砂型铸造工艺设计概述

合集下载

砂型铸造工艺与工装设计

砂型铸造工艺与工装设计

铸造 工艺 图
在零件图上,用标准(JB2435-78)规 定的红、蓝色符号表示出;浇注位 置和分型பைடு நூலகம்,加工余量,铸造收缩 率(说明)。起模斜度,模样的反 变形量,分型负数,工艺补正量, 浇注系统和冒口,内外冷铁,铸肋, 砂芯形状,数量和芯头大小等
铸件 图
反映铸件实际形状、尺寸和技术 是铸件检验和验收、 要求。用标准规定符号和文字标注, 机械加工夹具设计 反映内容:加工余量,工艺余量, ⑦在完成铸造工艺图的基 的依据。 础上,画出铸件图 不铸出的孔槽,铸件尺寸公差,加 适用于成批、大量 工基准,铸件金属牌号,热处理规 生产或重要的铸件。 范,铸件验收技术条件等 表示出浇注位置,分型面、砂芯数 目,固定和下芯顺序,浇注系统、 冒口和冷铁布置,砂箱结构和尺寸 等 是生产准备、合箱、 检验、工艺调整的 依据。 ⑧通常在完成砂箱设计后 适用于成批、大量 画出 生产的重要件,单 件生产的重型件。 用于生产管理和经 济核算。依批量大 小,填写必要内容 ⑨综合整个设计内容
按 JB2435—78 《铸造工艺符号及其表示方法》 绘制
在确定了上述各项目后,编制铸造工艺卡。 其格式见 JB/Z 234.10—85《铸造工艺卡》。
铸造工装图
支架的铸造工艺设计过程
零 件 图
工 艺 图 芯 盒


铸 件
第二节 铸造工艺设计与经济指标 和环境保护的关系
铸造工艺设计时,采用不同的工艺, 对铸造 车间或工厂的金属成本,熔炼金属的质量,能量 消耗,铸件工艺出品率和成品率的优劣,工时费 用的大小,铸件成本和利润率的高低等,都有显 著的影响。
一. 概念 铸造工艺设计:就是根据铸造零件的特 点,技术要求,生产批量和生产条件等,确 定铸造方案和工艺参数,绘制工艺卡等技术 文件的过程。

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计砂型铸造是一种常见的铸造工艺,它通过制作砂型并在其中注入熔化金属,使金属在砂型中凝固成型。

砂型铸造具有成本低、生产周期短、适用于各种金属材料等优点,因此在工业生产中得到广泛应用。

砂型铸造的工艺设计主要包括以下几个方面:模型制作、砂型制备、浇注系统设计、砂型充填与密实、凝固与固化、砂型剥离与修整等。

首先是模型制作。

模型是铸造过程中的主要参照物,它决定了最终铸件的形状和尺寸。

模型可以采用实物模型、木模、塑料模等材料制作。

在模型制作过程中,需要考虑到模型的缩短率,即模型尺寸与最终铸件尺寸之间的比例关系。

其次是砂型制备。

砂型是砂型铸造的核心部分,它承担着承载和固定熔化金属的功能。

砂型制备的关键在于砂型材料的选择和配比。

常用的砂型材料有硅砂、水玻璃、氯化钠等。

在制备砂型的过程中,需要考虑到砂型的强度、耐火性以及砂型表面的光洁度等因素。

浇注系统设计是保证铸件质量的重要环节。

浇注系统包括浇注口、浇注道和浇注杯等部分。

浇注系统的设计应考虑到金属液体的流动和凝固过程,以确保金属能够充分填充砂型,并且避免气体和杂质的混入。

砂型充填与密实是决定铸件质量的关键步骤。

在砂型充填过程中,需要确保熔化金属能够均匀地填充砂型,并且避免产生气孔和缩孔等缺陷。

砂型密实的方法包括振动、压实等。

振动可以提高砂型的密实度,压实则可以增加砂型的抗压强度。

凝固与固化是铸造过程中不可或缺的环节。

在凝固过程中,金属由液态逐渐转变为固态,并在这个过程中释放出大量的热量。

凝固过程的控制将直接影响到铸件的组织结构和性能。

固化过程的目的是使砂型的结构稳定,以便后续的剥离和修整。

最后是砂型剥离与修整。

在铸件凝固后,需要将砂型从铸件上剥离,并对铸件进行修整和清理。

砂型剥离的方法包括机械剥离、化学剥离等。

修整的目的是去除铸件上的毛刺、气孔等缺陷,使铸件达到设计要求的形状和尺寸。

总之,砂型铸造工艺设计的关键在于模型制作、砂型制备、浇注系统设计、砂型充填与密实、凝固与固化、砂型剥离与修整等方面的考虑。

砂型铸造

砂型铸造
浇口杯
第四节
砂型铸造工艺设计举例
砂型铸造工艺设计内容: 铸件成形工艺分析; 选择铸件浇注位置和分型面; 确定工艺参数; 绘制铸造工艺图、铸件图。 一. 铸件成形工艺分析 ①依据给定零件图纸,了解铸件名称、使用功能、材料牌 号及技术要求; ②分析零件主要轮廓尺寸、壁厚大小及分布、主体结构及 形状复杂程度。
灰铸铁件 铸钢件
30~50 50
大量生产 成批生产 单件、小批生产
12~15 15~30 30~50
二.起模斜度
起模斜度-为便于起模,平 行起模方向的模样表面上所 增加的斜度。
三.收缩率 合金线收缩造成铸件各部分尺寸缩小。 为了保证铸件应有的尺寸,模样尺寸必须比铸件放大一个该 合金的收缩量。
四.型芯及芯头 型芯——形成铸造内腔或局部外型;
型芯设计主要包括型芯的划分和芯头的设计两部分。
依照型芯在铸型中的安放位置不同,常分为垂直型芯和水 平型芯两类。 L、H、S的值详见JB/T5106-1991标准。
五、浇注系统
组成: 浇口杯─接纳金属液;直浇道—其高度决定金属液 流入的静压力; 横浇道—引入金属液流,撇渣; 内浇道—引入金属液流,调节温度场分布; 浇注系统在工艺图上用红线表示。
上 2 下C 例:轴承座分型方案
Ø5 0
(一)工艺分析: 铸件为小型铸件,ø 50孔应铸出。 (二)方案分析:
下 1 200 B
方案1可用整模造型,但因A处凸 起,将阻碍起模,
方案2采用分模造型,取对称面为 上 分型面,B处阻碍起模, 3 方案3采用整模造型,型芯垂直设 下 置。图中C处将阻碍起模,但因C 处部分是一较小的局部,可采用活 A 块造型,

80
第三节
工艺参数的选择

砂型铸造工艺及工装设计

砂型铸造工艺及工装设计

砂型铸造工艺及工装设计一、工艺流程设计砂型铸造的工艺流程设计是整个工艺的基础,包括以下步骤:设计铸造模具:根据产品需求和工艺要求,设计铸造模具的结构和尺寸。

制作砂型:根据模具和产品需求,制作符合要求的砂型。

浇注:将熔融的金属液体注入砂型,填充模具的型腔。

冷却:让金属液体冷却凝固,形成铸件。

脱模:将凝固的铸件从砂型中脱出,完成整个铸造过程。

二、铸造模具设计铸造模具的设计是整个工艺的核心,直接影响产品的质量和工艺的效率。

设计时需考虑以下几点:模具材料选择:根据产品需求和工艺要求,选择合适的模具材料。

模具结构确定:根据产品形状和尺寸,设计模具的结构和形状。

模具尺寸精度:根据产品要求和工艺条件,确定模具的尺寸精度。

浇口设计:浇口是金属液体注入模具的通道,设计时需考虑浇口的尺寸、位置和形式。

排气口设计:排气口是排除模具内的空气和挥发物的通道,设计时需考虑排气口的位置和大小。

三、砂型制作工艺设计砂型制作是整个工艺的重要环节,其质量直接影响产品的质量和工艺的效率。

设计时需考虑以下几点:砂型材料选择:选择符合要求的砂型材料,如黄沙、石英砂等。

砂型紧实度控制:控制砂型的紧实度,以保证砂型的强度和稳定性。

砂型透气性控制:控制砂型的透气性,以保证浇注过程中金属液体能够顺利填充模具的型腔。

砂型表面处理:对砂型的表面进行处理,以提高产品的表面质量。

四、浇注系统设计浇注系统是金属液体注入模具的通道,其设计直接影响到金属液体的流动和填充效果。

设计时需考虑以下几点:浇注系统结构形式:根据产品要求和工艺条件,选择合适的浇注系统结构形式。

浇注系统尺寸精度:根据产品要求和工艺条件,确定浇注系统的尺寸精度。

浇注速度控制:控制浇注速度,以保证金属液体能够平稳、充足地填充模具的型腔。

浇口位置选择:根据产品形状和模具结构,选择合适的浇口位置。

溢流槽设计:溢流槽是收集多余金属液体的结构,设计时需考虑溢流槽的位置和大小。

过滤网设置:过滤网是过滤金属液体中的杂质和气泡的结构,设计时需考虑过滤网的形式和材料。

砂型铸造工艺流程简介

砂型铸造工艺流程简介

砂型铸造工艺流程简介
砂型铸造工艺是一种广泛应用于金属加工领域的铸造工艺,其工艺流程一般包括以下几个步骤:
1. 设计和制作模具:根据产品的几何形状和尺寸要求,设计和制作相应的铸模,通常采用木模或金属模。

2. 准备砂型材料:将粘结剂、砂粒等材料混合均匀,形成砂型材料,通常采用粘土砂、树脂砂等。

3. 制作砂型:将砂型材料按照产品的形状和尺寸要求制作成铸型,通常采用手工或机械加工等方式。

4. 浇注和冷却:将熔融金属液体倒入砂型中,待冷却后取出铸件,然后进行后续加工处理。

5. 清理和修整:对铸件进行清理和修整,以去除表面的砂型残留物和毛边等,提高铸件的表面质量和精度。

6. 后处理:对铸件进行必要的后处理,如热处理、表面处理等,以满足后续使用要求。

需要注意的是,不同的产品和工艺要求可能会有所不同,因此在实际应用中,还需要根据具体情况进行调整和优化。

砂型铸造工艺具有生产效率高、成本低等优点,被广泛应用于机械、汽车、航空航天、电子等领域。

砂型铸造工艺与工装设计

砂型铸造工艺与工装设计
强度高、刚性好、耐久性强
详细描述
针对大型船用柴油机缸盖的工装设计,采用了高强度和刚性的材料,确保了工装的稳定性和精度。同 时,加强筋和支撑结构的设计提高了工装的耐久性和使用寿命,减少了维修和更换的频率。
实例四:复杂阀体的工装设计
总结词
结构紧凑、定位准确、操作简便
VS
详细描述
复杂阀体的工装设计采用了紧凑的结构布 局,减少了占地面积和制造成本。准确定 位和夹紧系统保证了阀体的加工精度和一 致性,提高了产品质量。同时,人性化的 操作界面和便捷的调整方式使得操作过程 简单易懂,降低了操作难度和培训成本。
砂型铸造工艺的应用范围
机械制造
砂型铸造广泛应用于机械制造领域,如汽车、船舶、 航空航天等。
农业机械
在农业机械领域,砂型铸造工艺用于生产各种农机具 和零部件。
五金工具
五金工具制造中,砂型铸造工艺用于生产各种刀具、 量具等。
砂型铸造工艺的历史与发展
历史
砂型铸造工艺起源于古代中国,随着技术的发展和进步,逐渐传播到世界各地 。
发展
现代砂型铸造工艺不断改进和创新,采用新型材料和工艺技术,提高了铸件质 量和生产效率。
02
CATALOGUE
砂型铸造工装设计基础
砂型铸造工装设计的原则
功能性原则
工装设计应满足铸造生产的功 能需求,确保能够实现预定的
铸造工艺过程。
标准化原则
工装设计应遵循标准化原则, 尽量采用标准化的零部件和材 料,以提高互换性和降低成本 。
实例二:汽车发动机缸体的工装设计
总结词
模块化、柔性、高精度
详细描述
汽车发动机缸体的工装设计采用了模块化结构,便于后期维护和升级。同时,柔性化的设计使得工装能够适应不 同型号的缸体生产,提高了设备的利用率。高精度的定位和测量系统确保了缸体的加工精度和产品质量。

砂型铸造的造型工艺

砂型铸造的造型工艺

浇注系统的计算与选择
计算浇注系统的流量和压力 选择合适的浇注系统类型 考虑浇注系统的尺寸和布局
计算浇注系统的冷却时间和冷却速度 考虑浇注系统的安全性和可靠性 计算浇注系统的成本和效率
砂型铸造的常见 缺陷及防止措施
气孔的产生及防止措施
气孔产生的原因:砂型铸造过程中由于气体的侵入导致铸件内部形成气孔 防止措施:在铸造过程中采用真空铸造技术减少气体的侵入 防止措施:在铸造过程中采用压力铸造技术提高铸件的致密度 防止措施:在铸造过程中采用热处理技术消除铸件内部的气孔
陶瓷型铸造:使用陶瓷型作为造型材 料具有耐高温、耐磨损等优点
塑料型铸造:使用塑料型作为造型材 料具有重量轻、易于加工等优点
金属型铸造:使用金属型作为造型材 料具有强度高、耐磨损等优点
复合型铸造:使用多种材料复合作为 造型材料具有综合性能优良等优点
造型材料的选择
石英砂:具有较高的耐火性 和稳定性适用于高温铸造
砂型铸造常用的造型材料有: 石英砂、粘土、水玻璃等
粘土:具有良好的可塑性和 粘结性适用于复杂形状的铸

水玻璃:具有较好的流动性 和粘结性适用于大型铸造件
的制造
造型材料的制备
原材料选择:选择合适的砂、粘结剂、附加剂等 混合搅拌:将原材料混合均匀形成砂型铸造所需的造型材料 造型材料性能测试:测试材料的流动性、强度、透气性等性能指标 造型材料储存:将制备好的造型材料储存在适宜的环境中以保持其性能稳定
感谢您的观看
汇报人:
模型制作包括手工制作、机 械制作、3D打印等方法
模型修整包括打磨、切割、 焊接等操作
模样制作是砂型铸造造型工 艺中的重要环节
模型检验包括尺寸检验、表 面质量检验、结构检验等
砂箱准备

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计砂型铸造是一种常用的铸造工艺,通过在砂型中,将液态金属倒入砂型中,待金属凝固后,即可获得所需铸件。

砂型铸造工艺设计是指在进行砂型铸造时,根据铸件的形状、尺寸和要求,设计出适合的砂型铸造工艺流程,确保铸件质量和生产效率。

砂型铸造工艺设计的具体步骤如下:第一步,确定铸件的形状和尺寸。

根据铸件的图纸和要求,确定铸件的形状和尺寸。

铸件的形状和尺寸直接影响到砂型的设计和制造,因此在确定铸件形状和尺寸时,需要考虑到铸件的可铸性和制造工艺。

第二步,选择适当的砂型材料。

常用的砂型材料有石英砂、石膏砂、黏土砂等。

选择适当的砂型材料需要考虑到砂型的耐火性、流动性和可塑性等方面的要求。

第三步,设计砂型结构。

根据铸件的形状和尺寸,设计出适合的砂型结构。

砂型结构包括上下模板、芯子和样板等。

上下模板用于固定砂型,芯子用于制造中空铸件,样板用于制造固定模板。

砂型结构的设计需要保证砂型的密实性和刚度,以确保铸件的精度和强度。

第四步,制造砂型。

根据砂型结构的设计,制造适合的砂型。

制造砂型的过程包括准备砂型材料、混合砂型材料、充填砂型、震动砂型、刮平砂型等。

制造砂型时需要注意砂型的密实性和表面平整度,以确保铸件的质量。

第五步,准备铸造设备和材料。

在进行砂型铸造之前,需要准备好铸造设备和材料。

铸造设备包括炉子、浇注设备、除渣设备等。

铸造材料包括金属液体和砂型材料。

第六步,进行砂型铸造。

在准备好铸造设备和材料之后,进行砂型铸造。

砂型铸造的过程包括熔炼金属、倒入砂型、待金属凝固、冷却铸件、取出铸件等。

在进行砂型铸造时,需要控制铸造温度、倒铸速度和铸造压力,以确保铸件的质量。

第七步,进行铸件的后处理。

在进行砂型铸造之后,需要对铸件进行后处理,包括去除砂型、修整表面、热处理等。

后处理的目的是提高铸件的机械性能和表面质量。

砂型铸造工艺设计需要综合考虑铸件的形状、尺寸和要求,选择适当的砂型材料和制造过程,并进行铸造和后处理。

砂型铸造工艺设计概述

砂型铸造工艺设计概述

铸造工艺图实例2
作业:P80 (1) 补充作业:定性画出图示支座的铸造工艺
图、模型图及铸件图
材料:灰铁 铸造工艺:砂型铸造 生产量:单件小批
(1)外浇口
其作用是容纳注入的金属液并缓解液态金属对砂型的冲击。 小型铸件通常为漏斗状(称浇口杯),较大型铸件为盆状(称 浇口盆)。
(2)直浇道
是连接外浇口与横浇道的垂直通道,改变直浇道的高度可以 改变型腔内金属液的静压力从而改善液态金属的充型能力。
(3)横浇道
横浇道是将直浇道的金属液引入内浇道的水平通道,一般 开在砂型的分型面上。横浇道的主要作用是分配金属液入内 浇道和隔渣。
四、收缩率
铸件由于凝固、冷却后的体积收缩,其各部分尺寸均小 于模样尺寸。为保证铸件尺寸要求,需在模样(芯盒)上加大 一个收缩的尺寸。加大的这部分尺寸称收缩量,一般根据铸 造收缩率来定。铸造收缩率定义如下:
K=[(L模-L件)/L件]×100% 式中: K为铸造收缩率;L模为模样尺寸;L件为铸件尺寸。
铸造收缩率主要取决于合金的种类,同时与铸件的结构 、大小、壁厚及收缩时受阻碍情况有关。对于一些要求较高 的铸件,如果收缩率选择不当,将影响铸件尺寸精度,使某 些部位偏移,影响切削加工和装配。
通常灰铸铁为0.7~1.0%,铸造碳钢为1.3~2.0%,铝硅
合金为0.8~1.2%,锡青铜为1.2~1.4%。
四、铸造工艺方案
概括说明铸造生产的基本过程和方法的工艺 文献,包括造型和造芯方法、铸型种类、浇注位 置和分型面的确定等。
第一节 浇注位置与分型面的选择
浇注位置:浇注时铸件在砂型中所处的空间位置。 分型面:铸型组元间的结合面
一、浇注位置的选择原则
原则:主要考虑铸件质量 1.铸件的重要加工面或主要工作面应朝下或位于侧面

2.4砂型铸造

2.4砂型铸造
铸 钢:表面不平,加工余量大;
参见表2-12
有色金属:表面光洁,加工余量少。
生产批量 大批量生产,机器造型
单件、小批生产,手工造型
最小铸出孔直径 铸铁件 铸钢件
Ф 15~30
<Ф25 <Ф35
3.工艺参数的选择
2)起模斜度 :便于模样从砂型中取出。
取决于起模高度、造型方法、模样材料、等。
机器造型比手工造型斜度小; 木模比金属模斜度大; 立壁越高,斜度越小; 内斜度比外斜度大。
造型材料应具备以下性能:
可塑性:砂和芯砂在外力作用下要易于成形。 足够的强度:型砂和芯砂在外力作用下要不易破坏。 耐火性:型砂和芯砂在高温下要不易软化、烧结、粘附。 透气性:型砂和芯砂紧实后要易于通气。
退让性:型砂和芯砂在冷却时其体积可以被压缩。
2)造型方法
用造型混合料及模样等工艺装备制造铸型的过程称为造型,是 砂型铸造的最基本工序。
单面模板
是模板底面一面有模样的模板。 上模板→上型
下模板→下型
合型两块模板。用两台造型机。
(a)铸件
(b)上模板(有浇注系统)
(c)下模板
特点:结构简单,应用较多。
双面模板
上半个模样和浇注系统固定在模底板一侧,下半个模样固定在该 模底板另一侧对应位臵,在同一台造型机上造出上、下型。
双面模板
造下型 1-模底板;
2.铸型分型面的选择 4.铸造工艺图的绘制
作用:制模(模样、 芯盒)、造型(芯)、 准备生产设备、铸件 检验的依据。
定义:在零件图上用各 种工艺符号及参数表示 出铸造工艺方案的图形。
1. 浇注位置的选择
① 铸件重要加工面、主要工作面、大平面、基准面应朝下 (或侧面), 以防产生气孔等,使其组织致密、质量好。

工程材料-(砂型铸造)

工程材料-(砂型铸造)

技术方案确定:
造型方法
铸造工艺
思考题
P210 8-7
习题8-7a 轴承 铸件分型方案 (大批量)
下 下
上 上
上下
?
上 下
? 活块造 型
下 下
上 上
大批量生产宜 采用机器造型, 机器造型为两 箱造型。
下 上
浇注位置示意(水平浇铸)
习题8-7b 调整座 分型方案(大批量)
方案1
方案1
第一步:型(芯)砂的制备
型(芯)砂由原砂、粘结剂、水及其它附加物混制 分为:粘土砂、水玻璃砂、树脂砂 (P180) 技术要求:型(芯)砂
具有一定的强度、透气性、 退让性和溃散性等。
砂型质量的影响因素:
A. 型砂的影响:
a) 原砂的粒度状况、形状
一般认为:粒度在小尺寸范围呈正态分布,有利于
砂型强度的提高,但透气性较差。
➢ 具有所要求的化学成分 ➢ 杂质含量低 ➢ 具有所需要的温度
常用设备:冲天炉、反射炉、
A. 铸铁的熔炼 电弧炉、工频炉等。
冲天炉
冲天炉熔炼:通过焦炭的燃 烧放热使固体金属炉料熔化 并过热后成为液态金属。
出炉以浇注
B. 铸钢合金的熔炼
常用设备:电弧炉、感应电炉、平炉
C. 有色合金的熔炼
对设备要求:
B. 最小铸出孔:最小孔直径和经济性原则。
C. 起模斜度:取决于立壁高度、造型方法和模样材 料等因素,一般15’-3°。 内外壁有分(内壁3-10° )。
铸件的起模斜度示意
D. 收缩率:模样尺寸放大率K=(Lp-Lc)/Lp*100%
➢ 经验数据(HT:0.7-1%;ZG1.3-2.0 % )
E. 型芯头:芯头关系到装配的工艺性和稳定性。

第三章 砂型铸造工艺

第三章 砂型铸造工艺
金属工艺学
manufacturing process
机电工程学院 金工学部 陈光南
金属工艺学
绪论 一、概述 本课程是研究机械制造中的各种工 艺方法及相应的工艺基础知识, 艺方法及相应的工艺基础知识,是一门 实践性很强的培养工程人员的技术基础 课。
二、机械制造基本过程
产品设计
总体设计 零部件设计 决定功能 选材料 决定结构及 尺寸 绘出图纸
4.铸造收缩率 根据合金类型选择.(用红笔写到工艺说明 根据合金类型选择.(用红笔写到工艺说明 .( 中) 5.铸造圆角 除分型面和孔外, 除分型面和孔外,任意两壁的交角都应做成 圆角.(用红笔写到工艺说明中) .(用红笔写到工艺说明中 圆角.(用红笔写到工艺说明中)

下 工艺说明
1.拔模斜度1°30’ 2.铸造收缩率1% 3.铸造圆角R3
四、型芯设计 型芯主要用来形成铸件内腔、 型芯主要用来形成铸件内腔、孔及外形不易 取模的部分。 取模的部分。 水平芯头:两芯头处在水平位置。 水平芯头:两芯头处在水平位置。上芯座和 芯头间留有间隙,防止压垮。 芯头间留有间隙,防止压垮。 垂直芯头:两芯头一上一下。 垂直芯头:两芯头一上一下。上芯头较短且 斜度较大,上芯座与上芯头留有间隙, 斜度较大,上芯座与上芯头留有间隙,防止合箱 时压垮砂。下芯头较长且斜度较小, 时压垮砂。下芯头较长且斜度较小,主要固定和 支撑整个型芯。 支撑整个型芯。 悬臂芯头:只有一个水平芯头。 悬臂芯头:只有一个水平芯头。型芯另一边 悬空,多用芯撑固定。 悬空,多用芯撑固定。 用蓝线画到零件图上。 用蓝线画到零件图上。
二、型砂性能对铸件质量的影响
强度不够→ 强度不够→垮砂 透气性不良→ 透气性不良→气孔 耐火性不高→ 耐火性不高→粘砂 退让性不好→裂纹 退让性不好→

砂型铸造工艺流程及所需材料

砂型铸造工艺流程及所需材料

最新编辑ppt
9
2. 铸造工艺准备工作
2.4 铸造涂料
涂料是指覆盖在型腔和型芯表面,以改善型腔和型芯表面耐火性、 化学稳定性、抗金属液冲刷性、抗黏砂性等性能的铸造辅助材料系统。
涂料的主要作用有:
a、提高铸件表面质量;
b、防止或减少铸件夹砂或砂眼等缺陷;
c、改善铸件表面性能。
涂料需要具有一定性能,才能起到应有的作用:
最新编辑ppt
3
1.砂型铸造简介
砂型铸造较之其它铸造方法成本低、生产工艺简单、生产周期短。 所以像汽车的发动机气缸体、气缸盖、曲轴等铸件都是用粘土湿型砂工 艺生产的。
复杂构最新件编的辑浇pp注t 过程
4
2.铸造工艺准备工作
型砂
铸造准备
工艺装备 原材料
涂料
最新编辑ppt
配制 混合
模样 模板 砂箱
组成 配制 涂敷
最新编辑ppt
8
2. 铸造工艺准备工作
2.3 铸造原材料的准备 铸造合金的种类:铸铁(灰口铸铁、白口铸铁)、铸钢(碳钢、低
合金钢、高合金钢)、铸造铝合金(铝硅合金、铝铜合金、铝镁合金、 铝锌合金、铝锂合金等)、铸造铜合金(铸造黄铜、铸造青铜等)、镁 合金、轴承合金、钛合金、高温合金等。
为了获得化学成分合格的铸造合金,减少有害元素的含量,所采用 的金属原材料必须满足一定技术需求。
b、检查浇包的修理质量、烘干预热情况及其运输与倾斜机构的灵活性和 可靠性;
c、熟悉各种铸型在车间所处位置;
d、检查冒口、冒口圈的安放及铸型紧固情况;
最新编辑ppt
14
3.砂型铸造工艺
3.6 落砂 人工落砂:主要用于单件小批生产,对于有色合金铸件,基本上都

第三章 砂型铸造讲解

第三章  砂型铸造讲解
第三章 砂型铸造
砂型铸造 液态成型工艺
特种铸造
手工造型 机器造型
整模造型 分模造型 三箱造型 活块造型 挖砂造型 刮板造型
金属型铸造 熔模铸造 压力铸造 低压铸造 陶瓷型铸造 离心铸造
2020年3月2日3时29分
◆目的及要求: 1.了解手工造型和机械造型的常用方法; 2.了解浇注口、冒口按放方法; 3. 掌握浇注口位置、分型面的选择原则并灵活运用。 ◆重点及难点: 1.常用手工造型方法; 2.浇注系统设计; 3.工艺条件的确定。 ◆砂型铸造:是传统的铸造方法,它适用于各种形状、大小 、批量及各种合金铸件的生产。是由中国古代劳动人民发明的。 现在仍是主要的铸造生产方法。砂型铸造概述--视频。
2020年3月2日3时29分
1)应使工艺造型简化: 尽量使分型面平直、数量少,避免不必要的活块和型芯等, 尽量使铸型只有一个分型面,以便采用工艺简便的两箱造型; ◆应尽量使分型面是一个平直的面:若分型面是一曲面,则 必须用挖砂造型。
2020年3月2日3时29分
◆应尽量减少分型面的数量(之一)
2020年3月2日3时29分
2020年3月2日3时29分
2、大批量生产 由于机器造型难以使用活块,故应采用型芯制出轴孔内凸台 。型芯安放稳固,凸台可避免活块,全部在下箱,因此,方案3适 宜。
2020年3月2日3时29分
2020年3月2日3时29分
上设法解决。
1、质量要求高的铸件:应满足浇注位置要求的前提下考虑造
型工艺的简化。
2、没有特殊质量要求的铸件:以简化工艺、提高经济效益为
主要依据,不必过多地考虑浇注位置。
2020年3月2日3时29分
第三节 铸件工艺参数的选择 ◆铸件工艺参数有--

砂型铸造课程设计

砂型铸造课程设计

1前言1.1铸造工艺设计的概念铸铁件广泛的应用在装备制造业,冶金,建筑,农机,给排水以及国防工业各部门,如在机械制造业中,铸铁件所占比重约为机械重量的40%至80% 。

生产的铸件是多种多样的,质量有大有小,厚度可以薄到2mm,也可以达到500mm,可以是各种形状。

那么什么是铸造呢?铸造工艺设计又是怎么设计的呢?现代科学技术的发展,要求金属铸件具有高的力学性能、尺寸精度和低的表面粗糙度值;要求具有某些特殊性能,如耐热、耐蚀、耐磨等,同时还要求生产周期短,成本低。

因此,铸件在生产之前,首先应进行铸造工艺设计,使铸件的整个工艺过程都能实现科学操作,才能有效地控制铸件的形成过程,达到优质高产的效果。

铸造工艺设计就是根据铸造零件的结构特点、技术要求、生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。

铸造工艺设计的有关文件,是生产准备、管理和铸件验收的依据,并用于直接指导生产操作。

铸件的生产过程,也就是从零件图开始,一直到铸件成品检验合格入库为止,要经过很多道工序。

例如涉及到合金熔炼、造型、制芯材料的配制,工艺装备的准备,铸型的制造、合箱、浇注、落砂和清理等多方面工作。

人们把一个铸件的生产过程称为铸造生产工艺过程。

对于一个铸件,编制出铸造生产过程的技术文件就是铸造工艺设计。

这些技术文件必须结合工厂的具体条件,是在总结先进经验的基础上,以图形、文字和表格的形式对铸件的工艺生产过程加以科学的规定[1]。

它是生产的直接指导性文件,也是技术准备和生产管理、制定进度计划的依据。

1.2设计依据在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据。

此外,要求设计者有一定的生产经验和设计经验,并应对铸造先进技术有所了解,具有经济观点和发展观点。

1.2.1生产任务1)铸造零件图样。

提供的图样必须清晰无误,有完整的尺寸和各种标记。

设计者应仔细审查图样。

砂型铸造工艺设计

砂型铸造工艺设计

数字化转型
利用计算机技术实现铸 造过程的数字化控制, 提高生产效率和产品质
量。
环保节能
采用环保材料和节能技 术,降低铸造过程中的
能耗和污染排放。
智能化制造
结合物联网、大数据等 技术,实现铸造生产线 的智能化管理,提高生
产效率。
定制化生产
满足个性化需求,实现 定制化生产,提高产品 附加值和市场竞争力。
工艺流程
主要包括模具制作、型砂 配置、模具填充、金属浇 注、冷却和脱模等步骤。
砂型铸造工艺的重要性
应用广泛
砂型铸造工艺适用于各种 金属材料和复杂形状铸件 的生产,具有较高的灵活 性和适应性。
成本较低
砂型铸造工艺相对其他铸 造方法成本较低,能够降 低生产成本,提高经济效 益。
高效生产
砂型铸造工艺具有较高的 生产效率和规模化生产能 力,能够满足大规模生产 的需求。
砂型铸造工艺设计
contents
目录
• 引言 • 砂型铸造工艺流程 • 砂型铸造材料选择 • 砂型铸造工艺优化 • 砂型铸造工艺应用与发展
01 引言
砂型铸造工艺简介
01
02
03
定义
砂型铸造是一种使用砂型 模具进行金属铸件生产的 工艺。
历史
砂型铸造工艺起源于古代, 随着技术的发展不断改进, 至今仍广泛应用于工业生 产。
未来砂型铸造工艺展望
创新材料应用
探索新型铸造材料,提高产品 性能和降低成本。
智能检测与质量控制
利用先进检测技术实现铸造过 程的实时监控和质量控制。
绿色铸造
推动环保法规的实施,实现铸 造行业的绿色可持续发展。
国际化合作与交流
加强国际合作与交流,引进先 进技术和管理经验,提升我国

金属铸造工艺流程中的砂型设计与制作

金属铸造工艺流程中的砂型设计与制作

金属铸造工艺流程中的砂型设计与制作金属铸造是一种重要的制造工艺,广泛应用于汽车制造、航空航天、机械制造等领域。

而在金属铸造中,砂型设计与制作是其中至关重要的一环。

本文将介绍金属铸造工艺流程中的砂型设计与制作的基本概念、流程和要点。

一、砂型设计与制作的基本概念砂型是指用特定的砂料制作而成的,用于铸造零件形状的铸型。

砂型设计与制作是根据铸件的结构形状、尺寸精度和表面质量要求,确定合理的砂型结构和砂型材料,制作出符合要求的砂型。

砂型设计与制作的质量直接影响到铸件的成型质量。

二、砂型设计与制作的流程1. 铸件结构分析:根据铸件的结构形状和尺寸要求,进行铸件结构的分析,确定铸件的重点部位和可能存在的缺陷,为后续的模具设计提供依据。

2. 砂型材料选择:根据铸件的材料、结构和质量要求,选择适合的砂型材料。

常用的砂型材料有石英砂、合成砂、水玻璃砂等。

不同的材料具有不同的耐火性、流动性和收缩性,要根据具体情况进行选择。

3. 砂型结构设计:根据铸件的结构形状和尺寸,设计砂型的结构。

砂型结构包括上型、下型、中型、芯型等组成部分,要根据铸件的结构要求和工艺要求,确定各个组成部分的形状和位置。

4. 芯型设计与制作:对于有空洞结构的铸件,需要制作芯型。

芯型是用特定的芯盒制作而成的,用于形成铸件内部的空洞。

芯型的制作包括芯盒设计、芯砂制备、芯盒装砂、成型、硬化等步骤。

5. 模具制作:根据砂型结构和芯型要求,制作模具。

模具是用于支撑砂型和芯型的,保持其形状和位置稳定。

模具制作采用传统的手工制作或数控加工等方法,制作出符合要求的模具。

6. 砂型制备:根据模具制作好的模具,进行砂型的制备。

砂型制备的步骤包括模具装填、振实、敲击、抖砂等。

7. 砂型处理:砂型制备完成后,需要进行砂型的处理。

砂型处理包括干燥、烘烤、涂覆耐火涂料等步骤,以增加砂型的耐火性和抗裂性。

8. 砂型与芯型装配:将制备好的砂型和芯型进行装配。

装配要求严密,确保砂型和芯型的结构稳定和精度要求达标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据零件图及其相关要求,编制出一个铸件 生产工艺过程的技术文件就是铸造工艺设计。
这些技术文件必须结合工厂的具体条件,是 在总结先进经验的基础上,以图形、文字和表格 的形式对铸件的生产工艺过程加以科学地规定。 它是生产的直接指导性文件,也是技术准备和生 产管理、制定进度计划的依据。
大量生产,上限用于单件小批生产
生产批量
大量生产 成批生产 单件、小批生产
最小铸孔
最小铸出孔直径
灰口铸铁件
12~15 15~30 30~50
铸钢件
- 30~50
50
注:对于零件上不要求加工的孔槽,无论大小均应铸出
二、起模斜度 为了起模方便又不损坏砂型,凡垂直于分型面的壁上须 留有斜度。
起模斜度的形式
三、铸造圆角
铸件上相邻两壁之间的交角,应做出 铸造圆角,防止在尖角处产生冲砂及裂纹 等缺陷。圆角半径一般为相交两壁平均厚 度的1/3~1/2
四、收缩率
铸件由于凝固、冷却后的体积收缩,其各部分尺寸均小 于模样尺寸。为保证铸件尺寸要求,需在模样(芯盒)上加大 一个收缩的尺寸。加大的这部分尺寸称收缩量,一般根据铸 造收缩率来定。铸造收缩率定义如下:
500~800
顶面 5.0~7.0 底、侧面 4.0~5.0
800~1250
顶面 底、侧面
6.0~7.0 4.0~5.5
50~120
4.0~4.5 3.0~3.5
4.5~5.0 3.5~4.0
5.0~6.0 4.0~4.5
6.0~7.0 4.5~5.0
6.5~7.5 5.0~5.5
加工面与基准面的距离(mm) 120~260 260~500 500~800
对于要求比较高的单件生产的重要铸件和大量生产的铸件,除要 详细绘制铸造工艺图,填写工艺卡以外,还应绘制铸件图、铸型装配 图以及大量的工装图,如模样图、模板图、砂箱图、芯合图、下芯夹 具图,检验样板及量具图等。
三、铸造工艺设计的一般步骤
1.对零件图纸进行审核和进行铸造工艺性分析 2.选择铸造方法 3.确定铸造工艺方案 4.绘制铸造工艺图 5.绘制铸件图 6.填写铸造工艺卡和绘制铸型装配图 7.绘制各种铸造工艺装备图纸






第二节 铸造工艺参数的确定
一、机械加工余量和最小铸孔
灰铸铁的机械加工余量
铸件最大 尺寸 (㎜)
浇注时 位置
<50
<120
顶面 3.5~4.5 底、侧面 2.5~3.5
120~260
顶面 4.0~5.0 底、侧面 3.0~4.0
260~500
顶面 4.5~6.0 底、侧面 3.5~4.5
K=[(L模-L件)/L件]×100% 式中: K为铸造收缩率;L模为模样尺寸;L件为铸件尺寸。
铸造收缩率主要取决于合金的种类,同时与铸件的结构、 大小、壁厚及收缩时受阻碍情况有关。对于一些要求较高的 铸件,如果收缩率选择不当,将影响铸件尺寸精度,使某些 部位偏移,影响切削加工和装配。
通常灰铸铁为0.7~1.0%,铸造碳钢为1.3~2.0%,铝硅
铸造工艺设计包括以下几种主要技术文件:
1.铸造工艺图
5.模样图
2.铸造工艺卡
6.芯合图
3.铸型装配图
7.砂箱图
4.铸件图
8.模板图
由于每个铸件的生产任务和要求不同,生产条件不同,因此,铸
造工艺设计的内容也不同。
对于不太重要的单件小批量生产的铸件,铸造工艺设计比较简单。 一般选用手工造型,只限于绘制铸造工艺图和填写有关工艺卡,即可 投入生产
3. 铸件大面积的薄壁部分放在铸型的下部或垂直、倾斜。 原因:这样能增加薄壁处金属液的压强,提高金属液
的流动性,防止薄壁部分产生浇不足或冷隔缺陷。
4.易产生缩孔的构件,应使厚截面位于分型面附近的上部或侧面
原因:便于安放冒口,实现定向凝固,进行补缩。
二、铸型分型面的选择 原则:在保证质量的前提下,尽量简化工艺
5.0~5.5 4.0~4.5
6.0~7.0 4.5~5.0
6.5~7.0 4.5~5.5
7.0~8.0 5.0~6.0
6.5~7.0 5.0~6.0
7.0~8.0 5.0~6.0
7.5~8.0 5.5~6.0
7.5~9.0 6.5~7.0
8.0~9.0 5.5~7.0
800~1250
8.5~10 6.5~7.5
1.分型面应设在铸件最大截面处,以保证模样从型腔中顺利取出
2.应使造型工艺简化 ★应尽量使分型面平直,以简化模具制造及造型工艺,避免挖砂造型
★尽可能减少铸件的分型面,尽量做到只有一个分型面
★应使型芯和活块数量尽量减少。
3.应使铸件全部或大部放在同一砂箱。
4.应尽量使型腔及主要型芯位于下型,以便于造型、下芯、 合型及检验。
第四章 砂型铸造工艺
教学目的
1.了解砂型铸造工艺设计有关知识。 2.掌握浇注位置、分型面选择;铸造工艺参数确定;型
芯设计;浇冒系统等有关知识。 3.学会绘制简单铸件的铸造工艺图。
教学重点
1.浇注位置、分型面选择。 2.铸造工艺参数确定。
教学难点: 型芯及浇冒系统设计 计划学时:1学时
概述
一、铸造工艺设计的概念
合金为0.8~1.2%,锡青铜为1.2~1.4%。
第三节 砂芯设计
一、型芯的作用 形成铸件的内腔、孔洞和形状复杂阻碍起 模部分的外形。
二.型芯的数量及分块 ★型芯的数量取决于铸件的形状 ★大型复杂型芯根据需要分块制作
三.型芯的形式 常用的型芯有水平型芯、垂直型芯、
四、铸造工艺方案
概括说明铸造生产的基本过程和方法的工艺 文献,包括造型和造芯方法、铸型种类、浇注位 置和分型面的确定等。
第一节 浇注位置与分型面的选择
浇注位置:浇注时铸件在砂型中所处的空间位置。 分型面:铸型组元间的结合面
一、浇注位置的选择原则
原则:主要考虑铸件质量 1.铸件的重要加工面或主要工作面应朝下或位于侧面
原因:铸件的上表面容易产生砂眼、气孔、夹渣等 缺陷,组织也不如下表面致密。
2.铸件的大平面尽可能朝下或采用倾斜浇注
原因:铸型的上表面除了容易产生砂眼、气孔、 夹渣外,大平面还极易产生夹砂缺陷。这是由于在 浇注过程中,高温的液态金属对型腔上表面有强烈 的热辐射,型砂因急剧膨胀和强度下降而拱起或开 裂。拱起处或裂口浸入金属液中,形成夹砂缺陷。 同时铸件的大平面朝下,也有利于排气,减小金属 液对铸型的冲刷力。
相关文档
最新文档