2x2.5m箱涵计算书
雨水箱涵模板支架计算书2021.6.2
附件雨水箱涵支架模板设计计算书1、工程概况本项目位于昆明市五华区及翠湖片区,涉及雨水箱涵路段及箱涵结构尺寸如下:序号道路名称管道尺寸1茭菱路4m*2m;4m*1.5m2西园北路4m*2m3东风西路南段3m*2m4青云街2m*1.5m5翠湖北路 2.5m*1.7m6翠湖南路2m*1.4m7翠湖西路 2.5m*1.7m/1.8m*1.7m2、计算依据:1、《建筑施工扣件式钢管脚手架安全技术标准》T/CECS699-20202、《建筑施工脚手架安全技术统一标准》GB51210-20163、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20114、《建筑施工模板安全技术规范》JGJ162-20085、《混凝土结构设计规范》GB50010-20106、《建筑结构荷载规范》GB50009-20127、《钢结构设计标准》GB50017-20173、设计计算说明及技术参数3.1、设计计算说明本支架模板体系设计适用于五华区排水管网清污分流及综合管廊配套工程(第一标段)所有雨水箱涵,按照最不利工况组合进行结构设计。
根据本工程箱涵尺寸确定以茭菱路及西园北路4m*2m雨水箱涵作为结构设计的标准断面。
各类型雨水箱涵及结构尺寸如下:3.2参数信息3.2.1支架参数计算支架形式为满布扣件式钢管脚手架,搭设最大高度为2米,立杆采用单立管。
搭设尺寸为:立杆纵距l a =0.9米(轴向),立杆横距l b =1米(横向),立杆步距h=1.2米,钢管上设U 形托支撑,下设垫木。
采用的钢管类型为Φ48.3×3.6(根据市场实际情况计算按壁厚2.8,余同)。
木楞(次梁)采用10cm ×5cm 的A-3型松木(针叶林),间距0.9m ;主梁采用双钢管,间距1m 。
模板采用1.5cm 覆面木胶合板,拉杆采用M14螺杆采用竖向0.5m ,纵向0.8m 布局。
具体布置如下:3.2.2工程属性3.2.3荷载设计注:脚手架位于基坑内,风荷载忽略不计。
双孔箱涵设计计算书新规范
园中路双孔箱涵计算书一、设计资料箱涵净跨径L。
=2×4m,净高H。
=3.6m,箱涵顶面铺装沥青砼0.05m+C40细石砼层0.2m (平均),两端填土r=18KN/m3,Φ=30°,箱涵主体结构砼强度等级为C30,箱涵基础垫层采用C10砼,受力钢筋采用HRB335钢筋,地基为粉质粘土,汽车荷载为城-B。
二、设计依据《公路钢筋砼及预应力砼桥涵设计规划》(JTG D62-2004)三、内力计算1、荷载计算1)恒载恒载竖向压力p1=r1·H+r2·δ=24×(0.05+0.2)+25×0.4=16KN/m2恒载水平压力:顶板处:p2=)245(tan21ψγ-⋅⋅H=1.5KN/m2底板处:p3=)245(tan)(21ψγ-⋅+⋅hH=27.87KN/m22)活载a1=a2+2H=0.25+2×0.25×tan30°=0.54mb1=b2+2H=0.6+2×0.25×tan30°=0.89m车辆荷载垂直压力q车=11baG⨯∑=89.054.060⨯=124.84KN/m2车辆荷载水平压力e车=q车·tan2(45°-Ψ/2)=124.84×0.333=41.61KN/m2 3)作用于底板垂直均布荷载总和q1=1.2q恒1+1.4q车1q恒1=p1++BddHr)2(43+⨯⨯=16+9.8)3.03.02(6.325+⨯⨯⨯=25KN/mq 车1=124.84 KN/mq 1=1.2q 恒1+1.4q 车1=1.2×25+1.4×124.84=204.78 KN/m4)作用于顶板垂直均布荷载总和q 2=1.2q 恒2+1.4q 车2q 恒2= 16KN/m q 车2=124.84 KN/m q 2=1.2q 恒2+1.4q 车2=193.98 KN/m 5)作用于侧墙顶部的水平均布荷载总和q 3=1.2q 恒3+1.4q 车3q 恒3= 1.5KN/m q 车3=41.61 KN/m q 3=1.2q 恒3+1.4q 车3=60.05 KN/m 6)作用于侧墙底部的水平均布荷载总和q 4=1.2q 恒4+1.4q 车4q 恒4= 27.87KN/m q 车4=41.61 KN/m q 4=1.2q 恒4+1.4q 车4=91.7KN/m 2、恒载固端弯矩计算m KN L q MFAC ⋅-=⨯-=⨯-=65.24123.416122212恒恒m KN M M F AC F CA ⋅=-=65.24恒恒m KN L q MFBD ⋅=⨯=⨯-=52.38123.425122211恒恒m KN M M F BD F DB ⋅-=-=52.38恒恒m KN L q q L q M F AB ⋅=⨯-+⨯=⨯-+⨯=06.16304)5.187.27(1245.130)(12222234223恒恒恒恒mKN L q q L q MFBA ⋅-=⨯--⨯-=⨯--⨯-=10.23204)5.187.27(1245.120)(12222234223恒恒恒恒3、活载固端弯矩计算m KN L q MF AC ⋅-=⨯-=⨯-=36.192123.484.124122212车车m KN M M F AC F CA ⋅=-=36.192车车mKN L q MFBD ⋅=⨯=⨯=36.192123.484.124122211车车m KN M M F BD F DB ⋅-=-=36.192车车mKN L q q L q MFAB ⋅=⨯-+⨯=⨯-+⨯=48.55304)61.4161.41(12461.4130)(12222234223车车车车m KN L q q L q MF BA ⋅-=⨯--⨯-=48.5520)(122234223车车车车3、抗弯劲度计算005.03.4124.04124313=⨯⨯=⨯=L d K AC顶 005.03.4124.04124313=⨯⨯=⨯=L d K BD底 00225.04123.04124323=⨯⨯=⨯==L d K K BA AB侧4、杆端弯矩的分配系数计算69.000225.0005.0005.0=+=+=AB AC AC AC K K K μ31.000225.0005.000225.0=+=+=AB AC AB AB K K K μ31.0005.000225.000225.0=+=+=BD BA BA BA K K K μ69.0005.000225.0005.0=+=+=BD BA BD BD K K K μ5、杆端弯矩的传递系数各杆件向远端的传递系数均为0.56、结点弯矩分配计算恒载弯矩分配计算表注:弯矩符号以绕杆端顺时针旋转为正。
分享箱涵结构计算
箱涵结构计算一. 箱涵结构分析计算说明 1.计算内容淘浦东路—真南路下立交跨铁路段采用现浇混凝土箱形结构,主车道断面形式为单箱单室,机动车道净宽8.8米,净高4.5米,非机动车道净宽4.2米,净高2.5米,横断面见图1,箱涵全长43.7米.图1 主通道箱涵横断面箱涵采用C40防水钢筋混凝土结构,各部位结构尺寸见表1.2.荷载及组合(1)结构设计所考虑的荷载主要有三种:恒载,活载.恒载:结构自重,顶板上覆土自重,静止土压力,路面铺装活载:地面列车荷载(考虑冲击力的影响),机动车道车道荷载,非机动车道车道荷载,主动土压力(2)荷载组合荷载组合1:结构自重+顶板覆土自重+路面辅装+静止土压力荷载组合2: 结构自重+顶板覆土自重+路面辅装+地面列车荷载(考虑冲击力的影响)+ 主动土压力(3)主要设计参数结构自重:钢筋混凝土重度3/25m kN =γ 顶板上覆土自重: m kN q /48=车行道路面辅装: m kN q /2.391= 非车行道路面辅装: m kN q /1962=静止土压力:箱涵顶部m kN q /123=,箱涵底部m kN q /5.1064=(铁路桥涵设计基本规范TB 10002.1—2005)主动土压力:箱涵顶部m kN q /4.665=,箱涵底部m kN q /3.1726=(铁路桥涵设计基本规范TB 10002.1—2005)地面荷载:铁路荷载:中—活载 路面荷载:城A 车道荷载土的主要物理力学性质指标:3/18m kN =γ, 35=ϕ 3.结构计算荷载组合1,荷载组合2下的计算模型如图2,图3所示.q4图26图3本计算采用MIDAS/civil 软件对结构进行有限元分析,箱涵纵向计算取3.135米最不利荷载组合,进行配筋计算和裂缝验算.荷载组合1下的计算结果如图4—图6所示,荷载组合2下的计算结果如图7---图9所示,结构控制内力如表2所示。
2553 2147 1829 1589 1419 1311 1256 1272 1326 1399C i v i l O C E S S ORAGR AM 表示-方向-1253 -1211 -1169 -1127 -1085 -1043 -1001 -959 -917 -875表示-方向-675 -538 -415 MIDAS/CivilPOST-PROCESSOR BEAM DIAGRAM-z1.43455e+003表示-方向剪力3452 3250 3088 2974 2908 2955 3073 3255 3504 3826 2286 表示-方向弯矩图MIDAS/CivilPOST-PROCESSOR BEAM DIAGRAM表示-方向顶板,底板轴力表示-方向腹板轴力MIDAS/CivilPOST-PROCESSOR表示-方向腹板剪力表示-方向顶板,底板剪力应力,结果如下所示。
箱涵计算书(承载力及配筋计算)
箱涵计算书(承载力及配筋计算)范本一:一:引言本文档旨在详细介绍箱涵的承载力及配筋计算方法。
其中包括箱涵的基本概念、计算方法、示例等内容,以便读者对箱涵的设计和施工有更深入的理解。
二:箱涵的基本概念1.1 箱涵的定义箱涵是一种承载结构,常用于道路、铁路等交通工程中的桥梁建设。
它由桥盖、箱体、辅助构件等部分组成。
1.2 箱涵的分类根据构造形式和用途,箱涵可以分为预制混凝土箱涵、钢筋混凝土箱涵等。
1.3 箱涵设计的相关参数箱涵设计需要考虑的参数包括:车辆荷载、地基条件、施工工艺等。
三:箱涵的承载力计算2.1 桥盖的承载力计算桥盖承载力的计算需要考虑自重荷载、活载荷载、温度变形等因素,并通过强度、刚度和稳定性进行检验。
2.2 箱体的承载力计算箱体承载力的计算需要考虑土压力、水压力、地震力等因素,并通过强度、刚度和稳定性进行检验。
四:箱涵的配筋计算3.1 桥盖的配筋计算桥盖的配筋计算需要考虑受力状态、受力面积等因素,并根据相应的设计规范进行计算。
3.2 箱体的配筋计算箱体的配筋计算需要考虑受力状态、受力面积等因素,并根据相应的设计规范进行计算。
五:示例分析本节将通过一个具体的实例来演示箱涵的承载力及配筋计算方法,以便读者更好地理解和应用。
六:附件本文档相关的附件见附件目录。
七:法律名词及注释******************************************************* ***********************范本二:一:前言本文档的目的是详细介绍箱涵的承载力及配筋计算方法,以及相关的设计规范和标准。
通过阐述箱涵的基本概念、计算方法和实例分析,旨在为读者提供参考和指导。
二:箱涵的基本概念2.1 箱涵的定义箱涵是一种承载结构,常用于公路、铁路等交通工程中的桥梁建设。
它由桥盖、箱体、辅助构件等组成。
2.2 箱涵的分类根据结构特点和用途,箱涵可以分为预制混凝土箱涵、钢筋混凝土箱涵等。
箱涵计算书
*******钢筋混凝土箱涵验算*******1. 设计依据:《公路桥涵设计通用规范》(JTG D60-2015) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路圬工桥涵设计规范》(JTG D61-2005) 《公路桥涵地基与基础设计规范》(JTGD63-2007)《公路涵洞设计细则》JTG/T D65-04-20072. 设计资料:设计荷载:公路-Ⅰ级涵洞净跨径l0=2.5 m涵洞净高h0=2.2 m 涵洞水平板厚δ=0.27 m涵洞侧板厚t=0.25 m涵洞倒角高度c1=0.05 m涵洞倒角宽度c2=0.05 m保护层厚度=0.03 m涵身砼标号=C40砼主受力钢筋级别=HRB400顶板钢筋直径=16 mm侧板钢筋直径=16 mm顶板钢筋间距=0.1 m涵顶填土高H=0.9 m土容重γ1=18 kN/m^3钢筋混凝土容重γ2=25 kN/m^3土的内摩擦角φ=30度基础襟边宽=0.2 m基础厚度=0.5 m基础级数=1基础容重=22 kN/m^3基底容许应力=350 kPa涵洞计算跨径lp=l0+t=2.75 m涵洞计算高度hp=h0+δ=2.47 m3. 恒载计算:填土垂直压力p1=K*γ1*H=18.144kN/m^2箱节自重p2=γ2*δ=6.75 kN/m^2恒载竖直压力p恒=24.894 kN/m^2土的侧压力系数λ=0.333恒载水平压力顶板处ep1=5.4 kN/m^2恒载水平压力底板处ep2=21.84 kN/m^24. 活载计算:纵向分布宽度a=1.239 m横向分布宽度b=2.939 m垂直压力q汽=38.436 kN/m^2水平压力eq汽=12.812 kN/m^25. 框架内力计算:1).构件刚度比杆件刚度比K=I1/I2*hp/lp=1.1312).节点弯矩与杆件轴向力计算6. 荷载组合:7. 构件截面内力计算:8. 截面设计计算:(1) 顶板跨中截面计算:受拉纵筋最小面积Ag1应为:8.565 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋5根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=29.163 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=18.789 kN作用长期效应组合Ml=1.0*M1+0.4*M2=22.191 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.38构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=67.701 MPa 钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.057 mmδfmax < 0.2,最大裂缝宽度满足要求(2) 顶板左结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(3) 顶板右结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(4) 底板跨中截面计算:受拉纵筋最小面积Ag1应为:7.867 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋4根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=28.705 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=37.004 kN作用长期效应组合Ml=1.0*M1+0.4*M2=21.733 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.379构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=65.254 MPa钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.055 mm δfmax < 0.2,最大裂缝宽度满足要求(5) 底板左结点处截面计算:受拉纵筋最小面积Ag1应为:6.37 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2 至少需钢筋4根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(6) 底板右结点处截面计算:受拉纵筋最小面积Ag1应为:5.8 cm^2 受拉纵筋实际面积Ag2为:20.11 cm^2 至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(7) 左侧板跨中截面计算:受拉纵筋最小面积Ag1应为:4.4 cm^2 受拉纵筋实际面积Ag2为:10.055 cm^2 至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=-4.256 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=67.304 kN作用长期效应组合Ml=1.0*M1+0.4*M2=-2.638 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.31构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=21.826MPa钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.017 mmδfmax < 0.2,最大裂缝宽度满足要求(8) 左侧板上结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(9) 左侧板下结点处截面计算:受拉纵筋最小面积Ag1应为:5.928 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(10) 右侧板跨中截面计算:受拉纵筋最小面积Ag1应为:4.4 cm^2受拉纵筋实际面积Ag2为:10.055 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求裂缝宽度验算:作用短期效应组合Ms=1.0*M1+0.7*M2=-8.196 kN.m作用短期效应组合Ns=1.0*N1+0.7*N2=75.144 kN作用长期效应组合Ml=1.0*M1+0.4*M2=-4.889 kN.m钢筋表面形状影响系数C1 =1荷载特征影响系数C2 =1.298构件形式系数C3 =0.9受拉钢筋的直径d=16 mm受拉钢筋重心处的应力σg=39.289 MPa 钢筋的弹性模量Es=200000 MPa配筋率ρ=0.006最大裂缝宽度δfmax=C1*C2*C3*σg/Es*(30+d)/(0.28+10*ρ)=0.031 mmδfmax < 0.2,最大裂缝宽度满足要求(11)右侧板上结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求(12) 右侧板下结点处截面计算:受拉纵筋最小面积Ag1应为:5.4 cm^2受拉纵筋实际面积Ag2为:20.11 cm^2至少需钢筋3根Φ16**钢筋根数满足强度要求!**截面尺寸满足要求!**斜截面抗剪强度满足要求9. 基底应力验算:填土重力P1=101.016 kN箱重力P2=68 kN基础重力P3=37.4 kN活载竖直力P=115.309 kN活载水平力E=41.511 kN活载弯矩M=67.248 kN.mΣP=321.725 kNΣM=67.248 kN.mA=3.4 m^2W=1.927δmax=ΣP/A + ΣM/W=129.529 kPaδmin=ΣP/A - ΣM/W=59.721 kPaδmax < 基底容许应力350.00kPa,满足要求!。
1-2.5m×2.5m涵洞计算书
1-2.5m×2.5m盖板涵计算书一、基本参数涵洞设计安全结构重要性系数:0.9涵洞类型:盖板涵适用涵洞桩号: JK0+048.08, JK3+094.874设计荷载等级:公路一级最大布载宽度=23.016(m)板顶最高填土高度=1.195(m)土容重=18 KN/m3土的内摩擦角=35度盖板单侧搁置长度=20cm净跨径=250(cm)计算跨径=270cm涵洞斜交角度=0度正标准跨径=290cm板间接缝长度=2cm受力主筋:11根直径为18mm的HRB335钢筋,间距为9cm单侧基础襟边宽=25cm盖板厚度22cm盖板宽度=99cm盖板容重=25千牛/立方米盖板抗压强度=13.8MPa盖板抗拉强度=1.39MPa涵台顶宽度=75cm涵台底宽度=75cm涵台高度=250cm涵台容重=23千牛/立方米台身抗压强度=14.5MPa基础级数=2每级基础高度=60cm基础容重=23千牛/立方米铺底厚度=40铺底容重=23千牛/立方米基底容许应力=250每延米铺底宽度=40cm单侧基础襟边宽=25cm1-2.5m×2.5m盖板涵洞身断面二、盖板计算1.恒载内力计算系数 K = 1.114q土 = K ×土容重×填土高度 = 23.96kNq自 = 盖板容重×盖板厚度 = 5.5kN恒载产生的支座剪力 V恒=(q土 + q自) ×净跨径 / 2=36.82kN恒载产生的跨中弯矩 M恒=1 / 8 × (q土 + q自) ×计算跨径2 = 26.84kN·M2.活载计算设计荷载等级:公路一级布载宽度=23.016米用动态规划法求得设计荷载作用下盖板上产生的最大弯矩和剪力冲击力系数 U = 0最大弯矩 M设 = M设× (1 + U)=26.647× (1 + 0)=26.65kN·M最大剪力 V设 = V设× (1 + U)=36.55× (1 + 0)=36.55kN.3.荷载组合(1)承载能力极限状态效应组合Md = 1.2 × M恒 + 1.4 × M设 = 69.52kN×mV支= 1.2 × V恒 + 1.4 × V设=95.36kN(2)正常使用极限状态效应组合正常使用极限状态效应组合短期组合 Msd = M恒 + 0.7 × M设 = 45.5kN×m 正常使用极限状态效应组合长期组合 Mld = M恒 + 0.4 × M设 = 37.5kN×m4.构件计算(1) 正截面强度计算截面有效高度 h0 = 181mm盖板宽度 b = 990mm盖板抗压强度 fcd = 13.8MPa钢筋抗拉设计强度 fsd = 280MPa按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第5.2.2-1和5.2.2-2公式,计算最小钢筋截面积As由r0 × Md <= fcd × b × x × (h0 - x/2) ,可得x由fsd × As = fcd × b × x ,可得Asx = 27.37 <=ξb ×h0 = 101.36,截面受压高度符合要求!根据计算需要受拉钢筋的最小截面积 As = 1335.512mm 2在涵洞中设计的受拉钢筋的截面积 Ar = 2799.159mm 2实际钢筋截面积 Ar = 2799.159mm 2 >= 最小钢筋截面积 As =1335.512mm 2 , 正截面强度满足要求。
箱涵设计计算书
公路桥涵设计计算书一,设计资料公路上箱涵,净跨径 L 为 2.5m ,净高 h 为 3.0m ,箱涵顶平均为 2.0m 夯 0 0 填砂砾石,顶为 300m m 沥青混凝土路面铺装层,两侧边为砂砾石夯填,土的内 摩擦角为 40 ,砂砾石密度γ=23K N/m ,箱涵选用 C25 混凝土和 H R B335 钢o 3 筋。
本设计安全等级为二级,荷载为公路-Ⅱ级。
二 设计计算 (一)截面尺寸 顶板、底板厚度 δ=40c m(C1=30cm) 侧墙厚度 t=40cm(C2=30c m) 故横梁计算跨径 L =L +t=2.5+0.4=2.9m p 0 侧墙计算高度hp=h0+δ=3.0+0.4=3.4m (二) 荷载计算 1.恒载 恒载竖向压力56.0K N m 2 /P H 1 2恒载水平压力顶板处 40 0t an 45H 10.00 / e2 0 K N m2 2 p11底板处 40() t an 45 29.01 / K N m eH h 2 0 23 p212.活载汽车后轮地宽度 0.6m ,公路-Ⅱ级车辆荷载由《公路桥涵设计通用规范》 (JTG D60-2004)第 4.3.4 条计算一个汽车后轮横向分布宽,按 30 角向下分布。
0.6 1.3H tan 30 01.45m m0 2 0.6 2 1.8H tan 30 01.45m m0 2 20.6 2故,横向分布宽度为 a 0.1tan 30 2 1.3 4.029 m 0 同理,纵向,汽车后轮招地长度 0.2m :0.2 2 1.42 H tan 30 1.255 mo 0.2 2故,b H tan 30 2 2.509m 0 ∑G=140K N车辆荷载垂直压力G 140 q 车13.25KN / m 2 a b 4.029 2.509车辆荷载水平压力 40 0 2.88KN / m2e车q 车 t an 45 2 02(三)内力计算 1.构件刚度比 I h K1.17 1 I L1 2P2.节点弯矩和轴向力计算 (1)a 种荷载作用下(图 1)涵洞四角节点弯矩: P l 12 MMMM=-18.07K N .m P K 1 12aA aB aC aD横梁内法向力NN0 ,a1a2侧墙内法向力P l NN=81.2K N P 2a3 a4p q 车辆荷载( =13.25K N/m 2) 车 P l 12 MMMM4.28KN mPK 1 12aA aB aC aDP l NN19.22NP2a3a4(2)b 种荷载作用下(图 2)图 2Ph 2KM M M M5.2KN mpK 112bA bB bC bDPhN N 17.00KN,p2b1b2N N 0b3b4恒载(P=ep1=10.00kN/m2)(3)c 种荷载作用下图3K 3K 8Ph 2M M 5.45KN mpK 1K360cA cDK 2K 7Ph 2M M 4.43KN mpK 1K360cB cCPh M MMN =10.47K Np cA cBcB6hc1pPh MN =21.84K Np cA3hc2pN N 0c3c4恒载(P e e29.011019.01KN)p2p1(4)d种荷载作用下M3 10 2 Ph5.81KN mK K K 2=p 6 K 4K 3 15K 5 4 dA2M3 K 5 3 Ph 2.52KN mK K 2 p 6 K4K 3 15K 5 4dB2 3 5 3 Ph K K K 2 MdC4.02KN m4.31KN mp6 K 4K 3 155 4 2 K 3 10 2 Ph K K K 2pMdA6 K 4K 3 15K 5 42 MM dDN2.54K N dC d1hpMMdDNph7.35K NdCd 2phpM M dBNN2.25KNdCd 3d 4L P车辆荷载 pe 2.88KN / m 车2(5)节点弯矩和轴力计算汇总表按《公路桥涵设计通用规范》(JT G D60——2004)第 4.1.6 条进行承载力 极限状态效应组合B-18.0-18.0-18.0-18.0481.2081.201.2×-21.6-21.6-21.6-21.6897.4497.44∑结构、土的-5.20-5.20-5.20-5.2017.0017.00-5.45-4.43-4.43-5.4510.4721.84-4.28-4.28-4.28-4.28-5.81 2.52-4.02 4.3119.2219.227.35-2.25 2.253.4310.2923.7530.06-50.7-37.6-46.7-36.541.8964.67121.1127.5 2275903.构件内力计算(跨中截面内力)(1)顶板(图a)lx=p2p 1.2p恒1.4q车85.76KNN=N=41.89KNx1x2M = M +N x-P =47.96KN·mx B 3 2V=P·x-N=3.16KNx 3(2)底板[图b]3ω=1.2p+1.4(q-eeh2)=69.12KN/m2 1 恒车L2车车pP3ω=1.2p+1.4(q+h2)=102.39KN/m2 2 恒车L2pPlx= p2N =N =121.19KNx 3x2x3M = M +N x-ω-(ω-ω)=45.52KN·m x A 3 1 2 12 6 Lpx2V=ωx+ (ω-ω)-N=-8.91KNx 1 2 12L3p(3)左侧墙[图c]图cω=1.4e+1.4e =18.04KN/m21p1 车ω=1.4(e+e )=44.64KN/m22 p2 车hx= p2N =N =121.19KNx 3x2x3M = M +N x-ω-(ω-ω)=1.12KN·m x B 1 1 2 12 6 hpx2V=ωx+ (ω-ω)-N=0.08KNx 1 2 12h1pω=1.4e=14.00K N·m ω=1.4e=40.61 K N·m1 2 pp12(3)右侧墙[图d]hx= p2ω=1.4e=14.001 p1ω =e =40.61 2p 2N =N =127.50KN x 4x 2 x 3 M = M +N x-ω - (ω -ω )=-2.2KN ·m x C 1 12 1 2 6 hpx 2V =ω x+ (ω -ω )-N =-6.87KN x 1 2 1 2h1p(5)构件内力汇总表构件内力汇总表 单位K N ﹒mMdB-C-37.62 41.89 121.1 47.96 41.89 3.16 -46.7 41.89 127.5-50.72 64.67 121.1 46.52 64.67 -8.91 -36.5 64.67 127.5 B-A-37.62 121.1 41.89 1.12 121.1 0.08 -50.7 121.1 64.67-46.77 127.5 41.89 -2.20 127.5 -6.78 -36.5 127.5 64.670 0 5 0 (四)截面设计 1,顶板(B-C)钢筋按左右对称,用最不利荷载计算 (1)跨中l 2.9m,h 0.4m,a 0.03m,h0.37m,b 1mM d 47.96KN m,Nd 41.89KN,Vd 3.16kN Me 0 1.145md Ndbh 2 0.4 2 i0.115 m12 122.9 l长细比25.11 17.5 i 0.115由《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)第 5.3.10 条。
新规范箱涵结构设计(2021年7月).
新规范箱涵结构设计(2021年7月).1、孔径及净空商定:净跨径L 0 = 3.0m 1、轴向力以杆件受压为正。
净高h 0 = 2.5m2、弯矩以使箱涵内框一侧受拉为正。
2、设计平安等级三级3、截面剪力:使计算截面逆时针转动为正。
结构重要性系数r 0 = 0.9前提条件:1支座在杆件下方;3、汽车荷载2x为计算截面距左端支座之距离。
荷载等级大路—Ⅰ级4、支座反力以受压为正。
4、填土状况5、以梁为隔离体,固端梁简化为简支梁时,涵顶填土高度H =0.8m 图中所加的杆端力(轴力、弯矩及支反力均为正值,土的内摩擦角Φ =30°若计算得到的值为负值,则表示实际方向与图中所示填土容重γ1 =18kN/m 3 的方向相反。
地基容许承载力[σ0] =200kPa6、本表格默认箱涵内水深为满水,也可以修改表格,5、建筑材料先不考虑水压力得到涵洞基底应力σmax,一般钢筋种类HRB335最终要求的基底应力为:σmax+h 水*10KPa。
主钢筋直径12mm 钢筋弹性模量Es =200000MPa 钢筋抗拉强度设计值f sd =280MPa7、本表格未考虑砼收缩、温度变化的影响。
涵身混凝土强度等级C 208、本表格已考虑涵洞设计细则中竖向土压力系数的影响。
涵身混凝土抗压强度设计值f cd =9.2MPa 9、本表格已考虑偏心受压构件裂缝宽度验算。
涵身混凝土抗拉强度设计值f td = 1.06MPa 钢筋混凝土重力密度γ2 =25.0kN/m 3基础混凝土强度等级C 15混凝土重力密度γ3 =24.0kN/m 3(一截面尺寸拟定 (见图L-01顶板、底板厚度δ =0.3m C 1 =0.3m 侧墙厚度t =0.28m C 2 =0.5m 横梁计算跨径L P = L 0+t = 3.28m L = L 0+2t = 3.56m 侧墙计算高度h P =h 0+δ = 2.8m h = h 0+2δ =3.1m 基础襟边 c =0.2m 基础高度 d =0.4m 基础宽度B = 3.96m[JTG/T D65-04--2007表9.2.2]h/D =0.22竖向土压力系数Ks =1.09图 L-01(二荷载计算1、恒载恒载竖向压力p 恒= Ks γ1H+γ2δ =23.19kN/m 2恒载水平压力钢筋混凝土箱涵结构设计一、设计资料二、设计计算顶板处e P1 = γ1Htan 2(45°-φ/2 = 4.80kN/m 2底板处e P2 = γ1(H+htan 2(45°-φ/2 =23.40kN/m 22、活载汽车后轮着地宽度0.6m,由《大路桥涵设计通用规范》(JTG D60—2004第4.3.4条规定,按30°角向下分布。
箱涵设计计算书
一. 设计资料地下通道净跨径L0=6m ,净高h0=3.5m ,箱顶填土厚为3m ,土的内摩擦角φ为30°,填土的密度γ1=20KN/m3。
箱涵主体结构混凝土强度等级为C30,箱涵基础垫层混凝土强度等级为C15,纵向受力钢筋采用HRB335钢筋。
地基为强风化砂岩。
汽车荷载等级为城-A 级。
二. 设计计算 (一)尺寸拟定顶板、底板厚度δ=50cm 侧墙厚度t=50cm故计算长度 m t L l 5.65.060=+=+=m H h 0.45.05.30=+=+=δ(二)荷载计算 1.恒载竖向恒载标准值 221/5.725.025320m KN H q v =×+×=•+•=δγγ水平恒载标准值顶板处22121/20320)23045()245(m KN tg H tg q h =××−=••−=oooγφ底板处22122/50)5.43(20)23045()()245(m KN tg h H tg q h =+××−=++••−=oooδγφ2.活载一个汽车后轮荷载横向扩散长度28.103.230326.0fo =×+tg ,故两辆车相邻车轴由荷载重叠;一个汽车后轮荷载纵向扩散长度2.626.386.1303225.0p f o =×+tg 。
按两辆车相邻计算车轴荷载扩散面积横向分布长m tg a 96.83.12)8.130326.0(=+×+×+=o 。
纵向分布长分两种情况,第一种情况考虑1、2、3轴荷载重叠,此时纵向分布长m tg b 52.82.16.32)303225.0(=++××+=o ;第二种情况只考虑4轴荷载,此时纵向分布长m tg b 72.32)303225.0(=××+=o 。
车辆荷载垂直压力,按纵向分布第一种情况计算,2/91.852.896.8)14014060(2m KN q v =×++×=车;按纵向分布第二种情况计算,2/0.1272.396.82002m KN q v =××=车。
箱涵全套结构计算表格EXCEL版(包含计算书只需输入数据)
箱涵全套结构计算表格EXCEL版(包含计算书只需输入数据)1、孔径及净空净跨径L 0 =3m 净高h 0 = 2.5m2、设计安全等级三级结构重要性系数r 0 =0.93、汽车荷载荷载等级公路—Ⅰ级4、填土情况涵顶填土高度H =0.8m 土的内摩擦角Φ =30°填土容重γ1 =18kN/m 3地基容许承载力[σ0] =200kPa5、建筑材料普通钢筋种类HRB335主钢筋直径12mm 钢筋抗拉强度设计值f sd =280MPa 涵身混凝土强度等级C 20涵身混凝土抗压强度设计值f cd =9.2MPa 涵身混凝土抗拉强度设计值f td = 1.06MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C 15混凝土重力密度γ3 =24kN/m 3(一)截面尺寸拟定(见图L-01)顶板、底板厚度δ =0.3m C 1 =0.3m 侧墙厚度t =0.28m C 2 =0.5m 横梁计算跨径L P = L 0+t = 3.28m L = L 0+2t = 3.56m 侧墙计算高度h P = h 0+δ = 2.8m h = h 0+2δ =3.1m 基础襟边 c =0.2m 基础高度 d =0.4m 基础宽度 B =3.96m图 L-01(二)荷载计算1、恒载恒载竖向压力p 恒= γ1H+γ2δ =21.90kN/m2恒载水平压力顶板处e P1 = γ1Htan 2(45°-φ/2) = 4.80kN/m 2底板处e P2 = γ1(H+h)tan 2(45°-φ/3) =23.40kN/m 22、活载钢筋混凝土箱涵结构设计一、设计资料二、设计计算汽车后轮着地宽度0.6m,由《公路桥涵设计通用规范》(JTG D60—2004)第4.3.4条规定,按30°角向下分布。
一个汽车后轮横向分布宽> 1.3/2 m < 1.8/2 m故横向分布宽度a = (0.6/2+Htan30°)32+1.3 =2.824m同理,纵向,汽车后轮着地长度0.2m0.2/2+Htan30°=0.562 m < 1.4/2 m故b = (0.2/2+H tan30°)32 =1.124m ∑G =140kN 车辆荷载垂直压力q 车= ∑G /(a3b) =44.12kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°-φ/2) =14.71kN/m2(三)内力计算1、构件刚度比K = (I 1/I 2)3(h P /L P ) =1.052、节点弯矩和轴向力计算(1)a种荷载作用下 (图L-02)涵洞四角节点弯矩M aA = M aB = M aC = M aD =-1/(K+1)2pL P 2/12横梁内法向力N a1 = N a2 =0侧墙内法向力N a3 = N a4 =pL P /2恒载p = p 恒 =21.90kN/m 2M aA = M aB = M aC = M aD =-9.58kN 2m N a3 = N a4 =35.92kN 车辆荷载p = q 车 =44.12kN/m 2M aA = M aB = M aC = M aD =-19.30kN 2m 图 L-02N a3 = N a4 =72.36kN(2)b种荷载作用下 (图L-03)M bA = M bB = M bC = M bD =-K/(K+1)2ph P 2/12N b1 = N b2 =ph P /2N b3 = N b4 =0恒载p = e P1 =4.80kN/m 2M bA = M bB = M bC = M bD =-1.61kN 2m N b1 = N b2 =6.72kN(3)c 种荷载作用下 (图L-04)图 L-03M cA = M cD =-K(3K+8)/[(K+1)(K+3)]2ph P 2/60M cB = M cC =-K(2K+7)/[(K+1)(K+3)]2ph P 2/60N c1 =ph P /6+(M cA -M cB )/h P N c2 =ph P /3-(M cA -McB )/h PN c3 = N c4 =0恒载p = e P2-e P1 =18.60kN/m2M cA = M cD =-3.43kN 2m M cB = M cC =-2.80kN 2m N c1 =8.45kN N c2 =17.59kN图 L-04(4)d 种荷载作用下 (图L-05)M dA =-[K(K+3)/6(K 2+4K+3)+(10K+2)/(15K+5)]2ph P 2/40.6/2+Htan30°=0.76 mM dB =-[K(K+3)/6(K2+4K+3)-(5K+3)/(15K+5)]2ph P2/4M dC =-[K(K+3)/6(K2+4K+3)+(5K+3)/(15K+5)]2ph P2/4M dD =-[K(K+3)/6(K2+4K+3)-(10K+2)/(15K+5)]2ph P2/4 N d1 =(M dD-M dC)/h PN d3 = -N d4 =-(M dB-M dC)/L P车辆荷载p = e车 =14.71kN/m2M dA =-19.82kN2mM dB =9.00kN2mM dC =-13.92kN2mM dD =14.90kN2m图 L-05N d1 =10.29kNN d2 =30.88kNN d3 = -N d4 =-6.99kN(5)节点弯矩、轴力计算及荷载效应组合汇总表按《公路桥涵设计通用规范》(JTG D60—2004)第4.1.6条进行承载能力极限状态效应组合V x =ω1x+x2(ω2-ω1)/2L P-N3图 L-07=-27.13kN(3)左侧墙 (图L-08)ω1 =1.4e P1+1.4e 车=27.31kN/m 2ω2 =1.4e P2+1.4e 车53.35kN/m 2x =h P /2N x = N 3 =134.61kNM x =M B +N 1x-ω12x 2/2-x 3(ω2-ω1)/6h P =-13.17kN 2mV x =ω1x+x 2(ω2-ω1)/2h P -N 1=11.69kN (4)右侧墙 (图L-09)ω1 = 1.4e P1 = 6.72kN/m 2ω2 = 1.4e P2 = 32.76kN/m 2x =h P /2N x = N 4 =154.18kNM x =M C +N 1x-ω12x 2/2-x 3(ω2-ω1)/6h P=-25.08kN 2m V x =ω1x+x 2(ω2-ω1)/2h P -N 1 =-17.14kN(5)构件内力汇总表(四)截面设计1、顶板 (B-C)钢筋按左、右对称,用最不利荷载计算。
箱涵计算
②加固后溢洪道箱涵结构稳定计算(一)建设缘由及设计标准因坝顶有通行要求,溢洪道加固时需要在控制段现浇一座箱涵,由于该桥涵作为当地村民交通和防汛使用,故车辆荷载按公路Ⅱ级(折减)考虑。
(二)桥梁设计溢洪道箱涵设计考虑桥下过流能力、与两岸交通道路的衔接、工程量大小及施工方便、美观几方面进行方案比选,拟建箱涵设在溢洪道泄槽段之后,采用现浇C20钢筋砼矩形箱涵,计算简图见下图。
Ⅰ、设计资料箱涵净跨径:L0=3.0m,净高:h0=2.5m;涵顶填土高度:H=0m,土的内摩擦角:φ=14°,填土的容重:γ1=18.6kN/m3,砼容重:γ2=24.0kN/m3,地基容许承载力:[б0]=300Pa:汽车荷载等级:公路-Ⅱ级(折减);采用原汽车-15;箱涵砼强度等级:C20。
Ⅱ、结构计算 (1)截面尺寸拟定顶板、底板厚度:δ=0.3m ,侧墙厚度t=0.3m 横梁计算跨径:L P =L O +t=3.3m ,L=L 0+2t=3.6m 侧墙计算高度h p =h 0+δ=2.8m,h=h 0+2δ=3.1m (2)荷载计算①自重:q=r 2d=24.0×0.3=7.2KN/m ②汽车荷载P=50KN ③箱涵两侧土压力:21tan (45)2p e r h ϕ︒=-=18.6×(0+3.1)tan 2(45°-14°/2)=4.2 KN/m(3)内力计算①集中荷载作用下弯矩计算见图如下:K=hp/lp=280/330=0.848; U=k 2+4k+3=0.8482+4×0.848+3=7.11 M A =M B =2(49)24(43)p Pl k k k +-++=-11.98(K N 〃m )M C =M D =2(6)24(43)p Pl k k k +-++=-6.62(K N 〃m )②均布荷载作用下弯矩计算见图如下:M A =M B =M C =M D =212(1)p ql k -+=-3.54(K N 〃m )③两侧土压力作用下弯矩计算见图如下:M A =M B =22(27)60(43)p p e h k k k k +-++=-0.57(K N 〃m ) M C =M D =22(38)60(43)p p e h k k k k +-++=-0.69(K N 〃m )④计算箱涵各点支座弯矩值如下表:表5-1表5-1 箱涵各点支座内力计算成果表(4)地基应力校核WM AG P∑∑+=max式中P max ——箱涵基底应力最大值(Kpa )∑G ——作用在箱涵上的全部竖向荷载(KN )∑A ——作用在箱涵上全部竖向和水平荷载对于基础底面垂直水流方向的形心轴的力矩(KN 〃m )A ——箱涵基底面的面积(m 2) A=bhW ——箱涵基底面对该底面垂直水流方向的形心轴的截面W=61bh 2因为所有竖向荷载和水平荷载均为对称荷载,力矩正负相抵为0,P max=7.235029.83 2.5195.116.263412G A⨯+⨯+⨯⨯===⨯∑(Kpa )。
箱涵结构计算书
L p 图1-1一、设计资料(一)概况:***道路工程经过水库溢洪道处设置箱涵,箱涵净跨L 0=8.0米,净高h 0=10.5米,路基红线范围内长49米,箱涵顶最大填土厚度H=3、6米,填土的内摩擦角φ为24°,土体密度γ1=20、2KN/m 3,设箱涵采用C25混凝土(f cd =11、5MPa)与HRB335钢筋(f sd =280MPa)。
桥涵设计荷载为城-A 级,用车辆荷载加载验算。
结构安全等级二级,结构重要性系数γ0=1、0。
地基为泥质粉砂岩,[σ0]=380kPa,本计算书主要内容为结构设计与地基应力验算。
(二)依据及规范 1、《城市桥梁设计荷载标准》(CJJ77-98) 2、《公路桥涵设计通用规范》(JTG D60-2004) 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 4、《公路桥涵地基与基础设计规范》(JTGD63-2007)二、设计计算(一)截面尺寸拟定(见图1-1) 箱涵过流断面尺寸由水利部门提供,拟定顶板、底板厚度δ=100cm(C 1=50cm) 侧墙厚度 t =100cm (C 2=50cm)故 L P =L 0+t=8+1=9mh p =h 0+δ=10、5+1=11.5m (二)荷载计算1、恒载恒载竖向压力P =γ1H+γ2δ=20、2×3、6+25×1=97、72kN/m 2恒载水平压力顶板处: e p1=γ1Htan 2(45o -φ/2)=20、2×3、6×tan 2(45o -24o /2)=30、67 kN/m 2底板处:e p2=γ1(H +h)tan 2(45o -φ/2)=20、2×(3、6+12、5)×tan 2(45o -24o /2) =137、15kN/m 2 2、活载城-A 级车辆荷载轴重按《城市桥梁设计荷载标准》4.1.3条确定,参照《公 路桥涵设计通用规范》第4.3.4条2款,计算涵洞顶车辆荷载引起的竖向土压力,车轮扩散角30o。
单孔2x2箱涵结构设计计算书
ω1 = 1.4eP1 = 25.20 ω2 = 1.4eP2 = 46.70
kN/m2 kN/m2
x = hP/2
Nx = N4 = 96.33 kN Mx = MC+N1x-ω1·x2/2-x3(ω2-ω1)/6hP
= -2.37 kN·m Vx = ω1x+x2(ω2-ω1)/2hP-N1
20 24
mm MPa
MPa MPa kN/m3
kN/m3
(一)截面尺寸拟定 (见图L-01)
顶板、底板厚度
δ= C1 =
侧墙厚度
横梁计算跨径
侧墙计算高度
基础襟边 基础高度 基础宽度
t= C2 = LP = L0+t = L = L0+2t = hP = h0+δ = h = h0+2δ =
c= d= B=
(二)荷载计算
1、恒载 恒载竖向压力
h/D= 1.171875 p恒 = γ1H+γ2δ =
恒载水平压力
顶板处
eP1 = γ1Htan2(45°-φ/2) =
底板处
eP2 = γ1(H+h)tan2(45°-φ/3) =
2、活载
0.28 m 0.05 m
0.28 m 0.05 m 2.28 m 2.56 m 2.28 m 2.56 m
Nb1 = Nb2 = 20.52 kN
(3)c种荷载作用下 (图L-04) 恒载
McA = McD = -K(3K+8)/[(K+1)(K+3)]·phP2/60 McB = McC = -K(2K+7)/[(K+1)(K+3)]·phP2/60
箱涵计算书
2孔-5m×2.2m箱涵计算书一、设计资料1.结构:(净宽⨯涵高)2孔-5m⨯2.2m;2.涵顶填土高度H:2.5m;3.荷重:车辆荷载,公路-I级(城-A车辆荷载复算);4.设计安全等级:Ⅱ级;5. 环境作用等级:C级;6.主要材料:涵身采用C40砼,钢筋采用HPB300、HRB400;环境条件:I类;7.其他参数:1)混凝土容重=25kN/m3,钢筋混凝土容重=26kN/m3。
2)土容重=19kN/m3、土内摩擦角φ=35度;土的侧压力系数λ=tan2(45°-35°/2)=0.271。
3)HRB400钢筋抗拉、抗压强度设计值(f sd、f’sd)为330MPa。
C40素砼抗拉强度设计值f tmd为1.65MPa、抗压强度设计值f cd为18.4MPa。
8.安全等级:Ⅱ级,γ0=1.0。
图1 2孔-5m×2.2m箱涵截面尺寸(cm)二、设计计算1.荷载计算1)恒载计算:填土竖向压力强度:H/D=2.05/(5×2+0.45×3)=0.18,K=1.07;q土=KγH=1.07⨯19⨯2.5=50.83kN/m2顶板自重竖向压力强度:q自=γH Z=26⨯0.45=11.7kN/m2恒载竖向压力强度合计q恒=q土+q自=62.53kN/m2恒载水平压力顶板处e p1=γ1Hλ=19⨯2.5⨯0.271=12.87kN/m2底板处e p2=γ1(H+h)λ=19⨯(2.5+3.2)⨯0.271=29.35 kN/m22)活载计算由于涵顶填土高度等于2.5m,故不计汽车冲击力。
按《公路桥涵设计通用规范》(JTG-2004)第4.3.5条规定计算荷载分布宽度:(1)一个后轮单边荷载横向分布宽度=0.6+2.5x tan30°=2.04m >1.8/2m,故后轮垂直荷载分布宽度重叠,荷载横向分布宽度a为:a=2.04×2+(1.3×3+1.8×4)=15.18m(2)一个车轮的纵向分布宽度=0.2+2.5⨯tan30°=1.64 >1.4/2m故纵向前后轮垂直荷载分布宽度重叠,荷载纵向分布宽度b为:b=1.64⨯2+1.4=4.68mq汽=4×2×280/(a⨯b)= 4×2×280/(15.18⨯4.68)=31.53kN/m2(3)作用城-A级车辆荷载时,a车=a=15.18mb车=(0.25+2.5⨯tan30°)⨯2+1.2=4.12m垂直压力:q汽车= 4×2×280/ (a城⨯b城)= 4×2×280/ (15.18⨯4.12)=35.82kN/m2水平压力:e汽车= q汽车⨯λ=35.82⨯0.271=9.71 kN/m2故计算采用值为城-A级荷载。
1孔(5-2.5)m箱涵计算书
1-(5-2.5)m箱涵计算书已知计算条件:涵洞的设计安全等级为三级,取其结构重要性系数:.9涵洞桩号= K1+384.00箱涵净跨径= 5米箱涵净高= 2.5米箱涵顶板厚= .4米箱涵侧板厚= .4米板顶填土高= .27米填土容重= 18千牛/立方米钢筋砼容重= 25千牛/立方米混凝土容重= 22千牛/立方米水平角点加厚= .3米竖直角点加厚= .3米涵身混凝土强度等级= C25钢筋等级= II级钢筋填土内摩擦角= 35度基底允许应力= 250千牛/立方米顶板拟定钢筋直径= 20毫米每米涵身顶板采用钢筋根数= 11根底板拟定钢筋直径= 20毫米每米涵身底板采用钢筋根数= 11根侧板拟定钢筋直径= 20毫米每米涵身侧板采用钢筋根数= 6根荷载基本资料:土系数 K = 1.04恒载产生竖直荷载p恒=17.55千牛/平方米恒载产生水平荷载ep1=1.99千牛/平方米恒载产生水平荷载ep2=18.09千牛/平方米汽车产生竖直荷载q汽=150.02千牛/平方米汽车产生水平荷载eq汽=18.4千牛/平方米计算过程重要说明:角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:涵洞四角节点弯矩和构件轴力:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -27.75287kN.mNa1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 47.39688kNa种荷载(汽车荷载)作用下:MaA = MaB = MaC = MaD = -1 / (K + 1) * M顶板端部 = -40.01875kN.mNa1 = Na2 = 0kNNa3 = Na4 = V顶板端部 = 91kNb种荷载(侧向均布土压力)作用下:涵洞四角节点弯矩和构件轴力:MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -.488389kN.mNb1 = Nb2 = P * Lp / 2 = 2.892006kNNb3 = Nb4 = 0kNc种荷载(侧向三角形土压力)作用下:涵洞四角节点弯矩和构件轴力:McA = McD = K *(3K + 8) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -2.142094kN.m McB = McC = K *(2K + 7) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -1.799524kN.m Nc1 = P * hp / 6 + (McA - McB) / hp = 7.661997kNNc2 = P * hp / 3 - (McA - McB) / hp = 15.67838kNNc3 = Nc4 = 0kNd种荷载(侧向汽车压力)作用下:涵洞四角节点弯矩和构件轴力:MdA = -(K * (K + 3) / 6(K^2 + 4K +3) + (10K + 2) / (15K + 5)) * P * hp^2 / 4 = -24.09762kN.mMdB = -(K * (K + 3) / 6(K^2 + 4K +3) - (5K + 3) / (15K + 5)) * P * hp^2 / 4 = 14.59651kN.mMdC = -(K * (K + 3) / 6(K^2 + 4K +3) + (5K + 3) / (15K + 5)) * P * hp^2 / 4 = -19.10306kN.mMdD = -(K * (K + 3) / 6(K^2 + 4K +3) - (10K + 2) / (15K + 5)) * P * hp^2 / 4 = 19.59108kN.mNd1 = (MdD - MdC) / hp = 13.3428kNNd2 = P * hp - (MdD - MdC) / hp = 40.02841kNNd3 = Nc4 = -(MdB - MdC) / Lp = -6.240662kN角点(1)在恒载作用下的的总弯矩为:-30.38角点(1)在汽车作用下的的总弯矩为:-64.12角点(1)在混凝土收缩下的的弯矩为:28.77角点(1)在温度变化下的的总弯矩为:28.77构件(1)在恒载作用下的的总轴力为:10.55构件(1)在汽车作用下的的总轴力为:13.34构件(1)在混凝土收缩下的的轴力为:0构件(1)在温度变化下的的总轴力为:0角点(2)在恒载作用下的的总弯矩为:-30.04角点(2)在汽车作用下的的总弯矩为:-25.42角点(2)在混凝土收缩下的的弯矩为:-28.77角点(2)在温度变化下的的总弯矩为:-28.77构件(2)在恒载作用下的的总轴力为:18.57构件(2)在汽车作用下的的总轴力为:40.03构件(2)在混凝土收缩下的的轴力为:0构件(2)在温度变化下的的总轴力为:0角点(3)在恒载作用下的的总弯矩为:-30.04角点(3)在汽车作用下的的总弯矩为:-59.12角点(3)在混凝土收缩下的的弯矩为:-28.77角点(3)在温度变化下的的总弯矩为:-28.77构件(3)在恒载作用下的的总轴力为:47.4构件(3)在汽车作用下的的总轴力为:84.76构件(3)在混凝土收缩下的的轴力为:0构件(3)在温度变化下的的总轴力为:0角点(4)在恒载作用下的的总弯矩为:-30.38角点(4)在汽车作用下的的总弯矩为:-20.43角点(4)在混凝土收缩下的的弯矩为:28.77角点(4)在温度变化下的的总弯矩为:28.77构件(4)在恒载作用下的的总轴力为:47.4构件(4)在汽车作用下的的总轴力为:97.24构件(4)在混凝土收缩下的的轴力为:0构件(4)在温度变化下的的总轴力为:02>荷载组合计算角点(1) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -75.26482 角点(1) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -56.02991 角点(1) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -126.223角点(2) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -47.83635 角点(2) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -40.20968 角点(2) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -71.64008角点(3) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -71.42605角点(3) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -53.68951角点(3) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -118.8195角点(4) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -44.68273角点(4) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -38.55442角点(4) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -65.05877构件(1) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 19.89397构件(1) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 15.89112构件(1) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 31.34473构件(2) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 46.59027构件(2) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 34.58175构件(2) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 78.32423构件(3) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 106.7284构件(3) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 81.30061构件(3) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 175.5393构件(4) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 115.4653构件(4) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 86.29314构件(4) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 193.01323>将箱涵框架分解为四根独立构件,求其跨中内力并进行效应组合。
箱涵模板支架计算书模板
箱涵模板支架计算书一、方案选择1、通道涵施工顺序通道涵分三次浇筑,第一次浇至底板内壁以上500mm,第二次浇至顶板以下500mm,第三次浇筑剩余部分。
2、支模架选择经过分析,本通道涵施工决定采用满堂式模板支架,采用扣件式钢筋脚手架搭设。
顶板底模选用18㎜厚九层胶合板,次楞木为50×100,间距为300㎜,搁置在水平钢管ø48×3.5上,水平钢管通过直角扣件把力传给立柱ø48×3.5,立柱纵、横向间距均为500×500㎜,步距1.8m。
侧壁底模为18㎜九层胶合板,次楞木50×100,间距为200㎜,主楞采用ø48×3.5钢管,间距为400mm。
螺栓采用ø12,间距400mm。
满堂支架图如下:具体计算如下。
二、顶板底模计算顶板底模采用18mm厚胶合板,木楞采用50×100mm,间距为300mm。
按三跨连续梁计算1.荷载钢筋砼板自重:0.6×25×1.2=18KN/㎡(标准值17.85KN/㎡)模板重:0.3×1.2=0.36KN/㎡(标准值0.30 KN/㎡)人与设备荷载:2.5×1.4=3.50KN/㎡合计:q=21.9KN/㎡2.强度计算弯矩:M==0.1×21.9×0.32=0.197KN·mq: 均布荷载l:次楞木间距弯曲应力:f ==(0.197×106)/(×1000×182)=3.64 N/mm2M: 弯矩W: 模板的净截面抵抗矩,对矩截面为bh2b: 模板截面宽度,取1mh: 模板截面高度,为18mm因此f<13.0 N/mm2 ,符合要求。
3.挠度计算W==(0.677×(17.85+0.3)×3004)/(100×9.5×103×1000×183/12) <=0.216㎜<300/400=0.75㎜,符合要求.q:均布荷载标准值E: 模板弹性模量,取9.5×103I:模板的截面惯性矩,取三、顶板下楞计算楞木采用50×100mm,间距为300,支承楞木、立柱采用ø48×3.5钢管,立柱间距为500mm。
箱涵结构计算书三篇
箱涵结构计算书三篇篇一:箱涵结构计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本设计资料1.依据规范及参考书目:《水工混凝土结构设计规范》(SL 191-20XX),以下简称《规范》《建筑地基基础设计规范》(GB 50007—20XX)《水工钢筋混凝土结构学》(中国水利水电出版社)《公路桥涵设计通用规范》JTJ D60-20XX,以下简称《通规》《涵洞》(中国水利水电出版社出版,XX编著)中国建筑工业出版社《高层建筑基础分析与设计》2.几何信息:箱涵孔数n = 1孔净宽B = 2.900 m孔净高H = 2.500 m底板厚d1 = 0.500 m顶板厚d2 = 0.500 m侧墙厚d3 = 0.400 m加腋尺寸t = 0.250 m3.荷载信息:埋管方式:上埋式填土高Hd = 3.200 m填土种类:密实砂类土、硬塑粘性土内摩擦角φ = 36.0 度水下内摩擦角φ = 32.0 度填土容重γ = 22.000 kN/m3填土浮容重γs = 18.000 kN/m3汽车荷载等级:公路-Ⅱ级4.荷载系数:可变荷载的分项系数γ= 1.20Q1k= 1.10可变荷载的分项系数γQ2k= 1.05永久荷载的分项系数γG1k永久荷载的分项系数γ= 1.20G2k构件的承载力安全系数K = 1.355.材料信息:混凝土强度等级: C15纵向受力钢筋种类: HRB335纵筋合力点至近边距离as = 0.040 m= 0.250 mm最大裂缝宽度允许值ωmax6.荷载组合:7.荷载组合下附加荷载信息:8.约束信息:第1跨左侧支座约束:铰支第1跨右侧支座约束:铰支9.地基土参数:按弹性地基上的框架进行箱涵内力计算。
地基模型:弹性半空间模型地基土的泊松比μo = 0.200地基土的变形模量Eo = 20.00 MPa 三、荷载计算1.垂直压力计算顶板自重q v2 = d2×25 = 12.500kN/m 垂直土压力计算公式如下: q v1 = K s ×γ×H d工况:正常使用,顶板上的垂直土压力q v1 = 84.053kN/m 作用于顶板上的垂直压力qt = q v1+q v2 = 96.553kN/m 2.侧向水平土压力计算 水平土压力计算公式如下: q h = γ×H×tan 2(45°-φ/2) 3.汽车荷载由《通规》第4.3.1条规定并考虑车辆荷载的相互作用得到: q q = 8.676 kN/m ,顶板承受汽车荷载汽车荷载产生的对称作用于侧墙两侧水平土压力为: q qh = q q ×tan 2(45°-φ/2) = 2.25 kN/m 4.荷载单位及方向规定 垂直、平行集中荷载单位:kN 弯矩单位:kN ·m均布荷载、三角形、倒三角形等线性分布荷载单位:kN/m 垂直集中荷载及线性分布荷载垂直单元轴线,以向上或者向左为正 平行集中荷载平行于单元轴线,以向上或者向右为正 弯矩以逆时针为正。
02、2-5.0mx2.5m钢筋混凝土箱涵结构计算书
2-5.0mx2.5m 钢筋混凝土箱涵结构计算书一 、 设 计 资 料 1、孔径及净空 净跨径 L 0 = h 0 = 5 m m净高 孔数2.5 m= 2 2、设计安全等级 结构重要性系数 一级1.1r 0 =3、汽车荷载 荷载等级 城— A 级 2.34、填土情况 涵顶填土高度 H = m 土的内摩擦角 填土容重 Φ = 30 18 ° kN/m 3 γ = 1地基容许承载力 [σ ] =0 150 kPa5、建筑材料 普通钢筋种类 HRB335主钢筋直径20 mm 钢筋抗拉强度设计值 f =sd280 MPa 涵身混凝土强度等级C30 涵身混凝土抗压强度设计值 f = cd13.8 MPa 涵身混凝土抗拉强度设计值 钢筋混凝土重力密度 f = td 1.39 25 MPa γ =2 kN/m3 基础混凝土强度等级 混凝土重力密度 C15 26γ =3kN/m 3二 、 设 计 计 算(一)截面尺寸拟定 (见图L-01) 顶板、底板厚度δ = C 1 = 0.4 m m 0.15 侧墙厚度 t = 0.4 m m C 2 =0.15 横梁计算跨径L P = L +t = 5.4 11.2 2.9 m m m m 0 L = 2L +3t =侧墙计算高度 h P = h +δ = 0 h = h +2δ =0 3.3基础襟边 基础高度 基础宽度 c = d = B =0.2 0.2 m m m11.6(二)荷载计算 1、恒载 恒载竖向压力 p 恒 = γ H+γ δ = 51.40 kN/m 2 1 2恒载水平压力顶板处 2 kN/m 2 kN/m 2e P1 = γ Htan (45°-φ/2) = 13.80 图 L-0112底板处 e P2 = γ (H+h)tan (45°-φ/3) = 33.60 12、活载汽车后轮着地宽度0.6m ,由《公路桥涵设计通用规范》(JTG D60—2004)第4.3.4条规定,按30°角向下分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知计算条件:涵洞的设计安全等级为三级,取其结构重要性系数:1.0涵洞桩号= K0+000至K0+724.65设计荷载等级=城-A 箱涵净跨径= 2米箱涵净高= 2.5米箱涵顶板厚= .4米箱涵侧板厚= .4米板顶填土高= 9米填土容重= 18千牛/立方米钢筋砼容重= 26千牛/立方米混凝土容重= 24千牛/立方米水平角点加厚= .15米竖直角点加厚= .15米涵身混凝土强度等级= C30钢筋等级= Ⅲ级钢筋填土内摩擦角= 30度基底允许应力= 160千牛/立方米顶板拟定钢筋直径= 14毫米每米涵身顶板采用钢筋根数= 9根底板拟定钢筋直径= 14毫米每米涵身底板采用钢筋根数= 9根侧板拟定钢筋直径= 12毫米每米涵身侧板采用钢筋根数= 5根荷载基本资料:土系数 K = 1.489286恒载产生竖直荷载p恒=251.66千牛/平方米恒载产生水平荷载ep1=54千牛/平方米恒载产生水平荷载ep2=73.8千牛/平方米汽车产生竖直荷载q汽=2.11千牛/平方米汽车产生水平荷载eq汽=.7千牛/平方米计算过程重要说明:角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:涵洞四角节点弯矩和构件轴力:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -54.70137kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 301.9972kNa种荷载(汽车荷载)作用下:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -.4583918kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 2.530705kNb种荷载(侧向均布土压力)作用下:涵洞四角节点弯矩和构件轴力:MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -20.70764kN.m Nb1 = Nb2 = P * Lp / 2 = 78.3kNNb3 = Nb4 = 0kNc种荷载(侧向三角形土压力)作用下:涵洞四角节点弯矩和构件轴力:McA = McD = K *(3K + 8) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -4.194835kN.mMcB = McC = K *(2K + 7) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -3.397967kN.mNc1 = P * hp / 6 + (McA - McB) / hp = 9.295218kNNc2 = P * hp / 3 - (McA - McB) / hp = 19.41478kNNc3 = Nc4 = 0kNd种荷载(侧向汽车压力)作用下:涵洞四角节点弯矩和构件轴力:MdA = -(K * (K + 3) / 6(K^2 + 4K +3) + (10K + 2) / (15K + 5)) * P * hp^2 / 4 = -1.034903kN.mMdB = -(K * (K + 3) / 6(K^2 + 4K +3) - (5K + 3) / (15K + 5)) * P * hp^2 / 4 = .4430991kN.mMdC = -(K * (K + 3) / 6(K^2 + 4K +3) + (5K + 3) / (15K + 5)) * P * hp^2 / 4 = -.7126718kN.mMdD = -(K * (K + 3) / 6(K^2 + 4K +3) - (10K + 2) / (15K + 5)) * P * hp^2 / 4 = .7653301kN.mNd1 = (MdD - MdC) / hp = .5096558kNNd2 = P * hp - (MdD - MdC) / hp = 1.528967kNNd3 = Nc4 = -(MdB - MdC) / Lp = -.4815712kN角点(1)在恒载作用下的的总弯矩为:-79.6角点(1)在汽车作用下的的总弯矩为:-1.49角点(1)在挂车作用下的的总弯矩为:-3.68角点(1)在混凝土收缩下的的弯矩为:13.7角点(1)在温度变化下的的总弯矩为:13.7构件(1)在恒载作用下的的总轴力为:87.6构件(1)在汽车作用下的的总轴力为:.51构件(1)在挂车作用下的的总轴力为:1.26构件(1)在混凝土收缩下的的轴力为:0构件(1)在温度变化下的的总轴力为:0角点(2)在恒载作用下的的总弯矩为:-78.81角点(2)在汽车作用下的的总弯矩为:-.02角点(2)在挂车作用下的的总弯矩为:-.04角点(2)在混凝土收缩下的的弯矩为:-13.7角点(2)在温度变化下的的总弯矩为:-13.7构件(2)在恒载作用下的的总轴力为:97.71构件(2)在汽车作用下的的总轴力为:1.53构件(2)在挂车作用下的的总轴力为:3.77构件(2)在混凝土收缩下的的轴力为:0构件(2)在温度变化下的的总轴力为:0角点(3)在恒载作用下的的总弯矩为:-78.81角点(3)在汽车作用下的的总弯矩为:-1.17角点(3)在挂车作用下的的总弯矩为:-2.89角点(3)在混凝土收缩下的的弯矩为:-13.7角点(3)在温度变化下的的总弯矩为:-13.7构件(3)在恒载作用下的的总轴力为:302构件(3)在汽车作用下的的总轴力为:2.05构件(3)在挂车作用下的的总轴力为:5.05构件(3)在混凝土收缩下的的轴力为:0构件(3)在温度变化下的的总轴力为:0角点(4)在恒载作用下的的总弯矩为:-79.6角点(4)在汽车作用下的的总弯矩为:.31角点(4)在挂车作用下的的总弯矩为:.76角点(4)在混凝土收缩下的的弯矩为:13.7角点(4)在温度变化下的的总弯矩为:13.7构件(4)在恒载作用下的的总轴力为:302构件(4)在汽车作用下的的总轴力为:3.01构件(4)在挂车作用下的的总轴力为:7.42构件(4)在混凝土收缩下的的轴力为:0构件(4)在温度变化下的的总轴力为:02>荷载组合计算角点(1) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -80.64915 角点(1) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -80.20117 角点(1) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -97.61523角点(2) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -78.81769 角点(2) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -78.8131 角点(2) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -94.58979角点(3) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -79.62673 角点(3) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -79.27541 角点(3) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -96.20787角点(4) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -79.38899角点(4) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -79.48108角点(4) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -95.09491构件(1) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 87.95197构件(1) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 87.79908构件(1) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 105.8278构件(2) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 98.78505构件(2) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 98.32636构件(2) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 119.3983构件(3) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 303.4315构件(3) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 302.8168构件(3) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 365.2654构件(4) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 304.1057构件(4) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 303.2021构件(4) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 366.61383>将箱涵框架分解为四根独立构件,求其跨中内力并进行效应组合。
以下是荷载组合后的内力结果:(1).顶板:x = lp / 2P = 1.2 * p恒载Mx = MB + N3 * x - P * x^2 / 2 + 1.4 * M汽车作用顶板中部Vx = P * x + 1.4 * V汽车作用顶板中部 - N3(2).底板:w1 = p恒载 + q车 - 3 / Lp^2 * e车 * hp^2w2 = p恒载 + q车 + 3 / Lp^2 * e车 * hp^2x = lp / 2Nx = N3Mx = MA + N3 * x - w1 * x^2 / 2 - x^3 / 6lp*(w2 - w1) Vx = w1 * x + x^2 / 2lp * (w2 - w1) - N3(3).左侧板:w1 = ep1 + e车w2 = ep2 + e车x = hp / 2Nx = N3Mx = MB + N1 * x - w1 * x^2 / 2 - x^3 / 6hp *(w2 - w1) Vx = w1 * x + x^2 / 2hp * (w2 - w1) - N1(4).右侧板:x = hp / 2w1 = ep1w2 = ep2Nx = N4Mx = Mc + N1 * x - w1 * x^2 / 2 - x^3 / 6hp * (w2 - w1)Vx = w1 * x + x^2 / 2hp * (w2 - w1) - N1构件(1)的跨中计算弯矩Mj为: 124.16 千牛*米构件(1)的跨中计算轴力Nj为: 105.83 千牛构件(1)的跨中计算剪力Vj为: .67 千牛构件(2)的跨中计算弯矩Mj为: 123.21 千牛*米构件(2)的跨中计算轴力Nj为: 119.4 千牛构件(2)的跨中计算剪力Vj为: -1.91 千牛构件(3)的跨中计算弯矩Mj为: -14.46 千牛*米构件(3)的跨中计算轴力Nj为: 365.27 千牛构件(3)的跨中计算剪力Vj为: -1.83 千牛构件(4)的跨中计算弯矩Mj为: -15.04 千牛*米构件(4)的跨中计算轴力Nj为: 366.61 千牛构件(4)的跨中计算剪力Vj为: -3.25 千牛4>顶板、底板截面设计:顶、底板按钢筋混凝土矩形截面偏心受压构件进行截面设计(不考虑受压钢筋)。