若 u n 发散,则 lim u n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若 u n 0 ,则 u n 称为正项级数 .n1② 审敛法:i ) 充要条件:正项级数 u n 收敛的充分必要条件是其部分和数列有界②若 lim u n0 ,则 u n 未必收敛;n1(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),则若②n 1 n 1收敛则①收敛;若①发散则②发散•A.若②收敛,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①收敛;若②发散,且存在自然数N,使得当n N时有u n kv n(k 0)成立,则①发散;1B.设U n为正项级数,若有p 1使得u n—p (n 1,2丄),贝U U n收敛;若n 1 n n 11U n (n 1,2,L ),贝U U n 发散•n n 1C.极限形式:设U n①与v n②都是正项级数,若lim l(0 l ),则n 1 n 1 n V nU n与V n有相同的敛散性n 1 n 1注:常用的比较级数:a①几何级数:ar n1 1 r r 1n 1 发散r| 1②p级数:[收敛P 1时.n 1 np发冃攵P 1时,③调和级数:丄1 1 1发散.n 1 n 2 n(iii )比值判别法(达郎贝尔判别法)设a n是正项级数,若n 1①lim也r 1,则a n收敛;②lim也r 1,则a.发散.n a n n 1 n a n n 1注:若lim 也1,或lim :恳1,推不出级数的敛散.例1与2,虽然佃乩1,nan n n 1 n n 1n n a.lim n a n 1,但丄发散,而 $收敛•n' n 1 n n 1 na n是正项级数,lim , a n ,若1,级数收敛,n(iv )根值判别法(柯西判别法)设若 1则级数发散.(v )极限审敛法:设U n 0,且lim n p u n l ,则①lim n p u n l 0且p 1,则级数u n 发nnn 1散;②如果p 1,而limn%. 1(0 l ),则其收敛.(书上P317-2- n(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件. 2. 交错级数及其审敛法①定义:设U n 0(n 1,2丄),则 (1)n 1U n 称为交错级数•n 1②审敛法:莱布尼兹定理:对交错级数 (1)n1U n ,若U nn 1收敛.注:比较u n 与u n 1的大小的方法有三种: ① 比值法,即考察是否小于1;u n② 差值法,即考察u n u n 1是否大于0; ③由u n 找出一个连续可导函数f(x),使u n f(n),(n 1,2,)考察f (x)是否小于0.3. 一般项级数的判别法: ①若u n 绝对收敛,则 u n 收敛.n 1n 1②若用比值法或根值法判定 |u n I 发散,则 u n 必发散.n 1n 1三、幕级数 1. 定义: a n x n称为幕级数•n 02. 收敛性① 阿贝尔定理:设幕级数 a n x n在X 。
高等数学无穷级数知识点总结
高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
小结无穷级数
性质5.(级数收敛必要条件)
若级数 收敛,则
注意:(1). 若 ,则级数 发散
(2). 时,级数 不一定收敛
判断级数发散 的第一步骤
证
单调
有界
则
同理
交错级数
例如
收敛且S<1
如果
则
2. 绝对收敛与条件收敛
对于一般的任意项级数
考虑
正项级数
收敛,则
绝对收敛
收敛,而 发散,则
条件收敛
例如
绝对收敛
条件收敛
定理7. 如果 绝对收敛,则 必收敛
证
设
则
由
收敛知
收敛
为幂级数的系数 .
即是此种情形.
的情形, 即
称
机动 目录 上页 下页 返回 结束
发 散
发 散
收 敛
收敛
发散
定理 1. ( Abel定理 )
若幂级数
则对满足不等式
的一切 x 幂级数都绝对收敛.
反之, 若当
的一切 x , 该幂级数也发散 .
四、求幂级数收敛域的方法
• 标准形式幂级数: 先求收敛半径 R ,
再讨论
• 非标准形式幂级数
通过换元转化为标准形式
直接用比值法或根值法
处的敛散性 .
求下列级数的敛散区间:
例13:
机动 目录 上页 下页 返回 结束
解:
当
因此级数在端点发散 ,
时,
时原级数收敛 .
故收敛区间为
例如:调和级数
但级数发散
(2)
不存在
级数发散
例3. 判断级数敛散性:
无穷级数总结
无穷级数总结无穷级数是数学中的重要概念,常出现在分析学、代数学、数论等领域。
它的形式为一列数相加的无穷和。
无穷级数的研究对于了解数学的发展历程和数学的基本思想方法具有重要意义。
本文将对无穷级数的定义、性质、收敛与发散的判定方法以及一些典型的无穷级数进行介绍和总结。
无穷级数的定义意味着\[S_n=a_1+a_2+...+a_n\]\[S=a_1+a_2+a_3+...\]其中,$S_n$表示级数的前n项和,S表示整个级数的和,$a_n$表示级数的第n项。
我们称一个无穷级数收敛或发散取决于它的部分和序列。
具体来说,如果存在一个有限的实数 S,使得对于任意给定的正数 $\varepsilon $,当 n 大于一些自然数 N 时,总有\[ ,S-S_n,< \varepsilon \]那么我们说该级数是收敛的,并把这个实数S叫做级数的和,记做\[ S=\sum_{n=1}^{+ \infty } a_n\]如果上述性质不成立,即对于任意给定的正数S,当n大于一些自然数N时,总存在\[ ,S-S_n, \geq \varepsilon \]那么我们说该级数是发散的。
在判断无穷级数是否收敛时,可以运用收敛的充分条件。
其中,比较判别法、比值判别法、根值判别法是最常用的方法之一1.比较判别法:如果存在一个收敛的级数 $\sum b_n$,使得对于所有的正整数 n,有 $,a_n, \leq b_n$,那么级数 $\sum a_n$ 收敛。
反之,如果级数$\sum a_n$ 发散,那么对于所有的正整数 n,必有 $,a_n, \geqb_n$ 对一些发散的正项级数 $\sum b_n$ 成立。
2.比值判别法:对于正项级数 $\sum a_n$,如果存在一个常数 L,使得当 n 大于一些正整数 N 时,总有 $\frac{a_{n+1}}{a_n} \leq L < 1$,那么级数$\sum a_n$ 收敛。
无穷级数知识点总结
无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
高数无穷级数总结
高数无穷级数总结高等数学中,无穷级数是一个重要的概念和工具。
无穷级数可以理解为由无限多个数相加得到的结果。
在无穷级数的研究中,主要考虑级数的收敛性、发散性以及求和的方法等问题。
在这篇文章中,我将总结无穷级数的定义、收敛性和发散性以及几种常见的求和方法。
首先,我们来回顾一下无穷级数的定义。
一个无穷级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1、a2、a3等为数列中的元素,n为数列中的项数。
当n趋向无穷大时,无穷级数的求和结果就是S。
接下来,我们来探讨无穷级数的收敛性和发散性。
一个无穷级数可能是收敛的,也可能是发散的。
如果一个无穷级数的部分和逐渐趋于一个有限的数S,那么我们说这个无穷级数是收敛的,并且收敛于S。
如果一个无穷级数的部分和没有趋于一个有限的数,那么我们说这个无穷级数是发散的。
收敛的无穷级数是非常重要的,因为它们在实际应用中经常出现。
我们可以通过几种方法来判断一个无穷级数的收敛性。
其中,比较判别法、比值判别法和积分判别法是最常用的三种判别法。
比较判别法是通过将无穷级数与一个已知的收敛级数或发散级数进行比较来判断收敛性。
比值判别法是通过计算无穷级数的相邻项比值的极限来判断收敛性。
积分判别法是通过将无穷级数中的项与函数进行比较来判断收敛性。
除了收敛性判别外,我们还有几种常见的方法来求解收敛的无穷级数的和。
其中,部分和法、数学归纳法、特殊级数和特殊函数是常用的求和方法。
部分和法是通过计算无穷级数的前n 项和来逼近无穷级数的和。
数学归纳法是通过递归地将级数的前n项和与第n+1项进行比较来求和。
特殊级数是一类特殊形式的无穷级数,常见的有几何级数、调和级数和幂级数等。
特殊函数是一类与无穷级数有密切关系的函数,例如指数函数、对数函数和三角函数等。
在实际应用中,无穷级数有着广泛的应用。
例如,泰勒级数是一种常见的无穷级数,它可以将一个函数表示为无穷项多项式的形式,从而在计算和研究函数时提供了便利。
无穷级数小结
特殊情况
n1
n1
(1)lim un 0, n vn
相当于 un vn
(2)lim n
un vn
, 相当于 un
vn
4 (D'Alembert)(比值判别法)
设正项级数 un ,
n1
且 lim n
un1 l un
则
(1) l 1(含0)时收敛
(2) l 1(含)时发散
注意:
1.比值 审敛法比较适合an及n!
定理(Dirichelet判别法) n
若
(1)
lim
n
an
0,且{an }单调;
(2)
{ bi }有界;
i 1
则 akbk收敛。
k 1
定理(Abel判别法)
若(1) an 为单调有界数列, (2)
则 akbk收敛。 k 1
bk收敛,
k 1
判断级数 an 的敛散性
n1
lim an 0 ? 是
2.当l 1时,失效
5 Cauchy 判别法(根值判别法)
设正项级数 un ,
n1
且 lim n
n un ,
则
(1) 1(含0)时收敛 (2) 1(含)时发散
注意: 根值审敛法比较适合an
当 1时,失效
交错级数: 设un 0, (1)n1un 或 (1)nun
n1
n1
交错级数判别法(Leibniz 判别法) 若 (1)n1un 满足
则级数发散;
lim
n
un
常用来证明级数发散
0
n1
un发散
3 L (1)n1
n
L
n1
n1 2 3 4
无穷级数知识点总结简短
无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。
2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。
如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。
3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。
这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。
4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。
这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。
5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。
例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。
总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。
无穷极数知识点总结
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数重要知识点总结
无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。
它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。
无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。
1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。
当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。
1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。
通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。
通项的形式对于判断无穷级数的收敛性有着重要的作用。
二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。
即∑(ai + bi) = ∑ai + ∑bi。
2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。
即(∑ai) * (∑bi) = ∑(ai * bi)。
2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。
这个极限的存在性和确定性是无穷级数的一个重要性质。
2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。
无穷级数的收敛性质对于很多数学问题有着深远的影响。
2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。
无穷级数期末总结
无穷级数期末总结在本学期的无穷级数课程学习中,我对这一领域的概念和理论有了更加深入的了解。
无穷级数是数学中一个重要的分支,其应用广泛,涉及到许多其他领域的理论和定理。
通过学习无穷级数相关的概念和定理,我不仅获得了数学上的知识和技能,而且提高了自己的逻辑思维能力和问题解决能力。
在课程的开始阶段,我们首先学习了无穷数列和无穷级数的概念。
数列是按照一定规律排列的一系列数的集合,无穷数列则是无限个数的有序排列。
而无穷级数是无穷数列的和,即将数列中的每一项相加所得到的和。
通过学习这些概念,我了解到了数列的特点和性质对无穷级数的求和有着重要的影响。
在进一步学习中,我们学习了收敛和发散的概念。
数列或者级数被称为收敛,意味着它们的和可以无限接近一个确定的数,而发散则表示它们的和趋于无穷大。
从这个角度来看,我们可以判断一个无穷级数是否收敛。
通过学习收敛和发散的判别法,我学会了如何分析一个无穷级数的收敛性质。
接着,我们学习了收敛级数的性质和定理。
比如,一个收敛级数的任意子级数也是收敛的,收敛级数的和的绝对值小于每一项的绝对值之和等等。
这些性质和定理对于进一步研究和运用收敛级数非常有帮助。
我也通过做大量的例题巩固了对这些定理的理解和应用。
在接下来的学习中,我们研究了几个重要的收敛级数。
其中,几何级数是无穷级数中最为基础也是最简单的一种。
通过对几何级数的分析,我了解到了一些特定条件下的收敛性质。
调和级数也是我们学习的另一个重点。
通过对调和级数进行分析,我对无穷级数的收敛性产生了更深的认识。
除了学习收敛级数的性质和定理,我们还研究了一些收敛级数的求和方法。
比如,我们学习了部分和的求和法和函数级数的求和法。
这些方法对于分析一个收敛级数的和进行估算和计算非常有帮助。
在学习过程中,我也遇到了一些困难和挑战。
尤其是在分析一个复杂的级数的收敛性时,我常常会遇到各种繁琐的计算和推导。
但是通过不断的实践和思考,我逐渐克服了这些困难,提高了自己的计算能力和推理能力。
(完整版)无穷级数总结
n1、概念与性质1. 定义:对数列5,氏丄,U n L ,U n 称为无穷级数,U n 称为一般项;若部分和n1数列{S n }有极限S ,即lim S n S ,称级数收敛,否则称为发散• n2. 性质① 设常数 c 0 ,则 U n 与 cU n 有相同的敛散性;n1n1② 设有两个级数 U n 与v n,若 U n s ,v n,则(U n v n )s ;n1n1n1n1n1若 U n 收敛,v n 发散,则(U n v n ) 发散;n1n1n1若 U n , v n 均发散,则(U n v n ) 敛散性不确定;n1n1n1③ 添加或去掉有限项不影响一个级数的敛散性;④ 设级数 U n 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n1注:①一个级数加括号后所得新级数发散,则原级数发散;② 一个级数加括号后收敛,原级数敛散性不确定. ⑤ 级数 U n 收敛的必要条件: lim U n 0 ;n1n注:①级数收敛的必要条件,常用判别级数发散;③若 U n 发散,则 lim U n 0 未必成立. n1 n 二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若 U n 0 ,则 U n 称为正项级数 .n1② 审敛法:U n 收敛的充分必要条件是其部分和数列有界无穷级数总结②若 lim U n n0 ,则 U n 未必收敛;n1充要条件:正项级数(ii ) 比较审敛法:设U n①与V n②都是正项级数,且U n %(n 1,2丄),n 1 n 1则若②收敛则①收敛;若①发散则②发散•A.若②收敛,且存在自然数N,使得当n N时有U n kvjk 0)成立,则①收敛;若②发散,且存在自然数N,使得当n N时有U n kv n(k 0)成立,则①发散;B.设U n为正项级数,若有p 1使得u n2(n 1,2,L ),贝U U n收敛;若n 1 n n 11U n (n 1,2,L ),贝U U n 发散•n n 1C.极限形式:设U n①与V n②都是正项级数,若limb |(0 | ),则n 1 n 1 n V nU n与V n有相同的敛散性.n 1 n 1注:常用的比较级数:a 1 1 .①几何级数:ar n 1 1 r r 1•n 1发散r 1②p级数:[收敛P1时.n p发冃攵P1时,n r③调和级数:1111发散.n 1 n2n(iii)比值判别法(达郎贝尔判别法)设a n是正项级数,若n 1①lim r 1,则a n收敛;②lim r 1,则发散.n a n n 1 n a n n 1注:若lim 1,或lim a n1,推不出级数的敛散.例丄与厶,虽然n a n n n 1 n n 1 n lim 1,|im n a n1,但 -发散,而 & 收敛•n a n n■n 1 n n 1 n(iv)根值判别法(柯西判别法)设a n是正项级数,lim、, a n,若1,n 1 n级数收敛,若1则级数发散.(v)极限审敛法:设U n 0,且lim n P U n l,则①lim n p U n l 0且p 1,则级n n数U n发散;②如果p 1,而lim n p U n l(0 l ),则其收n 1 n敛.(书上P317-2- (1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设U n 0(n 1,2丄),则(1)n 1U n称为交错级数•n 1②审敛法:莱布尼兹定理:对交错级数(1)n 1U n,若U n U n 1且lim U n0,‘n贝u ( 1)n u收敛•n 1注:比较U n与U n 1的大小的方法有三种:①比值法,即考察也1是否小于1;U n②差值法,即考察U n U n 1是否大于0;③由U n找出一个连续可导函数f(x),使U n f(n) ,(n 1,2,)考察f (x)是否小于0.3.一般项级数的判别法:①若U n绝对收敛,则U n收敛.n 1 n 1②若用比值法或根值法判定|U n |发散,则U n必发散.n 1 n 1三、幕级数1.定义:a n x n称为幕级数.n 02.收敛性①阿贝尔定理:设幕级数a n X n在X0 0处收敛,则其在满足X I X0的所n 0xx 0有x 处绝对收敛.反之,若幕级数 a n x n 在X 1处发散,则其在满足x X i n 0 的所有X 处发散. ②收敛半径(i )定义:若幕级数在X X o 点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当X X o R 时,幕级数收敛;②当x X o R 时,幕级数发散;R称为幕级数的收敛半径•(ii )求法:设幕级数 a n X n的收敛半径为R ,其系数满足条件limn 0n或n lim 器丙I ,则当0 1 时,R 1 ;当10时,R , 当I 时,R 0 .注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、 偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出 现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(iii )收敛半径的类型 A. R 0,此时收敛域仅为一点; B. R,此时收敛域为(C.R =某定常数,此时收敛域为一个有限区间. 3. 幕级数的运算(略) 4. 幕级数的性质a n 1a n①若幕级数的收敛半径R则和函数 S(x)a n X n 在收敛区间(R, R )内连续.②若幕级数的收敛半径R 则和函数 S(x)a n X n 在收敛区间(R, R )内可导,且可逐项求导,即S (x )n \a n X )(a n Xna n X n 1,收敛半径不变.n 1③若幕级数的收敛半径R0,则和函数 S(x)na n X在收敛区间(R, R )内可积,x且可逐项积分,即S (t )dta n t n dt(x ( R, R)),收敛半径不nx / ,x ( n!出其假设和函数s(x)与其导数s(x)的关系),从而得到新级数的和函数; 注:系数为若干项代数和的幕级数,求和函数时应先将级数写成各个幕级数的代 数和,然后分别求出它们的和函数,最后对和函数求代数和,即得所求级数 的和函数. ②数项级数求和nU n U k .根据S n 的求法又可分为:直接法、拆项法、递推法.变.5.函数展开成幕级数①若f(x)在含有点X 0的某个区间I 内有任意阶导数, f (X0) 、2(X X o )2!f (n 1)()- --(X X 0)(n 1}(n 1)!(n 1)!I 内能展开成为泰勒级数的充要条件为为 f (x) f (X 0)f (X 0)(X X o )f(n 1)(-)(X X 0)(n 1),记 R n (x)f (x)在X 。
第12章无穷级数知识点总结
第十二章 无穷级数一、 常数项级数1. 常数项级数的基本性质①1nn u∞=∑收敛⇔部分和数列{}n s 收敛,其中12n n s u u u =+++.② 若1nn u∞=∑收敛,则lim 0n n u →∞=;反之,则不一定成立.③ 若1nn uU ∞==∑,1n n v V ∞==∑,则()1n n n au bv aU bV ∞=+=+∑(a 、b 为任意常数).④ 收敛级数满足结合律注意:发散级数加括号后有可能得到收敛级数,因此不能由加括号后的级数的收敛性判断加括号前的级数的收敛性.⑤ 增加、删除或改变级数的有限项不会改变级数的收敛性.2. 常数项级数的收敛性判定 (1) 一般方法① 级数的收敛性定义 ② 级数的基本性质③ 绝对收敛、条件收敛(P.263)(2) 正项级数审敛法理论基础:正项级数1nn u∞=∑收敛⇔部分和数列{}n s 有界(P.256定理1)① 比较审敛法(通常选择等比级数、调和级数、p-级数作为比较对象) ② 比值审敛法(适用范围:结合课件) ③ 根值审敛法(适用范围:结合课件) ④ 积分审敛法(适用范围:结合课件)无穷级数常数项级数1n n u ∞=∑函数项级数1()n n u x ∞=∑正项级数一般常数项级数(交错级数等)幂级数 傅里叶级数 其它(3) 交错级数审敛法——莱布尼茨定理(P.262定理7,充分非必要条件)3. 几个重要结论等比级数 P.250例1 调和级数 P.253、P.263(交错级数)p-级数P.257例1、交错级数111(1)n p n n∞-=-∑(结合课件) 级数收敛的“夹逼准则”,即由n n n a c b ≤≤,1nn a∞=∑、1nn b∞=∑收敛推出1nn c∞=∑收敛(结合课件)二、 幂级数1. 幂级数的收敛半径、收敛区间、收敛域(P.271定理1的推论、P.272定理2)关键:注意收敛区间与收敛域的区别(P.272)求幂级数收敛域的基本步骤(P.273~274例1、2、3、4)2. 幂级数的运算性质(P.274~275四则运算,P.276性质1、2、3连续、逐项可积、逐项可导)=<<+∞时,当0=时,1n v∞=∑当=+∞时,==01<<时,n ∞∑当1>时,1n u∞=∑当1=时,无法判定积分审敛法1n n u ∞=∑收敛⇔1()f x dx +∞⎰收敛,其中()f x 在[1,)+∞上连续、单调减少且()n f n u =3.常用函数的麦克劳林展开式(五条公式P.281)关键:牢记级数的一般项,n从零开始,注意收敛域.4.求幂级数的和函数、函数展开成幂级数的间接法通过线性运算法则、变量变换、恒等变形、逐项求导、逐项积分等方法将所给幂级数化为常用函数的幂级数展开式,利用已知的和函数求解.三、傅里叶级数1.三角函数系的正交性(P.304)2.傅里叶系数、傅里叶级数、狄利克雷充分性条件(P.305,P.306的定理)3.正弦级数、余弦级数(P.310)4.奇延拓、偶延拓(P.312)5.一般周期函数的傅里叶级数(P.316的定理)。
无穷级数总结
无穷级数总结一、概念与性质1.定义:对数列U1,U2^|,U^| , U n称为无穷级数,U n 称为一般项;若部分和数列{S n}有极限S,即lim S n S,称级数收敛,否则称为发散•n2•性质①设常数C 0,贝U U n与CU n有相同的敛散性;n 1 n 1②设有两个级数U n与V n,若U n S,V* ,则(U n V n) S ;n 1 n 1 n 1 n 1 n 1若U n收敛,V n发散,则(片V n )发散;n 1 n 1 n 1若U n,V n均发散,则(U n冷)敛散性不确定;n 1 n 1 n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数U n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数U n收敛的必要条件:lim U n 0 ;n 1 n注:①级数收敛的必要条件,常用判别级数发散;②若lim U n 0,则U n未必收敛;n n 1③若U n发散,则lim U n 0未必成立. nn 1二、常数项级数审敛法1.正项级数及其审敛法①定义:若U n 0,则U n称为正项级数•n 1②审敛法:(ii ) 比较审敛法:设 U n ①与 V n ②都是正项级数,且U n %(n 1,2,),n 1n 1川则若②收敛则①收敛;若①发散则②发散•A. 若②收敛,且存在自然数N ,使得当n N 时有U n k%(k 0)成立,则①收敛;若②发散,且存在自然数 N ,使得当n N 时有U n kv n (k 0)成立,则 ①发散;1B. 设 U n 为正项级数,若有 p 1使得U n 帀(n 1,2,川),则U n 收敛;若n 11( U n (n nC. 极限形式:U n 与 V n 有相同的敛散性.n 1n 1注:常用的比较级数:①几何级数:n 1 arr 1 1 r ・n 1发散r 1②p 级数:1收敛P 1时n 1n p发散P 1时, ③调和级数:11 1 1发散.n 1 n2n(iii )比值判别法(达郎贝尔判别法)设 a n 是正项级数,若n 11,或iim; a n 1,推不出级数的敛散.例丄与2,虽然nn 1 n n 1 n充要条件:正项级数U n 收敛的充分必要条件是其部分和数列有界),贝U Un 发散.n 11,2, U n ①与 V n ②都是正项级数,若lim 也1(0丨 ),则1 nV n①limna n 1 anr 1,则 a n 收敛;②lim 也 n 1nan r 1,则 a n 发散.n 1注:若limna n 1 anlim a n^ 1, lim n a n 1,但丄发散,而g收敛.n a n n■'n 1 n n 1 n2n ___(iv)根值判别法(柯西判别法)设a n是正项级数,』m ■, a n,若 1 ,n 1 n级数收敛,若1则级数发散.(v)极限审敛法:设u n o,且lim n p u n l,则①lim n p U n l 0且p 1,则级n n数U n发散;②如果p 1,而lim n p U n l(0 l ),则其收n 1 n敛.(书上P317-2- (1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法•正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设U n 0(n 1,2J||),则(1)n 1U n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数(1)n 1u n,若u n u n 1且lim u n0,n 1 n贝U ( 1)n1u n收敛.n 1注:比较u n与u n 1的大小的方法有三种:①比值法,即考察也是否小于1;u n②差值法,即考察u n u n 1是否大于0;③由u n找出一个连续可导函数f(x),使u n f(n) ,(n 1,2,)考察f (x)是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛.n 1 n 1②若用比值法或根值法判定|u n |发散,则u n必发散.n 1 n 1、幕级数1. 定义: a n X n称为幕级数.n 02. 收敛性有X 处绝对收敛.反之,若幕级数 a n X n在X !处发散,则其在满足x X !n 0的所有X 处发散. ②收敛半径(i) 定义:若幕级数在X X 0点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当X X 0 R 时,幕级数收敛;②当XX 。
高数无穷级数总结
高数无穷级数总结高等数学中的无穷级数是一项非常重要且有趣的概念。
在学习高等数学的过程中,我们不可避免地要接触无穷级数的各种性质和计算方法。
今天我将通过总结无穷级数的相关概念和性质,为大家提供一个关于高数无穷级数的综合知识点总结。
首先,我们来回顾无穷级数的定义。
无穷级数是由一列实数或复数按照一定规则排列形成的数列。
一般地,如果数列的部分和存在有限极限L,那么我们称这个无穷级数收敛到L。
反之,如果数列的部分和不存在有限极限,那么我们称这个无穷级数发散。
接下来,我们来看一些常见的收敛判定定理。
首先是比较判别法,其基本思想是通过比较给定级数的部分和与一些已知性质的级数的部分和大小关系来判断级数的收敛性。
比较判别法包括了比较判别法、极限判别法和积分判别法。
通过这些判别法,我们可以轻松地判断一些无穷级数的收敛性。
另一个重要的概念是级数的绝对收敛和条件收敛。
如果一个级数收敛,同时其所有项的绝对值组成的级数也收敛,那么我们称这个级数绝对收敛;如果一个级数收敛,但其所有项的绝对值组成的级数发散,那么我们称这个级数条件收敛。
可以证明,绝对收敛的级数一定是收敛的,而条件收敛的级数则不一定收敛。
无穷级数的运算也是我们需要掌握的一个重要内容。
对于收敛的无穷级数,我们可以进行四则运算,并且结果仍然是一个收敛的无穷级数。
此外,我们还可以通过级数的逐项求导、求积分以及其他形式的操作来得到一个新的级数。
在实际应用中,无穷级数在各个领域都有广泛的应用。
例如,在物理学中,泰勒级数是一种特殊的无穷级数,可以将一个函数表示为无穷级数的形式。
这种表达方式在数值计算和近似计算中起着重要的作用。
此外,在概率论中,无穷级数可以用来表示随机变量的分布函数,从而提供了一种分析概率分布的方法。
最后,我想提醒大家在学习无穷级数的过程中要注意一些常见的陷阱和注意事项。
首先是级数的收敛半径问题,即一个幂级数在哪些点上收敛。
此外,无穷级数在进行运算时要注意收敛性的保持,避免出现无意义的结果。
无穷级数总结
无穷级数总结一、概念与性质 1. 定义:对数列12,,,nu u u ,1n n u ∞=∑称为无穷级数,n u 称为一般项;若部分和数列{}n S 有极限S ,即lim n n S S →∞=,称级数收敛,否则称为发散.2. 性质①设常数0≠c ,则∑∞=1n n u 与∑∞=1n n cu 有相同的敛散性;②设有两个级数∑∞=1n n u 与∑∞=1n n v ,若∑∞==1n n s u ,σ=∑∞=1n n v ,则∑∞=±=±1)(n n n s v u σ;若∑∞=1n n u 收敛,∑∞=1n n v 发散,则∑∞=±1)(n n n v u 发散;若∑∞=1n n u ,∑∞=1n n v 均发散,则∑∞=±1)(n n n v u 敛散性不确定;③添加或去掉有限项不影响一个级数的敛散性;④设级数∑∞=1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定. ⑤级数∑∞=1n n u 收敛的必要条件:0lim =∞→n n u ;注:①级数收敛的必要条件,常用判别级数发散;②若0lim =∞→n n u ,则∑∞=1n n u 未必收敛;③若∑∞=1n n u 发散,则0lim =∞→n n u 未必成立.二、常数项级数审敛法 1. 正项级数及其审敛法① 定义:若0n u ≥,则∑∞=1n n u 称为正项级数.② 审敛法: (i )充要条件:正项级数∑∞=1n n u 收敛的充分必要条件是其部分和数列有界.(ii )比较审敛法:设∑∞=1n n u ①与∑∞=1n n v ②都是正项级数,且(1,2,)n n u v n ≤=,则若②收敛则①收敛;若①发散则②发散.A. 若②收敛,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≤>成立,则①收敛;若②发散,且存在自然数N ,使得当n N ≥时有(0)n n u kv k ≥>成立,则①发散;B. 设∑∞=1n n u 为正项级数,若有1p >使得1(1,2,)n p u n n ≤=,则∑∞=1n n u 收敛;若1(1,2,)n u n n≥=,则∑∞=1n n u 发散.C. 极限形式:设∑∞=1n n u ①与∑∞=1n n v ②都是正项级数,若lim(0)nn nu l l v →∞=<<+∞,则 ∑∞=1n nu与∑∞=1n n v 有相同的敛散性.注:常用的比较级数: ①几何级数:∑∞=-⎪⎩⎪⎨⎧≥<-=11111n n r r r aar 发散;②-p 级数:∑∞=⎩⎨⎧≤>1111n p p p n 时发散时收敛;③ 调和级数:∑∞=++++=112111n nn 发散. (iii )比值判别法(达郎贝尔判别法)设∑+∞=1n n a 是正项级数,若①1lim1<=++∞→r a a n n n ,则∑+∞=1n n a 收敛;②1lim 1>=++∞→r a a n n n ,则∑+∞=1n n a 发散. 注:若1lim 1=++∞→n n n a a,或lim 1n =,推不出级数的敛散.例∑+∞=11n n 与∑+∞=121n n,虽然1lim 1=++∞→nn n a a,lim 1n =,但∑+∞=11n n 发散,而∑+∞=121n n 收敛. (iv )根值判别法(柯西判别法)设∑+∞=1n n a是正项级数,lim n ρ=,若1<ρ,级数收敛,若1>ρ则级数发散.(v )极限审敛法:设0n u ≥,且lim p n n n u l →∞=,则①0lim >=∞→l u n n p n 且1≤p ,则级数∑+∞=1n n u 发散;②如果1>p ,而)0(lim +∞<<=∞→l l u n n p n ,则其收敛.(书上P317-2-(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法.正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设0(1,2,)n u n ≥=,则11(1)n n n u ∞-=-∑称为交错级数.②审敛法:莱布尼兹定理:对交错级数11(1)n n n u ∞-=-∑,若1+≥n n u u 且0lim =∞→n n u ,则11(1)n n n u ∞-=-∑收敛.注:比较n u 与1+n u 的大小的方法有三种: ①比值法,即考察nn u u 1+是否小于1; ②差值法,即考察1+-n n u u 是否大于0;③由n u 找出一个连续可导函数)(x f ,使),2,1(),( ==n n f u n 考察)(x f '是否小于0. 3.一般项级数的判别法:①若∑∞=1n n u 绝对收敛,则∑∞=1n n u 收敛.②若用比值法或根值法判定||1∑∞=n n u 发散,则∑∞=1n n u 必发散.三、幂级数1. 定义:n n n x a ∑∞=0称为幂级数.2. 收敛性① 阿贝尔定理:设幂级数∑+∞=0n n n x a 在00≠x 处收敛,则其在满足0x x <的所有x 处绝对收敛.反之,若幂级数∑+∞=0n n n x a 在1x 处发散,则其在满足1x x >的所有x 处发散. ② 收敛半径(i )定义:若幂级数在0x x =点收敛,但不是在整个实轴上收敛,则必存在一个正数R ,使得①当R x x <-0时,幂级数收敛;②当R x x >-0时,幂级数发散;R 称为幂级数的收敛半径.(ii )求法:设幂级数∑+∞=0n nn xa的收敛半径为R ,其系数满足条件l a a n n n =++∞→1lim,或l a n n n =+∞→lim ,则当+∞<<l 0时,lR 1=;当0=l 时,+∞=R ,当+∞=l 时,0=R .注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(iii )收敛半径的类型 A.0=R ,此时收敛域仅为一点; B.+∞=R ,此时收敛域为),(∞+-∞;C.R =某定常数,此时收敛域为一个有限区间. 3.幂级数的运算(略) 4.幂级数的性质①若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内连续.②若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可导,且可逐项求导,即∑∑∑+∞=+∞=-+∞=='='='0110)()()(n n n n nn n nn x na x a x a x S ,收敛半径不变.③若幂级数的收敛半径0>R ,则和函数∑+∞==0)(n n n x a x S 在收敛区间),(R R -内可积,且可逐项积分,即⎰⎰∑+∞===x xn nn dt t a dt t S 0)()(∑⎰+∞=-∈0)),((n xn n R R x dt t a ,收敛半径不变.5.函数展开成幂级数①若)(x f 在含有点0x 的某个区间I 内有任意阶导数,)(x f 在0x 点的n 阶泰勒公式为+-++-''+-'+=)(!)()(!2)())(()()(00)(200000x x n x f x x x f x x x f x f x f n)1(0)1()()!1()(++-+n n x x n f ξ,记)1(0)1()()!1()()(++-+=n n n x x n f x R ξ,ξ介于0,x x 之间,则)(x f 在I 内能展开成为泰勒级数的充要条件为I x x R n n ∈∀=+∞→,0)(lim .②初等函数的泰勒级数)0(0=x (i )∑+∞=∞+-∞∈=0),(,!n nxx n x e ; (ii )∑+∞=--∞+-∞∈--=1121),(,)!12()1(sin n n n x n x x ; (iii )∑+∞=∞+-∞∈-=2),(,)!2()1(cos n nn x n x x ; (iv )∑+∞=+-∈+-=+01]1,1(,1)1()1ln(n n n x n x x ; (v )∑+∞=∈-∈+--+=+1)(),1,1(,!)1()1(1)1(n n R x x n n x ααααα;(vi )∑+∞=<=-01,11n nx x x ;∑+∞=<-=+01,)1(11n n n x x x . 6. 级数求和①幂级数求和函数解题程序(i )求出给定级数的收敛域;(ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数)(x s 与其导数)(x s '的关系),从而得到新级数的和函数; 注:系数为若干项代数和的幂级数,求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数,最后对和函数求代数和,即得所求级数的和函数. ②数项级数求和(i )利用级数和的定义求和,即s S n n =∞→lim ,则∑∞==1n n s u ,其中∑==+++=nk kn n uu u u s 121 .根据n s 的求法又可分为:直接法、拆项法、递推法.A.直接法:适用于 ∑∞=1k k u 为等差或等比数列或通过简单变换易化为这两种数列;B.拆项法:把通项拆成两项差的形式,在求n 项和时,除首尾两项外其余各项对消掉.(ii )阿贝尔法(构造幂级数法)∑∑∞=-→∞==010lim n nn x n n x a a ,其中幂级数∑∞=0n n n x a ,可通过逐项微分或积分求得和函数)(x S .因此)(lim 10x s a x n n -→∞==∑.四、傅里叶级数 1. 定义①定义1:设)(x f 是以π2为周期的函数,且在],[ππ-或]2,0[π上可积,则)2,1,0(,cos )(1cos )(120===⎰⎰-n nxdx x f nxdx x f a n πππππ, ),2,1(,sin )(1sin )(120===⎰⎰-n nxdx x f nxdx x f b n πππππ,称为函数)(x f 的傅立叶系数.②定义2:以)(x f 的傅立叶系数为系数的三角级数∑∞=++10)sin cos (21n n nnx b nx aa .称为函数)(x f 的傅立叶级数,表示为∑∞=++10)sin cos (21)(n n nnx b nx aa ~x f .③定义3:设)(x f 是以l 2为周期的函数,且在],[l l -上可积,则以 ⎰-==ll n n xdx ln x f la )2,1,0(,cos )(1 π, ⎰-==lln n xdx ln x f l b )2,1(,sin )(1π为系数的三角级数 ∑∞=++10)sin cos(21n n n x ln b x l n a a ππ 称为)(x f 的傅立叶级数,表示为∑∞=++10)sin cos(21)(n n nx ln b x l n aa ~x f ππ. 2.收敛定理(狄里赫莱的充分条件)设函数)(x f 在区间],[ππ-上满足条件①除有限个第一类间断点外都是连续的;②只有有限个极值点, 则)(x f 的傅立叶级数在],[ππ-上收敛,且有∑∞=++10)sin cos (2n n n nx b nx a a ⎪⎪⎪⎩⎪⎪⎪⎨⎧±=-++-++-=πππx f f ;x f x x f x f ;x f x x f )],0()0([21)()],0()0([21)(),(000的第一类间断点是的连续点是. 3.函数展开成傅氏级数 ①周期函数(i )以π2为周期的函数)(x f :∑∞=++10sin cos 2)(n n nnx b nx aa~x f⎰-=πππ)(1x f a n ),2,1,0(cos =n nxdx ,1()n b f x πππ-=⎰),2,1(sin =n nxdx ;注:①若)(x f 为奇函数,则∑∞=1sin )(n n nx b ~x f (正弦级数),0=n a ),2,1,0( =n2()sin n b f x nxdx ππ=⎰),2,1( =n ;②若)(x f 为偶函数,则∑∞=+10cos 2)(n nnx aa~x f (余弦级数),2()cos n a f x nxdx ππ=⎰),2,1,0( =n ,0=n b ),2,1( =n .(ii )以l 2为周期的函数)(x f :∑∞=+10cos2)(n n x l n a a~x f π+)sin x ln b n π ⎰-=ll n x f la )(1),2,1,0(cos=n xdx l n π,⎰-=l l n x f l b )(1),2,1(sin =n xdx ln π;注:①若)(x f 为奇函数,则∑∞=1sin )(n n x l n b ~x f π(正弦级数),0=n a ),2,1,0( =n 02()sin l n n b f x xdx l lπ=⎰ ),2,1( =n ; ②若)(x f 为偶函数,则∑∞=+10cos2)(n n x ln a a~x f π,(余弦级数) 02()cos l n n a f x xdx l lπ=⎰),2,1,0( =n ,0=n b ),2,1( =n . ②非周期函数(i )奇延拓:A.)(x f 为],0[π上的非周期函数,令⎩⎨⎧<≤---≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1sin )(n n nx b ~x f (正弦级数),02()sin n b f x nxdx ππ=⎰),2,1( =n ;B. )(x f 为],0[l 上的非周期函数,则令⎩⎨⎧<≤---≤≤=0),(0),()(x l x f lx x f x F ,则)(x F 除0=x 外在],[ππ-上为奇函数,∑∞=1sin)(n n x l n b ~x f π(正弦级数),02()sinl n n b f x xdx llπ=⎰),2,1( =n .(ii )偶延拓:A.)(x f 为],0[π上的非周期函数,令⎩⎨⎧<≤--≤≤=0),(0),()(x x f x x f x F ππ,则)(x F 除0=x 外在],[ππ-上为偶函数,∑∞=+10cos 2)(n nnxaa ~x f (余弦级数),2()cos n a f x nxdx ππ=⎰),2,1,0( =n .B.)(x f 为],0[l 上的非周期函数,令⎩⎨⎧<≤--≤≤=0),(0),()(x l x f lx x f x F ,则∑∞=+10cos2)(n n x l n a a~x f π(余弦级数),02()cosl n n a f x xdx llπ=⎰),2,1,0( =n . 注:解题步骤:①画出图形、验证狄氏条件.画图易于验证狄氏条件,易看出奇偶性; ②求出傅氏系数;③写出傅氏级数,并注明它在何处收敛于)(x f .。
(完整版)无穷级数总结.docx
无穷级数总结一、概念与性质1.定义:对数列 u1, u2 ,L,u n L ,u n称为无穷级数, u n称为一般项;若部分和n 1数列 { S n} 有极限S,即lim S n S ,称级数收敛,否则称为发散 .n2.性质①设常数 c0 ,则u n与cu n有相同的敛散性;n 1n 1②设有两个级数u n与v n,若u n s ,v n,则(u n v n ) s;n1n 1n1n 1n 1若u n收敛,v n发散,则(u n v n ) 发散;n 1n 1n 1若u n,v n均发散,则(u n v n ) 敛散性不确定;n 1n 1n 1③添加或去掉有限项不影响一个级数的敛散性;④设级数u n收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.n 1注:①一个级数加括号后所得新级数发散,则原级数发散;②一个级数加括号后收敛,原级数敛散性不确定.⑤级数u n收敛的必要条件: lim u n0 ;nn 1注:①级数收敛的必要条件,常用判别级数发散;②若 lim u n 0 ,则u n未必收敛;n n 1③若u n发散,则n 1二、常数项级数审敛法1.正项级数及其审敛法lim u n0 未必成立.n①定义:若 u n0 ,则u n称为正项级数.n 1② 审敛法:( i)充要条件:正项级数u n收敛的充分必要条件是其部分和数列有界.n 1( ii )比较审敛法:设 u n ①与v n ②都是正项级数, 且 u nv n (n1,2,L ) ,n 1n 1则若②收敛则①收敛;若①发散则②发散 .A. 若②收敛,且存在自然数 N ,使得当 nN 时有 u nkv n (k 0) 成立,则①收敛;若②发散,且存在自然数 N ,使得当 nN 时有 u n kv n (k0) 成立,则①发散;B. 设u n 为正项级数,若有p 1 使得 u1 (n 1,2,L ) ,则u n收敛;若n 1nnpn1u n1u n 发散 .(n 1,2,L ) ,则nn 1C. 极限形式:设u n ①与v n ②都是正项级数,若 limu nl (0 l) ,则n 1n 1nv nu n 与v n 有相同的敛散性 .n 1n 1注:常用的比较级数:ar n 1ar 1 ;①几何级数:1 rn 1发散r11收敛p时② p 级数:1 ;n 1 n p发散 p1时③ 调和级数:1111 发散.1n2nn( iii )比值判别法(达郎贝尔判别法)设a n 是正项级数,若n 1①注:若lima n 1r1,则 a n 收敛;② lima n 1r 1,则a n 发散.na nn 1na nn 1an 1n11lim1,或 lim a n1 ,推不出级数的敛散 .例与,虽然a nn 1n n 1n 2nnliman 11, lim n an 1 ,但1 发散,而 1 收敛 .na nnn 1nn 1n 2( iv )根值判别法(柯西判别法)设na n 是正项级数, lim an,若 1 ,n 1n级数收敛,若1则级数发散.( v)极限审敛法:设u n0 ,且lim n p u n l ,则①lim n p u n l0 且 p 1 ,则级n n数u n发散;②如果 p 1 ,而 lim n p u n l (0l) ,则其收n1n敛.(书上 P317-2-(1))注:凡涉及证明的命题,一般不用比值法与根值法,一般会使用比较判别法.正项级数的比(根)值判别法不能当作收敛与发散的充要条件,是充分非必要条件.2.交错级数及其审敛法①定义:设 u n 0(n 1,2,L ) ,则( 1)n 1u n称为交错级数.n 1②审敛法:莱布尼兹定理:对交错级数( 1)n 1u n,若 u n un 1且 lim u n0 ,n 1n则( 1)n 1 u n收敛.n 1注:比较 u n与 u n 1的大小的方法有三种:①比值法,即考察u n 1是否小于 1;u n②差值法,即考察 u n u n 1是否大于0;③由 u n找出一个连续可导函数 f ( x) ,使 u n f (n), (n 1,2, ) 考察 f ( x) 是否小于0.3.一般项级数的判别法:①若u n绝对收敛,则u n收敛 .n 1n1②若用比值法或根值法判定| u n |发散,则u n必发散.n1n1三、幂级数1.定义:a n x n称为幂级数.n 02.收敛性① 阿贝尔定理:设幂级数a n x n在 x00处收敛,则其在满足 x x0的所n 0有 x 处绝对收敛.反之,若幂级数 a n x n在 x1处发散,则其在满足 xx1n 0的所有 x 处发散.② 收敛半径(i)定义:若幂级数在x x0点收敛,但不是在整个实轴上收敛,则必存在一个正数 R ,使得①当x x0R 时,幂级数收敛;②当x x0R 时,幂级数发散;R称为幂级数的收敛半径.(ii )求法:设幂级数 a n x n的收敛半径为R,其系数满足条件 lim an 1l ,n 0n a n或 lim n a n l,则当 0 l时, R1;当 l 0 时, R,n l当l时,R 0.注:求收敛半径的方法却有很大的差异.前一个可直接用公式,后一个则须分奇、偶项(有时会出现更复杂的情况)分别来求.在分成奇偶项之后,由于通项中出现缺项,由此仍不能用求半径的公式直接求,须用求函数项级数收敛性的方法.(i ii )收敛半径的类型A.R 0 ,此时收敛域仅为一点;B.R,此时收敛域为( , );C. R =某定常数,此时收敛域为一个有限区间.3.幂级数的运算(略)4.幂级数的性质①若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0②若幂级数的收敛半径R 0 ,则和函数S( x) a n x nn 0在收敛区间在收敛区间( R, R) 内连续.( R, R) 内可导,且可逐项求导,即 S ( x) (a n x n )(a n x n )na n x n 1,收敛半径不变.n 0n 0n 1③若幂级数的收敛半径 R 0 ,则和函数S( x) a n x n在收敛区间 ( R, R) 内可积,n0x xa n t n )dt x且可逐项积分,即S(t )dt(a n t n dt ( x ( R, R)) ,收敛半径不00n 0n 00变.5.函数展开成幂级数①若 f ( x) 在含有点 x 0 的某个区间 I 内有任意阶导数, f ( x) 在 x 0 点的 n 阶泰勒公式为 f ( x)f ( x 0 ) f (x 0 )( x x 0 )f (x 0 )2 f (n) ( x 0 )2! (x x 0 )( x x 0 )n!f (n1) ()( x x 0 )( n 1),记 R n ( x) f (n1) ()x 0) ( n 1) , 介于 x, x 0 之间,则 f ( x) 在 ( n 1)!(n 1)! ( xI 内能展开成为泰勒级数的充要条件为lim R n ( x) 0,x I .n②初等函数的泰勒级数 ( x 0 0)( i ) e xx n , x (,) ;n 0 n!( ii ) sin x(1) n 1 x 2n 1 , x( ,) ;n 1(2n 1)!( iii ) cos x( 1) nx 2n( ,) ;( 2n)! , xn 0( iv ) ln(1 x)( 1) n x n 1( 1, 1] ;n 1, xn 0( v ) (1 x)1(1) ( n 1) x n , x( 1, 1), (R) ;n 1n!( vi )1xx n , x1 ;1 x( 1) n x n , x 1.1 n 01 n 06.级数求和①幂级数求和函数解题程序( i )求出给定级数的收敛域;( ii )通过逐项积分或微分将给定的幂级数化为常见函数展开式的形式(或易看出其假设和函数 s( x) 与其导数 s ( x) 的关系),从而得到新级数的和函数;注:系数为若干项代数和的幂级数, 求和函数时应先将级数写成各个幂级数的代数和,然后分别求出它们的和函数, 最后对和函数求代数和, 即得所求级数的和函数.②数项级数求和( i )利用级数和的定义求和,即 lim S n s ,则u n s ,其中nn 1ns n u 1 u 2u nu k .根据 s n 的求法又可分为:直接法、拆项法、递k1推法.A. 直接法:适用于u k 为等差或等比数列或通过简单变换易化为这两种数列;k 1B.拆项法:把通项拆成两项差的形式,在求n 项和时,除首尾两项外其余各项对消掉.( ii )阿贝尔法(构造幂级数法)a nlima n x n ,其中幂级数a n x n ,可通n 0x 1 n 0n 0过逐项微分或积分求得和函数 S(x) .因此a nlim s(x) .n 0x 1四、傅里叶级数 1. 定义①定义 1:设 f (x) 是以 2为周期的函数,且在 [ , ] 或 [ 0, 2 ] 上可积,则11a nf ( x) cos nxdx11b nf ( x) sin nxdx2 0, 1, 2 ) ,f (x) cosnxdx, (n 02 1, 2, ) ,f (x) sin nxdx,( n 0称为函数 f (x) 的傅立叶系数.②定义 2:以 f (x) 的傅立叶系数为系数的三角级数1 a 0(a n cos nx b n sin nx) .2n 1称为函数 f ( x) 的傅立叶级数,表示为f ( x)~1a 0(a n cos nx b n sin nx) .2n 1③定义 3:设 f (x) 是以 2l 为周期的函数,且在 [l , l ] 上可积,则以1l f (x) cosn xdx, (n 0, 1, 2 ) ,a nll l1lf (x) sinnxdx, (n 1, 2) 为系数的三角级数 b nll l1a 0( a n cosnx b n sinnx)称为 f ( x) 的傅立叶级数,表示为2n 1llf ( x)~ 1a 0(a n cosnx b n sin nx) .2l ln 12. 收敛定理(狄里赫莱的充分条件)设函数f ( x) 在区间 [ , ] 上满足条件①除有限个第一类间断点外都是连续的;②只有有限个极值点,则 f ( x) 的傅立叶级数在 [ ,] 上收敛,且有f x ), x 是 f x 的连续点 ;( ( )1[ f ( x 0 0) f ( x 0 0)],a 02 .( a n cos nx b n sin nx)2x 是 f x 的第一类间断点 ;n 1( )1[ f (0)f (0)], x23. 函数展开成傅氏级数①周期函数( i )以 2 为周期的函数 f ( x) : f ( x)~ aa n cos nxb n sin nx2n 11f ( x) cos nxdx(n 0, 1, 2, ) , b n 1f ( x) sin nxdx(n1, 2,) ;a n注:①若 f ( x) 为奇函数,则 f ( x)~b n sin nx (正弦级数 ), a n 0 (n0, 1, 2, )n 1b n2f ( x)sin nxdx(n1, 2, ) ;②若 f ( x) 为偶函数,则f x ~a 0a n cos nx (余弦级数 ),( )2n 1a n2f ( x)cos nxdx (n0,1, 2, ) , b n 0(n 1, 2, ) .( ii )以 2l 为周期的函数 f ( x) : f x ~aa nnn x)( )2 cosx + bn sinn 1l l1lnxdx(n0, 1, 2,1l n xdx(n 1, 2, ) ;a nf (x) cos) , b nf (x) sinllllll注:①若 f ( x) 为奇函数,则 f ( x)~b n sinn0 (n0,1, 2, )x (正弦级数 ), a nn 1l2 b nll 0f ( x)sin nxdx(n 1, 2, ) ;l②若 f ( x) 为偶函数,则f x ~aa nn ( )cosx , (余弦级数 )2n 1l2a nllf ( x)cos nxdx (n 0, 1, 2, ) , b n 0(n 1, 2, ) .l②非周期函数( i )奇延拓:f ( x), 0 x,则 F ( x) 除 x 0 外在A. f (x) 为 [0, ] 上的非周期函数,令 F ( x)x),xf ([, ] 上 为 奇 函 数 , f ( x)~ b n sin nx ( 正 弦 级 数 ) , b n2f (x)sin nxdxn 1(n1, 2, ) ;B.f (x), 0 x lf (x) 为 [0, l ] 上的非周期函数,则令 F (x)f ( x), l,则 F (x) 除 x 0 外x 0在 [,] 上为奇函数,~n2f ( x)b n sin x (正弦级数),b nn 1l l (n1, 2,) .lnf ( x)sin xdx l( ii )偶延拓:A. f (x)为[0,] 上的非周期函数,令 F ( x) f ( x),0x,f ( x),x0则 F (x) 除x0 外在[ ,] 上为偶函数, f (x)~a0a n cosnx (余2n 1弦级数 ),a n 20, 1, 2,) .f ( x)cos nxdx (nB. f (x)为[0, l ]上的非周期函数,令 F ( x) f ( x),0x l,则f ( x),l x0f ( x)~a0a n cosnx (余弦级数),a n22n 1l llf ( x)cosnxdx (n 0,1, 2, ).l注:解题步骤:①画出图形、验证狄氏条件.画图易于验证狄氏条件,易看出奇偶性;②求出傅氏系数;③写出傅氏级数,并注明它在何处收敛于 f ( x) .。
无穷级数内容小结
1.数项级数:∑∞=1n nu,称∑==ni kn us 1为前n 项部分和。
若存在常数 s,使n n s s ∞→=lim ,则称级数收敛,s 为该级数的和;否则级数发散。
2.数项级数性质:1)∑∞=1n nCu=C∑∞=1n nu;2)若级数∑∞=1n nu,∑∞=1n nv收敛于σ,s ,则级数∑∞=±1n n nv u收敛于σ±s ;3)级数中去掉,增加或改变有限项,敛散性不变;4)收敛级数任意加括号所得的级数仍收敛,且其和不变。
5)若级数∑∞=1n nu收敛,必有0lim =∞→n n u3.两个重要级数:1)几何级数:∑∞=-11n n aq= +++++-12n aqaq aq a (0≠a )若,1<q 级数收敛,其和为qa-1,若,1≥q 级数发散。
2)p 级数:∑∞=11n p n = +++++pp p n 131211(p>0) 若p>1,级数收敛;若1≤p ,级数发散;当p=1时,调和级数∑∞=11n n发散。
4.正项级数审敛法:对一切自然数n,都有0≥n u ,称级数∑∞=1n nu为正项级数方法:1)比较审敛法:设∑∞=1n nu和∑∞=1n nv都是正项级数,且n n v u ≤(n=1,2,…)若级数∑∞=1n nv收敛,则级数∑∞=1n nu收敛;若级数∑∞=1n n u 发散,则∑∞=1n n v 发散。
2)比较审敛法的极限形式:若l v u nnn =∞→lim )0(+∞<<l ,则∑∞=1n n u 和∑∞=1n nv 同时收敛或同时发散。
3)比值审敛法:若ρ=+∞→n n n u u 1lim ,则若p<1,级数收敛;若1>p )lim (1∞=+∞→nn n u u包括,级数发散;当p=1时,级数可能收敛,也可能发散。
4根值审敛法:若ρ=∞→n n n u lim ,则若p<1,级数收敛;若1>p )lim (∞=∞→n n n u 包括,级数发散;当p=1时,级数可能收敛,也可能发散。
级数知识点总结
第十二章 无穷级数一、 常数项级数 1、 常数项级数:1) 定义和概念:无穷级数: +++++=∑∞=n n n u u u u u 3211部分和:n nk k nu u u u u S ++++==∑= 3211正项级数:∑∞=1n nu,0≥n u级数收敛:若SS n n =∞→lim 存在,则称级数∑∞=1nn u 收敛,否则称级数∑∞=1n n u 发散 2)性质:改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛两个收敛级数的和差仍收敛,级数∑∞=1n n a ,∑∞=1nn b 收敛,则∑∞=±1)(nn n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散.去掉、加上或改变级数有限项 不改变其收敛性级数∑∞=1nn a 收敛,则任意加括号后仍然收敛; 若级数收敛 则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散 则原来级数也发散 注:收敛级数去括号后未必收敛.必要条件:级数∑∞=1nn u 收敛⇒0lim =∞→n n u .(注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数 表达式:∑∞=1nn u ,0≥n u )SS n n =∞→lim 前n 项和存在极限则收敛;∑∞=1n nu收敛⇔{}nS 有界;比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.比较法的极限形式:)0( l lim +∞<≤=∞→l v u nn n ,而∑∞n v 收敛,则∑∞n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞n v 发散,则∑∞nu 发散. 比值法: l u u nn n =+∞→1lim,当:1<l 时,级数∑=1n n u 收敛;1>l 时,级数∑=1n n u 发散;1=l 时,级数∑=1n n u 可能收敛也可能发散.2、 交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n nu ,0≥nu 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果
lim
n→∞
nun
=
l
>
0(或
lim
n→∞
nun
=
+∞)
,
∞
则级数 ∑un n=1
发散;
如果
p
>
1,而
lim
n→∞
n
pun
= l (0 ≤ l
< +∞) ,
∞
则级数 ∑un n=1
收敛.
常用级数
∑ 1) 几何级数
∞
aq n (a ≠ 0) ;当 q < 1 时 级数收敛于
a
当 q ≥ 1 时 级数发散
n=1
(1) un ≥ un+1(n = 1, 2, 3,...);
(2)
lim
n→∞
un
=
0
,
则级数收敛, 且其和 s ≤ u1 ,其余项 rn 的绝对值 rn ≤ un+1 .
2.绝对收敛与条件收敛
高等数学(赵)
-4-
高等数学阶段小结
第十二章 无穷级数
∞
∞
若级数 ∑|un | 收敛, 则称级数 ∑un 绝对收敛;
n=0
n=0
n=0
∞
∞
乘法: ( ∑anxn)⋅( ∑bnxn) = a0b0 + (a0b1 + a1b0 )x + (a0b2 + a1b1 + a2b0 )x2 + ...
n=0
n=0
+ (a0bn + a1bn−1 + ... + anb0 )xn + ...
∞
性质 1 幂级数 ∑anxn 的和函数 s(x) 在其收敛域 I 上连续. 如果幂级数在 x = R (或 x = −R )也收敛, 则 n=0
∞
∑ 定理(阿贝尔定理) 如果幂级数 an xn 当 x = x0 (x0 ≠ 0) 时收敛, 则适合不等式 x < x0 的一切 x 使这幂 n =1
∞
∑ 级数绝对收敛. 反之, 如果 an xn 当 x = x0 时发散, 则适合不等式 x < x0 的一切 x 使这幂级数发散. n =1
∞
推论 如果级数 ∑anxn 不是仅在点 x = 0 一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的 n=0
2!
n!
此级数称为 f (x) 的麦克劳林级数.
定理(函数展开成泰勒级数的充分必要条件) 设函数 f (x) 在点 x0 的某一邻域U (x0 ) 内具有各阶导数, 则
f (x) 在该邻域内能展开成泰勒级数的充分必要条件是 f (x) 的泰勒公式中的余项 Rn (x) 当 n → ∞ 时的极
限为零, 即
n=1
高等数学(赵)
-1-
高等数学阶段小结
第十二章 无穷级数
∞
∑un = u1+u2 +u3 + ⋅ ⋅ ⋅ +un + ⋅ ⋅ ⋅
n=1
n
∞
其中第 n 项 un 叫做级数的一般项. sn = ∑ui = u1+u2 +u3 + ⋅ ⋅ ⋅ +un 称为级数 ∑un 的部分和.
i=1
n=1
∞
∞
如果级数 ∑un 的部分和数列{sn}有极限 s ,
f
′′(x0) 2!
(x
−
x0)2
+
f
′′′(x0) 3!
(x
−
x0)3
+
⋅
⋅
⋅
+
f
(n)(x0) n!
(x
−
x0)n
+
⋅
⋅
⋅
这一幂级数称为函数 f (x) 在点 x0 的泰勒级数.
在泰勒级数中取 x0 = 0 , 得
f (0)+ f ′(0)x + f ′′(0) x2 + ⋅ ⋅ ⋅ + f (n)(0) xn + ⋅ ⋅ ⋅ ,
n=1
n=1
rn = s − sn = un+1 + un+2 + ...
∞
叫做级数 ∑un 的余项.
n=1
2.性质
∞
∞
性质 1 如果级数 ∑un 收敛于和 s , 则它的各项同乘以一个常数 k 所得的级数 ∑kun 也收敛, 且其和
n=1
n=1
为 ks .
∞
∞
∞
性质 2 如果级数 ∑un 、 ∑vn 分别收敛于和 s 、σ , 则级数 ∑(un ±vn) 也收敛, 且其和为 s ± σ .
敛半径 R = +∞ , 这时收敛域为 (−∞,+∞) .
定理(收敛半径的求法)
如果 lim | an+1 |= ρ , n→∞ an
其中 an
∞
an+1 是幂级数 ∑anxn 的相邻两项的系数, 则这幂 n=0
级数的收敛半径
2.幂级数的运算
⎧ +∞
R
=
⎪⎪ ⎨
⎪⎪⎩
1 ρ
0
ρ =0 ρ≠0 . ρ = +∞
n=1
n=1
∞
∞
∞
∞
若 ∑vn 收敛, 则 ∑un 收敛; 若 ∑un 发散, 则 ∑vn 发散.
n=1
n=1
n=1
n=1
∞
∞
∑ ∑ 推论: 设 un 和 vn 都是正项级数, 且 un ≤ kvn (k > 0,∀n ≥ N ). 那么
n =1
n =1
∞
∞
∞
∞
∑ ∑ ∑ ∑ 若级数 vn 收敛,则级数 un 收敛; 反之, 若级数 un 发散, 则级数 vn 发散.
幂级数
∞
∑
an
xn
的收敛域是
(−
R,
R)(或[
−
R,
R
)
(−R, R]
[−R, R]之一).
n=0
∞
∞
规定: 若幂级数 ∑anxn 只在 x = 0 收敛, 则收敛半径 R = 0 ;若幂级数 ∑anxn 对一切 x 都收敛, 则收
n=0
n=0
高等数学(赵)
-5-
高等数学阶段小结
第十二章 无穷级数
(
x
<
R)
,
n=0
n=0
n=1
逐项求导后所得到的幂级数和原级数有相同的收敛半径.
3.函数展开成幂级数
1)泰勒级数
泰勒级数 如果 f (x) 在点 x0 的某邻域内具有各阶导数 f ′(x), f ′′(x, ) ,⋅…, f (n) (x) , ⋅ ⋅ ⋅ 则
f (x0)+ f ′(x0)(x− x0)+
和函数 s(x) 在 (− R, R](或 [− R, R))连续.
∞
性质 2 幂级数 ∑anxn 的和函数 s(x) 在其收敛域 I 上可积, 并且有逐项积分公式 n=0
∫0x s(x)dx
=
∫0x
∞
( ∑ an
n=0
xn)dx
=
∑∫∞ x
n=0 0
an
xndx
=
∞
∑
n=0
an n +1
xn+1
(x ∈
n=1
n=1
n=1
性质 3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.
∞
性质.4 如果级数 ∑un 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.
n=1
∞
性质 5
如果 ∑un 收敛,
n=1
则它的一般项 un 趋于零,
即 nli→m0un =0 (级数收敛的必要条件)
n=1
即
lim
n→∞
sn
=
s
,
则称无穷级数 ∑un 收敛,
n=1
极限 s 叫做这级
∞
数的和, 并写成 s = ∑un = u1+u2 +u3 + ⋅ ⋅ ⋅ +un + ⋅ ⋅ ⋅
n=1
∞
如果{sn} 没有极限, 则称无穷级数 ∑un 发散.
n=1
∞
∞
当级数 ∑un 收敛时, 其部分和 sn 是级数 ∑un 的和 s 的近似值, 它们之间的差值
10.掌握 e x ,sin x ,cos x ,ln(1 + x) 和 (1 + x)m 的麦克劳林展开式,会用它们将一些简单函数间
接展开成幂级数。 11.了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[l,l]上的函数展
开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表 达式。
∞
定理.5(根植审敛法,柯西判别法)* 设 ∑un 为正项级数, 如果
n=1
高等数学(赵)
-3-
高等数学阶段小结
第十二章 无穷级数
lim n
n→∞
un
=
ρ
,
则当 ρ < 1 时级数收敛;
当ρ >1
(或
lim
n→∞
n
un
=
+∞
)时级数发散;
当 ρ = 1 时级数可能收敛也可能发
散.
∞
定理.6(极限审敛法) 设 ∑un 为正项级数, 那么 n=1
n =1
n =1
n =1
n =1
∞
∞
∑ ∑ 定理 3(比较审敛法的极限形式) 设 un 和 vn 都是正项级数, 那么