七年级数学课件-等式的基本性质

合集下载

北师大版数学七年级上册 《等式的基本性质》课件

北师大版数学七年级上册 《等式的基本性质》课件

16.“●■▲”分别表示三种不同的物体.如图所示,天平①②保
持平衡,如果要使天平③也平衡,那么应在天平③的右端放( D )个
“■”.
A.2 B.3 C.4 D.5
17.利用等式的性质解方程: (1)5-y=-16;
(1)方程两边同时减5得:-y=-21, 两边同时乘以-1得:y=21
(2)19=x3-16. (2)方程两边同时减去19得:0=x3-158,两边同时减去x3得: -x3=-158,两边同时乘以-3 得:x=56
14.由方程-3x=2x+1 变形可得( B )
A.-3x+2x=-1 B.-3x-2x=1 C.1=3x+2x D.-2x+3x=1
15.下列运用等式的基本性质解方程,错误的是( D )
A.x2=0,则 x=0 B.3x-2=1,则 x=1 C.x-2=0,则 x=2 D.0x.2=0,则 x=0.2
第一步:根据等式的___基__本__性___质______,等式两边_同__时__加__上_, 得到 2x=___1_____. 第二步:根据1 等式的__基___本__性__质_______,等式两边_同___时__除__以,2
得到 x=___2_____.
12.根据等式的基本性质,下列各式变形正确的是( B )
5.1 认识一元一次方程 第2课时 等式的基本性质
等式的基本性质:
等式的两边同时加(或减)_同__一__个__代__数__式_,所得结果仍是等式. 等式两边同时乘_同__一__个__数_(或除以 同一个不为0的数 ), 得结果仍是等式.
1.用适当的数或式子填空,使得结果仍为等式:
(1)若 7x-2=3,则 7x-2+2=3__+__2____; (2)若 2x=6-3x,则 2x__+___3_x__=6-3x+3x;

北师大版数学七年级上册5.等式的基本性质课件

北师大版数学七年级上册5.等式的基本性质课件
为什么?反之,能不能从x= b 1 得到 a3
(a+3)x=b-1?为什么?
6
你能发现什么规律?
a
b

a=b

7
你能发现什么规律?
aa
bb

a=b

2a = 2b
8
你能发现什么规律?
aaa
bbb

a=b

3a = 3b 9
你能发现什么规律?
C个 aaaaa aa
b b b b b bb C个


a=b
ac = bc 10
等式的基本性质二:
b
a
b bb bb
a aa a a
等式的基本性质二:
等式两边同时乘以一 .
个(或除以同一 个不为0的)数, 所得结果
.
仍是等式
.

用符号表示:若a=b, 则ac=bc;(c为任意有。理数)
若a=b, 则
;(c ≠0 的有理数)
12
练习一:判断下列变形正误,并说明理由。
(1)若x=y 则 5+x=5+y ( )等式的基本性质一 。
(2)若x=y则 x-5=y-5 ( )等式的基本性质一 。
即a = b
a
等式左边
b
等式右边
3
你能发现什么规律?
ac
bc

a=b

a+c = b+c 4
你能发现什么规律?
a
b
c
c


a =b
a -c = b -c 5
等式的基本性质一:
a
b
ac

等式的基本性质ppt课件

等式的基本性质ppt课件
即:如果a=b,那么a±c=b±c. 2.等式的性质2:
等式的两边都乘或都除以同一个数或式(除数不能 为0),所得结果仍是等式.
即:如果a=b,那么 ac=bc,或-ac =-cb (c≠0)
小结
3.解方程的基本思路
(1)先利用等式性质1把方程变形为左边只含 有未知数,右边只含有常数的形式. (2)再利用等式性质2把方程变形为x =?的形式.
5.2 等式的基本性质
• 义务教育课程标准实验教科书 • 浙教版《数学》七年级上册
知识目标
1.理解等式的意义,并能举出有关等式的例子. 2.掌握等式的基本性质,并能用语言叙述. 3.会用等式的基本性质将等式变形,并能说明 理由 .
通过等式的基本性质的教学,培养学生由等式 走向新等式的解题思路,为以后方程的求解打 下基础.
即:如果a=b,那么a±c=b±c.
新课讲解
你发现了什么规律?
bb
aa
b
a
bb
aa
×4
÷4
等式的性质2:
等式的两边都乘或都除以同一个数或式(除数不能为 0),所得结果仍是等式.
即:如果a=b,那么 ac=bc,或 -ac =-cb (c≠0)
做一做
1.下列变形符合等式性质的( D ) A.如果2x-3=7,那么2x=7-3 B.如果3x-2=1,那么3x=1-2 C.如果-2x=5,那么x=5+2 D.如果--13 x=1,那么x=-3
再见!
情感目标 等式的基本性质体现了教学的对称美.
知识回顾
1.什么是等式?
(1)x 2 4 (2)1 2 3 (3)m n n m
像这样用等号“=”表示相等关系的式子叫等式.
2.下列式子中是等式的有( C ).

5.2 第1课时 等式的基本性质 课件(共20张PPT) 北师大版数学七年级上册

5.2 第1课时 等式的基本性质   课件(共20张PPT) 北师大版数学七年级上册
x = 2。
典例精析
例2 解方程:
(1) x + 2 = 5;
(2) 3 = x - 5;
解:(1) 方程两边都减 2,得
x+2-2=5-2。
于是
x=3。
(2) 方程两边都加 5,得
3+5=x-5+5。
于是
8=x。

x=8。
方程的解,最 后结果要写成 x = a 的形式!
例3 解方程:(1) -3x = 15;
七年级上册数学(北师版)
第五章 一元一次方程
2 一元一次方程的解法
第1课时 等式的基本性质
教学目标
1. 理解等式的基本性质,并能用它们来解方程。 2. 运用等式的基本性质解方程,逐步展现求解方程的一般
顺序,通过观察、操作、归纳等数学活动,感受数学思 考过程的条理性和数学结论的严密性。
重点:理解等式的基本性质,并能利用其解一元一次方程。 难点:能熟练运用等式的基本性质对方程进行变形。
m = 3 m + (-1) = 3 + (-1) → m - 1 = 3 - 1
知识总结
请用自己的语言精炼归纳出等式的基本性质:
等式的基本性质1: 等式的两边都加 (或减) 同一个代__数__式___,所得结果仍 是等式。
如果 a=b,那么__a_±___c_=__b__±__c____.
合作探究
据等式的基本性质_2__.
3. 应用等式的基本性质解下列方程并检验:
(1) x + 3 = 6; (3) -2x + 4 = 0;
(2) 0.2x = 4;
(4)1 1 x 3. 2
解: (1) x = 3. (2) x = 20.
(3) x 2. (4) x =-4.

2.1等式性质与不等式性质课件(人教版)PPT

2.1等式性质与不等式性质课件(人教版)PPT

不等式两边同乘一个正数, 所得不等式与原不等式同向; 不等式两边同乘一个负数,
所得不等式与原不等式反向.
高中数学
二、 不等式性质
性 质 1 : 如 果a=b, 那么b=a. 性 质 2 : 如 果a >b, b>c, 那么a >c.
性质3:如果a >b,那么a+c> b+c.
性 质 4 : 如 果 a>b,c> 0, 那么 ac>bc;
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
性质3:如果a>b, 那么a+ c>b+c 追问2:两个实数大小关系还可以形象地在 数轴上表达出来,你能从几何意义的角度 对这个性质进行解释吗?
高中数学
二、不等式性质
追问3:你能从性质3中得到什么结论吗? 由性质3可得
a+b>c→a+b+(-b)>c+(-b)
→a >c-b
如果a>b>0, 那么 a²>b²
性质7:如果 a>b>0, 那么a”>b”
(n∈N*,n≥2)
高中数学
三、 不等式的简单应用
例:已知a>b>0,c<0, 求证

(2024秋新版本)北师大版七年级数学上册 《 等式的基本性质 》PPT课件

(2024秋新版本)北师大版七年级数学上册 《 等式的基本性质 》PPT课件
等式的两边都加 (或减) 同一个代数式,所得结果 仍是等式.
如果a=b,那么a±c=b±c.
用式子的形 式怎样表示?
探究新知
练一练 在下面的括号内填上适当的数或者式子: (1)因为:2x-6= 4 所以: 2x-6+6= 4+( 6 ) (2)因为:3x=2x-8 所以: 3x+( -2x )= 2x-8-2x (3)因为:10x-9=8-6x 所以: 10x+( 6x )-9+9= 8-6x+6x +( 9 )
北师大版 数学 七年级 上册
5.2.1 等式的基本性质
素养目标
3. 能用等式的性质解简单的一元一次方程. 2. 借助直观对象理解等式的基本性质. 1. 能用文字和数学式子表达等式的两个性质.
导入新知
观察上图,如果在平衡的天平的两边都加(或减) 同样的量,天平还保持平衡吗?
探究新知 知识点 1 等式的性质1
天平与等式
把一个等式看作一个天平,把等号两边的式子看作天 平两边的砝码,则等式成立就可看作是天平保持两边平衡
b
等式的 左边
等号
a
等式的 右边
探究新知

你能发现什么规律?
a

探究新知
你能发现什么规律?
a


探究新知
你能发现什么规律?
b a


探究新知
你能发现什么规律?
b a


探究新知
你能发现什么规律?
素养目标
2. 会用移项、合并同类项解ax+b=cx+d型的方 程.
1. 进一步认识解方程的基本变形——移项, 感悟解方程过程中的转化思想.

等式的性质ppt课件

等式的性质ppt课件

科学实验中的应用
化学反应平衡
在化学实验中,等式性质可用于描述化学反应的平衡状态,确保 实验结果准确可靠。
生物学中的能量平衡
在生物学研究中,等式性质可用于描述生物体内的能量平衡,以了 解生物体的生存和生长状况。
物理学中的力矩平衡
在物理学中,等式性质可用于描述力矩的平衡,以解决与物体运动 相关的问题。
函数图像的对称性
函数图像的对称性
等式在研究函数图像的对称性方面具 有重要作用。通过对等式的分析,我 们可以确定函数的对称轴和对称中心 。
奇偶函数的性质
对称性与周期性的关系
函数的对称性和周期性是密切相关的 ,通过对等式的研究,我们可以深入 了解这种关系。
奇函数和偶函数具有不同的对称性质 ,这些性质可以通过等式进行描述和 证明。
可除性证明
假设a=b且c≠0,那么根据等 式的定义,我们可以得出 a/c=b/c。
02 等式的运算规则
等式的加减法规则
总结词
等式的加减法规则是基本的运算规则,它遵循相同的数学原理。
详细描述
等式的加减法规则是指在进行等式运算时,将等式两边的数值进行加减运算,如 果等式两边同时加上或减去同一个数,等式仍然成立。例如,对于等式 (2 + 3 = 5),如果两边同时加上(2),得到 (4 + 3 = 7),等式仍然成立。
几何图形的等分与对称
几何图形的等分
等式在几何图形中等分方面具有 应用,例如通过等式确定点、线 或面的位置,将图形等分为若干
部分。
图形的对称性
图形的对称性可以通过等式进行 描述和证明,例如平行四边形、
矩形和圆的对称性质。
等分与对称的应用
在几何图形中,等分和对称的应 用非常广泛,例如在建筑设计、 艺术和工程等领域中都有应用。

等式的基本性质-七年级数学上册课件(浙教版)

等式的基本性质-七年级数学上册课件(浙教版)

1, ,x+y,且x>y,


∴①x+y=0, =y,x=1,

解得:x=1,y=-1,

②x+y=0, =x,y=1,

解得:y=1,x=-1(不符合题意,舍去),
∴x=1.
故答案为:1.
8.若x=-4是关于x的方程ax-b=1(a≠0)的解,则关于x的方程a(2x-3)-b1=0(a≠0)的解为______.
【详解】解:将x=-4代入方程ax-b=-4a-b=1,
a(2x-3)-b-1=0,整理得a(2x-3)-b=1,
则a(2x-3)-b=-4a-b,

∴2x-3=-4,解得x=− ,

故答案为− .


9.王老师在黑板上写了一个等式(m-3)x=5(m-3),小明说x=5;小刚
说不一定,当x≠5时,这个等式也可能成立.你认为他俩的说法正确
10x=15;④4x=-2变形为x=-2.
A.①③
B.①②③ C.③④
D.①②④
【答案】B
【分析】方程两边同时除以3得:x+2=0,故①正确;移项合并同类项
得:4x=-2,故②正确;方程两边同时乘以5得:10x=15,故③正确;

方程两边同时除以4得:x=- ,故④错误,即可求解.

【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方
依据等式的性质1两边同时减3.
(3) 怎样从等式 4x=12 得到等式 x =3?
1
依据等式的性质2两边同时除以4或同乘 4 .
a
b

(4) 怎样从等式
得到等式 a = b?
100 100
1

等式的性质 课件(共41张PPT) 人教版数学七年级上册

等式的性质  课件(共41张PPT) 人教版数学七年级上册
第五章 一元一次方程 5.1 从算式到方程 5.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程. (难点)
导入新课
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
怎样从等式
a 100
b 100
得到等式
a
=
b?
1 4
.
依据等式的性质2两边同时除以1010 或同乘100.
(5) 从 x = y 能不能得到
x 9
y 9
,为什么?
能,根据等式的性质2,两边同时除以9
(6) 从 3ac=4a 能不能得到 3c=4,为什么? 不能,a可能为0
注意:此类判断等式变形是否正确的题型中,尤其注 意利用等式的性质2等式两边同除某个字母参数,只 有这个字母参数确定不为0时,等式才成立.
用等号表示相等关系的式子,叫等式。
通常用a b表示一般的等式.
试一试
等式的两个基本事实: 等式两边可以交换,如果a=b,那么b=a. 相等关系可以传递,如果a=b,b=c。那么a=c.
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
(2) 0.3x = 45 ;
(3) 5x+4 = 0 ;
(4)2- 1 x=3
解:(1)两边同时加5,得x=11.
4
(2)两边同时除以0.3,得x=150.
(3)两边同时减4,得5x=-4.

3.1.2 等式的性质(人教版七年级上册数学课件)

3.1.2 等式的性质(人教版七年级上册数学课件)

一般地,从方程解出未知数的值以后,可以代
入原方程检验,看这个值能否使方程的两边相等.
例如,
将 x = -27 代入方程 1 x 5 4的左边, 3
1 (27) 5 = 9 5=4. 3
方程的左右两边相等,所以 x = -27 是原方程的解.
(1) x+6 = 17 ;
(2) -3x = 15 ;
3.1 从算式到方程
3.1.2 等式的性质
等式的性质
观察天平有什么特性?
天平两边同时加入相同质量的砝码 天平两边同时拿去相同质量的砝码
天平仍然平衡 天平仍然平衡
天平两边同时
加入 拿去
相同质量的砝码
天平仍然平衡
等式两边同时
加上 减去
相同的数
(或式子) 等式仍然成立
换言之,
等式的性质1
等式两边加 (或减) 同一个数 (或式子),结果仍相等.
如果a=b,那么a±c=b±c.
由天平看等式的性质2
你能发现什么规律?
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结 果仍相等.
如果a=b,那么ac=bc; 如果a=b(c≠0),那么 a b .
cc
c
例1 (1) 怎样从等式 x-5= y-5 得到等式 x = y ?
cc C. 若a2 = b2,则a = b D. 若 1 x 6,则x = -2
3
(B)
4. 填空
(1) 将等式x-3=5 的两边都_加__3__得到x =8 ,这是
根据等式的性质_1_;
1 (2) 将等式 1 x 1的两边都乘以_2__或除以 _2__得
2 到 x = -2,这是根据等式性质 __2_;

等式的性质课件-(公开课)

等式的性质课件-(公开课)

要点三
矩阵法
将二元一次方程组表示为矩阵形式 AX = B,其中 A 为系数矩阵,X 为未知数 矩阵,B 为常数矩阵。通过矩阵运算求 解 X。例如,对于方程组 { x + 2y = 5, 3x - y = 2 },可以表示为矩阵形式 [1 2; 3 -1] * [x; y] = [5; 2],通过矩阵运 算得到 X = [1; 2]。
使一元一次方程左右两边相等的未知 数的值叫做方程的解。
方程解法举例
01
02
03
04
移项法
将方程中的未知数项移到等式 的一边,常数项移到等式的另 一边,从而解出未知数的值。
合并同类项法
将方程中的同类项合并,使方 程简化,从而更容易解出未知
数的值。
代入法
将已知的数值代入方程中,通 过计算验证该数值是否为方程
物理学中的应用
运用函数描述物体的运动规律,如速 度、加速度等。
工程学中的应用
利用函数解决最优化问题,如最小成 本、最大效益等。
计算机科学中的应用
采用函数实现算法,简化程序设计过 程。
06 综合应用:复杂问题建模 与求解
复杂问题建模思路和方法
深入分析问题背景,明确问题目标
在建模前需要对问题的实际背景有深入的了解,明确所要解决问题的目标。
含绝对值不等式解法
根据绝对值定义将含绝对值的不等式转化为 分段函数或不等式组求解。
05 函数与等式关系
函数基本概念及性质
函数定义
函数是一种特殊的关系, 它使得每个自变量对应唯 一的因变量。
函数性质
包括单调性、奇偶性、周 期性、有界性等。
常见函数类型
一次函数、二次函数、指 数函数、对数函数等。

【数学课件】等式的基本性质课件

【数学课件】等式的基本性质课件

等式的两边都加上(或减去) 同一个式, 所得的结果仍是等式.
等式性质1
等式的两边都加上(或减去) 同一个数或式,所得的结果仍 是等式. 用式子的
形式怎样 表示?
?
由等式3m+5m=8m ,进行判断:
2×( 3m+5m) = ? 2× 8m
( 3m+5m)÷2 = ? 8m ÷2
上述两个问题反映出等式具有什么性质?
好好学习,天天向上。
例2 利用等式的性质解下列方程, 并写出检验过程。
(1)5x=50+4x (2)8-2x=9-4x
△等式的两个基本性质性质: ⒈等式的两边都加上或都减去同一个数或式, 所得结果仍是等式。 ⒉等式的两边都乘以或都除以同一个不为零 的数或式,所得结果仍是等式。
△利用等式的基本性质把方程化为“x=a”的 形式,就是解方程(即求出了方程的解)。
已知x+3=1,下列等式成立吗? 根据什么? (1)3=1-x. (2)-2(x+3)=-2 (3)x=1-3 (4) x 3 1
3 3
例1已知2x-5y=0,且y≠0,判断下 列等式是否成立,并说明理由 ⑴ 2x=5y ⑵ x 5
y 2
通过运算将方程一步步地变形,最后 变成“x=a(a是已知数)”的形式, 就求出了未知数的值,即求出了方程的 解。而变形的依据就是等式的两个性质。
①4+x=7, ② 2x, ③ 3x+1, ④ a+b=b+a, ⑤ a2+b2 ⑥ c=2πr
⑦ 1+2=3, ⑧ ⑩ 2x-3y 0
上述这组式子中,( ①④⑥⑦⑨ )是等式, ( ②③⑤⑧⑩) 不是等式,为什么?
2 ab, 3

5.1.2《等式的性质》课件 人教版七年级数学上册 (25)

5.1.2《等式的性质》课件  人教版七年级数学上册 (25)
(1) x +3=1;
(1)解:两边减3,得 x +3-3=1-3.所以 x =-2.
(2)4 x =8;


(2)解:两边除以4,得 = .所以 x =2.


(3)5 x -3=0.
(3)解:两边加3,得5 x -3+3=0+3.
化简,得5 x =3.

两边除以5,得 x = .

5. 用等式的性质解下列方程:



4. 用等式的性质解下列方程:

(1)6- x =5;


(1)解:两边减6,得6- x -6=5-6.


化简,得- x =-1.

两边乘-4,得 x =4.

(2)- -3=5.


(2)解:两边加3,得- -3+3=5+3.


化简,得- =8.两边乘-2,得 a =-16.

1.
3. 已知 a , b , c , d 均不为0,则下列能运用等式的性质说明如图
所示的事实的是(
B
)
A. 若 a - c = b - d ,则 a = b
B. 若 a + c = b + c ,则 a = b
C.


若 a = b ,则 =


D. 若 ac = bc ,则 用等式的性质解下列方程:

(1)2- x=6;


解:两边减2,得2- x-2=6-2.


化简,得- x=4.

两边乘-3,得x=-12.


(2) x= x-11.







解:两边减 x,得 x- x= x-11- x.

5.1.2等式的基本性质公开课课件北师大版数学七年级上册

5.1.2等式的基本性质公开课课件北师大版数学七年级上册
用符号表示为:
如果a=b, 那么a±c=b±c
b

a=b
a

bb
aa左 a=b右源自2a = 2bbbb
aaa
左 a=b

3a = 3b
b C个 b b b b bb
a aaaaa a C个
左 a=b

ac = bc
b
a
左 a=b

a b a b a b (c 0) 2 23 3 c c
花一样美丽,感谢你的阅读。 87、人放勇生眼气就前通像方往卫,天生只堂纸要,,我怯没们懦事继通的续往时,地候收狱尽获。量的20少季:33扯节2。就0:3在230前:2353方72.。01:432.302:.02724.1074T.12u40e.s27d0.1a24y02,T0Juu.e7lys.1d14a4。y,,2J0u2ly0年147, 月201240日星期二二〇二〇年七月十 四日 8、拥有梦想只是一种智力,实现梦想才是一种能力。20:3320:33:257.14.2020Tuesday, July 14, 2020
420、:3办敏37事而.1刚好4.愎学20自,20用不20,耻:3即下37使问.1失。4.败。20了72.10也42.0从2:03不2302反70悔.:1343。.:2704.21704.12.2400.:23203022700.12:3403.:23203027:30.1324:02.:2530232020:03:3:32250:33:2420:33:24
这醉人这芬春醉芳去人的春芬季又芳节回的,,季愿新节你桃,生换愿活旧你像符生春。活天在像一那春样桃天阳花一光盛样,开阳心的光情地,像方心桃,情在像桃 54、努不海力要内不为存不它知一的已定结,成束天功而涯,哭若不,比努应邻力当。一为Tu定它es不的da成开y,功始Ju。而ly笑T1u。4e,s72d.0a12y40,.2J0u2ly021704.1T,42u.02e20sd02aJ0uy2,l0yJ:32u30ly2T10u4:e3,s32d20a02y:03, 73Ju/:12ly4/212040:,232030:22407/14/2020 花一这样醉花美人一丽芬样,芳美感的丽谢季,你节感的,谢阅愿你读你的。生阅活读像。春天一样阳光,心情像桃 65、莫你生愁必命前须的路非成无常长知努,已力需,,要天才吃下能饭谁看,人起还不来需识毫要君不吃。费苦8时力,3。吃3分亏8时8。时3T33u分3e分8sd时1a43y-3J, u分Jlu-1l2y401-7J4.u1,l42-2.02020702.J10u4l.y202200Tuesday, July 14, 20207/14/2020

等式的基本性质课件

等式的基本性质课件
总结词
等式的加法性质是指等式的两边加上同一个数,等式仍然成立。
详细描述
如果有一个等式 a = b,那么在这个等式的两边同时加上一个数c,得到新的等 式 a+c = b+c。
等式的乘法性质
总结词
等式的乘法性质是指等式的两边乘以 同一个非零数,等式仍然成立。
详细描述
如果有一个等式 a = b,那么在这个 等式的两边同时乘以一个非零数c,得 到新的等式 ac = bc。
等式的实际应用
物理中的等式应用
总结词
物理定律的数学表达
详细描述
在物理学中,等式常常被用来表达物理定律。例如,牛顿第二定律 F=ma 就是一个等 式,用来描述力、质量和加速度之间的关系。
化学中的等式应用
总结词
化学反应的平衡表达
VS
详细描述
在化学中,等式常用来描述化学反应的平 衡状态。例如,对于可逆反应,反应物和 生成物的浓度会保持一定的比例关系,这 个比例关系就是通过等式来表达的。
不等式的可加性
如果a>b,则a+c>b+c。
不等式的可乘性
如果a>b且0<c<d,则ac>bd 。
证明方法
比较法、反证法、数学归纳法 等。
等式与不等式的应用实例
生活中的购物问题
如比较商品价格、折扣优惠等。
数学中的几何问题
如比较线段长度、面积大小等。
物理学中的力学问题
如比较力的大小、加速度大小等。
05
经济学中的等式应用
总结词
供需平衡的表达
总结词
货币价值的衡量
详ห้องสมุดไป่ตู้描述
在经济学中,等式常常用来表达供需平衡。例如 ,在商品市场中,供给量和需求量相等时的价格 就是均衡价格,这个均衡价格就是通过等式来表 达的。

2024年秋湘教版七年级数学上册 3.2.2 等式的基本性质(课件)

2024年秋湘教版七年级数学上册 3.2.2 等式的基本性质(课件)
性质Ⅱ 等式两边都乘同一个数,或除以 同一个不为0的数,等式两边仍然相等
思考
(1)方程 5x=4x+2的解是多少? 设数a是方程 5x=4x+2的解,则5a=4a+2. 5a=4a+2 两边同时减去4a a= 2 因此,2是方程5x=4x+2的唯一解.
5x=4x+2
两边都减去4x
x=2
符号语言: ∵a=b ∴a±c=b±c (c可以为一个数或整式)
湘教版·七年级上册
3.2 等式的基本性质
第1课时 等式的基本性质
在小学,已经学习了等式的基本性质,即:
(1)如果 a + 2 = b + 7 ,那么 a =b__+__5____;
性质Ⅰ 等式两边都加上或减去同一个数, 等式两边仍然相等
(2)如果 3x = 9y,那么 x =_3_y______;
(2) 由等式的基本性质2可知,等式两边都除以3,

3x 3
=
9y 3
即 x = 3y .
例 1
填空,并说明理由.
(1)如果 x+2=y+7,那么 x =___y_+_5___;
(2)如果3x=9y,那么 x =____3_y___;
(3)如果-12
x=
1 3
y,那么3x
=__-_2_y____.
等式的基本性质1: 等式两边都加上或减去同一个数(或整式),
等式两边仍然相等.
思考
(2)方程13 x=5的解是多少?
设数b是方程
1 3
x=5的解,则13
b=5
.
1 3 b=5
两边都乘3
b=15
因此,15是方程13 x=5的唯一解.

等式的基本性质课件-冀教版数学七年级上册

等式的基本性质课件-冀教版数学七年级上册
2、运用等式的基本性质解方程。
3、掌握移项的定义。
在探索的过程中你用到了什么数学思想?
从特殊到一般
注意:当我们获得了方程解的后还要养成检验的习惯。
另一边,这种变形过程叫做移项。
移项的目的为了合并同类项 因此移项通常是将方程中含有未知数的项移到等号 的一边,将常数项移到等号的另一边
跟踪训练
解下列方程 ①x+1=2x ② 3y-6=2y-2
能力提升
1、下列变形符合等式性质的是( D)
A、如果2x-3=7,那么2x=7-3
B、如果3x-2=1,那么3x=1-2 C、如果-2x=5,那么x=5+2
(4)、如果-0.2x=6,那么x= -30 , 根据 等式性质2,在等式两边同除-0.2或乘-5 。
灵活训练
2、利用等式的性质解下列方程
(1) x 5 6 (2) 3x 2 4
教师点睛:
定义: 在解方程得过程中,等号的两边加上 (或减去)方程中某一项的变形过程,相当于 将这一项改变符号后,从等号的一边移到
x 6, x 2 2、你能估算出方程 4x 32x 3 12 x 4的解吗?
x ?
如何 得到
学习目标:
1、理解并掌握等式的两个基本性质。 2、能利用等式的性质解决简单的Байду номын сангаас一元一次方程。 3、理解并掌握移项法则
视察思考
认真视察列出的等式,你发现了什么规 律?尝试用自己的语言描述
能字母把你发现的规律表示出来吗?
回答下列问题
(1)由等式a=b能不能得到等式a+3=b+3,为什么? (2)由等式x+5=y+5能不能得到等式x=y,为什么? (3)由等式x=y能不能得到等式x+5=y-5 ,为什么? (4)由等式a=b能不能得到等式a+5=b+8,为什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.已知2x2-3=5,你能求出x2+3的值吗?说明理由. 解:由2x2-3=5,得2x2-3+3=5+3,x2=4,所以x2+3=7
感谢大家观看
最新学习可编辑资料
13.根据等式的性质,下列变形正确的是( B ) A.由-13x=23y,得 x=2y B.由 3x-2=2x+2,得 x=4 C.由 2x-3=3x,得 x=3 D.由 3x-5=7,得 3x=7-5
14.(2015·咸宁)方程 2x-1=3 的解是( D ) A.-1 B.-2 C.1 D.2
11.若 x=y,且 a≠0,则下面各式中不一定正确的是(D ) A.ax=ay B.x+a=y+a
C.ax=ay
D.ax=ay 12.下列等式变形中,错误的是( D ) A.由 a=b,得 a+5=b+5 B.由 a=b,得-a3=-b3 C.由 x+2=y+2,得 x=y D.由-3x=-3y,得 x=-y
7.(1)如果 3x=4-பைடு நூலகம்,那么 3x+__x__=4; (2)如果-12x=5,那么 x=_-__1_0;
1 (3)方程 3x-1=0 的解是 x=__3__.
8.从0.2y=6得到y=30,这是由于( D) A.等式两边都加上了0.2 B.等式两边都减去了0.2 C.等式两边都乘以了0.2 D.等式两边都除以了0.2 9.解下列方程: (1)x+2=5; (2)3=x-5; (3)-3x=15. 解:(1)x=3 (2)x=8 (3)x=-5 10.x为何值时,式子2x与x+5的值相等? 解:由题意得2x=x+5,解得x=5
第五章 一元一次方程
1.认识一元一次方程
第2课时 等式的基本性质
1.填空,使结果仍为等式: (1)若 2x-5=8,则 2x=8+_5___; (2)若 5x=15,则 x=__3__; (3)若 4x+5y=6,则 4x=6-__5_y_; (4)若21y=7,则 y=_1_4__.
2.运用等式性质进行的变形,不正确的是( C ) A.如果 a=b,那么 a-c=b-c B.如果 a=b,那么 a+c=b+c C.如果 a=b,那么ac=bc D.如果 a=b,那么 ac=bc
(3)0.4x+10=-1; 解:x=-525
(4)13-4x=12. 解:x=-23
20.小明在解方程3a-2x=15(x是未知数)时,误将-2x看成2x,得方程 的解为x=3,请求出原方程的解.
解:依题意得3a+2x=15的解为x=3,∴3a+2×3=15,∴a=3,当a =3时,原方程为3×3-2x=15,解得x=-3,即原方程的解为x=-3
3.已知等式 3a=2b+5,则下列等式中不一定成立的是( C ) A.3a-5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.32b+53=a
4.如图,●,■,▲分别表示三种不同的物体,前两台天平保持平衡, 如果要使第三台天平也保持平衡,那么“?”处应放“■”的个数为( A)
A.5 B.4 C.3 D.2
16.当m,n满足关系式 m=n 时,有等式m-3=n-3成立.
17.若 3x 与 4-x 互为相反数,则 x=_-__2_.
1 18.已知 3a+2b=1,3a+2b-3c=0,那么 c=_3___.
19.利用等式的性质解下列方程.
(1)7x-6=8;
(2)10x=4x-3;
解:x=2
解:x=-12
15.(2014·绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃 球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一 颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态, 如图2,则被移动的玻璃球的质量为( ) A
A.10克 B.15克 C.20克 D.25克
5.已知2x+y=3x+2,利用等式的基本性质,试比较x与y的大小. 解:两边同时减去3x得y-x=2,∴x<y
6.由 2x-1=0 得到 x=21可分两步,按步骤完成下列填空: 第一步:根据等式的性质,方程两边 同时加1 ,得到 2x=1; 第二步:根据等式的性质,方程两边 同时除以2 ,得到 x=12.
相关文档
最新文档