小升初组合图形面积计算A
小升初圆与组合图形面积专题(含解析)
小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,( )A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断 3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯ B .22166 3.14() 3.1422⨯⨯-⨯ C .2216[6 3.14() 3.14]22⨯⨯-⨯ D .1(62 3.146 3.14)2⨯⨯⨯-⨯ 4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.。
数学(小升初) 组合图形周长、面积的计算
第2讲组合图形面积的计算一、计算公式例1、如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.例2、下图,求阴影部分的面积。
其他常用的基本方法有:一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积二、相减法这方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例如:下图,求阴影部分的面积。
一句话:正方形面积减去圆的面积即可。
三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积。
例如:下图,求阴影部分的面积。
一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形。
四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
例如:下图,求阴影部分的面积。
一句话:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,若求阴影部分的面积。
六、割补法法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决。
例如:求阴影部分的面积.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
例如:下图,求阴影部分的面积。
一句话:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
例如图(1),求阴影部分的面积。
一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。
热点:关于不规则或组合立体图形的表面积和体积问题-2024年小升初数学(解析版)
热点:关于不规则或组合立体图形的表面积和体积问题一、计算题。
1求下图立体图形的表面积。
【答案】114.84dm2【分析】由图可知,圆柱的上底面刚好填补正方体的上底面被覆盖的部分面积,因此图中立体图形的表面积可以看作是一个正方体的表面积加上一个圆柱的侧面积;根据正方体的表面积=棱长×棱长×6,圆柱的侧面积=底面周长×高,代入相应数值计算即可解答。
【详解】4×4×6+3.14×2×3=16×6+6.28×3=96+18.84=114.84(dm2)因此这个立体图形的表面积是114.84dm2。
2如图下图,求组合体的表面积。
(单位:厘米;π取3.14)【答案】142.84平方厘米【分析】观察图形可知,组合体的表面积等于长方体的表面积加上圆柱体的侧面积,根据长方体的表面积公式:S=ab+ah+bh×2,圆柱体的侧面积公式:S=πdh,代入数据计算即可。
【详解】8×6+8×1+6×1×2+3.14×2×3=48+8+6×2+3.14×2×3=62×2+3.14×2×3=124+18.84=142.84(平方厘米)即组合体的表面积是142.84平方厘米。
3计算下面圆柱的表面积和体积。
(单位:厘米)【答案】表面积:734.76平方厘米;体积:571.48立方厘米【分析】表面积=大圆直径是20厘米,小圆直径是6厘米的圆环面积×2+底面直径是20厘米,高是2厘米的圆柱的侧面积+底面直径是6厘米,高是2厘米的圆柱的侧面积;根据圆环的面积公式:面积=π×(大圆半径2-小圆半径2),圆柱的侧面积公式:侧面积=底面周长×高,代入数据,即可解答;体积=底面直径是20厘米,高是2厘米的圆柱的体积-底面直径是6厘米,高是2厘米的圆柱的体积,根据圆柱的体积公式:体积=底面积×高,代入数据,即可解答。
小升初数学寒假精品课程-第3讲 平面及组合图形(教师版)
平面及组合图形1、了解平面图形的分类.2、掌握平面图形的周长及面积的计算.3、掌握组合图形面积计算的策略.重点:1、了解平面图形的特征.2、掌握平面图形的周长及面积的公式.难点:1、正确运用公式计算图形的周长及面积.2、掌握组合图形面积计算的策略,运用策略解决组合图形的面积.模块一:图形计数图形的计数,可以采用标序号的方法进行计数,注意组合图形组成的图形.例1.下列各图形中,三角形的个数各是多少?【答案】图(1)中有1+2=3(个);图(2)中有1+2+3=6(个);图(3)中有1+2+3+4=10(个);图(4)中有1+2+3+4+5=15(个).【解析】因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数.【易】练习1.下图中各有多少个正方形?【答案】(1)8个;(2)26个.【解析】图(1)有6+2=8(个);图(2)有15+8+3=26(个).【中】练习2.数一数,下面各图中有多少个长方形?【答案】(1)30个;(2)90个.【解析】图(1)中有8+10+4+5+2+1=30(个);【难】练习3.下图中有多少个平行四边形?【答案】30个.【解析】8+10+4+5+2+1=30(个).图形的计数,可以采用标序号的方法进行计数,注意组合图形组成的图形.模块二:图形属性及数量关系例1.一个梯形如图所示,上底是5cm,下底是8c m.(1)在梯形中画一条线段,把梯形分割成一个平行四边形和一个三角形.(2)已知分割成的平行四边形的面积是20 平方厘米,求分割成的三角形的面积.【答案】(1)(2)20÷5×(8-5)÷2=6(平方厘米)答:分割成的三角形的面积为6平方厘米。
【解析】(1)分割出一个平行四边形,图中已有一组对边平行,因此只需画出一条线与梯形的一条腰平行;其次,另一部分是三角形,由三条边围成,所以只能通过上底的一个顶点画另一条腰的平行线;(2)平行四边形、三角形、梯形的高都相同,由平行四边形的面积和底求出平行四边形的高,其次因为平行四边形的对边相等,所以三角形的底是8-5=3.【易】练习1.下面图形中哪两个可以拼成平行四边形?哪两个可以拼成三角形?哪两个可以拼成梯形?【答案】可拼成平行四边形的有:①③、①④、③④;可拼成三角形的有:①③、①④、③④;可拼成梯形的有:①④、③④.【解析】根据平行四边形、三角形、梯形的图形特征,可以一一试验得出结果.【易】练习2.图是一个直角三角形,用两个这样的三角形拼图形.(1)拼成周长较短的三角形.(2)拼成周长最长的平行四边形.请画出草图表示你的拼法.【答案】【解析】(1)拼成的三角形有两种情况,取周长最短的即可.(2)要使拼成的平行四边形周长最短,那么拼在一起的边要最短.掌握图形的属性特征,并要考虑到情况的所有可能性.例2.计算下面平行线间各图形的面积,说一说你有什么发现.【答案】①梯形:(2+6)×5÷2=20(cm2);②平行四边形:4×5=20(cm2);③三角形:8×5÷2=20(cm2);④三角形:8×5÷2=20(cm2).发现:计算后的面积都一样.【解析】先直接数出各图形的底为多少厘米,然后根据各图形的面积公式计算即可.【易】练习1.计算下面图形的周长和面积(单位:cm)(1)(2)【答案】(1)18×24÷2=216(cm2);(2)(8+17)×10÷2=125(cm2).【解析】根据三角形和梯形的面积的公式进行计算.【易】练习2.先在各图中量出计算面积时需要的数据,再求出面积.(1)(2)(3)【答案】(1)梯形上底:0.8 cm,下底:1.3 cm,面积:(0.8+1.3)×1.3÷2=1.43(cm2);(2)三角形最长边长:2.4 cm,对应的高:0.9 cm,面积:2.4×0.9÷2=2.28(cm2);(3)平行四边形底:2.1 cm,高:1.4 cm,面积:2.1×1.4=2.94(cm2).【解析】数据测量要准确,再根据各图形的面积计算公式进行计算.【中】练习3.在下图的方格中分别画出面积是12 平方厘米的三角形、平行四边形和梯形各1 个.(每小格的边长为 1 厘米)【答案】【解析】根据三角形、平行四边形、梯形的面积公式,确定各个图形底和高的值.掌握各图形的面积计算公式,特别要注意三角形的面积计算不要忘记除以2.模块三:几种重要的模型例1.下图是由两个完全一样的直角三角形叠在一起而成的,求阴影部分的面积.(单位:厘米)【答案】S阴影=[(8-3)+8]×5÷2=65÷2=32.5(cm2)答:阴影部分的面积为32.5平方厘米。
小升初专题之组合图形面积
一、几种常用求组合图形面积的方法: 1、旋转的思想方法。
将所给图形中的某一部分绕一个固定点旋转一定(或适当)的角度,变为较明显的简单而又直观的图形。
2.移动的思想方法。
A .点的移动:将图中的某一点看作一个“动点”沿直线移动,使原来分着的空白部分合并在一起变成一个简单明了的图形。
B .面的移动:将所给图形中的某个图形沿直线上下左右移动,把复杂的图形转化成简单的图形,使原来面积不等变成相等。
3.翻折的思想方法。
将所给图形的某一部分以某一直线为对称轴翻折,使原来复杂的图形变为直观图形。
【例题讲解】例1、如图,长方形的长是8厘米、宽是6厘米、A 和B 是宽的中点,求长方形内阴影部分的面积。
例2、下面的长方形是一块草坪,中间有两条宽1米的走道。
求植草的面积。
BB例3、下图是一块长方形草地。
长方形长16米、宽10米,中间有两条宽2米的道路,两条都是平行四边形。
求有草部分的面积。
【知识反馈】1、求图中阴影部分的面积。
(单位:厘米)2、梯形草坪(如下图),有一平形四边形人行道,求人行道的面积是多少平方米?80米50米16102203、一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如下图阴影所示部分,红条宽都是2厘米。
问:这条手帕白色部分的面积是多少?7、下图是一块长方形草地。
长方形长30米、宽15米,中间有两条宽3米的道路,一条是长方形,另一条是平行四边形。
求有草部分的面积。
8、如图,ABCD 是直角梯形,AD=4cm,BC=6cm,AB=3cm 求阴影部分的面积和。
(单位:厘米)3033DA 439、下图中,边长为10和15的两个正方形并放在一起,求三角形ABC (阴影部分)的面积。
(小升初培优讲义)专题27 组合图形的面积计算-六年级一轮复习(知识点精讲+达标检测)(教师版)
专题27 组合图形的面积计算知识梳理1.平面图形的周长与面积公式。
[提示]有的平面图形的公式不是唯一的,有时要结合不同的已加条件灵活运用,比如圆的周长公式,当已知半径时,选用C=2πr;已知直径时,可选用C=πd。
除了熟练掌握平面图形的周长与面积公式外,还要理解每个公式是怎么推导出来的,如圆的面积公式推导进程是把一个圆平均分成若干个小扇形,可以拼成一个近似的长方形,长方形的长等于圆周长的一半,宽等于圆的半径。
2.组合图形的面积。
对于组合图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
(1)直接求面积。
这种方法是根据已知条件,从整体出发直接求出组合图形面积。
(2)相加、相减求面积。
这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。
(3)等量代换求面积。
一个图形可以用与它相等的另一个图形替换,如果甲、乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
(4)借助辅助线求面积。
这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
【例1】计算右面图形的面积。
(单位:厘米)【点拨分析】 求梯形的面积,必须知道上底、下底和高这三个条件。
从圆中可以看出,此梯形的高是6厘米,那么解题的关键就是求出上底和下底的长或求出它们的长度和。
在左边的直角三角形中,一个内角是45°,可知它是等腰直角三角形,所以高的左边部分与下底相等。
同样,右边的三角形也是一个等腰直角三角形,所以梯形的上底和高的右边部分相等。
这样就可推和梯形上、下底的长度和就是梯形高的长度6厘米。
【答 案】 6×6÷2=18(平方厘米)例题精讲1.计算下面图形的面积。
(单位:厘米)2.如图,长方形的面积是45平方米,求阴影部分的面积。
小升初组合图形面积计算
组合图形1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,①比阴影②面积少3cm2,求EC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分少12平方厘米,求阴影部分面积。
一、求出阴影部分面积:(6分)。
84 8m4m4、下图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积(10分)16、下图中阴影部分的面积是( )平方厘米。
25、如图(3),有两个边长是2厘米的正方形,其中一个正方形的一个顶点在另一个的中心上,并且两个涂色的三角形的面积相等。
问两个正方形不重合的部分面积的和是多少?6 666图(3)20 20A BO2、右图中阴影部分的面积为(单位:厘米)。
如图,等腰直角三角形ABC的面积是8平方厘米。
求阴影部分的面积。
(8分)22. 求阴影部分的面积。
(单位:厘米)DAC450635 5 4 41、求右图中阴影部分面积(单位:厘米)。
1. 下图是由正方形和半圆形组成的图形,其中P 点为半圆周的中点,Q 点为正方形一边的中点,求阴影部分面积。
(单位:厘米)1、下图中三角形的面积等于梯形的面积,求五边形的面积。
(单位:厘米)16、下图中阴影部分的面积是( )平方厘米。
11、如图:阴影三角形的面积是 。
小升初数学必会的10种图形求面积解题法
小升初数学必会的10种图形求面积解题法!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。
它们的面积及周长都有相应的公式直接计算,具体如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
先看三道例题感受一下:例1如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF 的面积.一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。
解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法1相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
六年级数学小升初重点题型组合图形面积带答案
如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中 点,求三角形AEF的面积。
16÷2=8(平方厘米)
16÷4÷2=2(平方厘米) 8-2=6(平方厘米)
三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别 是AF、BC的中点,那么阴影部分的面积是多少?
24÷6=4(平方厘米)
求阴影部分的面积。
6×6÷2=18(平方厘米) (6-4)×4÷2=4(平方厘米)
18-4=14(平方厘米)
差不变原理
图中两个完全一样的三角形重叠在一起,求阴影部分 的面积。(单位:厘米)
12-4=8(厘米) (8+12)×2÷2=20(平方厘米)
差不变原理
平行四边形ABCD的边长BC长为8厘米,直角三角形BCE的 直角边CE长为6厘米。已知两块阴影部分的面积和比三角形 EFG的面积大8平方厘米,求CF的长度?
S△BDE=8×6÷2=24(平方厘米)
S平行四边形ABCD=24+8=32(平方厘米)
CF=32÷8=4(厘米)
三角形ABC的面积是56平方米,BD=CD.求阴影部分的面 积.
56÷2=28(平方米)
如图阴影部分的面积是6平方厘米,OC=2AO,求梯形的面积。
6×2=12(平方厘米) 12×2=24(平方厘米) 6+12+12+24=54平方厘米)
2.5×4=10(平方厘米)
蝴蝶定理:梯形两翼三角形面积相等。
S△ABC=BC×h÷2 S△BCD=பைடு நூலகம்C×h÷2 S△ABC=S△BCD
B S△ABC-S△OBC=S△BCD-S△OBC
即 S△ABO=S△CDO
A
D
O
六年级下册数学试题-小升初复习讲练:组合图形的面积 (含答案)sc
组合图形的面积典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是cm2.例4.如图等腰三角形中阴影部分的面积是.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)例6.求阴影部分的面积.(单位,厘米)演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.254.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.305.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.1009.(•南城县)图中阴影部分占总面积的()A.B.C.D.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.3013.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是_________平方厘米.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是_________.18.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是_________平方厘米.19.如图所示,正六边形ABCDEF的面积是36平方厘米,AG=AB,CH=CD,则四边形BCHG的面积是_________平方厘米.20.如图,有一块正方形的草坪,周边用边长为6分米的方砖铺了一条宽15分米的小路(如图阴影部分),共用方砖300块.则小路所围草坪的面积是_________平方分米.21.如图,长方形ABCD的面积是100平方厘米,M在AD边上,且AM=AD,N在AB 边上,且AN=BN.那么,阴影部分的面积等于_________平方厘米.22.如图,ABCD是长方形,图中的数是各部分的面积数,则图中阴影部分的面积为_________.23.(•江油市模拟)图中阴影部分为2cm,AB:AE=4:1,长方形ABCD面积为_________24.(•长沙模拟)下列图形的边长为2厘米,阴影部分面积相等的图形有_________.25.一个机器零件,形状如图阴影所示,这个机器零件的面积是_________dm2.26.如图,在边长相等的五个正方形中,画了两个三角形,三角形A的面积是15平方厘米,那么三角形B的面积是_________平方厘米.27.如图,已知三角形ABC的面积等于18平方厘米,∠ABC、∠DEC都是直角,AC=8厘米,BD=2DC.DE的长是_________厘米.28.如图,平行四边形中阴影A的面积是6平方厘米,阴影B的面积占平行四边形面积的,平行四边形面积是_________平方厘米.B档(提升精练)一.选择题(共15小题)1.(•剑川县模拟)一块边长是4米的正方形草地上,一条对角线的两个顶点各有1棵树,树上各栓1只羊,绳长4米,两头羊都能吃到的草地面积为()平方米.A.6.28 B.9.12 C.12.56 D.50.242.下列图形的面积是()A.800 B.700 C.750 D.6003.(•郑州模拟)如图,将四条长为16cm,宽为2cm的长方形垂直相交平放在桌面上,则桌面被盖住的面积是()A.72cm2B.128cm2C.20cm2D.112cm24.(•牡丹江)如图,四边形ABCD是一个梯形,由三个直角三角形拼成,它的面积是()平方厘米.A.1.92 B.16 C.4D.85.下列图形中,每个小正方形都是边长1cm,图中阴影面积最大的是()A.B.C.6.如图所示:任意四边形ABCD,E是AB中点,F是CD中点,已知四边形ABCD面积是10,则阴影部分的面积是()A.5B.6C.7D.87.(2004•宜兴市)如图,ABCD是一个长方形.三角形PAB、PBC和PCD的面积分别是44平方厘米,144平方厘米和260平方厘米.图中阴影部分的面积是()A.44平方厘米B.60平方厘米C.100平方厘米D.144平方厘米8.(•万州区)如图中,阴影部分的面积占平行四边形面积的()A.B.C.D.9.(•河西区)如图长方形ABEF中AF=10分米,其中梯形ABCG、平行四边形CDFG和三角形DEF的面积比为3:1:1,DE=()分米.A.2B.C.4D.10.(•济源模拟)甲、乙、丙三名小朋友用相同的正方形手工纸剪成圆形,甲剪了一个最大的扇形,乙剪了一最大的圆,丙剪了四个最大的圆.(如图)三个人中对手工纸的利用率情况是()A.甲最高B.乙最高C.丙最高D.三人相同11.(•开化县模拟)如图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的()A.B.C.D.12.(•无锡)用三张边长都是8厘米的正方形铁皮,分别按如图剪下不同规格的圆片.哪张铁皮剩下的废料多?()A.甲铁皮剩下的废料多B.乙铁皮剩下的废料多C.丙铁皮剩下的废料多D.剩下的废料同样多13.(•广东模拟)右图中三角形a,b的面积都是长方形面积的,则阴影部分面积是长方形面积的()A.B.C.D.14.(•中山模拟)如图,图中每个圆的直径都为2cm,阴影部分的周长和的面积各是()A.2π﹣4 π﹣4 B.4π4πC.2π4﹣πD.4715.(•湛江模拟)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙二.填空题(共13小题)16.(•成都)如图,阴影部分的面积是_________.17.(•常熟市)如图:三角形的面积为5平方厘米,求圆的面积是_________平方厘米.18.(•阜阳模拟)如图,求涂色部分的面积是_________平方分米.19.(•台湾模拟)如图正方形的边长为10公分,四边形ABCD的面积为6平方公分,那么,阴影部分的面积为_________平方公分.20.(•广州模拟)在如图中,平行四边形的面积是80平方厘米,图中A、B两个三角形的面积比是_________,阴影部分的面积是_________平方厘米.21.(•雁江区模拟)图中阴影部分的面积是_________cm2,周长是_________cm.22.(•广州)如图ABCD是一个长方形,AB=10厘米,AD=4厘米,E、F分别是BC、AD 的中点,G是线段CD上意一点,则图中阴影部分的面积为_________.23.(•东莞)如图,B、C分别是正方形边上的中点,己知正方形的周长是80厘米.阴影部分的面积是_________平方厘米.24.(•中山模拟)在半径为10cm的圆内,C为AO的中点,则阴影的面积为_________.25.(•泸州模拟)如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米.BC=_________.26.(•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.27.(•长沙模拟)如图,长方形ABCD中,AB=12厘米,BC=8厘米,平行四边形BCEF的一边BF交CD于G,若梯形CEFG的面积为64平方厘米,则DG长为_________.28.(•顺德区模拟)如图是两个一样的直角三角形重叠在一起,图中阴影部分面积是_________.C档(跨越导练)一.填空题(共9小题)1.(•揭阳)图中,平行四边形ABCD的面积是32cm2阴影部分的面积是_________cm2.2.(•广西)如图中,梯形的下底是12厘米,高是5厘米.阴影部分的面积是_________平方厘米.3.(•绍兴县)图中三角形ABC三个顶点上都是半径为1厘米的圆,图中阴影部分的面积是_________.4.(•河北)如图是一个长方形,面积是18平方厘米,P是长方形内任意一点,图中两个阴影部分的面积和是_________平方厘米.5.(•渠县)求阴影部分面积.(单位:cm)6.(•上海)如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.(4%)7.(•长汀县)图中3号图形的面积占七巧板面积的_________.8.(•游仙区模拟)一个圆形纸片,直径是8厘米,把它剪成一个最大的正方形,剪掉的面积是_________平方厘米.9.(•河西区)如图所示,O1、O2分别是所在圆的圆心.如果两圆半径均为2厘米,且图中两块阴影部分的面积相等,那么EF的长度是_________厘米.二.解答题(共13小题)10.(•绍兴县)求图中阴影部分的面积(单位:厘米)11.(•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.12.(•延边州)求图中阴影部分的面积.(单位:厘米)13.(•麟游县)求图中阴影部分的面积(单位:厘米)14.(•金沙县)如图,求阴影部分的面积.已知:r=10cm.15.(•东莞)如图:阴影2比阴影1面积大2.75平方厘米,圆的半径5厘米;求BC的长.16.(•重庆)已知S圆=S长方形求阴影部分周长和面积.17.(•长寿区)第1、2题求阴影部分周长和面积,第3﹣6题只求阴影部分面积.18.(•宁波)如图,直角梯形中,高是5厘米,下底是14厘米,求阴影部分的面积?19.(•天柱县)如图中,小正方形边长为1分米,大正方形边长为2分米,阴影部分面积是多少?20.(•康县模拟)求下列图形的阴影部分的面积.21.(•紫金县)(1)求阴影部分周长(2)求图阴影部分的面积.22.(•郑州)草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(如图).问:这只羊能够活动的范围有多大?组合图形的面积答案典题探究例1.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是18.考点:组合图形的面积;等积变形(位移、割补).分析:根据题意,过点E作BC的垂线于点F,延长CB、EA交点G,因∠AED=135°,所以∠AEF=45°,在三角形EFG中,∠EFG=90°,所以∠EGF=45°,EF=FG=5,即三角形EFG是等腰直角三角形,在三角形ABG中,∠AGB=45°,∠BAG=90°,所以∠ABG=45°,那么三角形ABG是等腰直角三角形,根据三角形、四边形的面积公式可计算出各自的面积,最后再用长方形CDEF的面积加上等腰直角三角形EFG再减去等腰直角三角形ABG即可,列式解答即可得到答案.解答:解:三角形EFG的面积是:5×5÷2=12.5,长方形CDEF的面积是2×5=10,延长出的三角形ABG的面积是:3×3÷2=4.5,组合图形的面积是:12.5+10﹣4.5=18,答这个五边形的面积是18.点评:解答此题的关键是将组合图形的两条边延长分为三角形和长方形,然后再减去延长部分所得到的面积即可.例2.如图,梯形ABCD中,BC=2AD,E、F分别为BC、AB的中点.连接EF、FC.若三角形EFC的面积为a,则梯形ABCD的面积是6a.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图,连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,据此即可解答问题.解答:解:连接AE,因为BC=2AD,E为BC的中点,所以四边形AECD是平行四边形,且三角形ABE和平行四边形AECD等底等高,所以平行四边形的面积是这个三角形的面积的2倍,又因为三角形EFC的面积为a,所以三角形BEF的面积也是a,又因为F是AB的中点,所以可得三角形ABE的面积是2a,则平行四边形的面积就是2a×2=4a,所以这个梯形的面积是2a+4a=6a.答:则梯形ABCD的面积是6a.故答案为:6a.点评:此题考查了高一定时,三角形的面积与底成正比例的性质以及等底等高的平行四边形是三角形的面积的2倍的灵活应用.例3.如图,每个小方格的面积是1cm2,那么△ABC的面积是8.5cm2.考点:组合图形的面积;三角形的周长和面积.分析:△ABC的面积为长方形RPCQ的面积减三角形ARB的面积减三角形BPC的面积再减三角形CQA的面积,将数据代入公式即可求解.解答:解:如图所示,S△ARB=S长方形ARBH=×6=3(平方厘米),S△BPC=S长方形BPCE=×5=2.5(平方厘米),S△CQA=S长方形CQAF=×12=6(平方厘米),则,S△ABC=S长方形﹣S△ARB﹣S△BPC﹣S△CQA,=20﹣3﹣2.5﹣6,=8.5(平方厘米).故答案为:8.5.点评:此题主要考查组合图形的面积,关键是将图形进行合理的分割.例4.如图等腰三角形中阴影部分的面积是 2.86.考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积等于两条直角边为4的等腰直角三角形的面积减去两条直角边为2的等腰直角三角形的面积,再减去半径为2的圆面积的四分之一,据此计算即可解答.解答:解:4÷2=24×4÷2﹣2×2÷2﹣3.14×22÷4=8﹣2﹣3.14=2.86答:阴影部分的面积是2.86.点评:本题主要考查组合图形的面积,解答本题的关键是找出图中阴影部分是哪几部分相减得到的.例5.求右图直角梯形中阴影部分的面积.(单位:厘米)考点:组合图形的面积;三角形的周长和面积;梯形的面积;圆、圆环的面积.专题:压轴题;平面图形的认识与计算.分析:用梯形底面积减去半径是2厘米的圆面积的四分之一,减去一个底是4﹣2=2厘米,高是2厘米的三角形的面积,得到的差就是阴影部分的面积.解答:解:(3+4)×2÷2﹣3.14×22×﹣(4﹣2)×2÷2,=7﹣3.14﹣2,=1.86(平方厘米);答:阴影部分的面积是1.86平方厘米.点评:本题考查了梯形,圆,三角形的面积公式的掌握与运用情况,同时也考查了学生的计算能力.例6.求阴影部分的面积.(单位,厘米)考点:组合图形的面积.专题:压轴题.分析:我们可以右边的小阴影割后移动到左边补上,从图中可以观察到,割补后只要用长方形AODE的面积减去三角形AOC的面积就是整个阴影部分的面积.解答:解:由图知,经过割补后,S阴=S AOED﹣S AOC,=3×6﹣3×3÷2,=18﹣4.5,=13.5(平方厘米);故答案:13.5平方厘米.点评:此题考查了组合图形的面积和割补的思想.演练方阵A档(巩固专练)一.选择题(共15小题)1.如图中,阴影部分的面积甲()乙.A.大于B.小于C.等于D.无法确定考点:组合图形的面积.分析:根据题意甲乙均为三角形,那么在梯形ABCD中,三角形ABC与三角形BCD是等底等高的三角形,所以它们的面积相等,甲部分的面积等于三角形ABC减去三角形BCO,乙部分的面积等于三角形BCD的面积减去三角形BCO的面积,因为三角形ABC与三角形BCD面积相等,所以三角形ABO的面积等于三角形CDO的面积,即甲的面积=乙的面积.解答:解:如图:三角形ABC与三角形BCD是等底等高的三角形,所以三角形ABC的面积等于三角形BCD的面积,甲的面积等于三角形ABC﹣三角形BCO,乙的面积等于三角形BCD﹣三角形BCO,所以甲的面积等于乙的面积.故选:C.点评:解答此题的关键是把甲乙两部分的面积放在同底等高的两个三角形中,同底等高的两个三角形的面积相等,然后去掉共同拥有的三角形BCO,所剩面积也会相等.2.如图中阴影甲的面积比阴影乙的面积大多少()A.6(平方厘米)B.8(平方厘米)C.4(平方厘米)D.10(平方厘米)考点:组合图形的面积.专题:平面图形的认识与计算.分析:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差,将数据代入三角形和正方形的面积公式即可求解.解答:解:(6+8)×6÷2﹣6×6,=14×6÷2﹣36,=42﹣36,=6(平方厘米);答:阴影甲的面积比阴影乙的面积大6平方厘米.故选:A.点评:解答此题的关键是明白:求阴影甲与阴影乙的面积差,实际上是求大三角形与正方形的面积差.3.由四个相同的直角三角形和中间的小正方形拼成的一个大正方形(如图).如果直角三角形的两条直角边的长分别是3厘米和2厘米,大正方形的面积是()平方厘米.A.13 B.14 C.15 D.25考点:组合图形的面积.专题:平面图形的认识与计算.分析:由图意可知:中间小正方形的边长为3﹣2=1厘米,则大正方形的面积=直角三角形的面积×4+小正方形的面积,代入数据即可求解.解答:解:3×2÷2×4+(3﹣2)×(3﹣2),=12+1,=13(平方厘米);答:大正方形的面积是13平方厘米.故选:A.点评:由三角形的直角边长求出小正方形的边长,是解答本题的关键.4.图中阴影部分的面积之和是()平方厘米.A.20 B.24 C.26 D.30考点:组合图形的面积.专题:平面图形的认识与计算.分析:等底等高的三角形的面积相等,由图形可知,图中两个空白三角形的面积相等,根据三角形的面积公式:s=ah÷2,把数据代入公式求出两个空白三角形的面积,再根据长方形的面积公式:s=ab,把数据代入公式求出长方形的面积,然后用长方形的面积减去两个空白三角形的面积即可.据此解答.解答:解:8×6﹣6×4÷2×2=48﹣24=24(平方厘米),答:阴影部分的面积是24平方厘米.故选:B.点评:解决此题的关键是利用等积转换,即等底等高的三角形面积相等,用长方形减去空白面积就是阴影面积,5.如图是由面积都是5平方厘米的8个三角形组成,图中阴影部分的面积是多少平方厘米?列式是()A.8+8×B.5+5×C.5×8×D.××考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,据此解答即可.解答:解:如上图所示,三角形②的面积是5,而三角形①的面积是三角形②面积的一半,则阴影部分的面积是5+5×,故选:B.点评:将阴影部分进行分割,再据已知条件,即可求出阴影部分的面积.6.如图,涂色部分面积是长方形面积的()A.B.C.无法计算考点:组合图形的面积;分数的意义、读写及分类.专题:平面图形的认识与计算.分析:设长方形的长和宽分别为a和b,两个三角形的高之和正好等于长方形的宽,即等于b,则两个阴影三角形的面积和为a(b1+b2)=ab,所以涂色部分面积是长方形面积的.解答:解:设长方形的长和宽分别为a和b,则两个阴影三角形的面积和为ab,所以涂色部分面积是长方形面积的.故选:B.点评:解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.7.下图中梯形ABCD的面积是40平方分米,三角形ABC的面积是25平方分米,则三角形BCD的面积是()A.25平方分米B.15平方分米C.40平方分米考点:组合图形的面积;三角形的周长和面积.专题:平面图形的认识与计算.分析:根据图知道用梯形ABCD的面积减去三角形ABC的面积即可求出三角形BCD的面积.解答:解:40﹣25=15(平方分米),答:三角形BCD的面积15平方分米;故选:B.点评:关键是根据图得出梯形ABCD的面积减去三角形ABC的面积就是三角形BCD的面积.8.如图,黑色部分的面积为96平方厘米,则空白部分的面积为()A.96 B.240 C.120 D.100考点:组合图形的面积.专题:平面图形的认识与计算.分析:根据平行四边形的面积公式S=ah,得出h=S÷a,由此求出黑色部分的高,即长方形的宽,再根据图得出空白部分的面积等于长方形的面积减去黑色部分的面积,由此再利用长方形的面积公式解答.解答:解:96÷8=12(厘米)(20+8)×12﹣96=28×12﹣96=336﹣96=240(平方厘米)答:空白部分的面积是240平方厘米;故选:B.点评:本题主要是灵活利用平行四边形的面积公式与长方形的面积公式解答.9.(•南城县)图中阴影部分占总面积的()A.B.C.D.考点:组合图形的面积.分析:把阴影部分的图形进行拼凑,把①放到②处,即可得到阴影部分的面积是总面积的.解答:解:由图可知阴影部分的面积是,故选:A.点评:本题把图形进行拼凑,即可得到答案.10.(•泉州)下列各图中的正方形面积相等,图()的阴影面积与另外三图不同.A.B.C.D.考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.观察图形可发现:四个正方形是全等的,面积是相等;A、C、D三个图形中空白部分可以组成一个完整的圆,根据圆的面积相等可得这三个图形中阴影部分的面积相等,得出答案.解答:解:由图可知:从左到右A、C、D的空白处均可组成一个完整的半径相等的圆,而正方形的面积相等,根据等量减去等量差相等的原理得这三个图形中阴影部分的面积相等.故选:B.点评:此题考查了面积及等积变换,将阴影面积转化为易求的图形的面积的差或和是解题的常用方法.11.(•康县)如图中,两三角形的面积之和占长方形面积的()A.B.C.D.考点:组合图形的面积;分数的意义、读写及分类.专题:压轴题;分数和百分数.分析:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,于是问题容易得解.解答:解:假设每个小正方形的面积是1,则2个小三角形的面积都是,2个小三角形的面积和就为1,而长方形的面积为4,1÷4=,所以两三角形的面积之和占长方形面积的;故选:C.点评:解答此题的关键是:利用假设法先求出两个三角形的面积和,问题即可得解.12.(•徐水县)在一长方形草地里有一条宽1米的曲折小路,如图所示,小路的面积是()平方米.A.10 B.20 C.30考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们把图形进行分割,把①②③排在一起就是一个长方形长是11米,宽是1米,把④⑤⑥图形沿着大长方形的宽排列,得到的长方形的长(10﹣1)米,宽是1米的长方形.解答:解:画图如下:11×1+(10﹣1)×1,=11+9,=20(平方米);故选:B.点评:本题运用长方形的面积公式进行就即可,即“长×宽=面积”.13.(•揭阳)下面三幅图中,正方形的边长相等,这些图形中阴影部分的面积()大.A.图(1)B.图(2)C.图(3)D.一样大考点:组合图形的面积;圆、圆环的面积.分析:这三幅图中,正方形的边长相等,说明正方形的面积相等,求这些图形中阴影部分的面积,都可以认为是从正方形的面积里减去同一个圆的面积,由此得解.解答:解:正方形的边长相等,说明三幅图正方形的面积相等,里面的圆的半径也相等;(1)阴影部分的面积=正方形的面积﹣4×圆的面积;(2)阴影部分的面积=正方形的面积﹣2×圆的面积;(3)阴影部分的面积=正方形的面积﹣圆的面积;所以这些图形中阴影部分的面积一样大.故选:D.点评:此题属于求组合图形的面积,要求阴影部分的面积,就从外面图形面积里减去里面的小图形的面积.14.(•崇文区)从甲、乙两块厚度、边长均相等的正方形钢板上冲制出一些圆形(如图,每块上的圆形大小分别相同),剩下的边角料重量相比,下面说法正确的是()A.甲重B.乙重C.重量相等考点:组合图形的面积;圆、圆环的面积.分析:要解决剩下的边角料重量相比问题,根据题干,只要比较出剩下的边角料的面积大小即可,剩下面积大的重,由此只要求得甲乙两个图中的阴影部分的面积即可解决问题.解答:解:设甲乙两个正方形的边长为12,则甲中圆的半径为:12÷2÷2=3,乙中的圆的半径为12÷3÷2=2,甲剩下的部分为:12×12﹣3.14×32×4,=144﹣113.04,=30.96;乙剩下的部分为:12×12﹣3.14×22×9,=144﹣113.04,=30.96,所以甲乙剩下部分的面积相等,故选:C.点评:此题考查了在正方体中切割等圆的方法,得出每个圆的半径是解决此类问题的关键.15.(•秀屿区)从一个长为3,宽为2的长方形中擦去一个直径为1的圆(如图,单位厘米),下列表示各平方厘米数中最接近阴影部分的面积是()A.6B.5C.4考点:组合图形的面积.专题:压轴题;平面图形的认识与计算.分析:我们运用长方形的面积减去圆的面积就是阴影部分的面积,得出的差再与下列选项进行比较再进行选择.解答:解:3×2﹣3.14×(1÷2)2,=6﹣0.785,=5.215(平方厘米);5.215与5最接近.故选:B.点评:本题考查了长方形及圆的面积公式的掌握与运用情况,同时考查了数的大小比较和近似数.二.填空题(共13小题)16.大小正方形如图.小正方形边长a厘米,阴影面积是a2平方厘米.考点:组合图形的面积.分析:如图所示,连接BC,则三角形ABC和三角形CEB等底等高,则二者的面积相等,它们分别去掉公共部分三角形CFB,剩余部分的面积仍然相等,即三角形CEF的面积和三角形ABF的面积相等,于是阴影部分就转化成了小正方形的面积的一半,问题得解.解答:解:连接BC,则S△ABC=S△CEB,于是S△ABC﹣S△CFB=S△CEB﹣S△CFB,即S△ABF=S△CEF,所以阴影部分的面积=a2;故答案为:a2.点评:解答此题的关键是作出辅助线,将阴影部分的面积转化成小正方形的面积的一半,问题即可得解.17.如图,大正方形边长为8cm,小正方形边长为6cm,则阴影部分的面积是32平方厘米.。
小升初组合图形面积计算A
组合图形1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,①比阴影②面积少3cm2,求EC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF 的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分少12平方厘米,求阴影部分面积。
4、下图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积(10分)16、下图中阴影部分的面积是()平方厘米。
25、如图(3),有两个边长是2厘米的正方形,其中一个正方形的一个顶点在另一个的中心上,并且两个涂色的三角形的面积相等。
问两个正方形不重合的部分面积的和是多少?2020 A B O5 5 442、右图中阴影部分的面积为 (单位:厘米)。
如图,等腰直角三角形ABC 的面积是8平方厘米。
求阴影部分的面积。
(8分)22. 求阴影部分的面积。
(单位:厘米)1、求右图中阴影部分面积(单位:厘米)。
DAC450 631.下图是由正方形和半圆形组成的图形,其中P点为半圆周的中点,Q点为正方形一边的中点,求阴影部分面积。
(单位:厘米)1、下图中三角形的面积等于梯形的面积,求五边形的面积。
(单位:厘米)16、下图中阴影部分的面积是()平方厘米。
666 611、如图:阴影三角形的面积是 。
12、用一块面积为36平方厘米的圆形铝板下料,如图,裁出7个同样大小的圆铝板,则余下的边角料的总面积是 平方厘米。
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析组合图形的面积一、 知识要点:1. 我们学过的常见多边形的周长和面积求法:2.计算不规则图形的面积,常用到哪些方法?二、知识运用典型例题。
例题1:如图,两条对角线把梯形ABCD 分割成四个三角形,(1) 请写出图中面积相等的三角形?(2) 已知两个三角形的面积,求另两个三角形的面积各是多少? (3) 求梯形ABCD 的面积?B C例2:长方形ABCD 的面积是24平方厘米,三角形EBC 的面积是30平方厘米,两块阴影部分的面积相差多少?例3:如下图,长方形ABCD 的面积是20平方厘米,三角形ADF 的面积为5平方厘米,三角形ABE 的面积为7平方厘米,求三角形AEF 的面积。
例4:如下图,已知四条线段长分别是AB=2,CE=6,CD=5,AF=4,并有两个直角,求四边形ABCD 的面积。
D BCA D三、知识运用课堂练习。
1、三角形EBC的面积是40平方厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形ABCD的面积?2、如下图,长方形的长和宽分别是12和9,把三角形的三条边分别平均分成三段,得到A,B,C,D,E,F六个点,连接AF、BC、DE,得到一个六边形。
这个六边形的面积是多少?3、在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD 的面积大18厘米2。
求ED的长。
4、下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
课后练习 等级1、下图中的甲和乙都是正方形,求阴影部分的面积。
2、下图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形E DF 的面积大9厘米2,求ED 的长。
3、(动手操作题)右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。
(至少要有4种不同的方法)甲乙生活中的数学趣题一、知识要点。
圆、组合图形面积-小升初立体图形训练-圆、组合图形面积-无答案
圆、组合图形的面积第一部分 知识梳理字母意义:O 圆心,r 半径,d 直径,π 圆周率,C 周长,S 面积 特征:同一圆内,所有的半径、直径都分别相等,直径等于半径的2倍 对称性:圆是轴对称图形,圆的直径所在的直线是圆的对称轴1.圆 圆的周长计算公式:C=πd=2πr ,半圆周长计算公式:C 半圆=πr+2r=(π+2)r 圆的面积计算公式推导过程:将圆沿着直径等分成若干个扇形(偶数份),再拼成一 个近似的长方形(分成的扇形越多,越接近长方形),长方形的长相当于圆的周 长一半(πr ),宽相当与圆的半径,圆的面积等于长方形的面积。
所以:S 圆=S 长方形=πr ×r=πr 2概念:两个半径不等的同心圆之间的部分称之为圆环。
各部分名称:①外圆:圆环中较大的圆叫做外圆,其半径通常用R 表示。
2.圆环 ②内圆:圆环中较小的圆叫做内圆,其半径通常用r 表示。
③环宽:外圆到内圆的距离叫做环宽 环宽=R —r圆环的面积计算方法:外圆的面积与内圆的面积之差是圆环的面积。
即:S 圆环=S 外圆—S 内圆 ,S 圆环=π(R 2 — r 2)弧:圆上任意两点间的部分叫做弧3.扇形 圆心角:弧的两个端点与圆心连结,所得两条半径的夹角叫圆心角 扇形:由圆心角的两条半径和圆心角所对的弧组成的图形叫扇形割补(平移)法 组合图形的面积 加减法计算策略1 旋转、对称法4.组合图形的 要求阴影先求空白 面积计算 包含与排除组合图形的面积 总面积=两部分面积和-重叠部分面积 计算策略2 巧添辅助线 等积转化(代换)第二部分精讲点拨例1判断下列各题是否正确:(1)圆的周长是直径的3.14倍。
()(2)圆是轴对称图形,直径是圆的对称轴。
()(3)世界上第一位把圆周率精确到七位小数的人物是祖冲之。
()举一反三:1.填空题:(1)经过圆心并且两端都在圆上的线段叫做圆的(),圆有()条直径。
(2)圆的面积推导公式是:将圆分成若干个扇形,再拼成一个近似的长方形,长方形的长相当于圆的(),长方形的宽相当于圆的(),所以圆的面积公式为()。
小升初复习-组合图形的面积(专项突破)小升初数学复习计算问题重难点特训真题练
小升初复习-组合图形的面积(专项突破)小升初数学复习计算问题重难点特训真题练一、计算题1.计算组合图形的面积(单位:米)2.求下面图形中阴影部分的面积。
3.如图,两个正方形的边长分别是10cm和4cm,求阴影部分的面积。
4.计算下面图形的面积。
5.计算下面各图形的面积。
6.计算第一个图形的面积和周长,第二个图形计算体积。
7.计算下面图形阴影部分的面积。
(单位:㎝)8.计算下面图形中阴影部分的面积。
(1)(2)9.计算下面图形的面积。
(单位:cm)10.计算下面阴影部分的面积(单位:厘米)。
11.图中爱心是由一个正方形和两个半圆拼成的,请计算出它的周长和面积。
12.看图计算面积(单位:厘米)13.求图形的彩色部分面积。
14.求阴影部分的面积。
15.求阴影的面积。
(单位:厘米)16.求下面各图阴影部分的面积。
(单位:厘米)17.计算下面图形的面积(单位:分米)。
18.如图,阴影部分的面积是16平方厘米,求环形的面积。
19.看图计算。
计算下面图中阴影部分的面积。
(单位:厘米)20.梯形的面积是25平方厘米,求出阴影部分的面积。
21.计算出两个组合图形的面积(单位:cm)。
22.下图阴影部分是由一个半圆和一个三角形组合而成,图中正方形的边长是6厘米,求阴影部分的面积是多少平方厘米?23.求图中阴影部分的面积。
(单位:厘米)24.下图是一个直角梯形,求图中阴影部分的周长和面积。
(单位:厘米)25.如图,三个边长分别为4,8,6的正方形拼在一起,求阴影部分的面积。
参考答案 1.238平方米【分析】观察图可知,组合图形的面积=平行四边形的面积+三角形的面积,根据平行四边形的面积=底×高,三角形的面积=底×高÷2,据此列式解答。
【详解】14×12+14×10÷2=168+140÷2=168+70=238(平方米)【点睛】把组合图形的面积看成三角形和平行四边形的面积之和是解决此题的关键,掌握三角形和平行四边形的面积公式。
六年级下册数学试题-小升初专题培优:第十一讲 组合图形的面积(一)(无答案)全国通用
第十一讲 组合图形的面积(一)【学习锦囊】许多图形是由两个或两个以上的图形组合而成的,我们称之为组合图形,组合图形具有图形不规则,图形重叠,条件隐蔽或缺少条件等特点,计算组合图形的面积,首先要掌握基本的图形面积计算公式,公式如下:三角形面积=底⨯高÷2=21ah正方形面积=边长⨯边长=a 2 长方形面积=长⨯宽=ab 平行四边形面积=底⨯高=ah梯形面积=(上底+下底)⨯高÷2=21(a+b )h圆面积=半径⨯半径⨯π=πr 2 扇形面积=半径⨯半径⨯π⨯圆心角的角度÷360°=︒360n ⨯πr 2组合图形往往不能直接用公式计算,需要通过观察,分析把组合图形转化为基本的图形来计算,对于千变万化的组合图形,我们要学会多种的解题思路和方法,常用的方法有:等分法,等量代换法,做辅助线法,设数法,列方程法,利用比设参数法,割补法,包含与排除法,用勾股定理等,在本节和下节两讲中,我们学习用这些方法来解答组合图形的面积。
【典题1】如右图,已知长方形ABCD 的面积是88平方厘米,E和F 分别是长和宽的中点。
(1)画出长方形ABCD 所有的对称轴。
(2)求出阴影部分面积 典题分析:通过观察四边形ACFE 是一个梯形,求梯形的面积缺少必要的条件,我们可以把长方形利用等分法把它等分成八个相等的三角形,阴影有三个三角形组成,占长方形的八分之三,从而可以求出阴影部分的面积【典题分析】解:画出长方形两条对称轴交于点O,连结BOS 阴影=88×83 =33(cm 2)答:阴影部分的面积是33平方厘米。
【典题2】如右图有三个正方形ABCD,BEFG 和CHIJ ,其中正方形ABCD 的边长是10,正方形BEFG 的边长是6,那么三角形DFI的面积是多少?【典题分析】求三角形DFI 的面积,缺少底和高的条件,试图能不能找一个和三角形DFI 等底等高的三角形呢? 通过做辅助线连结CI,CF.三角形CDF 和DFI 等底等高,我们利用等量代换的方法,可以求出三角形DFI 的面积AB CD EFABDFG HI J解题过程 解:连结CI,CF ∵∠CIF=∠FDC=450∴CI∥DF ∴S △DFI =S △CDF =10×(10-6)÷2=20 答:三角形DFI 的面积是20.【典题3】三角形ABC 的面积为10平方厘米,AE=21AD,BD=3DC,求阴影部分的面积。
小升初真题专练组合图形的面积小学数学六年级下册人教版(含答案)
小升初真题特训:组合图形的面积-小学数学六年级下册人教版学校:___________姓名:___________班级:___________考号:___________1A.(1)号面积最大B.(2)号面积最大二、填空题7.(2020·江苏南通·统考小升初真题)如图,大正方形被分成了4个相同的三角形和一个小正方形。
大正a b ,则小正方形的面积是()平方厘米。
方形的周长为24厘米,已知:2:18.(2021·全国·小升初真题)(汉阳区)如图,将两个正三角形重叠作出一个星形,在重叠的图形中再作出一个小星形,即阴影部分,已知大星形的面积是40cm2,那么小星形的面积是_____.9.(2020·北京海淀·小升初真题)如图,已知大正方形的面积是a,则小正方形的面积是___________。
10.(2020·北京海淀的面积的面积=的面积=,由此发现,,15.(2020·全国·小升初真题)5平方分米.三、图形计算20.(2022·湖北十堰·统考小升初真题)如图,两个正方形的边长分别是10cm和4cm,求阴影部分的面积。
21.(2022·山东临沂·统考小升初真题)求如图阴影部分的面积。
四、解答题22.(2022·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考小升初真题)如图,大小正方形的边长分别是5厘米、3厘米,求三角形DBF的面积。
23.(2020·江苏常州·校考小升初真题)如下图所示,把三角形DBE沿线段AC折叠,得到一个多边形27.(2021·浙江宁波·小升初真题)28.(2020春·辽宁·六年级统考小升初模拟)如下图,一张边长为4cm的正方形纸,从相邻两边的中点连一条线段,沿这条线段剪去一个角,剩余部分面积是多少?29.(2021春·江苏·六年级统考小升初模拟)如图,一块长方形绿地中有一条弯曲的小路,准备在小路的两侧铺上草坪.草坪的面积是多少平方米?(单位:米)30.(2020·河北·小升初真题)李大爷家承包了如图所示的一块地,请你帮他计算一下这块地的面积(单位,米)。
小升初专题平面组合图形的面积计算
⼩升初专题平⾯组合图形的⾯积计算平⾯图形⾯积————圆的⾯积专题简析:在进⾏组合图形的⾯积计算时,要仔细观察,认真思考,看清组合图形是由⼏个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
并且同学们应该牢记⼏个常见的圆与正⽅形的关系量:在正⽅形⾥的最⼤圆的⾯积占所在正⽅形的⾯积的3.144,⽽在圆内的最⼤正⽅形占所在圆的⾯积的23.14,这些知识点都应该常记于⼼,并牢牢掌握!例题1。
求图中阴影部分的⾯积(单位:厘⽶)。
【分析】如图所⽰的特点,阴影部分的⾯积可以拼成1/4圆的⾯积。
62×3.14×1/4=28.26(平⽅厘⽶)练习11.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
2.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
答例题2。
求图中阴影部分的⾯积(单位:厘⽶)。
【分析】阴影部分通过翻折移动位置后,构成了⼀个新的图形(如图所⽰)。
从图中可以看出阴影部分的⾯积等于⼤扇形的⾯积减去⼤三⾓形⾯积的⼀半。
3.14×42×1/4-4×4÷2÷2=8.56(平⽅厘⽶)练习21、计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
答2、计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
答1 2例题3。
如图19-10所⽰,两圆半径都是1厘⽶,且图中两个阴影部分的⾯积相等。
求长⽅形ABO1O的⾯积。
【分析】因为两圆的半径相等,所以两个扇形中的空⽩部分相等。
⼜因为图中两个阴影部分的⾯积相等,所以扇形的⾯积等于长⽅形⾯积的⼀半(如图19-10右图所⽰)。
所以3.14×12×1/4×2=1.57(平⽅厘⽶)练习31、如图所⽰,圆的周长为12.56厘⽶,AC两点把圆分成相等的两段弧,阴影部分(1)的⾯积与阴影部分(2)的⾯积相等,求平⾏四边形ABCD的⾯积。
答2、如图所⽰,AB=BC=8厘⽶,求阴影部分的⾯积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)
部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分少12平方厘米,求阴影部分面积。
4、下图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积(10分)
16、下图中阴影部分的面积是( )平方厘米。
25、如图(3),有两个边长是2厘米的正方形,其中一个正方形的一个顶点在另一个的中心上,
2、右图中阴影部分的面积为 (单位:厘米)。
如图,等腰直角三角形ABC 的面积是8平方厘米。
求阴影部分的面积。
(8分)
图(3)
5 5 4 4
22. 求阴影部分的面积。
(单位:厘米)
1、求右图中阴影部分面积(单位:厘米)。
1. 下图是由正方形和半圆形组成的图形,其中P 点为半圆周的中点,Q 点为正方形一边的中点,求阴影
部分面积。
(单位:厘米)
1、下图中三角形的面积等于梯形的面积,求五边形的面积。
(单位:厘米)
6
3
16、下图中阴影部分的面积是( )平方厘米。
11、如图:阴影三角形的面积是 。
12、用一块面积为36平方厘米的圆形铝板下料,如图,裁出7个同样大小的圆铝板,则余下
的边角料的总面积是 平方厘米。
21、如图:直角梯形ABCD 的高AB 为10厘米,△AEO 与△BEO 的面积分别 为12平方厘米、18平方厘米,求梯形ABCD 的面积。
6
6
6
6
第11题
第12题
C
1、如图,长方形中,长和宽分别是6厘米和4厘米,阴影部分的面积和是10平方厘米,求四边形ABCD 的面积。
(1)如图所示是两个相同的直角梯形重叠在一起,求阴影部分的面积。
(单位:厘米)
1. 求下图中阴影部分的面积(长度单位:厘米)
28、已知圆面积与长方形的面积相等(如下图),圆的周长是6.28厘米,求长方形的长。
H A E B
C D G
F。