机械振动公式
高中物理振动和波公式总结
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理振动和波公式总结
高中物理振动和波公式总结振动和波是高中物理教科书中的重要内容,在物理考试中常常出现。
为了帮助同学掌握相关公式,下面店铺给大家带来高中物理振动和波公式,希望对你有帮助。
高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V 表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. 波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理振动和波公式总结
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理振动和波公式总结
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理振动和波公式总结
高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理公式:振动和波(机械振动与机械振动的传播)
高中物理公式:振动和波(机械振动与机械振动的传播)发生共振条件:f驱动力=f固,A=max,共振的防止和应用机械波、横波、纵波注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律能源的开发与利用.环保物体的内能.分子的动能.分子势能。
质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。
自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。
匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
高中物理振动和波公式总结
高中物理振动和波公式总结振动和波是高中物理教科书中的重要内容,在物理考试中常常出现。
为了帮助同学掌握相关公式,下面我给大家带来高中物理振动和波公式,希望对你有帮助。
高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2πl/g1/2 {l:摆长m,g:当地重力加速度值,成立条件:摆角θ>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V 表征。
对于匀速直线运动,波速V不变大小不变,方向不变,所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速在空气中0℃332m/s;20℃:344m/s;30℃:349m/s;声波是纵波8.波发生明显衍射波绕过障碍物或孔继续传播条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同相差恒定、振幅相近、振动方向相同10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动1定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.2简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.3描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.4简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦或余弦曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.1单摆的振动可看作简谐运动的条件是:最大摆角α<5°.2单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.3作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值.4.受迫振动1受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.2受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.3共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.1机械波产生的条件:①波源;②介质2机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部波峰和凹部波谷.②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.3机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系1波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.2波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.3频率:波的频率始终等于波源的振动频率,与介质无关.4三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅注意单位②从图像可以直接读出波长注意单位.③可求任一点在该时刻相对平衡位置的位移包括大小和方向④在波速方向已知或已知波源方位时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向加速度总是指向平衡位置高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
高中物理公式大全(全集) 九、机械振动
九、机械振动1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。
(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。
(3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。
(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
一、知识网络二、画龙点睛概念②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。
(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。
②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。
简谐运动的动力学特征是判断物体是否为简谐运动的依据。
③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。
简谐运动加速度的大小和方向都在变化,是一种变加速运动。
简谐运动的运动学特征也可用来判断物体是否为简谐运动。
例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。
证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。
3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。
②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
③单位:在国际单位制中,振幅的单位是米(m)。
机械振动谐波频率计算公式
机械振动谐波频率计算公式引言。
机械振动是指物体在受到外力作用下产生的周期性运动。
在机械工程中,振动是一个非常重要的现象,它涉及到机械系统的稳定性、寿命和性能等方面。
而谐波频率则是振动中的一个重要参数,它可以帮助我们了解振动系统的特性和行为。
本文将介绍机械振动的谐波频率计算公式,帮助读者更好地理解和应用振动理论。
1. 谐波频率的定义。
谐波频率是指在振动系统中,当外力作用频率为系统固有频率的整数倍时,系统会出现共振现象,这些整数倍的频率就是谐波频率。
谐波频率对于振动系统的稳定性和响应特性有着重要的影响,因此对谐波频率的计算和分析是非常重要的。
2. 谐波频率计算公式。
在机械振动中,谐波频率的计算可以通过以下公式进行:f_n = n f。
其中,f_n为第n个谐波频率,n为整数,f为系统的固有频率。
这个公式表明,谐波频率是系统固有频率的整数倍,当外力作用频率为系统固有频率的整数倍时,系统会出现共振现象。
3. 谐波频率的影响因素。
谐波频率的计算是基于系统的固有频率,而系统的固有频率又受到多种因素的影响。
以下是影响系统固有频率的主要因素:(1)系统的质量,系统的质量越大,固有频率越小;(2)系统的刚度,系统的刚度越大,固有频率越大;(3)系统的阻尼,系统的阻尼越大,固有频率越小。
这些因素都会对系统的固有频率产生影响,进而影响谐波频率的计算和分析。
4. 谐波频率的应用。
谐波频率的计算和分析对于机械振动系统的设计和优化具有重要意义。
通过对谐波频率的计算,可以帮助工程师更好地了解系统的振动特性,从而设计出更稳定、更可靠的机械系统。
此外,在振动控制和抑制方面,谐波频率的计算也可以帮助工程师选择合适的控制手段,降低系统的振动响应。
结论。
机械振动的谐波频率是振动系统的重要参数,它可以帮助我们了解系统的振动特性和行为。
通过谐波频率的计算公式,可以更好地分析和优化机械振动系统,提高系统的稳定性和性能。
因此,对谐波频率的计算和分析具有重要的工程意义,对于机械工程师来说是一个重要的研究课题。
机械振动公式()
串联 111, ,k k k 1 k 2 并联 k = K k 2单自由度无阻尼自由振动k ,X = x o COS nm,⑵求固有频率:定义法 静变形法「nV d t(3)求响应:A^^(x 0, x 0)单自由度有阻尼自由振动尸丿xo +S nXo : 77 ( 1)x=x 0cos d t- —°sin,d t,,d = .1-J- 2 单自由度有阻尼强迫振动 简谐力直接激励mx ex kx = F sin t, x = Bsin( t- :),4 2匚扎 -=tg -1-^ 无阻尼时,B :—F.k|1 —阳弹簧串并联x = Asi n(m n t +8), A =x 0A(x 0)2c =tg 」3) r x(1)求微分方程:定理法,能量法dtk i k 22 2mx kx = 0, x 】j :n x =t ^sin Z,mx ex kx = 0,x 2 n x=0,2m ne小,C cr =2 mn, CerX = Ae —冷 sin®d t+T),A= .'x 。
2+皆3"0)2,日=tg 」(=x^dV2二 n X o 、2■dx o 「'nJB =k\ (1 - -2)2(2X st (1 _ '2)2(2 ' )22mx ex kx 二 m 0e • sin t,x 二 Bsin( t - 一),2 R2 m °e , m °e ,-,' ------------ P -,(1 - 2)2(2 ■ )2 '单自由度有阻尼强迫振动mx ex kx 二 ex g kx g 二 X g . k 2(c ■ )2sin(・t v ),J - tg ,(2:.; ), x = B sin(,t v - : ), : = tg J (—__ )1 -人 X g j k 2+a )2X g J 1 +(20)2B =—・ =―■ ,心(1 一 '2)2(2,)2..(1 一,2)2(2,)2—= -1 (2二)一,、- 1,隔振要有适当阻尼X g ,(1- 2)2(2 )2单自由度有阻尼强迫振动 周期激励叠加原理mX cX kx =匚⑴ f 2(t)X = % x 2傅立叶级数展开单自由度有阻尼强迫振动任意激励(1) 时域求解:杜哈美积分1 tx F( )e_ n(t —)sin d (t - )dm d 0(2) 频域求解:傅立叶变换1 X( ) F()二 H( )F( •),Z 仰)1Z( 0 -k -m 2jc,机械阻抗,H(「) 一 ,机械导纳,频响函数, Z®) X(s)二G(s)F(s),G(s) ,传递函数。
振动频率振动幅值计算公式
振动频率振动幅值计算公式振动是物体围绕其平衡位置周期性地来回运动。
振动的频率和振动幅值是描述振动特性的重要参数。
在工程和物理学中,经常需要计算振动频率和振动幅值,以便设计和分析振动系统。
本文将介绍振动频率和振动幅值的计算公式,并探讨它们在实际应用中的意义。
首先,我们来看振动频率的计算公式。
振动频率是指单位时间内振动的周期数,通常用赫兹(Hz)来表示。
对于简谐振动,振动频率可以通过以下公式来计算:f = 1/T。
其中,f代表振动频率,单位为赫兹;T代表振动周期,单位为秒。
振动周期是指物体完成一个完整振动所需的时间。
通过测量振动周期,我们就可以计算出振动频率。
值得注意的是,振动频率与振动周期呈倒数关系,即振动频率等于1除以振动周期。
接下来,我们来看振动幅值的计算公式。
振动幅值是指振动过程中物体偏离平衡位置的最大距离,通常用米(m)来表示。
对于简谐振动,振动幅值可以通过以下公式来计算:A = xmax xmin。
其中,A代表振动幅值;xmax代表振动过程中物体偏离平衡位置的最大距离;xmin代表振动过程中物体偏离平衡位置的最小距离。
通过测量振动过程中物体的最大和最小偏离距离,我们就可以计算出振动幅值。
振动频率和振动幅值是描述振动特性的重要参数,它们在工程和物理学中具有广泛的应用。
在机械振动领域,振动频率和振动幅值可以用来评估机械系统的稳定性和可靠性。
在建筑工程领域,振动频率和振动幅值可以用来评估建筑结构的抗震性能。
在声学领域,振动频率和振动幅值可以用来评估声音的音调和音量。
除了上述应用外,振动频率和振动幅值还在日常生活中发挥着重要作用。
例如,我们可以通过测量音叉的振动频率和振动幅值来判断它的音调和音量。
又如,我们可以通过测量手机的振动频率和振动幅值来评估它的震动效果。
总之,振动频率和振动幅值是描述振动特性的重要参数,它们在工程、物理学和日常生活中具有广泛的应用。
通过计算振动频率和振动幅值的公式,我们可以更好地理解和分析振动系统的性能,从而为工程设计和科学研究提供有力的支持。
机械振动开关量程计算公式
机械振动开关量程计算公式机械振动开关是一种常用的工业自动化控制装置,它通过检测物体的振动状态来实现开关的自动控制。
在工业生产中,我们经常需要计算机械振动开关的量程,以便正确地选择和安装设备。
在本文中,我们将介绍机械振动开关量程的计算公式及其应用。
机械振动开关的量程是指其能够检测到的振动幅度范围。
通常情况下,量程的计算需要考虑到开关的灵敏度、工作范围、以及所需的控制精度。
在实际应用中,我们可以通过以下公式来计算机械振动开关的量程:量程 = 灵敏度×工作范围。
其中,灵敏度是指机械振动开关对振动信号的检测灵敏程度,通常以mV/g (毫伏/重力加速度)为单位;工作范围是指机械振动开关能够正常工作的振动幅度范围,通常以g(重力加速度)为单位。
在实际应用中,我们需要根据具体的工程要求来选择合适的机械振动开关,并进行量程的计算。
下面我们将通过一个实际案例来说明机械振动开关量程的计算方法。
假设我们需要在一台振动机上安装机械振动开关,以便在振动幅度超过一定范围时进行自动停机。
振动机的振动幅度范围为0~10g,而我们需要在振动幅度超过5g时进行停机。
此时,我们可以通过以下步骤来计算机械振动开关的量程:1. 确定机械振动开关的灵敏度。
根据实际情况,我们选择了一款灵敏度为2mV/g的机械振动开关。
2. 计算机械振动开关的量程。
根据上述公式,我们可以得到量程 = 2mV/g ×5g = 10mV。
通过以上计算,我们可以确定在振动幅度超过5g时,机械振动开关将产生10mV的信号,从而实现自动停机的控制。
在实际应用中,我们还需要考虑到机械振动开关的安装位置、振动信号的传输和处理等因素。
同时,我们还可以通过调整机械振动开关的灵敏度和工作范围来满足不同的工程要求。
除了上述的计算方法,我们还可以通过实验和模拟来验证机械振动开关的量程,以确保其能够满足实际的控制需求。
通过合理的计算和验证,我们可以更好地选择和应用机械振动开关,从而提高工业生产的自动化水平和控制精度。
振动频率的公式
振动频率的公式振动频率是物理学中一个相当重要的概念,它的公式在很多领域都有着广泛的应用。
咱们先来说说振动频率到底是个啥。
想象一下,你拿着一根跳绳,快速地甩动它,跳绳甩动的快慢,其实就类似于振动的频率。
频率越高,意味着单位时间内振动的次数越多。
振动频率的公式是:f = 1/T ,这里的“f”代表振动频率,“T”则代表振动周期。
简单来说,周期就是完成一次完整振动所需要的时间。
就好比学校的上课铃,它每隔一定的时间就会响一次。
假设上课铃40 分钟响一次,那么这个40 分钟就是它的周期“T”。
而通过公式计算,它的振动频率“f”就是 1÷40 = 0.025 次每分钟。
我记得有一次在课堂上,给同学们讲解这个公式的时候,发生了一件特别有趣的事儿。
当时我正在黑板上写着这个公式,然后问同学们:“谁能给我举个生活中振动频率的例子?”结果有个调皮的小家伙站起来说:“老师,我心跳的振动频率是不是很快啊?”全班同学都哄堂大笑。
我笑着回答他:“那你得先测测自己心跳一次的时间,才能算出频率哦。
”咱们再深入讲讲这个公式的应用。
在机械工程领域,比如说汽车发动机里的曲轴转动,工程师们就得通过计算振动频率来确保发动机运行平稳,减少振动和噪音。
还有在音乐中,不同乐器发出的声音有着不同的频率,这决定了我们听到的是高音还是低音。
回到日常生活中,振动频率的概念也无处不在。
像我们家里用的微波炉,它就是利用微波的振动频率来加热食物的。
再比如手机的振动模式,也是通过控制振动频率来给我们不同的提醒感受。
总之,振动频率的公式虽然看起来简单,但它的作用可大着呢!它就像是一把神奇的钥匙,能帮助我们打开很多未知世界的大门,探索那些隐藏在日常生活背后的科学奥秘。
无论是大到宇宙中的天体运动,还是小到微观世界里的粒子振动,振动频率的公式都在发挥着它的作用。
所以,同学们可别小看这个公式,好好掌握它,说不定未来你们就能用它创造出更神奇的东西!。
机械振动常用公式
x A sin(n t ), A
2 2 2 n x0 v0 x , tan 1 n 0 n v0
1-DOF damped systems Equation of motion mx(t ) cx(t ) kx(t ) 0, x(0) x0 , x(0) v0 Damping ratio c ccr c ( 2 km ) If 1, the system is overdamped If 1, the system is critically damped
If C M K , damping is proportional. In such case, S T CS diag 2 ii . In the case of a 2-DOF system,
2 2 11 12 , 2 22 2
Stiffness, definition: linear spring: k F l , angular spring: k M
Logarithmic decrement x(t1 ) x(t1 ) 1 , ln ln x(t1 T ) n x(t1 nT ) damping ratio
X 1 (2 r ) 2 T .R. 2 2 2 Y (1 r ) (2 r )
Force transmissibility
1/ 2
, r
b n
1/ 2
Rotating Unbalance. mx cx kx F0 sin(r t ) m0 er2 sin(r t ) Magnitude of steady-state response,
x r10 1 10 r S x 20 20
齿轮传动时振动力计算公式
齿轮传动时振动力计算公式
在机械传动中,齿轮传动是一种常见且重要的传动方式。
然而,在齿轮传动中,由于齿轮间的啮合和运动,会产生振动力。
了解和计算这些振动力对于传动系统的设计和优化至关重要。
齿轮传动的振动力计算公式可以通过以下方式得到。
首先,我们需要确定齿轮的传动比、齿数、齿宽等参数。
然后,我们可以使用以下公式计算振动力:
F = (K1 * K2 * K3 * K4 * K5 * K6 * K7 * K8 * K9 * P * V) / (m * Z * B)
其中,F代表振动力,K1至K9代表与齿轮传动相关的系数,P代表传动功率,V代表传动速度,m代表齿轮质量,Z代表齿数,B 代表齿宽。
这个公式的推导过程相对复杂,涉及到齿轮啮合的动力学和振动学原理。
在实际应用中,我们可以通过实验和经验数据来确定这些系数的具体值,以便更准确地计算振动力。
通过计算齿轮传动的振动力,我们可以评估传动系统的稳定性和可靠性。
如果振动力过大,可能会导致传动系统的噪声、振动和损坏。
因此,在设计和优化齿轮传动时,我们需要合理选择齿轮参数和传动方式,以尽量降低振动力的影响。
齿轮传动的振动力计算是传动系统设计和优化中的重要一环。
通过
准确计算振动力,我们可以评估传动系统的性能,并采取相应的措施来降低振动力的影响。
这将有助于提高传动系统的稳定性和可靠性,保证其正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧串并联
单自由度无阻尼自由振动
单自由度有阻尼自由振动
单自由度有阻尼强迫振动
简谐力直接激励
2
1212121,111k k k k k k k k k k k +=+=+=并联串联
)
,(,)3(;
,1,2)2(;
0)
()1()(
,)(
),sin(,sin cos ,,0,0002
0120
2
0002
2x x A g T
f T m k dt
E E d x x tg x x A t A x t x t x x m k
x x kx x m st
n n n p k n
n
n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=
====+=+=+=+==
=+=+-2
00120
02
020
002
12ln
1
)
(
,)(
),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-===+=++=+=-=++
====
=++=+++--d n j i i n d
d
n d t n d d d
n d n cr cr
n n n T A A j
x x x tg x x x A t Ae x t x x t x x m c c c
m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω
λλζλαζλλαωω-=+-==-=
=-=+-=-==++-,,)2()1(11,,12,)2()1(),
sin(,sin 2
22221222k
F x x x k F
B tg k F B t B x t F kx x c x m st st
n 无阻尼时,&&&
单自由度有阻尼强迫振动
偏心激励
单自由度有阻尼强迫振动
支承运动激励
单自由度有阻尼强迫振动
周期激励
单自由度有阻尼强迫振动任意激励
λ
βζλλλβζλλλζλλωαωωω-+-==+-=
+-=
-==++,)
2()1(,
)
2()1()
2()1(),sin(,sin 222202
2
22
02
2
22
020e m mx m e m k e m B t B x t e m kx x c x m &&&隔振要有适当阻尼
,1,2,)
2()1()2(1,
)
2()1()2(1)
2()1()()12(
),sin(),2(),
sin()(22222
2
222
2
2222
112
2πφ
&&&&βλζλλζλβζλλζλζλλωλ
ζλ
ααθωζλθθωω+-+==+-+=
+-+=
-=-+==++=+=++--g g g g g g X B
X k c k X B tg t B x tg t c k X kx x c kx x c x m 1212
()()mx cx kx f t f t x x x ++=+=+&&&叠加原理傅立叶级数展开
()0
2211
()sin ()21
()()()(),()
1
(),(),()
31
()()(),(),n t
t d d
x F e t d m X F H F Z Z k m jc H Z X s G s F s G s ms cs k
ζωττωττ
ωωωωωωωωωωω--=
-=
==-+===
++⎰
()时域求解:杜哈美积分()频域求解:傅立叶变换机械阻抗,机械导纳,频响函数,()拉氏域求解:拉普拉斯变换传递函数。
两个自由度振动 系统微分方程建立
两个自由度无阻尼自由振动
为自由度数;
为广义激振力;位移;分别为广义速度,广义散逸函数和系统势能;分别为系统动能,能量式中:
拉格郎日法
n Q q q E E E n i Q q E q E q E q E dt d i i i u d k i i u i d i k i k
&&&),...,2,1()(==∂∂+∂∂+∂∂-∂∂再改写。
程组
拉格朗日法导出微分方一般矩阵方程可以先用激振力向量;加速度、速度、位移和分别为为刚度矩阵;为阻尼矩阵;为质量矩阵;式中:矩阵法
⎭
⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎥
⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤
⎢⎣
⎡=⎥⎦⎤⎢⎣⎡==++)()()(,,,,,,,,,,,,00,,,)
(2121212132222122211211322221222112112122211211t f t f t f x x x x x x x x x k k k k k k k k k k K c c c c c c c c c c C m m m m m m M t f Kx x C x M &&&&&&&&&&&&
[]
振型中有一个节点。
阶
画振型图,在第两个固有振型,两个固有频率,的一元两次方程),
,特征方程(关于有要次代数方程),
状态方程(两元一次齐代入得为振幅向量,
设,2,,,);
(,,,,,240,0,0),sin(02112
11
2112,1112222112
12121121212
2
222212,12
1r r k m k r k m k m b k k k K c m m M a a
ac b b M K A A M K A A A t A x x
K x M n n n n n n n n --=
+-=-====--==-≠=-⎭
⎬⎫
⎩⎨⎧=+==+ωωωωωωωθωμ&&&
4
32124212124123211312010201024232121112242312111432120100201002)2(11)1(122)2(1211)1(11)
2(2)1(2222)2(111)1(1)2(1)1(11,,0,0,0,,0),sin cos ()sin cos (,sin cos sin cos ,),
sin()sin(),
sin()sin(D D D D v D r D r D D D r D r D D v x x x x t D t D r t D t D r x t D t D t D t D x D D D D x
x x x x x A A t A r t A r x x x t A t A x x x n n n n n n n n n n n n n n n n 易求则如件时:
零初始条比较方便,特别有较多一般用下式求,初速度向量初位移向量可由初始条件求出;,,,四个未知量主振动的迭加,
求响应,响应应为两个=+=+=+=+====+++=+++=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=+++=+=+++=+=ωωωωωωωωωωωωθθθωθωθωθω&&&&&
两个自由度无阻尼强迫振动
多自由度系统振动
坐标,模态分析法振型矩阵,解耦,模态刚度矩阵的正交性;振型向量对质量矩阵和法标准特征值问题的迭代;
1
,,0;,,0212
1
i n
i i n
i i
i A DA M K D Kx x M A DA K M D Kx x M A DA ω
ωλ=
==+===+=--&&&&
[][]时有两个共振点;
或当即
程,两元一次非齐次代数方代入得:
设为力幅向量;
21212112
11211222222211
2
2
21,,,,,,sin ,sin n n F F M K m k k k m k A A F M K A F A M K t A x F F F t F Kx x M ωωωωωωωωωωω==⎭
⎬⎫⎩⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡----=⎭⎬⎫⎩⎨⎧-==-=⎭
⎬⎫
⎩⎨⎧==+-&&。