人教新课标版数学高一-必修1课时作业.2补集及综合应用

合集下载

高中数学人教版(新教材)必修1课时作业4:§1.3 第2课时 补 集

高中数学人教版(新教材)必修1课时作业4:§1.3 第2课时 补 集

第2课时补集1.设全集U={x|x≥0},集合P={1},则∁U P等于()A.{x|0≤x<1或x>1} B.{x|x<1}C.{x|x<1或x>1} D.{x|x>1}答案 A解析因为U={x|x≥0},P={1},所以∁U P={x|x≥0且x≠1}={x|0≤x<1或x>1}.2.已知集合U={1,2,3,4,5,6,7},A={3,4},B={6,7},则(∁U B)∩A等于()A.{1,6} B.{1,7}C.{3,4} D.{3,4,5}答案 C解析∵U={1,2,3,4,5,6,7},A={3,4},B={6,7},∴∁U B={1,2,3,4,5},∴(∁U B)∩A={3,4}.3.集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)等于()A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2} D.{x|1≤x≤2}答案 D解析由A={x|-1≤x≤2},B={x|x<1}可知∁R B={x|x≥1}.∴A∩(∁R B)={x|1≤x≤2}.4.设全集U为实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是全集U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}答案 A解析阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1}.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1B.2C.3D.4答案 B解析A={1,2},B={2,4},所以A∪B={1,2,4},则∁U(A∪B)={3,5},共有2个元素.6.设全集U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________.答案{x|0<x≤1}解析∵U=R,B={x|x>1},∴∁U B={x|x≤1}.又∵A={x|x>0},∴A∩(∁U B)={x|x>0}∩{x|x≤1}={x|0<x≤1}.7.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为________.答案 4解析∵U=R,A={x|0<x<9},∴∁U A={x|x≤0或x≥9},又∵B={x∈Z|-4<x<4},∴(∁U A)∩B={x∈Z|-4<x≤0}={-3,-2,-1,0},共4个元素.8.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.答案 2解析∵A={x|1≤x<a},∁U A={x|2≤x≤5},∴A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,∴a=2.9.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A).解(1)如图①.A∩B={x|0≤x<5}.(2)如图①.A∪B={x|-5<x<7}.(3)如图②.∁U B ={x |x <0或x ≥7},∴A ∪(∁U B )={x |x <5或x ≥7}.(4)如图③.∁U A ={x |x ≤-5或x ≥5},∴B ∩(∁U A )={x |5≤x <7}.10.设全集U =R ,M ={x |3a <x <2a +5},P ={x |-2≤x ≤1},若M ∁U P ,求实数a 的取值范围.解 ∁U P ={x |x <-2或x >1},∵M ∁U P ,∴分M =∅,M ≠∅两种情况讨论.(1)M ≠∅时,如图可得⎩⎪⎨⎪⎧ 3a <2a +5,2a +5≤-2或⎩⎪⎨⎪⎧3a <2a +5,3a ≥1,∴a ≤-72或13≤a <5.(2)M =∅时,应有3a ≥2a +5⇒a ≥5.综上可知,a ≤-72或a ≥13.11.定义差集A -B ={x |x ∈A ,且x ∉B },现有三个集合A ,B ,C 分别用圆表示,则集合C -(A -B )可表示下列图中阴影部分的为( )答案 A解析 如图所示,A -B 表示图中阴影部分,故C-(A-B)所含元素属于C,但不属于图中阴影部分.12.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k∈R},且B∩(∁U A)≠∅,则()A.k<0或k>3 B.2<k<3C.0<k<3 D.-1<k<3答案 C解析∵A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.若B∩(∁U A)=∅,则k+1≤1或k≥3,即k≤0或k≥3,∴若B∩(∁U A)≠∅,则0<k<3.13.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为________.答案{x|-2≤x<1}解析由题意知M∪N={x|x<-2或x≥1},阴影部分所表示的集合为∁U(M∪N)={x|-2≤x<1}.14.设全集U=R,集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案{a|a≤1}解析因为A={x|x>1},B={x|x>a},所以∁U A={x|x≤1},由(∁U A)∪B=R,可知a≤1.15.设U为全集,对集合X,Y,定义运算“*”:X*Y=∁U(X∩Y).对于任意集合X,Y,Z,则(X*Y)*Z等于()A.(X∪Y)∩∁U Z B.(X∩Y)∪∁U ZC.(∁U X∪∁U Y)∩Z D.(∁U X∩∁U Y)∪Z答案 B解析 依题意得X *Y =∁U (X ∩Y ),(X *Y )*Z =∁U 『(X *Y )∩Z 』=∁U 『∁U (X ∩Y )∩Z 』={∁U 『∁U (X ∩Y )』}∪(∁U Z )=(X ∩Y )∪(∁U Z ).16.某校向50名学生调查对A ,B 事件的态度,有如下结果:赞成A 的人数是这50名学生的35,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的13多1人.你能说出对A ,B 都赞成的学生和都不赞成的学生各有多少人吗?解 已知赞成A 的人数为50×35=30,赞成B 的人数为30+3=33,记50名学生组成的集合为U ,赞成A 的学生全体为集合A ,赞成B 的学生全体为集合B .设对A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为x 3+1, 赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .用Venn 图表示如图所示.依题意(30-x )+(33-x )+x +⎝⎛⎭⎫x 3+1=50,解得x =21.故对A ,B 都赞成的学生有21人,都不赞成的有8人.。

人教新课标版数学高一-A版必修一课时训练.2补集及综合应用

人教新课标版数学高一-A版必修一课时训练.2补集及综合应用

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时达标训练1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合U(A∪B)= ( ) A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【解析】选D.因为A={x|x≤0},B={x|x≥1},所以A∪B={x|x≤0或x≥1},所以U(A∪B)={x|0<x<1}.2.全集U={0,1,3,5,6,8},集合A={1,5,8},B={2},则集合(UA)∪B= ( )A.{0,2,3,6}B.{0,3,6}C.{2,1,5,8}D.∅【解析】选A.U A={0,3,6},所以(UA)∪B={0,2,3,6}.3.已知全集U=R,M={x|-1<x<1},UN={x|0<x<2},那么集合M∪N=________.【解析】因为U=R,UN={x|0<x<2},所以N={x|x≤0或x≥2},所以M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.答案:{x|x<1或x≥2}4.已知全集U=R,集合A={x|-1<x<4},B={x|0<x<5},则A∩(UB)=________.【解析】因为U B={x|x≤0或x≥5},故A∩(UB)={x|-1<x<4}∩{x|x≤0或x≥5}={x|-1<x≤0}.答案:{x|-1<x≤0}5.设全集U={1,2,x2-2},A={1,x},求UA.【解析】若x=2,则x2-2=2,U={1,2,2},与集合中元素的互异性矛盾,故x≠2,从而x=x2-2,解得x=-1或x=2(舍去).故U={-1,1,2},A={-1,1},则UA={2}.关闭Word文档返回原板块。

高中数学人教版(新教材)必修1教学设计1:1.3 第2课时 补 集

高中数学人教版(新教材)必修1教学设计1:1.3 第2课时 补 集

1.3 第2课时补集教学目标1.理解补集的概念.2.准确翻译和使用补集符号和Venn 图.3.会求补集,并能解决一些集合的综合运算问题.教学知识梳理知识点一 补 集 自然语言对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作∁U A 集合语言∁U A ={x |x ∈U ,且x ∉A }图形语言性质①A ∪(∁U A )=U ,A ∩(∁U A )=∅; ②∁U U =∅,∁U ∅=U 题型一 补集的运算例1 (1)已知全集U ={a ,b ,c },集合A ={a },则∁U A 等于( )A.{a ,b }B.{a ,c }C.{b ,c }D.{a ,b ,c } 『答案』C『解析』∁U A ={}x |x ∈U 且x ∉A ={}b ,c .(2)若全集U ={x ∈R |-2≤x ≤2},A ={x ∈R |-2≤x ≤0},则∁U A 等于( )A.{x |0<x <2}B.{x |0≤x <2}C.{x |0<x ≤2}D.{x |0≤x ≤2}『答案』C『解析』∵U ={x ∈R |-2≤x ≤2},A ={x ∈R |-2≤x ≤0},∴∁U A ={x |0<x ≤2},故选C.反思感悟 求集合的补集,需关注两处:一是确认全集的范围;二是善于利用数形结合求其补集,如借助Venn 图、数轴、坐标系来求解.跟踪训练1 (1)设集合U ={1,2,3,4,5},集合A ={1,2},则∁U A =________.『答案』{3,4,5}(2)已知全集U ={a ,b ,c ,d ,e },集合A ={b ,c ,d },B ={c ,e },则(∁U A )∪B 等于( )A.{b ,c ,e }B.{c ,d ,e }C.{a ,c ,e }D.{a ,c ,d ,e }『答案』C『解析』∁U A ={a ,e },(∁U A )∪B ={a ,c ,e }.(3)若全集U =R ,集合A ={x |1<x ≤3},则∁U A 等于( )A.{x |x <1或x ≥3}B.{x |x ≤1或x >3}C.{x |x <1或x >3}D.{x |x ≤1或x ≥3}『答案』B『解析』U =R ,∁U A ={x |x ≤1或x >3}.题型二 补集的应用例2 (1)设全集U ={1,3,5,7},集合M ={1,|a -5|},∁U M ={5,7},则a 的值为________. 『答案』2或8『解析』由U ={1,3,5,7},M ={1,|a -5|},∁U M ={5,7}知M ={1,3}.∴|a -5|=3,∴a =8或2.(2)已知A ={0,2,4,6},∁U A ={-1,-3,1,3},∁U B ={-1,0,2},用列举法写出集合B . 解 ∵A ={0,2,4,6},∁U A ={-1,-3,1,3},∴U ={-3,-1,0,1,2,3,4,6}.而∁U B ={-1,0,2},∴B =∁U (∁U B )={-3,1,3,4,6}.反思感悟 从Venn 图的角度讲,A 与∁U A 就是圈内和圈外的问题,由于(∁U A )∩A =∅,(∁U A )∪A =U ,所以可以借助圈内推知圈外,也可以反推.跟踪训练2 (1)已知集合A ={x |x ≥1},B ={x |x >2a +1},若A ∩(∁R B )=∅,则实数a 的取值范 围是_____________.『答案』{a |a <0}『解析』∁R B ={x |x ≤2a +1}.由A ∩(∁R B )=∅,∴2a +1<1,∴a <0.(2)设全集U ={0,1,2,3},集合A ={x |x 2+mx =0},若∁U A ={1,2},则实数m =________. 『答案』-3『解析』∵U ={0,1,2,3},∁U A ={1,2},∴A ={0,3}.∴0,3是x 2+mx =0的两个根,∴m =-3.题型三 集合的综合运算例3 (1)已知全集U ={}1,2,3,4,5,6,集合P ={}1,3,5,Q ={}1,2,4,则(∁U P )∪Q 等于( )A.{}1B.{}3,5C.{}1,2,4,6D.{}1,2,3,4,5『答案』C『解析』∵∁U P ={}2,4,6,∴(∁U P )∪Q ={}1,2,4,6.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 『答案』{a |a ≥2}『解析』∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R ,∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集合混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练3 (1)已知M ,N 为集合I 的非空真子集,且M ≠N ,若N ∩(∁I M )=∅,则M ∪N 等于( )A.MB.NC.ID.∅『答案』A『解析』如图所示,因为N ∩(∁I M )=∅,所以N ⊆M ,所以M ∪N =M .(2)设集合A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},A ∩B ={2}.①求a 的值及A ,B ;②设全集U =A ∪B ,求(∁U A )∪(∁U B );③设全集U =A ∪B ,写出(∁U A )∪(∁U B )的所有子集.解 ①因为A ∩B ={2},所以2∈A ,且2∈B ,代入可求得a =-5,所以A ={x |2x 2-5x +2=0}=⎩⎨⎧⎭⎬⎫12,2,B ={x |x 2+3x -10=0}={-5,2}. ②由①可知U =⎩⎨⎧⎭⎬⎫-5,12,2,所以∁U A ={-5},∁U B =⎩⎨⎧⎭⎬⎫12, 所以(∁U A )∪(∁U B )=⎩⎨⎧⎭⎬⎫-5,12. ③由②可知(∁U A )∪(∁U B )的所有子集为∅,{-5},⎩⎨⎧⎭⎬⎫12,⎩⎨⎧⎭⎬⎫-5,12. 核心素养之数学运算根据补集的运算求参数典例 (1)设全集U ={3,6,m 2-m -1},A ={|3-2m |,6},∁U A ={5},求实数m . 解 ∵∁U A ={5},∴5∈U 且5∉A ,∴⎩⎪⎨⎪⎧m 2-m -1=5,|3-2m |≠5, 由m 2-m -1=5,得m 2-m -6=0,∴m =-2或m =3.①当m =-2时,|3-2m |=7≠5,此时U ={3,5,6},A ={6,7},不符合要求,舍去;②当m =3时,|3-2m |=3,此时,U ={3,5,6},A ={3,6}满足∁U A ={5}.综上所述m =3.(2)已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1},且A ⊆(∁U B ),求实数a 的取值范围.解 若B =∅,则a +1>2a -1,即a <2,此时∁U B =R ,所以A ⊆(∁U B ).若B ≠∅,则a +1≤2a -1,即a ≥2,此时∁U B ={x |x <a +1或x >2a -1},又A ⊆(∁U B ),所以a +1>5或2a -1<-2,所以a >4或a <-12(舍去). 所以实数a 的取值范围为{a |a <2或a >4}.『素养评析』(1)由集合的补集求解参数的方法①有限集:由补集求参数问题,若集合中元素个数有限时,可利用补集定义并结合集合知识求解.②无限集:与集合交、并、补运算有关的求参数问题,若集合中元素有无限个时,一般利用数轴分析法求解.(2)理解运算对象,掌握运算法则,选择运算方法,求得运算结果,充分体现了数学运算的数学核心素养.课堂小结1.全集与补集的互相依存关系(1)补集是集合之间的一种运算.求集合A 的补集的前提是A 是全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A 的数学意义包括两个方面:首先必须具备A ⊆U ;其次是定义∁U A ={x |x ∈U ,且x ∉A },补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U ,求子集A ,若直接求A 困难,可先求∁U A ,再由∁U (∁U A )=A ,求A .达标检测1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.UB.{1,3,5}C.{3,5,6}D.{2,4,6}『答案』C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4}B.{3,4}C.{3}D.{4}『答案』D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}『答案』C4.设集合U={0,1,2,3,4},M={1,2,4},N={2,3},则(∁U M)∪N=________.『答案』{0,2,3}5.设全集U=Z,A={x∈Z|x<4},B={x∈Z|x≤2},则∁U A与∁U B的关系是________. 『答案』∁U A∁U B『解析』∁U A={4,5,6,…},∁U B={3,4,5,6,…},∴∁U A∁U B.。

人教新课标版数学高一必修1测评第2课时补集及综合应用

人教新课标版数学高一必修1测评第2课时补集及综合应用

学业分层测评(五)(建议用时:45分钟)[学业达标]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个【解析】A={0,1,3},真子集有23-1=7.【答案】C2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【解析】由题意可知,A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x <1}.【答案】D3.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}【解析】由题意得∁U B={2,5,8},∴A∩(∁U B)={2,3,5,6}∩{2,5,8}={2,5}.【答案】A4.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图1-1-3中的阴影部分表示的集合为()图1-1-3A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}【解析】全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},由Venn图可知阴影部分表示的集合为(∁U A)∩B,∵∁U A={4,6,7,8}.∴(∁U A)∩B={4,6}.故选B.【答案】B5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤2 B.a<1C.a≥2 D.a>2【解析】∵集合A={x|x<a},B={x|1<x<2},∴∁R B={x|x≤1,或x≥2}.因为A∪(∁R B)=R,所以a≥2,故选C.【答案】C二、填空题6.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.【解析】∵U=R,∁U N={x|0<x<2},∴N={x|x≤0,或x≥2},∴M∪N={x|-1<x<1}∪{x|x≤0,或x≥2}={x|x<1,或x≥2}.【答案】{x|x<1,或x≥2}7.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)=________.【解析】∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3},又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩(∁U B)={3}.【答案】{3}8.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.【解析】∁U A={x|x<0},∁U B={y|y<1}={x|x<1}.∴∁U A⊆∁U B.【答案】∁U A⊆∁U B三、解答题9.已知集合U={1,2,3,4,5},若A∪B=U,A∩B=∅,且A∩(∁U B)={1,2},试写出满足上述条件的集合A,B.【解】∵A∪B=U,A∩B=∅,∴A=∁U B,又A∩∁U B={1,2},∴A={1,2},∴B={3,4,5}.10.设全集为R,A={x|3≤x<7},B={x|2<x<10},求:(1)A∩B;(2)∁R A;(3)∁R(A∪B).【解】(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∩B={x|3≤x<7}.(2)又全集为R,A={x|3≤x<7},∴∁R A={x|x<3,或x≥7}.(3)∵A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2,或x≥10}.[能力提升]1.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于() A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)【解析】 ∵全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},∴M ∪N ={1,2,3,4},则(∁U M )∩(∁U N )=∁U (M ∪N )={5,6}.故选D.【答案】 D2.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B)中元素个数为( )A .1B .2C .3D .4【解析】 ∵A ={1,2},∴B ={2,4},∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}.【答案】 B3.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________.【解析】 ∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.【答案】 -1或24.设全集U =R ,集合A ={x |x ≤-2,或x ≥5},B ={x |x ≤2}.求(1)∁U (A ∪B );(2)记∁U (A ∪B )=D ,C ={x |2a -3≤x ≤-a },且C ∩D =C ,求a 的取值范围.【解】 (1)由题意知,A ={x |x ≤-2,或x ≥5},B ={x |x ≤2},则A ∪B ={x |x ≤2,或x ≥5},又全集U =R ,∁U (A ∪B )={x |2<x <5}.(2)由(1)得D ={x |2<x <5},由C ∩D =C 得C ⊆D ,①当C =∅时,有-a <2a -3,解得a >1.②当C ≠∅时,有⎩⎪⎨⎪⎧ 2a -3≤-a ,2a -3>2,-a <5,解得a ∈∅.综上,a的取值范围为{a|a>1}.。

人教新课标版数学高一-数学必修1练习集合的基本运算—补集

人教新课标版数学高一-数学必修1练习集合的基本运算—补集

课时作业 5一、选择题1.设全集U={a,b,c,d},集合M={a,c,d},N={b,d},则(∁U M)∩N等于() A.{b} B.{d}C.{a,c} D.{b,d}解析:由题意可知,∁U M={b},∴(∁U M)∩N={b},选A.答案:A2.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}解析:∵M∩(∁U N)={2,4},∴2,4∈M且2,4∉N,又∵M∪N={1,2,3,4,5},∴N={1,3,5},选B.答案:B3.[2014·杭州七校高一联考]已知全集U={-1,1,3},集合A={a+2,a2+2},且∁U A ={-1},则a的值是()A.-1 B.1C.3 D.±1解析:由A∪(∁U A)=U,可知A={1,3},又∵a2+2≥2,∴a+2=1且a2+2=3.解得a=-1,故选A.答案:A4.如下图,U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁U S )D .(M ∩P )∪(∁U S )解析:由题图不难判断阴影部分位于M ∩P 中,但不在S 中,故阴影部分表示的集合为(M ∩P )∩(∁U S ),选C.答案:C二、填空题5.有15人进入家电超市,其中有9人买了电视机,有7人买了电脑,两种均买的有3人,则这两种均没买的有________人.解析:设这15人构成全集U ,买电视机的9人构成集合A ,买电脑的7人构成集合B ,用Venn 图表示,如图所示,则两种均没买的有15-(9-3)-3-(7-3)=2(人). 答案:26.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.解析:∵∁R B ={x |x ≤1或x ≥2},又A ={x |x <a },且A ∪(∁R B )=R ,∴a ≥2. 答案:{a |a ≥2}7.已知集合U ={(x ,y )|y =3(x -1)+2},A ={(x ,y )|y -2x -1=3},则∁U A =________.解析:∵A ={(x ,y )|y =3(x -1)+2,x ≠1}.又当x =1时,由y =3(x -1)+2得y =2,∴∁U A ={(1,2)}.答案:{(1,2)} 三、解答题8.设集合U ={2,3,a 2+2a -3},A ={|2a -1|,2}, ∁U A ={5},求实数a 的值.解:此时只可能a 2+2a -3=5,易得a =2或-4. 当a =2时,A ={2,3},符合题意;当a=-4时,A={9,3},不符合题意,舍去.故a=2.9.已知集合U={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4,5,6},B={5,6,7,8,9,10}.(1)求(∁U A)∩(∁U B),∁U(A∪B),(∁U A)∪(∁U B),∁U(A∩B);(2)从(1)的计算结果,能发现什么规律?画图验证.解:(1)(∁U A)∩(∁U B)={7,8,9,10}∩{1,2,3,4}=∅,∁U(A∪B)=∅,(∁U A)∪(∁U B)={7,8,9,10}∪{1,2,3,4}={1,2,3,4,7,8,9,10},∁U(A∩B)={1,2,3,4,7,8,9,10}.(2)(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B).验证略.。

高中数学《补集及集合运算的综合应用》课件

高中数学《补集及集合运算的综合应用》课件

A.{x∈R|0<x<2} B.{x∈R|0≤x<2}
C.{x∈R|0<x≤2} D.{x∈R|0≤x≤2}
17
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 (1)因为集合 U={1,2,3,4,5,6},M={1,3,5},所 以∁UM={2,4,6}.
(2)借助数轴(如图)易得∁UA={x∈R|0<x≤2}.
18
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
探究2 交、并、补集的综合运算 例 2 已知全集 U={x|x≤4},集合 A={x|-2<x<3},B ={x|-3<x≤3}.求∁UA,A∩B,∁U(A∩B),(∁UA)∩B.
16
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
【跟踪训练 1】 (1)设集合 U={1,2,3,4,5,6},M=
{1,3,5},则∁UM=( )
A.{2,4,6}
B.{1,3,5}
C.{1,2,4}
D.U
(2)若全集 U={x∈R|-2≤x≤2},则集合 A={x∈R|-
2≤x≤0}的补集∁UA 为( )
6
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
2.做一做
(1)( 教 材 改 编 P11T4) 设 集 合 U = {1,2,3,4,5,6} , M =
{1,2,4},则∁UM 等于( )
A.U
B.{1,3,5}
C.{3,5,6} D.{2,4,6}

2020-2021学年高中数学新教材必修第一册(人教A版)课时练习 1.3.2 补集及综合应用(含解析)

2020-2021学年高中数学新教材必修第一册(人教A版)课时练习 1.3.2 补集及综合应用(含解析)

课时作业(四)补集及综合应用[练基础]1.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6,7},则(∁U S)∩T=()A.{2,4,7,8} B.{6,7,8}C.{1,3,5,6} D.{6,7}2.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6}.那么集合{2,7,8}是() A.A∪B B.A∩BC.(∁U A)∩(∁U B) D.(∁U A)∪(∁U B)3.设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}4.(多选)设集合P={1,2,3},Q={x|2≤x≤3},则下列结论中正确的是()A.P⊆Q B.P∩Q=PC.(P∩Q)⊆P D.(∁R Q)∩P≠∅5.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.6.已知U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则ab=________.[提能力]7.(多选)设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R},则下列选项中,满足A∩B =∅的实数a的取值范围可以是()A.{a|0≤a≤6} B.{a|a≤2或a≥4}C.{a|a≤0或a≥6} D.{a|a≥8}8.已知集合A={x|x2+mx+1=0},若A∩R≠∅,则实数m的取值范围为________.9.设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁I M)∩N;(2)记集合A=(∁I M)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若A∪B=A,求实数a 的取值范围.[战疑难]10.已知全集U=R,集合A={x|x≤-a-1},B={x|x>a+2},C={x|x<0或x≥4}都是U 的子集.若∁U(A∪B)⊆C,问这样的实数a是否存在?若存在,求出a的取值范围;若不存在,请说明理由.课时作业(四)补集及综合应用1.解析:∁U S={2,4,6,7,8},∴(∁U S)∩T={6,7}.答案:D2.解析:A∪B={1,3,4,5,6},排除A;A∩B={3},排除B;(∁U A)∩(∁B)=∁U(A∪B)={2,7,8},符合题意.U答案:C3.解析:B={x|x≥-1},∴A∪B={x|x>-3},∴∁U(A∪B)={x|x≤-3}.答案:D4.解析:集合P中1∉Q,故A错误;P∩Q={2,3},故B错误,C正确;∁R Q={x|x<2或x>3},(∁R Q)∩P={1}≠∅,故D正确.答案:CD5.解析:∵全集U={1,2,3,4,5,6,7,8,9},。

高一数学人教版必修1课时作业1.1.3.2 补集及集合运算的综合应用 Word版含解析

高一数学人教版必修1课时作业1.1.3.2 补集及集合运算的综合应用 Word版含解析

基础过关.已知={>},={>},则∁等于( ).{>} .{>} .{<≤}解析∵全集={>},={>},∴∁={<≤}.答案.(·天津高考)已知全集={,,,,,},集合={,,},集合={,,,},则集合∩∁=( ).{} .{,}.{,,} .{,,}解析由={,,,,,},={,,,},所以∁={,},故∩∁={,}.答案.(·重庆南开中学上学期期中)已知全集=,集合={,,,,},={∈≥},则右图中阴影部分所表示的集合为( ).{} .{,}.{,} .{,,}解析题图中阴影部分所表示的集合为∩∁,因为={,,,,},={∈≥},所以∁={<},所以∩(∁)={}.答案.已知全集(≠∅)和集合、、,且=∁,=∁,则集合与的关系是.解析=∁=∁(∁)=.答案=.设={,,,},={∈+=},若∁={,},则实数=.解析∵={,,,},∁={,},∴={,},又,是方程+=的两根,∴=-.答案-.设全集={是小于等于的素数},∩(∁)={,},(∁)∩={,},(∁)∩(∁)={,},求集合,.解∵={,,,,,,,},由题意,利用图如图所示:∴集合={,,,},={,,,}. .已知集合={,,-},={,+},是否存在实数,使得∪(∁)=?实数若存在,求出集合和;若不存在,说明理由.解假设存在,使∪(∁)=,∴.()若+=,则=符合题意.()若+=-,则=-不符合题意.∴存在=,使∪(∁)=,此时={,,-},={,}..已知集合={≤<},={<<},={<},全集为实数集.()求∪,(∁)∩;()若∩≠∅,求的取值范围.解()因为={≤<},={<<},所以∪={<<}.∁={<或≥},从而(∁)∩={<或≥}∩{<<}={<<或≤<}.()如图所示,当>时,∩≠∅.能力提升.(·温州十校联合体上学期期中)已知全集={-,,},集合={+,+},且∁={-},则的值是( ).-.±解析因为={-,,},∁={-},所以={,},又因为+≥,所以+=且+=,得=-.答案.设全集={(,)∈,∈},集合={(,)-+>},={(,)+-≤},若点(,)∈∩(∁),则下列选项正确的是( )。

数学高一必修1 第一章3.2 全集与补集 课时作业

数学高一必修1 第一章3.2 全集与补集 课时作业

[学业水平训练]1.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁U A)=()A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}解析:选B.∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5},∴B∩(∁U A)={2,3,4}∩{3,4,5}={3,4}2.(2014·大连高一检测)如果S={1,2,3,4,5},M={1,3,4},N={2,4,5},那么(∁S M)∩(∁S N)等于()A.∅B.{1,3}C.{4} D.{2,5}解析:选A.法一:∁S M={2,5},∁S N={1,3},(∁S M)∩(∁S N)={2,5}∩{1,3}=∅.法二:M∪N={1,2,3,4,5},(∁S M)∩(∁S N)=∁S(M∪N)=∅.3.设全集U={x∈N|0<x<9},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6}C.{1,3,5} D.{4,6,7,8}解析:选B.由已知U={1,2,3,4,5,6,7,8},显然,阴影部分的元素属于集合B而不属于集合A,所以阴影部分表示集合A的补集和集合B的交集,即B∩∁U A={2,4,6}∩{4,6,7,8}={4,6},故选B.4.(2014·天津市渤海石油一中月考)设全集U={1,2,3,4},且集合M={x∈U|x2-5x+p =0},若∁U M={2,3},则实数p的值为()A.-4 B.4C.-6 D.6解析:选B.由全集U={1,2,3,4},∁U M={2,3}可知M={1,4},而M={x∈U|x2-5x+p =0},所以1,4为方程x2-5x+p=0的两根,由一元二次方程中根与系数的关系可得p=1×4=4,故选B.5.集合M={x|x<-2或x≥3},N={x|x-a≤0},若N∩(∁R M)≠∅(R为实数集),则a的取值范围是()A.{a|a≤3} B.{a|a>-2}C.{a|a≥-2} D.{a|-2≤a≤2}解析:选C.∁R M ={x |-2≤x <3},N ∩(∁R M )≠∅,如图,∴a ≥-2.6.下列命题:①∁U A ={x |x ∉A };②∁U ∅=U ;③若S ={三角形},A ={钝角三角形},则∁S A ={锐角三角形};④若U ={1,2,3},A ={2,3,4},则∁U A ={1}.其中正确命题的序号是________.解析:由定义∁U A ={x |x ∉A 且x ∈U },故①不正确;③中,三角形中除了钝角三角形、锐角三角形,还有直角三角形;④中,∁U A 存在的前提是A ⊆U .答案:②7.设全集U ={a ,b ,c ,d },集合A ={a ,b },B ={b ,c ,d },则(∁U A )∪(∁U B )=________. 解析:由题意得∁U A ={c ,d },∁U B ={a },∴(∁U A )∪(∁U B )={c ,d }∪{a }={a ,c ,d }. 答案:{a ,c ,d }8.如图,已知U ={1,2,3,4,5,6,7,8,9,10},集合A ={2,3,4,5,6,8},B ={1,3,4,5,7},C ={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.解析:∵A ∩C ={2,4,5,8},∁U B ={2,6,8,9,10},∴(A ∩C )∩(∁U B )={2,8}.答案:{2,8}9.已知全集U =R ,集合A ={x |-1≤x -1≤2},B ={x |x -a ≥0,a ∈R },若(∁U A )∩(∁U B )={x |x <0},(∁U A )∪(∁U B )={x |x <1或x >3},求a 的值.解:如图所示,由(∁U A )∩(∁U B )=∁U (A ∪B )={x |x <0},得A ∪B ={x |x ≥0},由(∁U A )∪(∁U B )=∁U (A ∩B )={x |x <1或x >3},得A ∩B ={x |1≤x ≤3}.∵A ={x |-1≤x -1≤2}={x |0≤x ≤3},∴B ={x |x ≥a }={x |x ≥1},∴a =1.10.(2014·温州高一检测)已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.解:(1)m =1时,B ={x |1≤x <4},A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3},当B =∅时,即m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ; 当B ≠∅时要使B ⊆∁R A ,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得:m >3. 综上所述,m 的取值范围是(-∞,-12]∪(3,+∞). [高考水平训练]1.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A (∩∁U B )=( )A .{3}B .{4}C .{3,4}D .∅解析:选A.∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.2.(2014·广东省中山一中月考)对任意两个集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M *N =(M -N )∪(N -M ),记M ={y |y ≥0},N ={y |-3≤y ≤3},则M *N =________.解析:由已知,M -N ={y |y >3},N -M ={y |-3≤y <0},所以M *N ={y |-3≤y <0或y >3}.答案:{y |-3≤y <0或y >3}3.设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆∁U M .求实数a 的取值范围.解:根据题意可知,N ≠∅,又因为N ⊆∁U M ,所以考虑集合M 有空集和非空集合两种情况讨论;若M =∅,则∁U M =R ,显然成立.于是有3a -1≥2a ,得a ≥1.若M ≠∅,则3a -1<2a ,有a <1.这时∁U M ={x |x ≤3a -1或x ≥2a },由N ⊆∁U M 得2a ≤-1或3a -1≥3,即a ≤-12或a ≥43. 又a <1,故a ≤-12. 综上所述有a ≥1或a ≤-12. 即a 的取值范围为{a |a ≥1或a ≤-12}. 4.对于集合A ,B ,我们把集合{(a ,b )|a ∈A ,b ∈B }记作A ×B .例如,A ={1,2},B ={3,4},则有A ×B ={(1,3),(1,4),(2,3),(2,4)},B ×A ={(3,1),(3,2),(4,1),(4,2)},A ×A ={(1,1),(1,2),(2,1),(2,2)},B ×B ={(3,3),(3,4),(4,3),(4,4)},据此,试回答下列问题:(1)已知C ={a },D ={1,2,3},求C ×D ;(2)已知A ×B ={(1,2),(2,2)},求集合A ,B ;(3)A 有3个元素,B 有4个元素,试确定A ×B 有几个元素.解:(1)C ×D ={(a,1),(a,2),(a,3)}.(2)∵A ×B ={(1,2),(2,2)},∴A ={1,2},B ={2}.(3)从以上解题过程中可以看出,A ×B 中元素的个数与集合A 和B 中的元素个数有关,即集合A中的任何一个元素与B中的每一个元素对应后,得到A×B中的一个新元素.若A 中有m个元素,B中有n个元素,则A×B中的元素应为(m×n)个.因此若A中有3个元素,B中有4个元素,则A×B中有3×4=12(个)元素.。

高中数学人教版(新教材)必修1教学设计2:1.3 第2课时 补集

高中数学人教版(新教材)必修1教学设计2:1.3 第2课时 补集

1.3 第2课时补集三维目标1.知识与技能(1)使学生参与并体会全集的必要性,理解集合的子集、补集的含义,会求补集;(2)能够应用Venn图和数轴表述集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法通过对全集补集概念、性质、规律的探究,不断提高学生抽象概括能力,培养数形结合能力,掌握归纳类比的方法.3.情感、态度与价值观(1)在参与数学学习的过程中,培养学生主动学习的意识;(2)在将所学知识系统化、条理化的基础上通过合作学习的形式,培养学生积极参与的主体意识;(3)在感受生活中集合实例的同时,让学生认识到数学的科学价值、应用价值.重点难点重点:补集概念的理解及初步应用.难点:全集的理解,补集应用中方法规律的探究.重难点的突破:结合学生的知识水平及认知特点,建议授课时以数集的扩充为切入点:如求方程x2-2=0在不同范围内的解,使学生初步明白范围设定的必要性,接着通过师生、生生的多方交流,对全集的概念有一个确切的认识.全集概念为本节课的难点之一,必要时,可通过多举实例加深概念理解.由于全集与补集相辅相成,理解了全集,补集概念的形成轻而易举.在概括出补集定义之后,引导学生类比交、并集得出补集的符号语言和图示语言两种表示形式,以形象直观的方式,加深对新知识的理解.由于求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,故可通过具体案例,采用固定集合A变换全集U的方式,让学生切实理解补集的运算,在突出重点的同时化解难点.素之间有什么关系?『提示』集合D包含集合A、B、C中的所有元素.(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.A={高一(2)班参加排球队的同学},B={高一(2)班没有参加排球队的同学},U={高一(2)班的同学}.1.集合A,B,U有何关系?『提示』U=A∪B.2.B中元素与U和A有何关系?『提示』B中元素在U中不在A中.教学案例例1(1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.『思路探究』(1)先结合条件,由补集的性质求出全集U,再由补集的定义求集合B,也可借助Venn求解.(2)利用补集的定义,借助于数轴的直观作用求解.『自主解答』(1)法一A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.法二借助Venn图,如图所示.由图可知B={2,3,5,7}.(2)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.『答案』(1){2,3,5,7}(2){x|x<-3或x=5}互动探究若把第(2)题的条件“U={x|x≤5}”换成“U={x|-6<x<6}”,求相应问题.『解』∵U={x|-6<x<6},A={x|-3≤x<5},∴∁U A ={x |-6<x <-3或5≤x <6}.例2设全集为R ,A ={x |3≤x <7},B ={x |2<x <10},求∁R (A ∪B )及(∁R A )∩B .『自主解答』把全集R 和集合A 、B 在数轴上表示如下:由图知,A ∪B ={x |2<x <10},∴∁R (A ∪B )={x |x ≤2,或x ≥10}.∵∁R A ={x |x <3,或x ≥7},∴(∁R A )∩B ={x |2<x <3,或7≤x <10}.变式训练已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}『解析』因为∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},所以(∁U A )∩(∁U B )={7,9}.『答案』B例3已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ≠⊂∁R B ,求a 的取值范围. 『自主解答』∁R B ={x |x ≤1,或x ≥2}≠∅,∵A ≠⊂∁R B ,∴分A =∅和A ≠∅两种情况讨论. (1)若A =∅,此时有2a -2≥a ,∴a ≥2;(2)若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1,或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a 的取值范围为{a |a ≤1,或a ≥2}.变式训练已知集合A ={x |x <a },B ={x |1<x <3},若A ∪∁R B =R ,求实数a 的取值范围.『解』∵B ={x |1<x <3},∴∁R B ={x |x ≤1或x ≥3},因而要使A ∪∁R B =R ,结合数轴分析(如图),可得a 的取值范围为{a |a ≥3}.因对补集的概念认识不到位致误典例.设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.『错解』∵∁U A ={5},∴5∈U 且5∉A ,∴a 2+2a -3=5,且|2a -1|≠5,解得a =2或a =-4,即实数a 的值是2或-4.『错因分析』上述求解的错误在于忽略验证“A ⊆U ”这一隐含条件.『防范措施』准确理解补集的概念是求解此类问题的关键.实际上∁U A 的数学意义包括两个方面,首先必须具备A ⊆U ,其次是定义∁U A ={x |x ∈U ,且x ∉A }.因此本题应先由5∈U 求出a 的值,再利用5∉A 验证a 的值是否合题意.『正解』法一 ∵∁U A ={5},∴5∈U 且5∉A ,∴a 2+2a -3=5,且|2a -1|≠5,解得a =2或a =-4.当a =2时,|2a -1|=3,A ={2,3},符合题意;而当a =-4时,A ={9,2},不是U 的子集.∴a 的取值是2.法二 ∵∁U A ={5},∴5∈U 且5∉A ,且|2a -1|=3.∴⎩⎪⎨⎪⎧a 2+2a -3=5|2a -1|=3. 解得a =2,即a 的取值是2.课堂小结1.求某一集合的补集的前提必须明确全集,同一集合在不同全集下的补集是不同的.2.补集作为一种思想方法,为我们研究问题开辟了新思路,在正向思维受阻时,改用逆向思维,若直接求A 困难,则使用“正难则反”策略,先求∁U A ,再由∁U (∁U A )=A ,求A .当堂达标1.设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( )A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅『解析』∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5}.『答案』B2.已知U ={0,1,2,3},A ={1,2},B ={0,1},则(∁U A )∪B =________.『解析』∵U ={0,1,2,3},A ={1,2},∴∁U A ={0,3},∴(∁U A )∪B ={0,1,3}.『答案』{0,1,3}3.已知全集为R ,集合A ={x |x <1,或x ≥5},则∁R A =________.『解析』如图所示,集合A ={x |x <1,或x ≥5}的补集是∁R A ={x |1≤x <5}.『答案』{x |1≤x <5}4.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0或x ≥52,求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).『解』将集合A ,B ,P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}. ∴∁U B ={x |x ≤-1,或x >3},又∵P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤0或x ≥52,∴(∁U B )∪P =⎩⎨⎧⎭⎬⎫x |x ≤0,或x ≥52,又∁U P =⎩⎨⎧⎭⎬⎫x |0<x <52, ∴(A ∩B )∩(∁U P )={x |-1<x <2}∩⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52={x |0<x <2}.。

【优质文档】2021届高中数学新人教版高中数学第一册补集及综合应用含解析

【优质文档】2021届高中数学新人教版高中数学第一册补集及综合应用含解析

①A∩B=?,对于集合 A 而言,分 A=?与 A≠?两种情况 . A=? 表示方程无实根.
②B={x|x<0} ,而 A∩B=?,故 A {x|x ≥0} ,即已知方程的根为 非负实根.
③Δ≥0 保证了 A≠?,即原方程有实根; x1+x2≥0 与 x1x2≥0 保 证了原方程两根非负. 如果两根都大于 1,则等价形式为
(1)画出数轴表示集合 A,根据补集的定义写出 ?UA. (2)画出 Venn图,逐个选项分析判断. (3)先结合条件,由补集的性质求出全集 U,再由补集的定义求出 集合 B,也可借助 Venn 图求解.
方法归纳 求补集的原则和方法
(1)一个基本原则. 求给定集合 A 的补集,从全集 U 中去掉属于集合 A 的元素后,由 所有剩下的元素组成的集合即为 A 的补集. (2)两种求解方法: ①若所给的集合是有关不等式的集合,则常借助于数轴,把已知 集合及全集分别表示在数轴上,然后再根据补集的定义求解,注意端 点值的取舍. ②若所给的集合是用列举法表示,则用 Venn 图求解. ,
x1- 1 + x2- 1 >0,
x1- 1 x2-1 >0,
x 1+ x 2>2, 而不是
x 1x 2 >1. ④由于 A ∩B≠?,故方程 x2-4x+2m+6=0 一定有解, 故我们还 可以设全集 U={m| Δ≥0} ={m|m ≤- 1} .此时, {m| -3≤m≤- 1} 关 于 U 的补集也是 {m|m< -3} ,结果相同.
所以 ?U(A∪B)={ x|0<x<1} .故选 D. 答案: D
3.如图所示, U 是全集, A,B 是 U 的子集,则阴影部分所表示
的集合是 ( )
A .A∩ B

人教版数学高一-必修一1.1.3.2 补集及综合应用 课后练习(教师版)

人教版数学高一-必修一1.1.3.2 补集及综合应用 课后练习(教师版)

(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=() A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}解析:由韦恩图知A={3,9},故选D.答案: D2.已知A={x|x-2<0},B={x|x+1>0},则(∁R A)∩B=()A.{x|x≥2} B.{x|x>-1}C.{x|-1<x<2} D.{x|x<2}解析:A={x|x<2},B={x|x>-1}∁R A={x|x≥2},∁R A∩B={x|x≥2},故选A.答案: A3.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1} B.{x|-2≤x≤3}C.{x|x≤2或x>3} D.{x|-2≤x≤2}解析:阴影部分所表示的集合为∁U(M∪N)=∁U{x|x<-2或x≥1}={x|-2≤x<1}.故选A. 答案: A4.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.a≤2 B.a<1C.a≥2 D.a>2解析:∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1}.如右图,若要A∪(∁R B)=R,必有a≥2.答案: C二、填空题(每小题5分,共10分)5.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.解析:∵S={x∈N|x<6}={0,1,2,3,4,5}.∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.答案:{0,1,3,4,5}6.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中的元素个数为________.解析:A={1,2},B={2,4},∴A∪B={1,2,4},∁U(A∪B)={3,5}答案: 2三、解答题(每小题10分,共20分)7.已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求:A∩B,A∪B,(∁U A)∩(∁U B),A∩(∁B),(∁U A)∪B.U解析:方法一:A∩B={4},A∪B={3,4,5,7,8}.∵∁U A={1,2,6,7,8},∁U B={1,2,3,5,6},∴(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.方法二:A∩B,A∪B,A∩∁U B求法同方法一,(∁U A)∩(∁U B)=∁U(A∪B)={1,2,6},(∁U A)∪B=∁U(A∩(∁U B))={1,2,4,6,7,8}.方法三:画出Venn图,如图所示,观察此图可得:A∩B={4},A∪B={3,4,5,7,8},(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7, 8}.8.已知U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},若(∁U A)∩B={2},(∁U B)∩A=4,求A ∪B .解析: 由(∁U A )∩B ={2},∴2∈B 且2∉A ,由A ∩(∁U B )={4},∴4∈A 且4∉B ,分别代入得{42+4p +12=022-5×2+q =0 ∴p =-7,q =6;∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.尖子生题库☆☆☆ 9.(10分)学校向50名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人,问对A ,B 都赞成的学生和都不赞成的学生各有多少人?解析: 赞成A 的人数为50×35=30,赞成B 的人数为30+3=33,如图所示.记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成学生人数为x 3+1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x ,依题意(30-x )+(33-x )+x +⎝⎛⎭⎫x 3+1=50,解得x =21.所以对A ,B 都赞成的学生有21人,都不赞成的有8人.。

人教新课标版数学高一人教A数学必修1作业 1-1-3-2补集及综合应用

人教新课标版数学高一人教A数学必修1作业 1-1-3-2补集及综合应用

课时作业(五)补集及综合应用一、选择题1.已知全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k∈R},且(∁U A)∩B≠∅,则实数k的取值范围为()A. {k|k<0或k>3}B. {k|2<k<3}C. {k|0<k<3}D. {k|-1<k<3}答案:C解析:∁U A={x|1<x<3},(∁U A)∩B≠∅,∴1<k<3或1<k+1<3.解得0<k<3.2.设全集U是实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}答案:C解析:∵图中阴影部分表示:x∈N且x∉M,∴x∈(N∩∁U M).又∁U M={x|-2≤x≤2},∴N∩∁U M={x|-2≤x<1}.故选A.3.已知U为全集,A,B,I都是U的子集,且A⊆I,B⊆I,则∁I(A∩B)=()A. {x∈U|x∉A,且x∉B}B. {x∈U|x∉A,或x∉B}C. {x∈I|x∉A,且x∉B}D. {x∈I|x∉A,或x∉B}答案:D解析:由题意知,A∩B={x|x∈A,且x∈B},所以∁I(A∩B)={x∈I|x∉A,或x∉B}.4.设全集U={1,3,5,7,9},集合A={1,|a-5|,9},∁U A={5,7},则a 的值是()A.2 B.8C.-2或8 D.2或8答案:D解析:∵A∪∁U A=U,∴|a-5|=3,∴a=2或8.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素的个数为()A.1 B.2C.3 D.4答案:B解析:A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.二、填空题6.有15人进入家电超市,其中买电视机的有9人,买电脑的有7人,两种均买的有3人,则两种均没买的有________人.答案:2解析:如图,两种均没买的人数为15-(6+3+4)=2.7.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B =∅,则实数m的取值范围为________.答案:{m|m≥2}解析:∁U A={x|x<-m},若(∁U A)∩B=∅,则-m≤-2,∴m≥2.8.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.答案:2解析:∵A={x|1≤x<a},∁U A={x|2≤x≤5},又A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,∴a=2.三、解答题9.已知全集U=R,集合A={x|1≤x≤2},若B∪∁R A=R,B∩∁R A={x|0<x<1或2<x<3},求集合B.解:∵A={x|1≤x≤2},∴∁R A={x|x<1或x>2}.又B∪∁R A=R,A∪∁R A=R,可得A⊆B.而B∩∁R A={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴,可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.10.设U =⎩⎨⎧⎭⎬⎫-13,5,-3,-13是集合A ={x |3x 2+px -5=0},B ={x |3x 2+10x +q =0}的公共元素.(1)求实数p ,q 的值; (2)求∁U A ,∁U B .解:(1)由题意知,-13是方程3x 2+px -5=0与3x 2+10x +q =0的公共解,∴⎩⎪⎨⎪⎧3×⎝ ⎛⎭⎪⎫-132+⎝ ⎛⎭⎪⎫-13×p -5=0,3×⎝ ⎛⎭⎪⎫-132+10×⎝ ⎛⎭⎪⎫-13+q =0.即⎩⎪⎨⎪⎧p =-14,q =3.(2)∵A ={x |3x 2-14x -5=0}=⎩⎨⎧⎭⎬⎫-13,5, ∴∁U A ={-3}.∵B ={x |3x 2+10x +3=0}=⎩⎨⎧⎭⎬⎫-13,-3, ∴∁U B ={5}.11.已知全集U ={1,2,3,4,5},A ={x |x 2-5x +m =0},B ={x |x 2+nx +12=0},且(∁U A )∪B ={1,3,4,5},求m +n 的值.解:∵U ={1,2,3,4,5},(∁U A )∪B ={1,3,4,5}, ∴2∈A ,又A ={x |x 2-5x +m =0},∴2是关于x 的方程x 2-5x +m =0的一个根,得m =6, ∴A ={2,3},∴∁U A ={1,4,5},而(∁U A )∪B ={1,3,4,5}, ∴3∈B ,又B ={x |x 2+nx +12=0},∴3是关于x 的方程x 2+nx +12=0的一个根. ∴n =-7,∴B ={3,4},∴m +n =-1. 尖子生题库12.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解:(1)m =1,B ={x |1≤x <4}, A ∪B ={x |-1≤x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,即m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ; 当B ≠∅时,使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m >3或m ≤-12.。

人教新课标版数学高一人教A必修1学案.2补集及集合运算的综合应用

人教新课标版数学高一人教A必修1学案.2补集及集合运算的综合应用

第2课时补集及集合运算的综合应用[学习目标] 1.了解全集的意义和它的记法.理解补集的概念,能正确运用补集的符号和表示形式,会用图形表示一个集合及其子集的补集.2.会求一个给定集合在全集中的补集,并能解答简单的应用题.[知识链接]上课前,老师让班长统计班内的出勤情况,班长看看教室里的同学,就知道哪些同学未到,这么短的时间,他是如何做到的呢?[预习导引]1.全集(1)定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.2.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言3.∁U U=∅,∁U∅=U,∁U(∁U A)=A.要点一简单的补集运算例1(1)设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于() A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅(2)若全集U=R,集合A={x|x≥1},则∁U A=________.答案(1)B(2){x|x<1}解析(1)∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5}.(2)由补集的定义,结合数轴可得∁U A={x|x<1}.规律方法 1.根据补集定义,当集合中元素离散时,可借助Venn图;当集合中元素连续时,可借助数轴,利用数轴分析法求解.2.解题时要注意使用补集的几个性质:∁U U=∅,∁U∅=U,A∪(∁U A)=U.跟踪演练1已知全集U={x|x≥-3},集合A={x|-3<x≤4},则∁U A=________.答案{x|x=-3,或x>4}解析借助数轴得∁U A={x|x=-3,或x>4}.要点二交集、并集、补集的综合运算例2(1)已知集合A、B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B等于()A.{3} B.{4}C.{3,4} D.∅(2)设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案(1)A(2)C解析(1)∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.(2)因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.规律方法 1.集合的交、并、补运算是同级运算,因此在进行集合的混合运算时,有括号的先算括号内的,然后按照从左到右的顺序进行计算.2.当集合是用列举法表示时,如数集,可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助数轴求解.跟踪演练2设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.解把全集R和集合A、B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2,或x≥10}.∵∁R A={x|x<3,或x≥7},∴(∁R A)∩B={x|2<x<3,或7≤x<10}.要点三补集的综合应用例3已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B⊆∁R A,求a的取值范围.解由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.规律方法 1.与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况;2.不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.跟踪演练3已知集合A={x|x<a},B={x<-1,或x>0},若A∩(∁R B)=∅,求实数a的取值范围.解∵B={x|x<-1,或x>0},∴∁R B={x|-1≤x≤0},因而要使A∩(∁R B)=∅,结合数轴分析(如图),可得a≤-1.1.若全集M={1,2,3,4,5},N={2,4},则∁M N等于()A.∅B.{1,3,5}C.{2,4} D.{1,2,3,4,5}答案 B解析∁M N={1,3,5},所以选B.2.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A等于()A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}答案 B解析∵U={1,2,3,4,5},A={1,2},∴∁U A={3,4,5},∴B∩∁U A={2,3,4}∩{3,4,5}={3,4}.3.已知M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析∵P={1,3},∴子集有22=4个.4.已知全集U=Z,集合A={0,1},B={-1,0,1,2},则图中阴影部分所表示的集合为()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}答案 A解析图中阴影部分表示的集合为(∁U A)∩B,因为A={0,1},B={-1,0,1,2},所以(∁U A)∩B={-1,2}.5.若全集U=R,集合A={x|x≥1}∪{x|x≤0},则∁U A=________.答案{x|0<x<1}解析∵A={x|x≥1}∪{x|x≤0},∴∁U A={x|0<x<1}.1.对集合中含参数的元素,要由条件先求出参数再作集合的运算.2.集合是实数集的真子集时,其交、并、补运算要结合数轴进行.3.有些较复杂的集合的运算可以先化简再进行.如(∁U A)∪(∁U B)=∁U(A∩B),计算等号前的式子需三次运算,而计算等号后的式子需两次运算.一、基础达标1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4} C.{3} D.{4}答案 D解析∵A={1,2},B={2,3},∴A∪B={1,2,3},∴∁U(A∪B)={4}.2.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B等于()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}答案 A解析因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.3.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于()A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}答案 B解析∁U B={x|x≤1},∴A∩(∁U B)={x|0<x≤1}.4.设全集U是实数集R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1} B.{x|-2≤x≤3}C.{x|x≤2,或x>3} D.{x|-2≤x≤2}答案 A解析 阴影部分所表示的集合为∁U (M ∪N )=(∁U M )∩(∁U N )={x |-2≤x ≤2}∩{x |x <1或x >3}={x |-2≤x <1}.故选A.5.已知集合A ={x |0≤x ≤5},B ={x |2≤x <5},则∁A B =________. 答案 {x |0≤x <2,或x =5} 解析 如图:由数轴可知:∁A B ={x |0≤x <2,或x =5}.6.设全集U =R ,集合A ={x |x ≥0},B ={y |y ≥1},则∁U A 与∁U B 的包含关系是________. 答案 ∁U A ∁U B解析 ∵∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1}. ∴∁U A∁U B .7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P =⎩⎨⎧⎭⎬⎫x |x ≤0,或x ≥52,(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ). 解 (1)A ∩B ={x |-1<x ≤2}. (2)∵∁U B ={x |x ≤-1,或x >3}, ∴(∁U B )∪P =⎩⎨⎧⎭⎬⎫x |x ≤0,或x ≥52.(3)∵∁U P =⎩⎨⎧⎭⎬⎫x |0<x <52,∴(A ∩B )∩(∁U P )={x |-1<x ≤2}∩⎩⎨⎧⎭⎬⎫x |0<x <52={x |0<x ≤2}.二、能力提升8.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ) A .a ≤1 B .a <1 C .a ≥2 D .a >2 答案 C解析 如图所示,若能保证并集为R ,则只需实数a 在数2的右边(含端点2),所以a ≥2.9.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁I S )D .(M ∩P )∪(∁I S ) 答案 C解析 依题意,由题干图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁I S, 所以阴影部分所表示的集合是(M ∩P )∩(∁I S ),故选C.10.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________. 答案 12解析 设两项运动都喜欢的人数为x ,画出Venn 图得到方程15-x +x +10-x +8=30 ⇒x =3,所以,喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人). 11.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解 (1)m =1,B ={x |1≤x <4}, A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1,或x >3}.当B =∅时,即m ≥1+3m 得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,使B ⊆∁R A 成立,则⎩⎪⎨⎪⎧ m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3. 综上可知,实数m 的取值范围是⎩⎨⎧⎭⎬⎫m |m >3,或m ≤-12.三、探究与创新12.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}. (1)若A ⊆B ,求a 的取值范围;(2)若全集U =R ,且A ⊆(∁U B ),求a 的取值范围. 解 ∵A ={x |-4≤x ≤-2},B ={x |x ≥a }, (1)由A ⊆B ,结合数轴(如图所示)可知a 的范围为a ≤-4.(2)∵U =R ,∴∁U B ={x |x <a },要使A ⊆∁U B , 须a >-2.13.若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素,即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则a 的取值范围是{a |a <98,且a ≠0}.在全集U =R 中,集合{a |a <98,且a ≠0}的补集是{a |a ≥98,或a =0},所以满足题意的a 的取值范围是{a |a ≥98,或a =0}.。

高中数学 1.2.2 第2课时补集及综合应用课时作业 新人教A版必修1-新人教A版高一必修1数学试题

高中数学 1.2.2 第2课时补集及综合应用课时作业 新人教A版必修1-新人教A版高一必修1数学试题

第2课时补集及综合应用课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用U表示.2.补集自然语言如果给定集合A是全集U的一个子集,由全集U中__________的所有元素构成的集合叫做A在U中的补集,记作________符号语言∁U A=__________图形语言3.补集与全集的性质(1)∁U U=________;(2)∁U∅=________;(3)∁U(∁U A)=______;(4)A∪(∁U A)=______;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于( )A.{x|-2<x<2} B.{x|-2≤x≤2}C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于( )A.{2} B.{2,3}C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是( )A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是( )A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( ) A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪题号12345 6答案二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=______,∁U B=________,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},某某数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于( )A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时 补集及综合应用知识梳理2.不属于集合A ∁U A {x |x ∈U ,且x ∉A }3.(1)∅ (2)U (3)A (4)U (5)∅作业设计1.D [在集合U 中,去掉1,5,7,剩下的元素构成∁U A .]2.C [∵M ={x |-2≤x ≤2},∴∁U M ={x |x <-2或x >2}.]3.D [由B ={2,5},知∁U B ={1,3,4}.A ∩(∁UB )={1,3,5}∩{1,3,4}={1,3}.]4.B [由A =∁U B ,得∁U A =B .又∵B =∁U P ,∴∁U P =∁U A .即P =A ,故选B.]5.C [依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁I S ,所以阴影部分所表示的集合是(M ∩P )∩∁I S ,故选C.]6.D [由A ∪B ={1,3,4,5,6},得∁U (A ∪B )={2,7},故选D.]7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}.9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧ a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧ a =-4,b =3经检验都符合题意.11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎪⎨⎪⎧ a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.。

高中数学第2课时 补集及综合应用课时分层作业5 新人教A版必修1

高中数学第2课时 补集及综合应用课时分层作业5 新人教A版必修1

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题课时分层作业(五) 补集及综合应用(建议用时:40分钟)[学业达标练]一、选择题1.若全集U ={0,1,2,3}且∁U A ={2},则集合A 的真子集共有( )A .3个B .5个C .7个D .8个 C [A ={0,1,3},真子集有23-1=7.]2.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )【导学号:37102069】A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}D [由题意可知,A ∪B ={x |x ≤0,或x ≥1},所以∁U (A ∪B )={x |0<x <1}.]3.已知集合A 、B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B 等于( )A .{3}B .{4}C .{3,4}D .∅A [∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩∁U B ={3}.]4.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( )【导学号:37102070】A .0或2B .0C .1或2D .2 D [由题意,知⎩⎪⎨⎪⎧ a =2,a 2-2a +3=3,则a =2.]5.设全集U 为实数集R ,M ={x |x >2或x <-2},N ={x |x ≥3或x <1}都是全集U 的子集,则图1­1­3中阴影部分所表示的集合是( )图1­1­3A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}A[阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1},故选A.]二、填空题6.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是________. {m|m<1} [∵∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1.]7.设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则∁U A=________,∁U B=________.{-5,-4,3,4} {-5,-4,5} [可用Venn图表示.则∁U A={-5,-4,3,4},∁U B={-5,-4,5}.]8.已知集合A={x|-2≤x<3},B={x|x<-1},则A∩(∁R B)=________.{x|-1≤x<3} [∵A={x|-2≤x<3},B={x|x<-1},∴∁R B={x|x≥-1},∴A∩(∁R B)={x|-1≤x<3}.]三、解答题9.已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求A∩B,A∪B,(∁U A)∩(∁U B),A∩(∁U B),(∁U A)∪B.[解]法一(直接法):由已知易求得A∩B={4},A∪B={3,4,5,7,8},∁U A={1,2,6,7,8},∁U B ={1,2,3,5,6},∴(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.法二(Venn图法):画出Venn图,如图所示,可得A∩B={4},A∪B={3,4,5,7,8},(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.10.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).[解]如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3}.∁U(A∪B)={x|x<-3,或3≤x≤4}.[冲A挑战练]1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( )A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)D[∵A∪B={1,3,4,5,6},∴∁U(A∪B)={2,7}.]2.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是( ) A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}C[由于A∪(∁R B)=R,则B⊆A,可知a≥2.故选C.]3.设全集U是实数集R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图1­1­4所示,则阴影部分所表示的集合为________.图1­1­4{x|-2≤x<1}[阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.]4.设全集U={1,2,x2-2},A={1,x},则∁U A=________.{2}[若x=2,则x2-2=2,与集合中元素的互异性矛盾,故x≠2,从而x=x2-2,解得x=-1或x=2(舍去).故U={1,2,-1},A={1,-1},则∁U A={2}.]5.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.[解]∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时补集及综合应用
课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.
1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.
2.补集
自然
语言
对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A
相对于全集U的补集,记作________
符号
语言
∁U A=____________
图形
语言
(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.
一、选择题
1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于()
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于()
A.{x|-2<x<2} B.{x|-2≤x≤2}
C.{x|x<-2或x>2} D.{x|x≤-2或x≥2}
3.设全集U={1,2,3,4,5},A ={1,3,5},B={2,5},则A∩(∁U B)等于()
A.{2} B.{2,3}
C.{3} D.{1,3}
4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()
A.A=∁U P B.A=P
C.A P D.A P
5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()
A.(M∩P)∩S B.(M∩P)∪S
C.(M∩P)∩∁I S D.(M∩P)∪∁I S
6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩B
C.∁U(A∩B) D.∁U(A∪B)
题号12345 6
答案
二、填空题
7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.
8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.
9.已知全集U,A B,则∁U A与∁U B的关系是____________________.
三、解答题
10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.
11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.
能力提升
12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于()
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?
1.全集与补集的互相依存关系
(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.
(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.
2.补集思想
做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.
第2课时补集及综合应用
知识梳理
1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}
3.(1)∅(2)U(3)A(4)U(5)∅
作业设计
1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]
2.C[∵M={x|-2≤x≤2},
∴∁U M={x|x<-2或x>2}.]
3.D[由B={2,5},知∁U B={1,3,4}.
A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]
4.B[由A=∁U B,得∁U A=B.
又∵B=∁U P,∴∁U P=∁U A.
即P=A,故选B.]
5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]
6.D[由A∪B={1,3,4,5,6},
得∁U(A∪B)={2,7},故选D.]
7.-3
解析∵∁U A={1,2},∴A={0,3},故m=-3.
8.{0,1,3,5,7,8}{7,8}{0,1,3,5}
解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.
9.∁U B∁U A
解析画Venn图,观察可知∁U B∁U A.
10.解 ∵∁U A ={5},∴5∈U 且5∉A .
又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧
a 2+2a -3=5,
b =3. 解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧
a =-4,
b =3
经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,
所以B ⊆A ,U =A ,因而x 2=3或x 2=x .
①若x 2=3,则x =±3.
当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1.
当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;
当x =0时,A ={1,3,0},B ={1,0},
U =A ={1,3,0},从而∁U B ={3}.
综上所述,∁U B ={3}或{-3}或{3}.
12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]
13.
解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .
根据题意有⎩⎪⎨⎪⎧ a +x =20,b +x =11,
a +
b +x =30-4.
解得x =5,即两项都参加的有5人.。

相关文档
最新文档