数字信号处理基础-Z变换

合集下载

数字信号处理-z变换(new1)

数字信号处理-z变换(new1)


z n1 1 z 4)(z 4
数字信号处理-第二章z变换与离散时间傅立叶变换(DTFT)
(1)
n 1 1 n 1 , X ( z ) z 在收敛域中作围线c, 当 在围线内有一个一阶极点 z 1 4 n 1 z 当 n 2, X ( z ) z 围线内有一个一阶极点 4 和一个高阶极点 z 0 n 1 1 故此时改求围线外留数。 j Im z 4 n 1, x(n) Re s[ X ( z ) z n 1 ] 1 z 1 4 ( 4) 4 4 ( n 1) 4n 4 , n 1 C 15 15 n 2, x(n) Re s[ X ( z ) z n 1 ]z 4 1/4 4
零点
z 0, z
有三种收敛域:
1 左边序列 2 1 2 ( 2) z 双边序列 2 3 (1) z
3 3 2 2 1 , z 极点z j , z j , z 4 4 3 3 2
2 (3) z 3
右边序列
数字信号处理-第二章z变换与离散时间傅立叶变换(DTFT)
例如:
5 2 z 1 1 n z x1 (n) u ( n 5) z 2 z 1 2z 2 n 2 n 5 1 0 z 2 n n n 5 5 2 z 1 1 n z x2 (n) u ( n 5) z 2 z 1 2z 2 n 2 n 5 1 0 z 2 n n n 5
j Im z
n 1, x(n) Re s[ X ( z ) z n 1 ]
n 1
z
1 4
Re s[ X ( z ) z n 1 ] z 4

数字信号处理(程佩青) 第二章 Z变换PPT资料优秀版

数字信号处理(程佩青) 第二章 Z变换PPT资料优秀版

分子多项式P(z)的根是X(z)的零点,分母多项式Q(z)的根是 X(z)的极点。在极点处Z变换不存在,因此收敛域中没有极点, 收敛域总是用极点界定其边界。
不同形式的序列其收敛域形式不同,分别讨论如下:
12
2. z变换的收敛域
(1)有限长序列
在有限区间 n1 nn2之内具有不为零的有限
值的序列。其z变换为:
n2
X(z) x(n)zn nn1
(2.2)
要使(2.2)式收敛,则需要满足
x(n)zn n1 nn2
由于x(n)为有限值,所以要求
zn
n1 nn2
13
2. z变换的收敛域
显然在 0 z 上,都满足该条件。所以有限长序列 的收敛域为:
0 z
在n1,n2的特殊选择下,收敛域为:
0 z n1 0
Fourier 变换
由于x(n)为有限值,所以要求
(9)
设X(z)与Y(z)分别是x(n)与y(n)的z变换,即
(2)当n≤-2时:函数
在围线C外只有一个 4 一阶极点。
假如知道了向量r, p和k,利用residuez.
因果序列及其收敛域(包括z=∞ )
19
2. z变换的收敛域
(3)左边序列
在n n 2 时 x n 有值,在 n n 2 时 x n 0
收敛区域:对于所有的序列或所有的z值,z变换并 不总是收敛的。对于任意给定的序列,使z变换收敛的z 值集合称作收敛区域:
{Z:X(z)存在}=收敛区域。
注意:z变换收敛域的概念很重要,不同的 序列可能有相同的z变换表达式,但是收敛域却 不同。所以应该特别注意,只有当z变换的表达
式与收敛域都相同时,才能判定两个序列相等。

数字信号处理,第二章 Z变换讲解

数字信号处理,第二章 Z变换讲解

二、右边序列
例3:求序列 x(n) u(n)的Z变换及收敛域。
Z[x(n)] u(n)zn zn
n
n0
1 1 1 z z2
1 1 z 1
z z 1
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
Z[u(n) u(n 1)]
Z[u(n)] Z[u(n 1)]
s1in2zz1
1 sin(0 cos0
z 2
)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
即: x(n)z n M n
一、有限长序列
例1:求序列 x(n) RN (n) 的Z变换及收敛域。
Z[RN (n)]
RN (n)zn
n
N 1
z n
n0
1 zN 1 z1
收敛域为: 0 z ,
例2:求序列 x(n) (n)的Z变换及收敛域。
解:
Z[ (n)] (n)zn z0 1
z z1 z z 1 1
z 1
z 1 z 1
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
u(n) u(n 1) (n), Z[ (n)] 1
例4:求序列 x(n) anu(n)的Z变换及收敛域。
解: X (z) anu(n)z n a n z n (az 1 )n
例2-4-2:
X
(
z)

z变换公式

z变换公式

z变换公式在信号处理领域中,z变换是一种将离散时间序列转换为复频域的工具。

它在数字信号处理、控制系统分析和通信工程等领域中广泛应用。

本文将详细介绍z变换的概念、特性以及常见的z变换公式。

一、z变换的概念z变换是对离散时间信号进行频域分析的一种方法。

它类似于傅里叶变换,但傅里叶变换只适用于连续时间信号,而z变换适用于离散时间信号。

通过将离散时间序列表示为z的幂级数形式,可以将离散时间信号在复频域中进行表示和分析。

z变换的定义如下:X(z) = Z{x(n)} = ∑[ x(n) * z^(-n)] (1)其中,x(n)是离散时间序列,X(z)是x(n)的z变换。

二、z变换的特性与傅里叶变换类似,z变换也具有线性性、时移性、共轭性和卷积性质。

下面对每个特性进行详细讨论。

1. 线性性z变换具有线性性质,即对于任意常数a和b以及离散时间序列x1(n)和x2(n),有以下公式成立:Z{a * x1(n) + b * x2(n)} = a * X1(z) + b * X2(z) (2)其中,X1(z)和X2(z)分别是x1(n)和x2(n)的z变换。

2. 时移性z变换具有时移性质,即对于离散时间序列x(n - k),其z变换为Z{x(n - k)} = z^(-k) * X(z)。

3. 共轭性z变换具有共轭性质,即如果x(n)的z变换为X(z),则x*(-n)的z 变换为X*(1/z*),其中,*表示共轭。

4. 卷积性质z变换具有卷积性质,即对于离散时间序列x1(n)和x2(n)的卷积序列y(n) = x1(n) * x2(n),其z变换为Y(z) = X1(z) * X2(z),其中,*表示乘法运算。

三、常见的z变换公式根据z变换的定义和特性,可以得到一些常见的z变换公式,下面将逐个进行介绍。

1. 常数序列对于常数序列x(n) = C,其z变换为X(z) = C * (1 - z^(-1)) / (1 - z^(-1))。

数字信号处理-z变换与离散时间傅立叶变换(DTFT)

数字信号处理-z变换与离散时间傅立叶变换(DTFT)
离散时间系统
N a i y i ( n ) T a i xi ( n ) i 1 i 1
N
9
4.移不变系统
——系统的响应与激励施加于系统的时刻无关
x ( n)
移位m
T[ ]
T [ x(n m)]
x ( n)
T[ ]
移位m
y ( n m)
10
5.单位抽样响应与卷积和
序列x(n)的Fourier反变换定义:
a<-1
0<a<1
-1<a<0
a=1
a=-1
7
5.复指数序列 x(n) Ca n
x(n) C a n cos(0 n ) j sin( 0 n )
|a|=1
C C e j a a e j0
|a|>1
|a|<1
8
3.线性系统
——满足叠加原理(可加性、比例性)
15
1.1 z变换的定义
序列x(n)的Z变换定义为:
X ( z) Z x(n) x(n) z
n

n
Z是复变量,所在的平面称为Z平面
16
1.2 z变换的收敛域
对于任意给定的序列x(n),使其Z变换X(z)收敛的所有z值
的集合称为X(z)的收敛域(Region of convergence,ROC)。
=X (e
jT
ˆ ( j ) ) X a
抽样序列在单位圆上的z变换=其理想抽样信号的傅里叶变换
52
第五节 序列的傅立叶变换(DTFT)
5.1 序列的傅立叶变换定义
序列x(n)的Fourier变换定义:
X (e ) DTFT [ x(n)]

数字信号处理第2章Z变换

数字信号处理第2章Z变换

s=jΩ X(S)
z=esT
X(z) z=ejω
模拟:x(t)
X(j) =T
X(ejω)
t=nT
s
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
一、离散系统的系统函数
1、差分方程和系统函数的关系
系统的差分方程为:
对方程两边做z变换,得:
整理得系统函数为:
2、 H(z)和单位抽样响应h(n) 的关系
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
=0,S平面的实轴,
=0,z平面正实轴;
=0(常数), S:平行实轴的直线,
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
①极点zk,为D(z)=0的根 ②计算系数Ak时,要写成:
③利用已知z变换时,注意收敛域
配分法: 例2-4-1:
(在滤波器的设计中,分子、分母通常写成负幂的形式)
求系数Ak
例2-4-2:
利用z变换的时移性质: 令: 则:
长除法-原理
即D(z)除以N(z)的商为z的多项式,多项式的系数即为序列x(n) 左边序列对应z的正次幂的系数,右边序列对应z的负次幂的系数

数字信号处理讲义--第4章z变换

数字信号处理讲义--第4章z变换

数字信号处理讲义--第4章z变换第4章 z 变换[教学⽬的]1.了解Z 变换的概念,能求常⽤函数的Z 变换,能确定Z 变换的收敛域。

2.掌握各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换。

[教学重点与难点] 重点:1.Z 变换的概念,常⽤函数的Z 变换求解,Z 变换的收敛域; 2.各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换;难点:本章主要内容基本在信号与系统中学过,基本⽆难点,但如学⽣基础较差,还是要从以上三个重点内容去复习。

8.了解离散时间随机信号的概念。

[教学重点与难点] 重点:1.掌握线性时不变系统的概念与性质; 2.离散时间信号与系统的频域表⽰;难点:离散信号系统的性质如线性性,时不变性,因果性,稳定性的判定是本章的⼀个难点。

4.1 Z 变换(1) Z 变换的定义⼀个离散序列x (n )的Z 变换定义为式中,z 是⼀个复变量,它所在的复平⾯称为Z 平⾯。

我们常⽤Z [x (n )]表⽰对序列x (n )进⾏Z 变换,也即这种变换也称为双边Z 变换,与此相应的单边Z 变换的定义如下:∑∞-∞=-=n nz n x z X )()()()]([z X n x Z =∑∞=-=0)()(n nz n x z X这种单边Z 变换的求和限是从零到⽆穷,因此对于因果序列,⽤两种Z 变换定义计算出的结果是⼀样的。

单边Z 变换只有在少数⼏种情况下与双边Z 变换有所区别。

⽐如,需要考虑序列的起始条件,其他特性则都和双边Z 变换相同。

本书中如不另外说明,均⽤双边Z变换对信号进⾏分析和变换。

(2)Z 变换与傅⽴叶变换的关系:单位圆上的Z 变换是和模拟信号的频谱相联系的,因⽽常称单位圆上序列的Z 变换为序列的傅⾥叶变换,也称为数字序列的频谱。

数字频谱是其被采样的连续信号频谱周期延拓后再对采样频率的归⼀化。

单位圆上序列的Z 变换为序列的傅⾥叶变换,根据式(1-54)Z 变换的定义,⽤ej ω代替z ,从⽽就可以得到序列傅⾥叶变换的定义为可得其反变换:(3)Z 变换存在的条件: 正变换与反变换:存在的⼀个充分条件是:∑∞-∞==Ω=??-=Ω==k a Taj e z T k j X T j X e X z X j πωωωω21)(?)()(/nj n j en x e X n x F ωω-∞-∞=∑==)()()]([ωππωππωωd e eX dz z z X j e X F n x n j j n z j ??--=-===)(21)(21)]([)(11||1∑∞-∞=-==n nj j en x e X n x F ωω)()()]([ωπωωππωd e e X n x e X F n j j j )(21)()]([1?--==即:绝对可加性是傅⾥叶变换表⽰存在的⼀个充分条件。

数字信号处理第二章Z变换

数字信号处理第二章Z变换
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
LT主要问题:收敛域、极点、反变换
常用的LT:
S平面与Z平面的映射关系
连续信号xa(nT)抽样后为 抽样信号的拉氏变换为
抽样序列x(n)=xa(nT) 的z变换为 比较两式得s平面到z平面的映射关系为:
(主要应用于AF到DF转换)
•将s平面用直角坐标表示:

横坐标为,纵坐标为模拟角频率;
•将z平面用极坐标表示:
,|a|<1
|a|<|z|<1/|a|
双边序列的收敛域是左边序列和右边序列z变换的 公共收敛区间。
课本P27表2.1
作业2.1(2)(6)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)

横坐标为实轴,纵坐标为虚轴;
•两平面都是复平面。
(1)r与的关系

=0,即S平面的虚轴→r=1,即z平面单位圆; <0,即S的左半平面→r<1,即z的单位圆内; >0,即S的右半平面→r>1,即z的单位圆外 。
j
0
0

r=0,=0时, =–,=0,即z平面的原点映射

第三章--Z变换(数字信号处理)

第三章--Z变换(数字信号处理)
R
综合以上二步可得 x(n) anu(n)
例 3.7已知 换x(n)。
第三章 序列的Z变换
X (z)
1 a2 (1 az)(1 az1) ,
a
1,
求其反变
解: 该例题没有给定收敛域, 为求出唯一旳原序 列x(n), 必须先拟定收敛域。 分析X(z), 得到其极点 分布如图3.5所示。 图中有二个极点z=a和z=a-1, 这么 收敛域有三种选法, 它们是
n n1
设x(n)为有界序列, 因为是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 假如n1<0, 则收敛域不涉及∞点; 如n2>0, 则 收敛域不涉及z=0点; 假如是因果序列, 收敛域涉及
z=∞点。 详细有限长序列旳收敛域表达如下:
第三章 序列的Z变换
第三章 序列的Z变换
n 0, x(n) Re s[F (z), a] Re s[F (z), a1]
a(
(1 a2 z a)(
)zn z
a
1
)
(
z
a
)
za
(1 a2 )zn a(z a)(z a1) (z
a1)
z a 1
an (an ) an an
最终将x(n)表达成
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小旳收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 假如x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)旳Z变换旳收敛域包括∞点,则x(n) 是因果序列

《数字信号处理》第六章 Z变换

《数字信号处理》第六章  Z变换

第一节 Z变换的定义
例1:求 x(n)=(1/2)nu(n) 的z变换
解:
X (z)

x(n)zn

(1)nu(n)zn


z
n


n
n 2
n0 2
例2:求 x(n)=-(1/2)nu(-n-1)的z变换
解:
X (z)

x(n)zn
A( z )

1 za

1 a
1 1 1
z
a
按等比级数有
A(z)


1 a
(1
1 a
z

1 a2
z2
)
at
{
1 a
,
1 a2
,
1 a3
,, ,
1 a n 1
,)
第四节 Z反变换
当 a 1时,
A( z )

z
1 a

11 z 1 az 1
按等比级数有
A(z) 1 (1 az1 a2 z2 ) z
解:
Z [u(n)] 1 , z 1
1 z
Z [u(n 3)] z3
1

z3 ,
z 1
1 z 1 z
Z [x(n)] 1 z3 z2 z 1, z 1 1 z 1 z
例4 已知序列x(n)的z变换为X(Z),求
7X(z)+3zX(z)+8z2X(z) +z3X(z) +6z5X(z)所对应的信号
k


zk
k 0
1 1 z
这是一个等比级数,当|z|<1时,该级数收敛。

信号与系统第六章Z变换

信号与系统第六章Z变换

差分方程的稳定性分析
01
稳定性定义
02
稳定性判据
如果一个离散时间系统在输入信号的 作用下,其输出信号不会无限增长, 则称该系统是稳定的。
对于差分方程,可以通过判断其极点 位置和类型来分析系统的稳定性。如 果所有极点都位于复平面的左半部分 ,则系统是稳定的;否则,系统是不 稳定的。
03
稳定性分析的意义
反转性质在通信和控制系统设计中非常有用,因为它允 许我们通过改变信号的方向来改变系统的性能。
卷积性质
卷积性质描述了z变换的卷积特性。如 果两个信号在时间上相乘,那么它们 的z变换就是它们的卷积。
卷积性质在信号处理中非常重要,因 为它允许我们通过将两个信号相乘来 得到一个新的信号。
复共轭性质
复共轭性质描述了z变换的复共轭特性。如果一个信号是实数,那么其z变换就是其复共轭的离散化表 示。
信号与系统第六章z 变换
目录
CONTENTS
• 引言 • z变换的收敛域 • z变换的性质和应用 • z变换与离散时间系统 • z变换与差分方程 • z变换与信号处理
01
引言
背景介绍
ห้องสมุดไป่ตู้
信号与系统是通信、电子、控制等领 域的重要基础课程,其中第六章z变换 是信号与系统中的重要章节之一。
z变换是离散时间信号处理中的一种数 学工具,用于分析离散时间信号和系 统的性质和行为。
离散信号的z变换
离散信号的z变换是将离散时间序列通过z变 换转换为复数序列,用于分析离散时间系统 的特性。
系统的频率响应和极点零点分析
01
系统的频率响应
02
系统的极点和零点
03
系统稳定性分析
通过z变换分析系统的频率响应, 了解系统在不同频率下的性能表 现。

数字信号处理z变换

数字信号处理z变换

X (s) X ( j) x(t)e jdt
s j
拉普拉斯变换演变为傅里叶变换
– 0 ,s平面的左半面,对应 r eT 1,单位圆内
– 0 , s平面的右半面,对应 r eT 1,单位圆外
z变换与拉氏变换的映射关系
映射
1)s平面上的虚轴 z平面上的单位圆r=1
映射
2)s平面上的左半平面 z平面上的单位圆内r<1
X (z) x(n)zn n
与z变换的定义一致
拉普拉斯复变量 s j , 2 f 对应连续系统及连续 信号的角频率,单位是弧度/秒
z esTs e( j)Ts eTs e jTs
令 r eTs Ts
则 z re j
对应离散系统和离散信号的圆周频率,单位是弧度
X (z) x(n)(re j )n x(n)rn e jn
例1 已知f (t) eatu(t),(a 0) 和F( j) 1
,求f (t )拉普拉
j a
斯变换
F(s) F( j) 1 js s a
收敛域如图a),包括虚轴
例2 求t的指数函数 f (t) eatu(t) ,(a为任意常数)的拉普拉
斯变换
F (s) eatestdt e(sa)tdt
X (z) x(n)zn n0
显然,仅当 x(n) 0, n 0 时,双边和单边z变换才相等。
X (z) 2z 11.5z1 z2 0.5z3
由拉普拉斯变换到z变换
x(nTs ) 是由连续信号x(t)经抽样得到的
x(nTs ) xa (t) (t nTs ) xa (nTs ) (t nTs )
又z esTs ,
其中Ts为序列时间间隔
2
s

中国石油大学《数字信号处理》第六七章-Z变换

中国石油大学《数字信号处理》第六七章-Z变换

的形式 ,其中x2+Ax+B是实数范围内的不可约多
项式,而且k是正整数。这时,称各分式为原分式
的“部分分式”。
第四节 Z反变换
通常,X(z)可表成有 理分式形式:
M
X
(z)
B(z) A( z )
bi zi
i0
N
1 ai zi
i 1
因此,X(z)可以展成以下部分分式形式:
X
(z)
M N
Bn zn
Z [anx(n)] X (az) , Rx a z Rx
证明: Z [an x(n)] an x(n)zn n x(n)(az)n X (az) ; n
Rx az Rx ;
即 Rx z Rx
a
a
第三节 Z变换的基本性质
4. 序列的反转
如果 Z [x(n)] X (z), Rx, 则z Rx
H (e j ) F[h(n)] h(n)e jn n
这就是系统的频率响应。H(ejω)又称为系统的 传输函数。
则rxy(m)的Z变换为
Rxy
(z)
X
(z)Y
(1) z
若 y(n) = x(n),则自相关序列rxx(m)的Z变换为
Rxx
(z)
X
(z)X
(1) z
第三节 Z变换的基本性质
例4 已知x(n) anu(n), h(n) bnu(n) abn1u(n 1), 求y(n) x(n) h(n), b a .
则 y(n) x(n)*h(n)
Z [y(n)] Y (z) X (z)H (z)
Ry
z
R y
其中:
Ry max[ Rx, Rh ],
R y

数字信号处理DSP第二章1z变换的定义及收敛域

数字信号处理DSP第二章1z变换的定义及收敛域

n 1
n1
当 a1z 1时
a 1 z 1 a1z
1 1 az1
j Im[z]
Roc : z a
零点:z 0 极点:z a
2024/8/3
数字信号处理
a Re[z]
0
例4:求x(n) a n,a为实数,求其z变换及其收敛域
1
解:X(z)= x(n)zn = a n zn = an zn an zn
– 左边序列的z变换收敛域一定在模最小的有 限极点所在圆之内
2024/8/3
数字信号处理
j Im[z]
a
b 0
c
Re[z]
j Im[z]
a 0
b Re[z] c
j Im[z]
a
b Re[z]
0 c
2024/8/3
数字信号处理
j Im[z]
a
b 0
Re[z] c
Roc : 0 z

0 n1 n2
0n n 0 Roc : 0 z
n1 n2 0
2024/8/3
0n 0 n Roc : 0 z
数字信号处理
2)右边序列
x(n)
x(n)
0
n n1 n n1
1
其Z变换:X (z) x(n)zn x(n)zn
当n2 0时,Roc : 0 z Rx 当n2 0时,Roc : 0 z Rx
2024/8/3
数字信号处理
Re[z]
0
Rx
n2 0
4)双边序列
n为任意值时皆有值
1
其z变换:X (z) x(n)zn x(n)zn
n
n0
j Im[z]
前式Roc: 0 z Rx

数字信号处理基础-Z变换

数字信号处理基础-Z变换
∞ n = n1
区间内, n1 区间内,有非零的有限值的序列 x(n)
X ( z ) = ∑ x ( n) z − n
n1 ≤ n ≤ ∞
lim
n →∞ n →∞
n
x ( n) z
−n
<1
Rx1
圆外为 收敛域
j Im[z ]
lim n x(n) = Rx1 < z z > Rx1
收敛半径
Re[z ]
k k k →∞ −1
< 1或 z < 2
z < lim 2 = 2
k k k →∞
第二项仅含有Z的负幂的无穷级数 1 −k lim k ( z ) < 1或 z > lim k k →∞ k →∞ 3
k
∴ F ( z )的绝对收敛域为 2 > z >
光机电一体化技术研究所
1 3

n
圆内为收敛域, 圆内为收敛域, 若 n2 > 0 则不包括z=0点 则不包括 点
j Im[z ]
lim
n
n →∞ n n →∞
x ( − n) z < 1 x ( − n) < z 1 lim n x(− n)
n →∞ −1
Rx2

Re[z ]
lim
z >
= Rx2
收敛半径
光机电一体化技术研究所
1.根据级数理论
*比项法:设
ρ < 1,级数收敛。 ρ > 1,级数发散。 ρ = 1,不能肯定。 * 捡根法(柯西准则 )
lim
n→ ∞
a n +1 =ρ an
设: lim a = ρ

数字信号处理z变换

数字信号处理z变换

−n
< ∞,
• 所以X(z)在|z|=R上收敛。 • 由此可进一步证明,在R圆以外,即
R<|z|<∞,x(Z)也必收敛。 • 再看第二项,由于n>n2≥0,|Z|>R,因 此|z|-n<R-n,
• 因此
n = n1
∑ x ( n) z

−n
= ∑ x ( n) z
n = n1
n2
−n
+
n = n2 +1
– P60 – P158 2.33 4.1 4.3 4.6
• 2版
– P73 – P103 2.76 3.1 3.3 3.4
3.3 z反变换
• 3.3.1 观察法 • 3.3.2 部分分式展开法 • 3.3.3 幂级数展开法
3.3.1 观察法
• 公式 • z变换
1 a u[ n] ← ⎯→ , −1 1 − az
x[n] = a u[n]
n
X ( z) =
n =−∞
∑ a u[n]z
n

−n
= ∑ (az )
n =0

−1 n
∑ (az
n =0

−1 n
) <∞
– 收敛域
az
−1
<1
收敛域内
1 z z >a = X ( z ) = ∑ (az ) = 1 − az −1 z − a n =0
−1 n ∞
• 零点 0 • 极点 a • 当 a >1
n n
– 利用 例3.1 3.2的结论
1 ⎛ 1⎞ ⎜ − ⎟ u[n ] ↔ 1 −1 ⎝ 3⎠ 1+ z 3 1 ⎛1⎞ − ⎜ ⎟ u [ − n − 1] ↔ 1 −1 ⎝2⎠ 1− z 2

数字信号处理z变换公式表

数字信号处理z变换公式表

数字信号处理z变换公式表序号变换名称公式。

1双边Z变换定义X(z)=∑_n = -∞^∞x(n)z^-n,收敛域为R_x -<| z|2单边Z变换定义(因果序列)X(z)=∑_n = 0^∞x(n)z^-n,收敛域为| z| > R_x -3Z变换的线性性质若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则ax_1(n)+bx_2(n)↔ aX_1(z)+bX_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)4序列的移位(双边Z变换)若x(n)↔ X(z),R_x -<| z|,则x(n - m)↔ z^-mX(z),收敛域为R_x -<| z|(m为整数)5序列的移位(单边Z变换)若x(n)↔ X(z),则x(n - m)u(n)↔ z^-mX(z)+∑_k =0^m - 1x(k - m)z^-k(m>0),收敛域为| z| > R_x -6Z域尺度变换(乘以指数序列)若x(n)↔ X(z),R_x -<| z|,则a^nx(n)↔X((z)/(a)),收敛域为| a| R_x -<| z|<| a| R_x +(a≠0)7序列的线性加权(Z域求导)若x(n)↔ X(z),R_x -<| z|,则nx(n)↔ -z(dX(z))/(dz),收敛域为R_x -<| z|8序列的反褶若x(n)↔ X(z),R_x -<| z|,则x(-n)↔ X((1)/(z)),收敛域为(1)/(R_x +)<| z|<(1)/(R_x -)9卷积定理(双边Z变换)若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)10卷积定理(单边Z变换)设x_1(n)和x_2(n)为因果序列,x_1(n)↔ X_1(z),x_2(n)↔ X_2(z),则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为| z| >max(R_1 -,R_2 -)11初值定理(因果序列)若x(n)是因果序列,x(n)↔ X(z),则x(0)=lim_z→∞X(z)12终值定理(因果序列,X(z)的极点在单位圆内,最多在z = 1处有一阶极点)若x(n)是因果序列,x(n)↔ X(z),则lim_n→∞x(n)=lim_z→1(z - 1)X(z)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) ZT[δ (n +1)] = ∑δ (n +1)z−n + ∑δ (n +1)z−n
n=−∞ n=0
> 0 z ≠ 0 > 0 z = 0, ) < 0 < 0, z z≠ ≠ )∞ −1 0

= z1 + 0 = z (0 ≤ z < ∞)
光机电一体化技术研究所
ZT [u ( n )] = ∑ u ( n ) z
光机电一体化技术研究所
×
1 Rx1 = 3
1
Re[z ]
3
1 (2) x(n) = − u (−n − 1) 3
1 −1 X ( z) = − ∑ z n = −∞ 3
−1 n n=− m ∞ −m
n
左边序列
1 −1 = − ∑ z m =1 3 ∞ 1 z m j Im[z ] = 1 − ∑ (3 z ) = 1 − = −1 1 1 − 3z m=0 z− Rx2 3 Re[z ] lim n (3 z ) n < 1 • ×
1
2
3
4
n
光机电一体化技术研究所
Z变换定义,典型序列的Z变换 变换定义,典型序列的 变换 变换定义
单: X (z) = ∑ x(n)z
n=0 ∞ −n
双 : X ( z) =
n = −∞
x ( n) z − n ∑

典型序列的Z 典型序列的Z变换 • • • • • 单位样值序列 单位阶跃序列 斜变序列 指数序列 正弦余弦序列
n →∞
1
1 收敛半径 z < = R x2 3 n = −1 < 0 z ≠ 0
3
圆内为收敛域, 圆内为收敛域, 若 n>0 则不包括z=0点 则不包括 点
光机电一体化技术研究所
1 (3) x(n) = [u (n) − u (n − 8)] 3
7 n
n
有限长序列
1 −1 − (− 1 z −1 )8 + 1 z 8 − ( 1 )8 3 X ( z) = ∑ z = = 7 31 1 −1 1− 3 z z (z − 3) n =0 3
z =( ) e
8 1 8 3
j 2 kπ
收敛域为除了 0 和 的整个
z= e
1 3
j 2 Kπ 8
z 平面
j Im[z ]

8个零点 个零点 7阶极点 阶极点 一阶极点
光机电一体化技术研究所
z=0 z=1 3
×
×
Re[z ]
1 k ( ) 4.双边序列:f (k ) = 3 双边序列:
k ≥0
2k
光机电一体化技术研究所
典型序列的Z变换 典型序列的 变换
(1) ZT [δ ( n)] = ∑ δ (n) z − n = 1 ( z ≥ 0)
n =0 ∞
( 2 ) Z T [δ ( n − m )] = =


δ (n − m ) z −n
n=0
m (m (m m
r=−m


δ (r ) z −(r+m ) = z − m ( p 63 : 位 移 性 )
指数阶函数和指数阶序列之间存在着对应关系,
定义:如有一序列x(n)当n → ∞时存在正数A, a和N 使所有的n ≥ N时都有 x(n) < Aa → 称x(n)为指数阶函数。
n
光机电一体化技术研究所
几类序列的收敛域
(1)有限序列:在有限区间内,有非零的有限值的序列 )有限序列:在有限区间内,
x(n)
k <0
解:F(z) =
−1 3
k = −∞
∑ f (k )z
−1

−k
=
[... + (2 z) + (2 z) + ...]
2
1 −1 1 −1 2 1 −1 3 + [1 + z + ( z ) + ( z ) + ...] 3 3 3
光机电一体化技术研究所
第一项仅含有 Z 的正幂无穷级数 lim ( 2 z ) < 1, 条件是 z 2
k k k →∞ −1
< 1或 z < 2
z < lim 2 = 2
k k k →∞
第二项仅含有Z的负幂的无穷级数 1 −k lim k ( z ) < 1或 z > lim k k →∞ k →∞ 3
k
∴ F ( z )的绝对收敛域为 2 > z >
光机电一体化技术研究所
1 3
k
1 > 3 1
3
Imz 2
1 3
Rez
1 F(z)的绝对收敛域为 > z > 的圆环。 2 光机电一体化技术研究所 3
Z变换与拉普拉斯的关系
1.从 S 平面到 Z 平面的映射
e =z=e
sT ( σ+ jω)T
=e e

σT jωT
n
ZT [ β e
n
jω 0 n
]=
z
cos ω 0 n ] = ZT [ β n ( e z
jω 0 n
+ e − jω 0 n ) / 2 ]
z = ( + )/2 jω 0 − jω 0 z − βe z − βe z ( z − β cos ω 0 ) = 2 z − 2 z β cos ω 0 + β 2 (z > β)
(4)双边序列:只在 )双边序列:
区间内, − ∞ ≤ n ≤ ∞ 区间内,
X ( z) =
X (z) =
n = −∞ −1
x(n) z − n ∑

有非零的有限值的序列
x(n)
−∞ ≤ n ≤ ∞
−n
n = −∞

x(n) z
+


x(n) z −n
j Im[z ]
n=0
圆内收敛 收敛
Rx2 > Rx1
n=0

−n
=∑z
n=0

−n
1 z = = ( z > 1) −1 1− z z −1
−1
将上式两边分别对 z 求导后,两边各乘 z 得( p 46)
ZT [nu (n)] = ∑ nu (n) z
n=0 ∞ −n
−1
1 z = = −1 2 (1 − z ) ( z − 1) 2
1 z ZT[a u(n)] = ∑a z = = −1 1− az z −a n=0
1.根据级数理论
*比项法:设
ρ < 1,级数收敛。 ρ > 1,级数发散。 ρ = 1,不能肯定。 * 捡根法(柯西准则 )
lim
n→ ∞
a n +1 =ρ an
设: lim a = ρ
n n n→∞
ρ < 1,级数收敛。 ρ > 1,级数发散。 ρ = 1,不能肯定。
光机电一体化技术研究所
如果序列x(n)在每个有限的间隔内是有限的 且当n → ∞时是指数阶的,则它的Z变换存在 于 z > R之范围,这里R是收敛半径。
n n −n

( z > a)
z 由此可以看出z变换的基本形式: z − a
光机电一体化技术研究所
正弦序列的 Z 变换
z ZT [ e ]= jω 0 z−e z − jω 0 n ]= ZT [ e z − e − jω 0 jω 0 n − jω 0 n ZT [sin ω 0 n ] = ZT [( e +e ) / 2 j]
抽样信号的拉氏变换: x s ( t ) = x ( t ).δ T ( t ) = ∑ x ( nT )δ( t − nT )
n =0 ∞
对上式取拉氏变换: x s (t ) = ∫0 x s (t )e dt = ∫0
−st ∞ ∞
∞ x(nT)δ(t − nT)e−st dt ∑ n =0
光机电一体化技术研究所
(3)左边序列:只在 n ≤ )左边序列:
区间内, n2 区间内,有非零的有限值的序列 x(n)
X ( z) =
n = −∞
x ( n) z − n ∑
n2
− ∞ ≤ n ≤ n2
m n=m
X ( z) =
m= − n
m=− n2
∑ x(−m)z
n

=
n=− n2
∑ x(−n) z
圆外收敛 有环状收敛域 没有收敛域
光机电一体化技术研究所
Rx2 > Rx1 Rx2 < Rx1
Re[z ]
求下列序列的 Z变换 , 并标标明收敛域,画出 极图。 1 n 1 . x ( n ) = ( ) u( n ) 3 1 n 2. x ( n ) = − ( ) u( − n − 1) 3 1 n 3. x ( n ) = ( ) [ u( n )u( n − 8)] 3 1 n ( ) n≥0 4. x ( n ) = 3 2n n<o
jω 0 n
z z =( + )/2 j jω 0 − jω 0 z−e z−e z sin ω 0 = 2 z − 2 z cos ω 0 + 1
光机电一体化技术研究所
余弦序列的 Z 变换
z ZT [ e ]= jω 0 z−e z − jω 0 n ZT [ e ]= − jω 0 z−e jω 0 n − jω 0 n ZT [cos ω 0 n ] = ZT [( e +e ) / 2]
相关文档
最新文档