加热炉燃烧控制系统设计与仿真

合集下载

加热炉仿真

加热炉仿真
下图为在Matlab中通过编写S函数的形式,建立钢坯二维状态空间预报模型,编写的程序以M文件的形式存储,可供其他程序调用。该模型用于在工艺流程画面中显示的钢坯温度信息、炉温优化设定值的求取等。
图5.4钢坯温度预报模型程序
Billet’s tWO dimension temperature model program
34.Astrom K J.Hagglund T The Future of PID Contr01 2001(09)
35.Musavi M T.Domnisorn C.Smith G A neuro-fuzzy system for prediction of pulp digester Knumber 1999
线性模型是用来描述线性过程的,满足叠加原理和均匀性。非线性模型是用来描述非线性过程的,它们一般不满足叠加原理。如果模型经过适当的数学变化可以将本来是非线性的模型转变成线性模型,那么原模型称为本质线性模型,否则称为本质非线性模型。
动态模型是用来描述过程处于过渡过程时的各状态变量之间的关系的模型,它们一一般都是时间的函数。静态模型则是动态模型处于稳态时的表现,或者说静态模型是用来
30.H Amano.N Okubo.H Nishikama Development of O2 Control of Furnaces in the Iron and Steel Industry
31.A Kusters MIMO system identification of a slab reheating furnace 1994
23.刘志俭MATLAB应用程序接口用户指南 2001
24.H Imanari.M Tsugeno.M Hioka New process control system in hot strip mill of North Star BHP Steel 1999(08)

加热炉控制系统课程设计

加热炉控制系统课程设计

第1章加热炉控制系统1.1加热炉控制系统工程背景及说明加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。

早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。

现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。

为了保证安全生产,在生产线中增加了安全联锁保护系统。

影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。

根据干扰施加点位置的不同,可组成多参数的串级控制。

使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。

这种方案比较简单,在炼油厂中应用广泛。

这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。

简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。

含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。

现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。

应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。

加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。

一般通过引入阻尼滞后或增加非线性环节来改善控制品质。

在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。

为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。

联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。

当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。

压力调节系统投入运行保证燃料管道压力不超过规定上限。

基于MATLAB的炉温控制系统的仿真

基于MATLAB的炉温控制系统的仿真

控制系统仿真课程大作业题目: 基于MATLAB的炉温控制系统的仿真院系名称:电气工程学院专业班级:自动F0904学生姓名:学号:指导教师:教师职称:讲师评语:成绩:任课教师:时间:在数字PID算法中,为了避免传统PID控制器算法中积分累积所造成的系统较大超调和不稳定,甚至是积分饱和,人们常常会使用积分分离PID算法加以改进。

本文又提出了变速积分PID算法,并以电锅炉温度控制系统为例,基于MATLAB 并运用仿真分析手段,对两种不同算法的控制效果进行了比较,得出了积分分离算法的上升时间tr较短,而变速积分算法的调节时间ts较短,最大超调量较小,振荡次数较少,在温度控制系统中变速积分优于积分分离的结论。

本文以加热炉控制系统为例提出了一种模糊控制方案, 介绍了模糊控制器的设计过程并很方便地利用SIMULINK 进行了仿真研究, 结果证明, 这种模糊控制系统具有良好的动态性能。

关键词:PID控制;积分分离;变速积分;MATLAB1 绪论 (4)2 系统描述 (4)2.1 系统过程 (4)2.2 系统的组成和基本工作原理 (5)2.3 对象模型的归纳 (6)3 PID控制及仿真 (6)3.1分分离PID控制算法 (7)3.2 变速积分PID控制算法 (7)4 基于两种控制算法的炉温控制系统仿真 (8)结论 (10)致谢 (10)参考文献 (11)1 绪论控制系统计算机仿真是应用现代科学手段对控制系统进行科学研究的十分重要的手段之一。

进入80年代以来, 几乎所有控制系统的高品质控制均离不开系统仿真研究。

通过仿真研究可以对照比较各种控制策略与方案, 优化并确定相关参数, 特别是对于新控制决策与算法的研究, 进行系统仿真更是必不可少的。

一般而言, 对控制系统进行计算机仿真首先应建立系统模型, 然后依据模型编制仿真程序, 充分利用计算机作为工具对其进行数值求解并将结果加以显示。

显然, 通常在仿真过程中, 十分耗费时间与精力的是编制和修改仿真程序。

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计————————————————————————————————作者:————————————————————————————————日期:管式加热炉温度控制系统仿真设计摘要:随着科学技术的飞速发展,消费者对民用生产和工业生产对产品的性能有了更新的要求,其中,对产品的温度控制的要求也越来越高,所以研究设计管式加热炉的温度控制器具有很大的现实意义和使用价值。

本文是基于PID 控制算法的管式加热炉智能温度控制器为研究对象,首先阐述本文的研究背景和温度自动控制器的需求,然后对分析了传统控制方法的弊端,对模糊控制方法进行了介绍。

随后利用模糊PID计算方法计算对系统功能的实现情况,并从硬件和软件两个方面进行系统运行调试,得出较好的结果。

关键词:温度控制器;SSR固态继电器;STM32单片机ﻬABSTRACT:Withthe rapid developmentof science andt echnology, consumer and industrial production to civilian productio nrequirements for product update performance, which, on product temperaturecontrol requirements have becomemore sophisticated, so designing resistance furnace temperature controller is ofgreatpracticalsignificanceandusefulness.This article isaresistancefurnacetemperature controller based on PID control algorithm forthestudy, first of all explainsthe background ofthisstudy and temperaturecontrol needs, thend esign theoverall system-wideprogramme,including inparticular thehardware system design,system design andsoftware design of the control circuit of temperature. Then take advanta ge offuzzyPID calculationsystem of implementatio n, and run from the twosystems in terms of hardware and software debugging,producebetter resultsand conclusion full text.KEYWORDS:Temperature controller;SSR-solid staterelays; STM32 microcontroller目录1 引言ﻩ12.管式加热炉温度系统ﻩ12.1管式加热炉的一般结构 ........................................................................ 22.2管式加热炉传热方式 (4)3管式加热炉温度系统的模糊控制ﻩ63.1 常规控制方法的局限性ﻩ63.2智能控制思想ﻩ63.3 管式加热炉温度系统的智能模糊控制 (7)3.3.1模糊控制概述 (7)3.3.2 模糊控制原理...................................................................... 83.3.3模糊控制器结构 (8)2.2.4 建立模糊规则表......................................................... 114.控制系统仿真....................................................................................................... 134.1 PID原理ﻩ134.2PID参数的选择........................................................................... 144.3Smith模糊PID控制算法ﻩ16164.4模糊PID控制器的设计及仿真结果ﻩ结论............................................................................................................................ 20参考文献. (22)1 引言随着现代科技的快速发展,科学技术的应用,大大改善了人类的生产、生活方式。

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计摘要:随着科学技术的飞速发展,消费者对民用生产和工业生产对产品的性能有了更新的要求,其中,对产品的温度控制的要求也越来越高,所以研究设计管式加热炉的温度控制器具有很大的现实意义和使用价值。

本文是基于PID 控制算法的管式加热炉智能温度控制器为研究对象,首先阐述本文的研究背景和温度自动控制器的需求,然后对分析了传统控制方法的弊端,对模糊控制方法进行了介绍。

随后利用模糊PID计算方法计算对系统功能的实现情况,并从硬件和软件两个方面进行系统运行调试,得出较好的结果。

关键词:温度控制器;SSR 固态继电器;STM32 单片机ABSTRACT:With the rapid development of science and technology, consumer and industrial production to civilian production requirements for product update performance, which, on product temperature control requirements have become more sophisticated, so designing resistance furnace temperature controller is of great practical significance and usefulness. This article is a resistance furnace temperature controller based on PID control algorithm for the study, first of all explains the background of this study and temperature control needs, then design the overall system-wide programme, including in particular the hardware system design, system design and software design of the control circuit of temperature. Then take advantage of fuzzy PID calculation system of implementation, and run from the two systems in terms of hardware and software debugging, produce better results and conclusion full text.KEY WORDS:Temperature controller; SSR-solid state relays; STM32 microcontroller目录1 引言 (1)2.管式加热炉温度系统 (1)2.1管式加热炉的一般结构 (2)2.2管式加热炉传热方式 (4)3 管式加热炉温度系统的模糊控制 (6)3.1 常规控制方法的局限性 (6)3.2 智能控制思想 (6)3.3 管式加热炉温度系统的智能模糊控制 (7)3.3.1 模糊控制概述 (7)3.3.2 模糊控制原理 (8)3.3.3 模糊控制器结构 (8)2.2.4 建立模糊规则表 (11)4.控制系统仿真 (13)4.1 PID原理 (13)4.2 PID参数的选择 (14)4.3 Smith模糊PID控制算法 (16)4.4 模糊PID控制器的设计及仿真结果 (16)结论 (20)参考文献 (22)1 引言随着现代科技的快速发展,科学技术的应用,大大改善了人类的生产、生活方式。

加热炉温度控制系统设计与仿真研究

加热炉温度控制系统设计与仿真研究

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:加热炉温度控制系统设计与仿真研究学生姓名:潘*学号:************专业:测控技术与仪器班级:测控04-2班指导教师:闫**加热炉温度控制系统设计与仿真研究摘要在钢铁企业中,为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制,使之保持在某一特定的范围内。

而温度的维持又要求燃料在炉内稳定地燃烧。

加热炉燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性过程。

本设计针对加热炉燃烧控制系统,主要介绍的控制方案有单回路控制系统、串级比值控制系统、单交叉限幅控制系统、双交叉限幅控制系统,并对每一种控制方案进行了理论分析。

运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。

通过分析比较可以得出结论,双交叉限幅对加热炉温度的控制优于其它的控制方案。

双交叉限幅的炉温控制系统使煤气流量和空气流量相互限制,既防止了燃烧中冒黑烟,也防止了空气过剩,达到控制加热炉温度,提高煤气燃烧率,避免环境污染等目的。

关键词:加热炉;单交叉限幅控制;双交叉限幅控制;MATLAB仿真Temperature Control of Heating Furnace System Design andSimulink StudyAbstractIn the enterprises where producing iron and steel, in order to heat up billet to the technological requirements of rolling, the temperature inside the furnace must be controlled effectively so that it remains in a specific range. Maintaining the temperature needs the stable burning of fuel inside the furnace. Furnace combustion process is a non-linear process which is subject to the random interference, great inertia and the pure time delay.The design for the furnace combustion control system is mainly on the control of a single-loop control programme, the ratio of cascade control system, control system limiting unilateral, bilateral limiting control system, and analyses each of the control programme on theory. Using MATLAB software makes a more comprehensive simulation and performance analysis on the temperature control system. Through analysis and comparison we can conclude that bilateral limiting control system is superior to others in the furnace temperature control. The temperature control system of bilateral limiting control system makes gas flow and air flow restrict on each other, which not only prevent the burning of black smoke, but also prevent the excess air, to reach the purposes of controlling the furnace temperature, enhancing the rate of combustion gas and avoiding pollution and others.Key words: furnace; single-limiting control; bilateral-limiting control; MA TLAB Simulation目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 概述 (1)1.2 国内现状 (2)1.3 本设计的研究内容 (2)第二章加热炉工艺简介 (3)2.1 加热炉的组成 (3)2.2 加热炉的温度加热方式 (3)2.3 加热炉工艺流程 (3)2.4 加热炉温度控制要求 (5)2.4.1 燃烧系统 (6)2.4.2 炉膛负压 (7)2.5 空燃比 (8)第三章加热炉的温度控制系统 (10)3.1 单闭环控制系统 (11)3.2 炉膛负压控制系统 (12)3.3 串级比值燃烧控制系统 (13)3.4 单交叉限幅燃烧控制系统 (15)3.4.1 单交叉限幅燃烧控制系统工作原理 (15)3.4.2 单交叉限幅燃烧控制系统特点 (17)3.5 双交叉限幅燃烧控制系统 (17)3.5.1 双交叉限幅燃烧控制原理图 (17)3.5.2 双交叉限幅燃烧控制系统的工作原理 (18)3.5.3 双交叉限幅燃烧控制特点 (20)第四章加热炉温度控制系统仿真 (23)4.1 对象模型的建立 (23)4.2 系统各装置数学模型的建立 (24)4.3 仿真软件简介 (26)4.4 加热炉炉温控制系统仿真结果分析 (27)4.4.1 炉温单回路控制仿真 (27)4.4.2 燃料空气串级比值控制仿真 (31)4.4.3 单交叉限幅控制仿真 (34)4.4.4 双交叉限幅控制仿真 (36)4.5 总结 (38)第五章系统的检测变送装置及正反作用 (39)5.1 检测变送 (39)5.1.1 差压式流量计 (39)5.1.2 热电偶 (39)5.2 系统仪表正反作用的确定 (40)参考文献 (41)致谢 (42)第一章绪论1.1 概述加热炉是热轧生产过程的重要热工设备,其能耗占到钢铁工业总能耗的25%。

加热炉过程自动控制系统设计

加热炉过程自动控制系统设计

中小企业管理与科技四、捕获屏幕编码器也可以将本机的屏幕做为视频源进行编码、保存或者广播,该功能结合广播实况事件功能,可以做到将讲座老师的人象、声音、计算机上的PPT等内容同步进行广播或者保存,这就是现在很流行的网络教学课件的一个基础模式:包括授课老师的视频、音频,以及计算机屏幕的内容。

五、总结与体会虽然WindowsMediaEncorder的软件体积很小,但是他的功能却很强大,最重要的是很实用,虽然做这些广播、格式转换等工作不如一些专业软件那么强大,但是我们却可以用20分的代价做到了80分的效果,对于一款仅仅有9M多的免费软件来说,我想已经是非常不错了。

只要结合相关硬件(摄象机、摄象头、麦克风等)和相关软件(WindowsMediaServer、IIS等),就能够使用编码器零软件费用的实现我们平时工作中相当多的对流媒体相关的需求。

摘要:加热炉是冶金企业中重要的工业设备,步进式加热炉是各种工业、企业中普遍应用的炉窑。

本文以步进式加热炉为例介绍了加热炉生产过程中的控制系统设计,主要介绍了燃烧控制系统、炉膛压力控制系统、热风放散和冷风稀释控制系统。

关键词:加热炉燃烧控制炉膛压力概述加热炉在轧钢生产线中广泛应用,是轧钢工艺的前部工序。

在轧钢厂的热轧生产中,必须要将轧制的钢锭或钢坯加热到一定的温度,使它具有一定的可塑性,才能进行轧制,而这一过程是在加热炉中进行的。

钢坯从入炉侧装入,经过预热、加热、均热等燃烧区域达到控制温度后,从出炉侧出炉。

影响钢质量的因素很多,其中炉膛压力和温度起着关键作用,要使产出的钢材符合要求和生产能顺利进行,所以加热炉燃烧控制和炉膛压力控制显得十分重要。

加热炉的工艺流程如图1所示。

图1工艺流程图1燃烧控制系统设计加热炉消耗的燃料能量很大,所以理想的燃烧控制将会取得明显得节能效果。

根据燃烧理论,空气过剩率与燃烧效率,节能和防止公害有很大关系,一般空气过剩率的最佳区域在1.02 ̄1.1之间。

锅炉燃烧过程控制系统仿真设计

锅炉燃烧过程控制系统仿真设计

锅炉燃烧过程控制系统仿真一、燃烧过程控制系统的基本理论燃油锅炉的燃烧控制主要有三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统和炉膛负压控制系统。

1.蒸汽压力控制和燃料空气比值控制系统燃油蒸汽锅炉燃烧的目的是生产蒸汽供应其他生产环节使用。

一般生产过程中蒸汽的控制是通过压力实现的,随着后续环节的生产用量不同,反应在燃油蒸汽锅炉环节就是蒸汽压的波动。

维持蒸汽压力恒定是保证生产正常进行的首要条件。

保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气实现的。

如图1所示燃烧炉蒸汽压力控制与燃料比值控制系统2.炉膛负压控制系统锅炉炉膛负压力过小时,炉膛内的热烟、热气会外溢,造成热量损失、影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会使外部大量冷空气进入炉膛,改变燃料和空气比值,增加燃料损失、热量损失和降低热效率。

保证炉膛负压的措施是引风量和送风量的平衡。

如果负压波动不大,调节引风量即可实现负压控制;当蒸汽压力波动较大时,燃料用量和送风量波动也会较大,此时,经常采用的控制方案如图2所示。

炉膛负压控制系统3、控制方案:某锅炉燃烧系统要求对系统进行蒸汽压力控制。

本项目采用燃烧炉蒸汽压力控制和姗料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。

二、燃烧过程控制任务燃烧过程自动调节系统的选择虽然与燃料的种类和供给系统、燃烧方式以及锅炉与负荷的联接方式都有关系,但是燃烧过程自动调节的任务都是一样的。

归纳起来,燃烧过程调节系统有三大任务。

第一个任务是维持汽压恒定。

汽压的变化表示锅炉蒸汽量和负荷的耗汽量不相适应,必须相应地改变燃料量,以改变锅炉的蒸汽量。

第二个任务是保证燃烧过程的经济性。

当燃料量改变时,必须相应地调节送风量,使它与燃料量相配合,保证燃烧过程有较高的经济性。

第三个任务是调节引风量与送风量相配合,以保证炉膛压力不变。

加热炉燃烧模糊控制系统的设计与应用

加热炉燃烧模糊控制系统的设计与应用

模糊 变量 的集 合 范 围为 { B N N , O N , M, S Z , P ,M, B} E S P P ; C模 糊 变 量 的集 合 范 围 为
{ B N ,O P ,B 。 N ,S Z ,S P } 据现场所采集 的数据, 发现三段的温度 变化 曲线不完全相 同, 以分别定义 E E 所 ,C
其它两段平稳 , 采样 控制 周期 暂定 为 1s 0。 根 据 温度 的控 制精 度 目标 为 ±1o 均 热 段 0C, E模糊变量 各变量的取值为 : ≤ 一 .  ̄ E 75 C∈
NB; 一7 5C <E≤ 一5C ∈ NM ;一5 .o o ℃ <E≤

炉膛压力控制结构框图见图 1 。为了使炉压
稳 定在 0—1p , 则 上 只调 节 烟 道 闸 板 和 0a原 引风机 开度 , 调节 引风 机开度 时 , 但 要兼顾 考
虑 引风 机 输 出 电流 在 额 定 电 流 3 0 范 围 6A
2 o ∈ NS;一 2 5 5 C . ℃ < E ≤ 2. ℃ ∈ Z ; 5 O
2 5 C <E≤5 C E P .o o S:5 C <E≤7. ℃ ∈P ; o 5 M
的两个 蓄 热室 成组 工 作 , : 即 一侧 送 空气 ( 同
段分别 是 13 2 0±1。 、10±1℃ 、10± 0【 l9 = 0 15 1℃ , 0 预热段暂不作特定要求 , 档位的选择由 毛轧主电机实际电流作为主要依据 , 电流 若 在额定 电流范 围 内 , 则尽 可 能 选 择 较低 温 度 档位 , 因炉膛压力过高而引起炉尾冒火 , 若 则

现较 困难 的缺点 ; 在上述 基础 上将 误差 、 误差
变化率 的模糊量经合成算法 , 推得模糊规则 表; 模糊控制规则 自适应修正 。 加热温度设三档来控制 , 均热段分别是

加热炉燃烧控制系统设计与仿真_毕业设计(论文)

加热炉燃烧控制系统设计与仿真_毕业设计(论文)

南通纺织职业技术学院毕业设计(论文) YGW-9300型有机热载体加热炉控制系统课程名称PLC原理及应用系、专业电气自动化加热炉燃烧控制系统设计与仿真摘要冶金工业消耗大量的能源,其中钢坯加热炉就占钢铁工业总能耗的四分之一。

自70年代中期以来,各工业先进国对各种燃烧设备的节能控制进行了广泛、深入的研究,大大降低了能耗。

步进式加热炉不仅是轧线上最重要的设备之一,而且也是耗能大户。

钢坯加热的技术直接影响带钢产品的质量、能源消耗和轧机寿命。

因此步进式加热炉优化设定控制技术的推广对钢铁企业意义重大。

步进式加热炉的生产目的是满足轧制要求的钢坯温度分布,并实现钢坯表面氧化烧损最少和能耗最小。

由于步进式加热炉具有非线性、不确定性等特点,其动态特性很难用数学模型加以描述,因此采用经典的控制方法难以收到理想的控制效果,只能依靠操作人员凭经验控制设定值,当工况发生变化时,往往使工艺指标(如空燃比)实际值偏离目标值范围,造成产品质量下降消耗增加。

针对以上情况,本文通过理论和仿真比较说明使用双交叉限幅控制系统是一种比较好的燃烧控制方法。

关键词:步进式加热炉;空燃比;双交叉限幅;系统仿真目录摘要............................................................................................................................. I I ABSTRACT ................................................................................ 错误!未定义书签。

第一章引言 (1)第二章步进式加热炉 (4)2.1步进式加热炉简介 (4)2.2步进式加热炉工艺过程 (5)2.3加热炉控制技术的发展和现状 (8)第三章燃烧控制系统设计及仿真 (9)3.1 步进式加热炉生产工艺和控制要求 (9)3.2燃烧控制系统及仿真 (10)3.2.1 Simulink简介 (10)3.2.2 仿真模型的建立 (11)3.2.3串级比值控制系统设计及仿真 (12)3.2.4 单交叉限幅燃烧控制系统设计及仿真 (17)3.2.5双交叉限幅控制系统设计及仿真 (22)3.2.6偏置单元和炉膛负压控制系统简介 (29)第四章组态软件MCGS在加热炉控制中的应用 (30)4.1 MCGS简介 (30)4.2 MCGS在加热炉控制中的应用 (32)第五章仪表选型 (34)5.1检测元件的选型 (34)5.1.1温度检测 (34)5.2压力和流量的测量 (36)5.3 变送器的选取 (37)5.3.1温度变送器 (38)5.3.2差压变送器的选取 (39)5.4执行器的选择 (40)结束语 (42)参考文献 (43)致谢 (44)第一章引言工业锅炉广泛应用于炼油、冶金、化工、轻工、造纸、纺织与食品等行业。

浅谈加热炉燃烧控制系统设计

浅谈加热炉燃烧控制系统设计

的空燃 比相对合理 。如果炉 内的空燃 比过高 ,
3加热炉燃烧控制系统设计要点分析
加热炉 的燃烧控 制系统 的设 计是否合 理 ,
炉 内的钢 才就会 发生氧化 , 提高 热量 的损失 比 例 ;而在空燃 比相对较 低的情 况之下 ,炉内的 燃料就不能够得到充分燃烧 , 造成能源的浪费 , 燃料是否充分燃烧 ,能源是否得 到了优 化配 置
~ ‘
之时 ,使得燃料先行 ,避免黑烟 的出现 。也正
烧量 下的空气过剩率进行 了综合性 的补正 ,使
得燃烧控制 系统 的性能 更加完善 ,更 能够 发挥 场严重的能源危机一 ——石 油危机,石 油一时 是因为这样的构造 ,此种混合式 的燃烧控制 系 其节 约能源 ,减少污染的重要作用。因此 ,在 间成为 了各 国所 关注 的热点能源。为了节省能 统才会被称为交叉限制式燃烧系统。
【 关 键 词 】加 热 炉 燃 烧 控 制 系统 设 计 合 理
当中,最 为突出的优势就是其采用了两种极端 相应 的提高 。其劣 势就在于 ,一 旦气氛的分 析
际温度稍微低于相关的设定值时 ,在有燃料 的
氧气 含量来 校对 炉内的空燃比的控制系统。其
增加需求之时 ,空气先行 ;如果加热炉 的炉温 工作 原理 也交叉 限制式控 制系统较为相似 ,不 低于了相关的设定值 ,有必要降低燃料 的流量 再在此赘述 。此 系统的优 势在 于它对 于不同燃 2 O世纪 7 O年代初期 ,世界范 围内爆 发了
自动化控制 ・ A u t o ma t i c C o n t r o
浅谈 加热炉燃烧控 制系统设计
文/ 张 路 军
加热炉 的燃烧系统 的设计进行 了相 应的改进, 比如说美 国与 日本 ,在这 一方面都有所成就。

加热炉控制系统的设计与实施

加热炉控制系统的设计与实施
r q ie n s e e g a i e ur me t , n r s vng,c n ump in rdu to nd sf t ec y os to e cin a aey, t .Th utma i o to y tm s ra ie y t e a o tc c n r ls se i e z d b he DCS l
r q r me t o e tn u na e e uie n s fh a ig f r c .
Ke r s a tma i c n rl s s m fh a ig fr a e e e g a i g c n u t n r d cin; C 7 y wo d :u o t o t y t o e t u c ; n r s v n ;o s mp i e u t c o e n n y o o P S
s se y tm.T e r s l h w t a h u o t o t l s s m a e r a i d e e t ey a d p r cl es t e c nr l h e u t s o h t t e a tmai c n r y t s c o e c n b e l e f ci l n e f t me t h o t z f v e y o
o I f SMATC rcs c nrl ytm ( C 7 n te e t g fra e o u e hfn t n rc s o to riig I poe s o t sse o P S )a d h h ai un c fs p r mu i ci po es c nrl ann n u o t
加 热炉 在工 业生 产 中是 非 常重 要 的换热 设 备 . 在 炉 膛 内将燃 料 燃 烧 释放 的热 量 通 过 热 辐 射方 式 传 递给被 加热 的工艺介 质 加 热炉控 制 的主要 任务 就 是 保证 工 艺 介 质 最终 温 度 达 到并 维 持 在 工 艺 要 求 范 围 内…, 由于其 具 有 强耦 合 、 滞 后等 特 性 , 大 控

型钢加热炉温度控制系统设计及仿真研究毕业设计说明书

型钢加热炉温度控制系统设计及仿真研究毕业设计说明书

毕业设计说明书加热炉温度控制系统设计及仿真研究摘要加热炉是一个典型的复杂的工业被控对象,它很显著地具有多变量,时变,非线性,强藕合,大惯性和纯滞后等特点,而且由于炉温分布难以测量,外界扰动因素多,很难对其进行准确建模和控制。

并且,随着工艺要求的日益提高,以前的传统控制方法己经不能满足现在的社会需求。

本设计将对加热炉控制的关键问题:燃烧控制、温度控制以及空燃比优化等进行研究,因此,本设计主要涉及以下几点:1.采用炉温---燃烧串级控制方式实现温度的自动控制。

2.在现有几种燃烧控制方法的基础上,提出了双边限幅控制。

3.提出了变空燃比的控制。

4.运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。

关键词:加热炉;炉温---燃烧串级控制;双边限幅控制;仿真The Design and Simulation of Furnace Temperature Control SystemAbstractFurnace is atypical industrial complex object, It is notable to have a multi-variable, time-varying, nonlinear ,strong coupling, and the inertial characteristics of pure delay, and because the temperature of furnace is difficult to measure, external disturbance factors, it is difficult to accurately modeling and control. And, With the increasing requirements of the process, the traditional control method has been unable to meet the current needs of the community. the design relates mainly to the following points: 1. using combustion temperature cascade control method of temperature control.2. Several of the existing combustion controlling methods on the basis of bilateral limiting controlled.3. Change of the air-fuel ratio control.4. Using MATLAB software on the temperature control system for a more comprehensive simulation and performance analysis.Key words:Furnace; Combustion temperature cascade control; bilateral limiting control; Matlab Simulation目录摘要 (II)Abstract ...................................................................................................................................... I II 第一章绪论 (1)1.1概述 (1)1.2国内外现状 (1)1.3本设计的研究内容 (2)1.4小结 (3)第二章加热炉工艺及难点分析 (4).21加热炉工艺流程 (4)2.2燃烧机理分析 (5)2.3加热炉工艺要求 (7)2.3.1炉膛温度 (7)2.3.2燃烧过程 (8)2.3.3炉膛压力 (8)2.3.4送风管总压力 (9)2.4加热炉难点分析 (9)2.4.1被控对象特性 (9)2.4.2加热炉控制难点 (9)2.5小结 (10)第三章加热炉控制系统 (11)3.1加热控制系统结构设计 (11)3.2炉温---燃烧串级控制 (12)3.2.1串级控制特点 (12)3.2.2炉温---燃烧串级控制分析 (12)3.2.3主回路温度控制策略选择 (13)3.3常规模糊控制器结构分析 (14)3.3.1控制器基本结构 (14)3.3.2量化因子对控制器性能的影响 (16)3.3.3模糊推理 (17)3.4温度模糊控制器设计 (18)3.4.1控制器参数确定 (18)3.4.2控制器具体设计方法 (20)3.5小结 (24)第四章燃烧控制策略研究 (25)4.1燃烧副回路的控制目标 (25)4.2基于稳定空燃比的燃烧控制策略 (26)4.2.1单回路控制原理 (26)4.2.2串级比值控制原理 (26)4.2.3单边限幅控制原理 (28)4.2.4双边限幅控制原理 (29)4.3加热炉炉温控制系统仿真结果分析 (33)4.3.1单回路控制仿真结果分析 (34)4.3.2串级比值控制仿真结果分析 (36)4.3.3单边限幅控制仿真结果分析 (37)4.3.4仿真结果分析比较 (39)4.3.5双边限幅控制仿真结果分析 (40)4.4小结 (41)第五章加热炉炉温模糊控制系统仿真 (43)5.1对象模型的建立 (43)5.2模糊控制器仿真 (44)5.3加热炉炉温控制系统仿真结果分析 (45)5.3小结 (47)参考文献 (48)附录 (50)致谢 (51)第一章绪论1.1概述随着科技的飞速发展,能源与环境面对着巨大的挑战。

管式加热炉温度控制系统的设计与仿真(中文)

管式加热炉温度控制系统的设计与仿真(中文)

管式加热炉温度控制系统1方案选定管式加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。

因此,常选原料油出口温度为被控参数、燃料流量为控制变量,温度控制系统中,影响原料油出口温度的干扰有原料油流量、原料油入口温度、燃料压力、燃料压力等。

该系统根据原料油出口温度变化来控制燃料阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,是一个简单控制系统。

当燃料压力或燃料热值变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。

从燃料流量变化经过三个容量后,才引起原料油出口温度变化,这个通道时间常数很大,约有15min,反应缓慢。

而温度调节器是根据原料油的出口温度与设定值的偏差进行控制。

当燃料部分出现干扰后,控制系统并不能及时产生控制作用,克服干扰对被控参数的影响,控制质量差。

当生产工艺对原料油出口温度要求严格时,上述简单控制系统很难满足要求。

燃料在炉膛燃烧后,首先引起炉膛温度变化,再通过炉膛与原料油的温差将热量传给原料油,中间还要经过原料油管道管壁。

显然,燃料量变化或燃料热值变化,首先使炉膛温度发生改变。

如果以炉膛温度作为被控参数组成单回路控制系统,会使控制通道容量滞后减少,时间常数约为3min,对来自燃料的干扰的控制作用比较及时。

但问题是炉膛温度毕竟不能真正代表原料油出口温度,即使炉膛温度恒定,原料油本身的流量或入口温度变化仍会影响原料油出口温度,这是因为来自原料油的干扰并没有包含在反馈回路之内,控制系统不能克服对原料油出口温度的影响,控制效果仍达不到生产工艺要求。

如果将上面两种控制系统的优点——温度调节器对被控参数的精确控制、温度调节器对来自燃料的干扰的及时控制结合起来,先根据炉膛温度的变化,改变燃料量,快速消除来自燃料的干扰对炉膛温度的影响;然后再根据原料油出口温度与设定值的偏差,改变炉膛温度调节器的设定值,进一步调节燃料量,以保持原料油出口温度恒定,这样就构成了以原料油出口温度为主要被控参数,以炉膛温度为辅助被控参数的串级控制系统。

煤粉炉燃烧控制系统的设计及仿真

煤粉炉燃烧控制系统的设计及仿真

引言大型火力发电机组是典型的过程控制对象,它是由锅炉、汽轮发电机组和辅助设备组成的庞大的设备群。

锅炉的燃烧控制过程是一个复杂的物理,化学过程,影响因素众多,并且具有强耦合,非线性等特性。

锅炉的自动化控制经历了三、四十年代的单参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。

尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到了普及和应用。

电站锅炉利用煤的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。

在锅炉燃烧系统中,给煤系统,送风系统,引风系统是燃烧控制系统的重要环节。

以主蒸汽压力控制系统为主回路,燃烧率控制系统为内回路,通过传感器采集炉膛压力,含氧量和炉膛负压来调节锅炉的给煤量,送风量和引风量从而达到最佳热效率。

燃烧控制系统是电厂热工控制的重要组成部分,目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。

燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制三个子系统构成。

锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同时还要保证经济燃烧和锅炉的安全运行。

具体控制任务可分为三个方面:一,稳定蒸汽母管压力。

二,维持锅炉燃烧的最佳状态和经济性。

三,维持炉膛负压在一定范围。

这三者是相互关联的。

控制系统计算机仿真是对控制系统进行科学研究的一种重要手段,通过计算机仿真来对比各种控制策略和方案,优化并确定相关参数,以获得最佳控制效果是多年来控制系统设计尤其是新型控制策略与算法研究中心必不可少的技术。

采用MatLab对锅炉燃烧控制系统进行计算机仿真,可快速方便的实现多种规则和参数的控制仿真效果,极大地提高了调节器参数整定的效率和准确性。

本次设计的题目是煤粉炉燃烧控制系统的设计及仿真研究,主要内容包括燃烧控制系统的组成;燃烧控制系统的基本方案;以及燃烧控制系统的参数整定。

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计摘要:随着科学技术的飞速发展,消费者对民用生产和工业生产对产品的性能有了更新的要求,其中,对产品的温度控制的要求也越来越高,所以研究设计管式加热炉的温度控制器具有很大的现实意义和使用价值。

本文是基于PID 控制算法的管式加热炉智能温度控制器为研究对象,首先阐述本文的研究背景和温度自动控制器的需求,然后对分析了传统控制方法的弊端,对模糊控制方法进行了介绍。

随后利用模糊PID计算方法计算对系统功能的实现情况,并从硬件和软件两个方面进行系统运行调试,得出较好的结果。

关键词:温度控制器;SSR 固态继电器;STM32 单片机ABSTRACT:With the rapid development of science and technology, consumer and industrial production to civilian production requirements for product update performance, which, on product temperature control requirements have bee more sophisticated, so designing resistance furnace temperature controller is of great practical significance and usefulness. This article is a resistance furnace temperature controller based on PID control algorithm for the study, first of all explains the background of this study and temperature control needs, then design the overall system-wide programme, including in particular the hardware system design, system design and software design of the control circuit of temperature. Then take advantage offuzzy PID calculation system of implementation, and run from the two systems in terms of hardware and software debugging, produce better results and conclusion full text. KEY WORDS:Temperature controller; SSR-solid state relays; STM32 microcontroller目录1 引言12.管式加热炉温度系统12.1管式加热炉的一般结构22.2管式加热炉传热方式53 管式加热炉温度系统的模糊控制73.1 常规控制方法的局限性73.2 智能控制思想83.3 管式加热炉温度系统的智能模糊控制93.3.1 模糊控制概述93.3.2 模糊控制原理93.3.3 模糊控制器结构102.2.4 建立模糊规则表144.控制系统仿真164.1 PID原理164.2 PID参数的选择174.3 Smith模糊PID控制算法204.4 模糊PID控制器的设计及仿真结果21结论25参考文献 (25)1 引言随着现代科技的快速发展,科学技术的应用,大大改善了人类的生产、生活方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要冶金工业消耗大量的能源,其中钢坯加热炉就占钢铁工业总能耗的四分之一。

自70年代中期以来,各工业先进国对各种燃烧设备的节能控制进行了广泛、深入的研究,大大降低了能耗。

步进式加热炉不仅是轧线上最重要的设备之一,而且也是耗能大户。

钢坯加热的技术直接影响带钢产品的质量、能源消耗和轧机寿命。

因此步进式加热炉优化设定控制技术的推广对钢铁企业意义重大。

步进式加热炉的生产目的是满足轧制要求的钢坯温度分布,并实现钢坯表面氧化烧损最少和能耗最小。

由于步进式加热炉具有非线性、不确定性等特点,其动态特性很难用数学模型加以描述,因此采用经典的控制方法难以收到理想的控制效果,只能依靠操作人员凭经验控制设定值,当工况发生变化时,往往使工艺指标(如空燃比)实际值偏离目标值范围,造成产品质量下降消耗增加。

针对以上情况,本文通过理论和仿真比较说明使用双交叉限幅控制系统是一种比较好的燃烧控制方法。

关键词:步进式加热炉;空燃比;双交叉限幅;系统仿真AbstractMetallurgical industry consumes large amounts of energy, the billet heating furnace accounts for 1/4 of the total energy consumption of iron and steel industry. Since 70 time metaphase, the advanced industrial countries have conducted extensive research, in-depth on the energy saving control device of different combustion, greatly reduces the energy consumption.Reheating furnace is not only the most important one of the equipment of the rolling line, but also a large energy consumer. Billet heating technology directly affects strip steel product quality, energy consumption and mill life. The step type heating furnace optimal setting control technology is of great significance to the promotion of iron and steel enterprises. Step type heating furnace production is designed to meet the requirements of the temperature distribution of the billet rolling surface, and to achieve the fewest stock scale loss and energy consumption. Due to the characteristics of reheating furnace is a nonlinear, uncertainty, its dynamic characteristics is difficult to use mathematical model to describe, so using classic control theory to receive the ideal control effect, can only rely on the operation experience of the personnel to control the set value, when the conditions change, often make the process indicators (such as the air fuel ratio) the actual value is far from the target range, decrease the product quality consumption increase. In view of the above situation, this paper through theoretical and simulation results illustrate the use of double cross limiting control system is a good method for controlling combustion.Keywords: reheating furnace; air fuel ratio; double cross limit; system simulation目录摘要 (I)第一章引言 (1)第二章步进式加热炉 (4)2.1步进式加热炉简介 (4)2.2 步进式加热炉工艺过程 (5)2.3 加热炉控制技术的发展和现状 (8)第三章燃烧控制系统设计及仿真 (9)3.1 步进式加热炉生产工艺和控制要求 (9)3.2 燃烧控制系统及仿真 (10)3.2.1 Simulink简介 (10)3.2.2 仿真模型的建立 (11)3.2.3 串级比值控制系统设计及仿真 (12)3.2.4 单交叉限幅燃烧控制系统设计及仿真 (17)3.2.5 双交叉限幅控制系统设计及仿真 (22)3.2.6 偏置单元和炉膛负压控制系统简介 (29)第四章组态软件MCGS在加热炉控制中的应用 (30)4.1 MCGS简介 (30)4.2 MCGS在加热炉控制中的应用 (32)第五章仪表选型 (34)5.1 检测元件的选型 (34)5.1.1 温度检测 (34)5.2 压力和流量的测量 (36)5.3 变送器的选取 (37)5.3.1温度变送器 (38)5.3.2差压变送器的选取 (39)5.4 执行器的选择 (40)结束语 (42)参考文献 (43)致谢 (44)第一章引言工业锅炉广泛应用于炼油、冶金、化工、轻工、造纸、纺织与食品等行业。

每年消耗大量的原煤。

由于热工检测手段落后,自动控制系统不够完善及运行管理不良等原因,导致热效率比设计值低10%~20%。

并由于调节量过大的波动引起执行机构过度磨损,燃烧不稳定,热力设备与管道的热应力破坏,工艺次品率升高,锅炉冒黑烟,产生大量氮氧化物等造成环境污染。

许多厂家和单位已研制出多种工业锅炉的仪表或微机控制系统,并取得一定成效。

但运行实践表明,工业锅炉滞后和惯性大,反应慢,回路多,耦合性强,过程扰动与噪声大,以及对象特性由于积灰、结垢、电子元件老化,环境、负荷、煤质等原因而发生变化。

人们发现,燃烧调节系统已偏离最佳整定,要么反应迟钝,要么振荡太大,难以长期或在某些工况下运行。

而调节器的整定又很费时间,且要求相当的技术,因此常将其切换至手控运行方式。

不仅工人劳动强度大,且易使效率降低,污染加剧。

采用自适应控制可以使自控系统投入率提高,减少运行操作人员,节约能源,减轻污染。

自动燃烧控制系统的基本任务是在满足生产工艺的温度要求前提下,实现最佳燃烧控制以达到减少烧损、节约能源的目的。

根据燃烧机理,一般加热炉内空气过剩系数u的最佳范围为1.02~1.10,称为最佳燃烧带。

如果u过大,使火焰温度降低,氧化铁皮厚度增加即烧损增加;反之,u过小,既冒黑烟污染环境,又使燃烧效率下降。

一般情况下,加热炉燃烧控制都采用基本串级比值控制方案,或是其变化形式。

但由于空气管道时间常数比燃料回路大,当负荷突然发生变化时,这种控制方案不能保证u在最佳燃烧区。

为解决这一问题,许多人进行了深人研究,先后产生了几种交叉制约控制方案,使燃烧控制系统日趋完善[1]。

1、加热炉的工艺和结构在本文中加热炉使用的是步进式加热炉。

它由以下几个基本部分结构组成:炉膛和炉衬,燃料系统,供风系统,排烟系统,冷却系统,余热利用装置,装出料设备,检测及调节设备,电子计算机控制系统等。

步进式加热炉的工业过程:由连铸出坯辊道送来的板坯在装料辊道上自动测量板坯长度,合格板坯经电子称量装置称量后准备人炉。

炉子为双排料,装料端设置两台装料推钢机,板坯由装料辊道运至装料机口定位后,装料推钢机将板坯从装料辊道上推到炉子固定梁上,当需要入炉时计算机的控制系统发出指令,炉门升起,炉内步进梁再将其托起、前进、下降、后退,完成一个步进行程,而板坯向前移运了一个步距。

如此周而复始,板坯自装料端依次顺序经过炉子预热段、加热段、均热段,一步步地移送到炉子的出料端。

在出料端,激光检测器检测到板坯边缘并在步进梁完成一个水平行程运动后,算出板坯位置,当炉子接到信号后再自动开启出料炉门,用出钢机将加热好的板坯取出后,直接放在出料辊道上,出料辊道为单传辊道。

2、控制参数的选择燃烧过程的控制有以下三个基本要求:1)保证炉膛内温度稳定,能按要求自动增减燃料量;2)燃烧良好,供气适宜,既要防止由于空气不足使烟囱冒黑烟,也不要因空气过量而增加热量损失;3)保证锅炉安全运行。

保证炉膛一定的负压,以免负压太小,甚至为正,造成炉膛内热烟气往外冒,影响设备和工作人员的安全;如果负压过大,会使大量冷空气漏进炉内,从而使热量损失增加[7]。

因此,在本设计中要做两个控制系统。

一个是温度控制系统;一个是炉膛负压控制系统。

则控制参数分别为炉膛内温度和炉膛负压。

炉膛内温度范围是1100~1200℃,炉膛负压范围是0~-30Pa[3]。

3、控制燃烧方案燃烧自动调节系统包括热负荷、送风、引风三个调节回路。

其中,燃料量和送风量的比例是影响燃烧经济性的主要因素。

为了防止不完全燃烧,保证动态过程中风量始终有一定裕量,就需要采用单交叉控制(或称选择性控制),以实现加负荷时先加风后加燃料,减负荷时先减燃料后减风。

单交叉控制只有风对燃料的限制,没有燃料对风的限制,即可以保证风量始终有一定富裕量,但不能排除风量过大可能造成的热损失。

为此可采用双交叉控制,即在风量调节回路中再增加一个低值选择器,燃料回路中再增加一个高值选择器及必要的运算组件,以实现加负荷时先加风后加燃料,减负荷时先减燃料后减风,保证一定的空气裕量,同时又防止风量过大。

双交叉限幅经历了燃料先行的比值或空气先行的比值调节系统、串级串联燃烧控制系统、串级并联燃烧控制系统、串级并联单交叉限幅燃烧控制系统四个发展阶段。

相关文档
最新文档