有限元分析的基本概念

合集下载

有限元分析FEA

有限元分析FEA

广州有道计算机科技有限公司有限元分析FEA有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。

还有三维结构设计方面的UG、CATIA、Proe等都是比较强大的。

国产有限元软件:FEPG、SciFEA、,JiFEX、KMAS等有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。

Abaqus-基础与应用-第一章概述

Abaqus-基础与应用-第一章概述

Abaqus-基础与应用-第一章概述第1章概述有限元分析是使用有限元方法来分析静态或动态的物体或系统。

在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点所组成的几何模型。

在这种方法中这些独立的点的数量是有限的,因此被称为有限元。

1.1有限元分析简介本节首先简要介绍有限元分析的基本概念,然后简要阐述其发展和应用概况。

1.1.1有限元分析的基本概念在工程技术领域内,有许多问题归结为场问题的分析和求解,如位移场、应力场、应变场、流场和温度场等。

这些场问题虽然已经得出应遵循的基本规律(微分方程)和相应的限制条件(边界条件),但因实际问题的复杂性而无法用解析方法求出精确解。

由于这些场问题的解是工程中迫切所需要的,人们从不同角度去寻找满足工程实际要求的近似解,有限元方法就是随着计算机技术的发展和应用而出现的一种求解数理方程的非常有效的数值方法。

有限元分析的基本思想是用离散近似的概念,把连续的整体结构离散为有限多个单元,单元构成的网格就代表了整个连续介质或结构。

这种离散化的网格即为真实结构的等效计算模型,与真实结构的区别主要在于单元与单元之间除了在分割线的交点(节点)上相互连接外,再无任何连接,且这种连接要满足变形协调条件,单元间的相互作用只通过节点传递。

这种离散网格结构的节点和单元数目都是有限的,所以称为有限单元法。

在单元内,假设一个函数用来近似地表示所求场问题的分布规律。

这种近似函数一般用所求场问题未知分布函数在单元各节点上的值及其插值函数表示。

这样就将一个连续的有无限自由度的问题,变成了离散的有限自由度的问题。

根据实际问题的约束条件,解出各个节点上的未知量后,就可以用假设的近似函数确定单元内各点场问题的分布规律。

有限元方法进行结构分析主要涉及三个问题:(1)网格剖分和近似函数的选取选用合适单元类型和单元大小的问题。

合适的单元类型能在满足求解精度的条件下提高求解的效率,反之则可能会事倍功半。

有限元分析法

有限元分析法
杆单元 Rod element 梁单元 Beam element 弹簧单元 Spring element
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data

有限元分析方法

有限元分析方法

k1 k1k2 k2
0
0
0 k2 k2 k3 k3
0
0 0 k3 k3 k4 k4
0 u1 0 0 u2 0 0k4uu4300 k4 u5 P
写成一般形式,可得:
[R ][K ]U [][F]
即: [反作]用 [总 力 体 矩 ]刚 位 [阵 度 移 ] [负 矩 矩荷 阵 阵 ]
引入边界条件,根据本题要求,节点1
有限元分析方法
第一章 概述
一、有限单元法的基本概念
一变横截面杆,一 端固定,另一端承受负 荷 P,试求杆沿长度方 向任一截面变形大小。 其中杆上边宽度为 w1 下边宽度为 w 2 ,厚度
为 t ,长度为 L,弹性
模量为 E。
① 采用材料力学的研究方法进行精确求解
解:设杆任一横截面面积为 A( y) ,平均应力
来,重新对上述五个方程进行变换,得:
节点1: k1u1k1u2R1
节点2: k 1 u 1 (k 1 k 2 )u 2 k 2 u 3 0
节点3: k 2 u 2 (k 2 k 3 )u 3 k 3 u 4 0 节点4: k 3 u 3 (k 3 k 4 )u 4 k 4 u 5 0
节点5: k4u4k5u5P
的位移为0,即 u1 0 ,则有如下矩阵形 式:ቤተ መጻሕፍቲ ባይዱ
1 0
0
0 0 u1 0
k1 k1 k2 k2
0
0 u2 0
0
0
k2 0
k2 k3 k3
k3 k3 k4
0k4uu43
0 0
0 0
0 k4 k4 u5 P
求解上述矩阵方程,可得每个节点位移,进 而求得每个节点反作用力,每一个单元的平均应 力和应变。即:

第二章有限元分析基础

第二章有限元分析基础

第二章有限元分析基础有限元分析是一种常用的工程计算方法,在工程学科中被广泛应用。

本章将介绍有限元分析的基本概念和基础知识。

有限元分析是一种数值分析方法,用于求解复杂的物理问题。

它的基本思想是将一个连续的物体或结构离散化为有限数量的基本单元,通过在每个单元上进行计算,最终得到整个物体或结构的行为。

这些基本单元通过节点连接在一起,形成了一个有限元网格。

通过在每个节点上求解方程,可以得到整个物体或结构的应力、变形等相关信息。

在有限元分析中,有三个重要的步骤:建模、离散和求解。

建模是指将实际物体或结构转化为数学模型的过程。

在建模过程中,需要确定物体或结构的几何形状、边界条件和力学性质等。

离散是指将物体或结构划分为有限数量的基本单元。

常用的基本单元有三角形、四边形和六面体等。

离散过程中需要确定每个基本单元的几何属性和材料性质等。

求解是指在离散的基础上,通过求解节点上的方程,得到物体或结构的应力、变形等结果。

求解过程中,需要确定节点的位移和应变等参数。

有限元分析的基本假设是在每个基本单元内,应力和应变满足线性关系。

这意味着在小变形和小位移的情况下,有限元分析是有效的。

此外,为了提高计算精度,通常会增加更多的基本单元。

但是,增加基本单元数量会增加计算复杂度和计算时间。

因此,在实际应用中,需要根据问题的复杂程度和计算资源的限制进行权衡。

有限元分析广泛应用于各个领域,例如结构力学、热传导、电磁场、流体力学等。

在结构力学中,有限元分析可以用于求解静力学和动力学问题。

在热传导中,有限元分析可以用于求解温度分布和热流问题。

在电磁场中,有限元分析可以用于求解电荷和电场分布等。

在流体力学中,有限元分析可以用于求解流速和压力分布等。

总之,有限元分析是一种重要的工程计算方法,可以用于求解各种物理问题。

通过建模、离散和求解等步骤,可以得到物体或结构的应力、变形等结果。

有限元分析在工程学科中有着广泛的应用前景,对于工程设计和优化起着重要作用。

有限元分析

有限元分析

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。

有限元分析是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元是那些集合在一起能够表示实际连续域的离散单元。

有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。

有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。

经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

步骤有限元分析的基本步骤通常为:第一步前处理。

根据实际问题定义求解模型,包括以下几个方面:(1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。

(2) 定义单元类型:(3) 定义单元的材料属性:(4) 定义单元的几何属性,如长度、面积等;(5) 定义单元的连通性:(6) 定义单元的基函数;(7) 定义边界条件:(8) 定义载荷。

第二步总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。

总装是在相邻单元结点进行。

状态变量及其导数(如果可能)连续性建立在结点处。

联立方程组的求解可用直接法、迭代法。

CAE课有限元分析理论基础

CAE课有限元分析理论基础

类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化

有限元分析法概述

有限元分析法概述

第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。

它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。

在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。

求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。

应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。

而对于绝大多数问题,则很少能得出解析解。

这就需要研究它的数值解法,以求出近似解。

目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。

其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。

下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。

如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。

其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。

已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。

① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。

根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。

第二章有限元分析基本理论

第二章有限元分析基本理论

第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。

它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。

有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。

首先是离散化。

离散化是指将原始的连续问题转化为离散的子问题。

有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。

每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。

离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。

接下来是加权残差方法。

加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。

弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。

在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。

通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。

最后是求解方法。

有限元分析的求解方法主要包括直接法和迭代法。

直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。

而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。

迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。

在求解中还需要注意计算误差的控制和收敛性的判定。

除了这三个基本理论,有限元分析还有一些相关的概念和技术。

例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。

这些概念和技术在具体的有限元分析应用中,有着重要的作用。

综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。

离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。

掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。

第一节有限元分析概述

第一节有限元分析概述

第一节有限元分析概述有限元分析是一种数值计算方法,用于求解连续物体的力学问题。

它是将连续体划分成有限个小元素,利用元素间的相互关系来近似描述物体的行为。

有限元分析可以用于求解各种力学问题,如固体力学、流体力学、热传导等。

有限元分析的基本步骤包括建立模型、离散化、求解和分析结果。

首先,需要根据实际问题建立一个几何形状和边界条件的模型。

然后,将模型离散化为有限个小元素,每个元素具有一些简单的形状和几何特征。

接下来,需要确定每个元素内部的应力和变形的形式,这通常与所采用的数学模型有关。

然后,根据力学原理和边界条件,可以通过数值方法求解每个元素的应力和变形。

最后,可以对求解结果进行后处理,分析模型的响应,并检查结果的合理性。

有限元分析的优点之一是可以处理复杂的几何形状。

因为问题的几何形状是通过离散化成有限个小元素来描述的,所以可以处理各种形状的物体,包括曲线、曲面和体积。

同时,有限元分析还可以考虑非线性和不均匀性。

对于具有非线性特性的材料或结构,可以通过数值方法来求解其行为。

此外,有限元分析还可以处理多物理场的耦合问题,如流固耦合、热力耦合等。

然而,有限元分析也有一些局限性。

首先,离散化过程中需要选择合适的元素类型和大小。

选择不当的元素可能导致结果的不准确性。

其次,有限元分析需要耗费大量的计算资源。

由于模型通常包含大量的节点和单元,需要进行大规模的计算,对计算机的存储和计算能力有一定的要求。

最后,有限元分析的结果需要进行验证和验证。

由于模型的简化和假设,有限元分析的结果可能与实际情况存在一定的差异,需要通过实验数据进行验证和验证。

总的来说,有限元分析是一种有效的数值计算方法,用于求解连续体的力学问题。

它可以处理复杂的几何形状、非线性和不均匀材料,以及多物理场的耦合问题。

然而,它也有一定的局限性,需要合适的离散化、大量的计算资源和验证结果的步骤。

在实际应用中,需要根据具体问题的性质和要求,选择适当的数值方法和参数,以获得准确可靠的结果。

有限元分析的力学基础

有限元分析的力学基础

应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等

有限元基本原理与概念

有限元基本原理与概念

有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。

它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。

有限元基本原理和概念是进行有限元分析的关键。

有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。

离散化的目的是将大问题转化为小问题,简化求解过程。

2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。

它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。

3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。

该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。

4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。

这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。

5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。

这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。

有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。

常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。

2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。

节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。

3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。

在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。

4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。

这些参数用于描述材料的力学行为和应力-应变关系。

5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。

有限元分析的基本原理

有限元分析的基本原理

有限元分析的基本原理有限元分析可以简单地被定义为利用有限元函数对复杂的工作进行分析的一种方法。

它是一种建模方法,可以用于分析和计算复杂的物理系统,比如结构、机械、流体和声学。

有限元分析之所以受到青睐,是因为它具有许多优点,主要使用计算机仿真软件,减少了计算时间和金钱开支,能够模拟复杂庞大的结构行为,其结果也是相当准确可靠的。

有限元分析的基本原理是求解复杂系统的基本方法,可以分析任意形状的物体,例如结构的弯曲,几何参数的变化,材料的物理性质,应力、应变和应变能等。

它也可以用于模拟复杂的流体流动,声学及复杂系统的动力学运动。

有限元分析的基本思想有两个方面:划分和表示。

首先,划分是指将结构(比如,受力或者被测量的物体)按照一定尺度进行划分,这些尺度被称为有限元,它们可以是球形,不规则多面体,或者任意形状的小单元。

其次,表示是指通过引入一系列的有限元函数来描述物体的力学行为,它们包括位移、应变、应力以及弹性能量等。

此外,执行有限元分析的步骤也非常重要。

首先,应先确定结构和物体的几何形状,然后确定材料的物理性质,如弹性模量、断裂力学模型等。

接着,应该给出材料的边界条件,包括温度场、加载或者支撑等,确定模型的基本形状。

最后,可以确定该系统的外力场,并通过计算机仿真软件来解决有限元方程,从而获得复杂结构的应力、应变和位移等参数。

有限元分析一直被广泛应用在工程、物理和力学领域,因为它能够模拟复杂的结构行为,结果也是相当精确可靠的。

它有助于更好地揭示物体的力学性质,而且还能够分析复杂的流体流动、声学及动力学运动的物理行为。

此外,有限元分析开支也更少,时间也更短,所以它一直被广泛地用于工程设计。

综上所述,有限元分析是一种有效的求解复杂系统方法,使用计算机仿真软件,可以分析任意形状的物体,结果也是相当准确可靠的。

它一直被广泛用于工程、物理和力学领域,但仍然存在许多改进和发展的空间。

有限元分析常用基本概念

有限元分析常用基本概念

平面应力状态平面应变状态平面应力问题:所有应力都在一个平面内,Z向应力0,如薄板受与板平行且共面的力作用下一般是平面应力问题。

平面应变问题:所有应变都在一个平面内,Z向应变为0,如坝体,炮筒等,Z 向尺寸远远大于另外两个方向的尺寸,而且不考虑沿Z向的外力,只考虑垂直Z 向的外力。

平面应力就是说一个方向的应力可忽略,当然平面应变就是一个方向的应变可以忽略.如果某一方向(Z轴吧)在空间很长(相对其他两个方向而言),那么在这个方向的应变就可以忽略不计,但是这个方向的应力不一定为零。

----这就是平面应变问题。

长圆筒、水坝、等等都属于平面应变问题。

如果研究对象z轴不是很长(相对其他两个方向而言),且在z轴俩外表面上不受力,则在这个方向上应力可以忽略,但其应变不一定为零,-----这就是平面应力问题,板也可以看作属于平面应力问题。

对一般我门处理的问题,根据z轴的长短可简单判断其属于那个问题,长--平面应变;短----平面应力。

沙漏模式沙漏模式也就零能模式,他在理论上是一种存在的一种变形模式,但是在实际模型中是不可能存上的。

零能模式就是指有变形,但是不消耗能量。

显然是一种伪变形模式,若不加以控制,计算模型会变得不稳定,并且计算出来的结果也是没有多大意义的。

要加抵制这种变形模式就得相应的消耗一定的能量,也就是沙漏能,如果这个比值太多,就说明模型和实际的变形有很大的差别,当然是不正确的。

这也是缩减积分所付出的代价。

用全积分单元可以解决这个问题,但是效率不高,有可能导致体积锁死,过刚的一些问题。

剪切锁死shear locking 是FEM 造成的數值誤差, 發生於細長結構的分析,圣维南原理分布于弹性体上一小块面积(或体积)内的载荷所引起的物体中的应力,在离载荷作用区稍远的地方,基本上只同载荷的合力和合力矩有关;载荷的具体分布只影响载荷作用区附近的应力分布。

还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的载荷的合力和合力矩都等于零,则在远离载荷作用区的地方,应力就小得几乎等于零。

有限元基本理论

有限元基本理论

一、有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。

由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。

(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。

单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。

(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。

(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。

显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。

图1 有限元分析流程图二、有限元分析过程概述1 结构的离散化结构的离散化是有限单元法分析的第一步,它是有限单元法的基本概念。

所谓离散化简单地说,就是将要分析的结构物分割成有限个单元体,并在单元体的指定点设置结点,使相邻单元的有关参数具有一定的连续性,并构成一个单元的集合体,以它代替原来的结构。

如果分析的对象是桁架,那么这种划分十分明显,可以取每根杆件作为一个单元,因为桁架本来是由杆件组成的。

但是如果分析的对象是连续体,那么为了有效地逼近实际的连续体,就需要考虑选择单元的形状和分割方案以及确定单元和结点的数目等问题。

2 选择位移模式在完成结构的离散之后,就可以对典型单元进行特性分析。

此时,为了能用结点位移表示单元体的位移、应变和应力,在分析连续体问题时,必须对单元中位移的分布作出一定的假设,也就是假定位移是坐标的某种简单的函数,这种函数称为位移模式或插值函数。

选择适当的位移函数是有限单元法分析中的关键。

通常选择多项式作为位移模式。

其原因是因为多项式的数学运算(微分和积分)比较方便,并且由于所有光滑函数的局部,都可以用多项式逼近。

有限元中, 是怎样处理分布载荷的。 并用圣维南定理解释

有限元中, 是怎样处理分布载荷的。 并用圣维南定理解释

有限元中, 是怎样处理分布载荷的。

并用圣维南定理解释一、有限元基本概念及分布载荷的处理方法1.有限元基本概念有限元分析是一种数值分析方法,它将连续体的力学问题转化为离散点的平衡问题。

在有限元分析中,我们将所研究的问题划分为若干个小的部分,即单元,然后用有限数量的未知量来描述这些单元的应力、应变等状态。

通过对这些未知量的求解,我们可以得到整个连续体的力学性能。

2.分布载荷的处理方法在有限元分析中,分布载荷的处理方法主要有以下几种:(1)等效节点载荷法:将分布载荷等效为一个节点上的集中载荷,然后按照常规的有限元方法进行求解。

(2)单元载荷法:将分布载荷直接作用在单元上,通过单元的刚度矩阵来传递载荷,从而实现分布载荷的求解。

(3)分区法:将载荷分区,对每个分区内的分布载荷进行积分,得到集中载荷,然后与常规有限元方法相结合进行求解。

二、圣维南定理及其应用1.圣维南定理的定义及意义圣维南定理(Saint-Venant"s theorem)是指在弹性力学中,对于某一区域内,当载荷作用在局部区域时,只要局部区域的尺寸远小于整个结构的其他尺寸,那么该局部区域的应力分布可以近似地看作是均匀的。

2.圣维南定理在有限元分析中的应用在有限元分析中,圣维南定理可以用来简化局部区域的应力分析。

当分布载荷作用在局部区域时,我们可以将局部区域的应力分布近似为均匀分布,从而简化计算。

此外,圣维南定理还可以用于判断局部区域的强度设计是否合理。

三、有限元中分布载荷的处理实例1.二维平面问题实例考虑一个二维平面问题,载荷沿x轴正方向均匀分布。

我们可以将该问题划分为若干个小的矩形单元,然后采用等效节点载荷法或单元载荷法进行求解。

根据圣维南定理,我们可以将分布载荷近似为均匀分布,从而简化计算。

2.三维空间问题实例考虑一个三维空间问题,载荷沿一个球壳表面均匀分布。

我们可以将该问题划分为若干个小的球壳单元,然后采用等效节点载荷法或单元载荷法进行求解。

有限元分析基础

有限元分析基础

第一讲第一章有限元的基本根念Basic Concepts of the Finite Element Method1.1引言(introduction)有限元(FEM或FEA)是一种获取近似边值问题的计算方法。

边值问题(boundary value problems, 场问题field problem)是一种数学问题(mathematical problems)(在所研究的区域,一些相关变量满足微分方程如物理方程、位移协调方程等且满足特定的区域边界)。

边值问题也称为场问题,场是指我们研究的区域,并代表一种物理模型。

场变量是满足微分方程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。

根据所分析物理问题的不同,场变量包括位移、温度、热量等。

1.2有限元法的基本思路(how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。

下面用在自重作用下的等截面直杆来说明有限元法的思路。

等截面直杆在自重作用下的材料力学解答图1.1 受自重作用的等截面直杆 图1.2 离散后的直杆 受自重作用的等截面直杆如图所示,杆的长度为L ,截面积为A ,弹性模量为E ,单位长度的重量为q ,杆的内力为N 。

试求:杆的位移分布,杆的应变和应力。

)()(x L q x N -=EAdx x L q EA dx x N x dL )()()(-== ⎰-==xx Lx EA q EA dx x N x u 02)2()()( (1))(x L EAq dx du x -==ε )(x L A q E x x -==εσ 等截面直杆在自重作用下的有限元法解答(1) 离散化如图1.2所示,将直杆划分成n 个有限段,有限段之间通过一个铰接点连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括 选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从 而形成单元矩阵(结构力学中称刚度阵或柔度阵)。 为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应 注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而 且有缺秩的危险,将导致无法求解。 第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解 域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进 行,状态变量及其导数(可能的话)连续性建立在结点处。 第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求 解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果 的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。 简言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模 型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结 果。
有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世 纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但 作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空 器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓 厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从 结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并 且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的 子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地 将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一 种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元 域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法 的原因之一。
有限元分析的基本概念
元计算专家介绍:有限元分析(FEA,Finite Element Analysis)的基本概念是用 较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小 的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解 这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确 解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难 以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为 行之有效的工程分析手段。
Thank you
ห้องสมุดไป่ตู้
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具 体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:
第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有 限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散 域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散 化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题 状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的 泛函形式。
相关文档
最新文档