(情绪管理)压力容器的开孔与补强
压力容器的开孔与补强
压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
第十二章压力容器的开孔补强
m
23
(三)应力集中系数的计算
3.椭圆形封头开孔的应力集中系数 椭圆形封头开孔的应力集中系数可以近似的采 用上述球壳开孔接管的曲线,只要将椭圆中心处的 曲率半径折算为球的半径即可
Ri KDi
式中K为修正系数 Di为椭圆封头的内直径 Ri为折算为球壳的当量半径
13
(一)开孔的应力集中
1.平板开小孔的应力集中
σ
σθ
σθ
r
θ σθ σ
max=3σ
σγ
σ
a
r 0
图12-1 平板开小孔时应力集中
平板开孔的最大应力在孔边 孔边沿r=a处: 0,
2
处
2
max 3
14
一、开孔应力集中及应力集中系数
(一)开孔的应力集中 1.平板开小孔的应力集中
10
第二节 开孔及补强设计
一、开孔应力集中及应力集中系数
二、开孔补强设计的要求
三、等面积补强计算
11
一、开孔应力集中及应力集中系数
容器开孔接管后在应力分布与强度方面会带来下 列影响: 1. 开孔破坏了原有的应力分布并引起应力集中。 2. 接管处容器壳体与接管形成结构不连续应力。 3. 壳体与接管连接的拐角处因不等截面过渡而引 起应力集中。 上述三种因素均使开孔或开孔接管部位的 引力比壳体中的膜应力大,统称为开孔或接管 部位的应力集中。
1
第一节 总体设计问题概述
结果在开孔和接管处的局部地区,应力可能达到很大的数值 。这样高的局部应力,有时再加上接管上还受到其他外部载 荷(例如安装的附加弯短、热应力等)以及开孔结构在制造 过程中难兔产生的残余应力等,于是开孔附近往往就成为容 器的破坏源。因此必须对开孔处进行强度校核,如不能满足 强度要求,则必须进行补强。
浅谈压力容器设计中开孔补强设计的应用
浅谈压力容器设计中开孔补强设计的应用设备开孔是压力容器设计及制造过程中一个重要环节,它有助于扩展压力容器的功能性,同时也为开孔设备的维护工作提供便利。
然而不正確的开孔设计,很容易导致设备整体结构受力情况发生转变,使设备在运行中存在较大的安全隐患,所以改善开孔补强设计水平,消除安全隐患非常必要。
标签:压力容器;开孔补强设计;应用一、开孔补强设计压力容器在开孔作业后,其自身受压的平衡性、受压面积以及开孔边缘的应力效应都会存在一定程度上的破坏,进而导致压力容器强度降低,无法达到使用要求。
所以在压力容器设计中,需要通过合理的开孔补强措施来保证压力的平衡性。
我国对于压力容器开孔作业制定了一系列的规范要求,并对锥壳、圆筒以及凸形封头的开孔直径做出明确规定,以增强容器强度。
二、开孔补强的限制条件和设计方法1、限制条件在压力容器开孔作业中,对于开孔直径、形状均有着明确的限制:1)在圆筒开孔作业时,如果圆筒的内径在1500mm以下,那么其开孔直径不得大于0.5D与520mm中的较小值;如果圆筒的内径尺寸大于1500mm,则开孔直径不得大于0.33D与1000mm中的较小值。
2)球状外壳的开孔直径不得超过0.5D。
3)锥形封头的开孔直径要在0.33D以内。
4)椭圆形、长圆形以及圆形结构在进行开孔作业时,其长短轴的比例需控制在2.0以内。
2、设计方法开孔补强的设计方法主要分为两种,局部补强和整体补强。
1)局部补强局部补强具有一定的针对性,是在固定位置上实施开孔作业,且补强的面积相对较小。
该种设计方式主要针对的是钢材屈服强度不超过540MPa、补强厚度在壳厚度的1.5倍以下、容器壳厚度在38mm以内的材料。
其优势为成本低廉,操作便捷,补强时间短,适用范围较广。
不过在使用局部补强时,需要注意的内容有:开孔补强位置在焊缝最大应力区域内,补强作业前需要对焊缝进行磨平处理和无损检测;在开孔作业时很容易存在误差,导致补强件与结构表面的融合效率较差,很容易因为温差变化导致位置出现裂缝,影响容器质量。
压力容器的开孔与补强
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
详解压力容器中开孔补强的一般规定及限制要求
详解压力容器中开孔补强的一般规定及限制要求引言压力容器上的开孔不仅影响结构强度,还会因为接管有着各种载荷所产生的应力、温度应力,以及容器材质和制造缺陷等因素的综合作用,往往是造成容器破坏的根源,所要解决这些问题,就必须了解开孔补强中的规定以及要求。
1.压力容器补强结构解析与一般规定压力容器的补强结构可分为:补强圈搭焊结构和整体补强结构。
1.1补强圈搭焊结构补强当容器采用补强圈搭焊结构时,其应当符合的基本的条件为,容器壳体名义厚度不得大于38mm补强圈的材料厚度不得大于1.5 倍容器壳体的厚度尺寸;使用低合金钢的标准抗拉强度应当小于540MPa若条件许可,优先举荐使用厚壁管代替补强圈进行补强。
当容器为低温压力容器的时候,补强接管应当尽可能采用后壁管进行补强,焊接焊缝应当使用全焊透结构,且焊缝圆滑过渡;带补强板的接管与容器器壁的连接接头应当符合相当于HG/T20583中的G28 G29 G30 G33的要求。
补强板采用与器壁相同的材料,带补强板的结构不得用于容器器壁厚度大于30mm 的场合,也不适用于设计温度低于-40°的场合。
带补强圈的接管与壳体的连接,以及补强圈与壳体搭接的角焊接头壳采用GB15 0中所示结构进行,且接管端部应与容器表面齐平,端部内角应当打磨成R不小于3mm勺圆角。
?a 强圈虽然结构简单,易于加工,但是补强效果较差,补强圈与壳体之间勺间隙不可避免,同时虽然补强圈上设有排气孔,但是补强圈结构在最终勺热处理后应力缺很复杂。
1.2整体补强结构补强当具有下列条件时,应当采用整体补强或者局部整体补强。
①高强度钢(标准抗拉强度大于540MPa和铬钼钢(如15CrMoR 14Cr1MoR 12Cr2Mo1R 制造的压力容器;②补强圈勺厚度大于1.5 倍容器壁厚度;③设计压力大于或者等于4MPa的第三类容器;④容器的壳体壁厚大于或者等于38mm;⑤疲劳压力容器或者容器盛装介质为毒性的高位介质容器。
容器开孔及开孔补强
容器开孔及开孔补强为了使压力容器能正常操作,在筒体和封头上常设置如进、出料口,压力表、温度计等接口及视镜、液面计等附件。
为了安全以及维修方便,“容规”第40条也规定,压力容器必须开设检查孔(包括人孔、手孔、螺纹管塞检查孔)。
因此,在容器上开孔是不可避免的,主要是要考虑开孔的位置,大小、连接结构和开孔补强问题。
1.容器开孔附近的应力集中压力容器开孔后,不但削弱器壁强度,而且,在开孔附近形成应力集中。
(1)应力集中系数容器的开孔集中程度是用应力集中系数K来表征的,“K”的定义是开孔处的最大应力值与不开孔时最大薄膜应力之比。
开孔接管处的应力集中系数主要受下列因素影响:a.容器的形状和应力状态由于孔周边的最大应力是随薄膜应力的增加而上升的,圆壳的薄膜应力是球壳的两倍,所以圆筒壳的应力集中系数大于球壳。
同理,圆锥壳的集中系数则高于圆筒壳。
b.开孔的形状、大小及接管壁厚开方孔时应力集中系数最大,椭圆孔次之,开圆孔最小。
接管轴线与壳体法线不一致时,开孔将变为随圆形而使应力集中系数增大。
开孔直径越大,接管壁厚越小,应力集中系数越大,故减小孔径或增加接管壁厚均可降低应力集中系数。
插入式接管的应力集中系数小于平齐接管。
(2)容器开孔接管处应力集中的特点在实际上生产中,容器壳体开孔后均需焊上接管或凸缘,而接管处的应力集中与壳体开小圆孔时的应力集中并不相同。
在操作压力作用下,壳体与开孔接管在连接处各自的位移不相等,而最终的位移却必须协调一致。
因此,在连接点处将产生相互约束力和弯矩。
故开孔接管处不仅存在孔边集中应力和薄膜应力,还有边缘应力和焊接应力。
另外,压力容器的结构形状、承载状态及工作环境等,对接管处的应力集中的影响均较开孔复杂。
所以,容器接管处的应力集中较小孔严重得多,应力集中系数可达3-6。
但其衰减迅速,具有明显的局部性,不会使壳体引起任何显著变形,故可允许应力峰值超过材料的平均屈服应力。
开孔补强的目的的在于使孔边的应力峰值降低至允许值。
浅谈压力容器的开孔补强设计
浅谈压力容器的开孔补强设计摘要:笔者通过对新版GB150.1~4-2011的宣贯学习,由于此次标准更新内容多,修订的内容宽,许多内容的修订都紧跟时代步伐,一些新思想、新理念、新技术、新材料的应用,使得新版GB150更具有鲜明的特色,同时也借鉴了ASME、EN等标准的一些先进的设计理念,可以说是融会贯通,更好的以实践为准则。
本文主要就压力容器的开孔补强设计展开探讨。
关键词:压力容器新版GB150开孔补强设计一、压力容器的开孔补强设计在压力容器壳体和平盖上,因开孔接管处几何不连续,容器强度受到削弱,接管与主壳相贯处应力集中,内压下产生较大的局部应力,再加上接管上会有各种附加载荷产生的应力、温差应力以及容器材质和制造缺陷等因素的综合作用,往往成为容器破坏的原发部位,需要对开孔接管处进行开孔补强,因此开孔补强是压力容器设计中的一项重要内容。
具体对压力容器的开孔补强设计方案主要包括以下四种:1.不另行补强GB150.3-2011中6.1.3规定壳体开孔不另行补强需满足以下条件:1.1设计压力p≤2.5MPa;1.2两相邻开孔中心的间隙应不小于两孔直径之和;对于3个或3个以上相邻开孔,任意两孔中心的间距应不小于该两孔直径之和的2.5倍;1.3接管外径小于或等于89mm;1.4接管厚度满足GB150.3-2011表6-1的要求,表中接管壁厚的腐蚀裕量为1mm,需要加大腐蚀裕量时,应相应增加壁厚;1.5开孔不得位于A、B类焊接接头上;1.6钢材的标准抗拉强度下限值大于等于540 MPa时,接管与壳体的连接宜采用全焊透的结构型式。
此外,笔者还想补充一种不另行补强的情况:当设备壳体有效厚度大于等于其计算厚度的2倍时,壳体开孔补强也是可以免除计算的。
此种方案的提出是用等面积补强法来推导出来的,大多出现在操作条件不苛刻的换热器设计当中,此时为了保证设备的刚性对壳体的最小厚度进行了要求,而此最小厚度有时会大于壳体的计算厚度一倍甚至更多。
浅论压力容器中的开孔补强设计
浅论压力容器中的开孔补强设计压力容器在其设计中,为了将自身的使用功能进行最大化的发挥,需进行适当的开孔处理。
但是不可否认的是,开孔处理将会对容器造成一定的损伤,对其牢固度将会形成一定的不利影响,针对此类问题的出现,相应的补强设计便是对其所带来的不利影响进行较为科学妥善的处理。
1 开孔补强设计的重要性在进行压力容器设计时,开孔处理操作极为常见。
在通过状况之下,开孔处理主要是为后期的接管安装提供便利,对容器的功能性需求予以满足。
有时为了对整个压力容器进行全面维修、养护、调试,也需进行开孔处理。
而开孔处理会对整个容器的内部结构及其使用性能产生一定的不利影响,通常会使得容器整体的抗压性遭到削弱。
此种情况出现的主要原因为:在开孔处理后,压力容器内部存在的应力出现了断层差异。
而在开孔处进行接管,也会使得容器内部出现受力不均的状况。
另外大部分的压力容器应用于一些温度、压力均高的环境之下,应力、受力不均问题更为突出,再加上受到一些容器材料等多种因素的影响,整个容器性能将会受到极大的损害。
在容器的应用工作中,其工作质量、效率也较差。
所以,在对相关设计规范内容充分理解、遵守的前提之下,对容器进行开孔补强设计极为重要。
2 开孔补强设计在压力容器设计中的应用2.1 补强圈补强设计的应用在开孔补强处理中,局部补强方式应用较多,其中补强圈补强设计应用范围较广。
补强圈补强主要是指在压力容器壁上进行补强板的焊接处理,从而帮助进一步增强整个容器板的金属厚度,促使其开孔边缘强度得以增强,最终达到补强目的。
在补强圈补强方式应用中,有两点问题需着重关注:第一,补强板的设计厚度需严格要求。
一般情况下,补强板的厚度值与整个容器的开孔名义厚度值相比,应不超过其1.5倍。
大量的实践结果表明,如果补强板的厚度值大于开孔名义厚度的1.5倍,那么在进行焊接处理时,极易因为厚度过大而增大器焊接角,最终导致出现不连续应力过大的问题。
另外,在进行补强圈补强设计时,补强板材料需具有极强的塑性、延伸性,且其钢材的屈服强度在常温环境下应保持在400MPa范围内。
浅析压力容器常规设计规范中的开孔补强设计
浅析压力容器常规设计规范中的开孔补强设计压力容器常规设计规范中的开孔补强设计是为了提高容器的强度和稳定性,减小应力集中,避免开裂和变形等问题。
在设计过程中,需要考虑容器的功能和使用条件,合理确定开孔位置、大小和数量,并采取适当的补强措施。
开孔补强设计中的关键问题是如何确定开孔的位置和大小。
开孔的位置应尽量避免处于应力集中区域,如容器的角部、焊缝附近等。
开孔的大小则需要根据承受的载荷和应力水平来确定。
一般来说,开孔的面积不应超过容器壁的总面积的30%。
当开孔过大时,容器壁的强度和刚度会大大降低,容易导致变形和破裂。
在确定开孔位置和大小之后,可以考虑采取以下几种方式进行开孔补强设计:1.增加开孔的边缘钝化半径:开孔边缘的过渡半径越大,应力集中程度越小。
在常规设计中,一般要求开孔边缘的钝化半径为开孔直径的1.5倍。
2.添加补强环:在开孔边缘处添加环形补强,可以有效减小应力集中,提高强度和稳定性。
补强环的尺寸和数量需要根据开孔的大小和容器的使用条件来确定。
3.增加开孔区域的厚度:开孔附近可以增加壁厚,提高容器的强度和刚度,减小应力集中。
墙厚增加的大小需要根据应力分布和容器的使用条件来确定。
4.使用合适的补强片:在开孔的附近添加合适的补强片,可以提高容器的强度和稳定性。
补强片的材料和尺寸需要根据容器的使用条件和承载能力来确定。
5.考虑应力分配:在设计过程中需要考虑容器的应力分配情况,避免应力集中。
可以采用软件模拟和实验测试等方法来确定应力分布和开孔补强设计的有效性。
在进行开孔补强设计时,还需要考虑容器的材料特性、制造工艺和维修等问题。
同时,需要按照国家和行业的相关规范和标准进行设计,确保容器的安全可靠性。
总之,开孔补强设计是压力容器常规设计规范中的重要环节,对容器的强度、稳定性和可靠性起着至关重要的作用。
合理选择开孔位置和大小,采取合适的补强措施,能够有效减小应力集中,提高容器的安全性能。
浅谈压力容器开孔补强的方法.
浅谈压力容器开孔补强的方法浅谈压力容器开孔补强的方法2011-04-17 09:23 来源:未知浏览次数:关键字:方法,补强,开孔,压力容器,浅谈,浅谈压力容器开孔补强的方法李文英摘要:本文主要对压力容器开孔后进行补强的方法进行探讨,主要针对等面积补强;压力容器大开孔补强方法;平盖开孔补强;高压蒸汽过热器联箱开孔补强这几种方法进行了比较。
关键词:压力容器开孔补强方法随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
这样在压力容器设计中一些较易出现问题的地方,更引起人们的注意了,如压力容器封头上的开孔及补强是一个非常爱出问题的地方,一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
下面就对压力容器的开孔补强进行分析。
1.等面积补强化工容器常用的开孔补强方法是等面积补强法,其基础理论是在有效补强范围内所加补强材料的截面积必须大于或等于因为开孔而失去的截面积。
其实质在于补强壳体的平均强度,即维持容器整体的屈服强度,理论模型是无限大平板开小孔,不至于因开边缘附加弯曲应力引起大的误差,故对小直径开孔安全可靠,其计算方法如下:满足下列条件不需补强:A1+A2+A3≥A不满足这一条件则需要补强,补强金属的面积为:AO= A一(A1+A2+A3 )式中:A---壳体因开孔而削弱的截面积;AO----补强金属的面积;A1---筒体或封头上超过计算厚度S所多余的金属截面积;A2---接管上超过强度计算厚度所多余的金属截面积;A3---补强区内焊缝的截面积。
其适用范围是局部补强的材料基本上应与壳体相同,其强度不应小于壳壁材料强度的75%。
适用于筒体的最大开孔直径dI≤1000毫米,而封头的开孔最大直径是dI≤1/2DJ。
d i—开孔最大直径;DJ—封头内径。
这类计算方法只能在一般情况下应用,在特殊情况下则不适用,例如容器大开孔时补强,平盖的开孔补强以及高压蒸汽过热器的开孔补强,下面将分别讨论。
2020年压力容器的开孔与补强
(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
2020年压力容器的开孔与补强
(情绪管理)压力容器的开孔和补强第13章压力容器的开孔和补强本章重点内容及对学生的要求:(1)回转壳体上开小孔造成的应力集中;(2)开孔补强的原则、补强结构和补强计算;(3)不另行补强的要求;(4)GB150-98对容器开孔及补强的有关规定。
第壹节容器开孔附近的应力集中1、关联概念(1)容器开孔应力集中(Openingandstressconcentration)于压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔且安装接管,例如:人孔、手孔、进料和出料口等等。
容器开孔接管后于应力分布和强度方面会带来下列影响:◆开孔破坏了原有的应力分布且引起应力集中。
◆接管处容器壳体和接管形成结构不连续应力。
◆壳体和接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stressconcentrationfactor)常用应力集中系数Kt来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax,则弹性应力集中系数为:(1)压力容器设计中对于开孔问题研究的俩大方向是:✧研究开孔应力集中程度,估算K t值;✧于强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig.1Variationinstressinaplatecontainingacircularholeandsubjectedtouniformtension 设有壹个尺寸很大的巨型薄平板,开有壹个圆孔,其小圆孔的应力集中问题能够利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽于孔径的5倍之上,孔附近的应力分量为:(2)平板开孔的最大应力于孔边处,孔边沿处:应力集中系数:3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig.2Variationinstressinasphereshellcontainingacircularhole孔边处r=a,,应力集中系数4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳俩向薄膜应力,,如果开有小圆孔,则孔边附近任意点的受力为:(3)Fig.3Variationinstressinacylindricalshellcontainingacircularhole孔边处。
压力容器壳体的开孔与补强
压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
压力容器基础知识 - 开孔和补强
二、对容器开孔的限制 ◆ 当圆筒内径Di≤1500mm时,开孔最大直径d ≤Di/2, 且d ≤520mm;当圆筒内径Di>1500mm时,开孔最大直径 d ≤Di/3,且d ≤1000mm。 ◆ 凸形封头或球壳上开孔时,开孔最大直径d ≤Di/2。 ◆ 锥壳上开孔时,开孔最大直径d≤Di/3,Di为开孔中心 处锥壳内径。 ◆ 在椭圆形或碟形封头的过渡区开孔时,孔的中心线宜 垂直封头表面。
标准补强圈结构
◆ 补强圈结构的适用范围 A型适用于无疲劳、无低温及大的温度梯度的一类压力 容器,且要求设备内有较好的施焊条件。 B型适用于中压、低压及内部有腐蚀的工况,不适用于 高温、低温、大的温度梯度及承受疲劳载荷的设备。S 取管子名义壁厚的0.7倍,一般δn t=δn/2 (δn t为 接管名义厚度;δn为壳体名义厚度)。 C型适用于低温、介质有毒或有腐蚀性的操作工况,采 用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2; 当δn>16 mm时,δn t≥8mm。 D型适用于壳体内不具备施焊条件或进入设备施焊不便 的场合,采用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn>16 mm时,δn t≥8mm。 E型适用于储存有毒介质或腐蚀介质的容器,采用全焊 透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn >16 mm时,δn t≥8mm。 F型适用于中温、低温、中压容器及盛装腐蚀介质的容 器,要求当δn≤16 mm时,δn t≥δn/2,当δn>16 mm时,δn t≥8mm,且接管公称直径DN≤150 mm.
◆ 标准补强圈的选用
若需采用补强圈补强 ,可采用以下程序来选择标准补 强圈:
● 确定补强圈的尺寸; ● 由设备的工艺参数决定补强圈的结构; ● 补强圈材料取与被补强壳体材料相同。
压力容器开孔及补强设计
平板开椭圆孔的应力集中
1、几点结论
•在球壳上开圆孔的应力集中系数( )小于开
椭圆孔的应力集中系数(
)
•在圆柱壳上开圆孔时的应力集中系数(
)
•若要开设椭圆孔,则应使椭圆孔的长轴与壳体
轴线垂直此时(
)
压力容器开孔及补强设计
内压壳体开孔的应力集中
•由于开孔后多焊有不同厚度的接管,应力集中系 数比较复杂,采用理论计算和实验测定相结合的 办法。
•当 越大,即开孔直径越大时应力集中系数越高。 相反,减小孔径,增大壳壁厚度均可降低应力集 中系数。 •内伸式接管的应力集中系数较低,尤其是内伸接 管壁厚较厚时能有效地降低应力集中。
压力容器开孔及补强设计
内压壳体开孔的应力集中
过小或过大时上述曲 线均会有较大的误差
球壳带平齐式接管的应力集中系数
壳壁过厚,即 过 小时,应力沿壁厚分 布的不均匀性增大, 应力集中系数将明显 比图示值减小
(mm)
检查孔最少数 量
检查孔最小尺寸(mm)
人孔
手孔
备注
300-500 500-1000
>1000
手孔2个
人孔1个或手孔 2个(当容器无法
开人孔时)
人孔1个或手孔 2个(当容器无法
开人孔时)
Ф400或长 圆孔
400×250, 380×280
Ф400或长 圆孔
400×250, 380×280
Ф75或长 圆孔
•(2)两相邻开孔中心的距离(对曲面间距以弧长计算)应 不小于两孔直径之和的两倍;
•(3)接管公称外径小于或等于89mm;
•(4)接管最小壁厚满足下表3-9的要求。
接管公称 外径
25 32 38 45 48 57 65 76
压力容器设计开孔及补强设计
(一)开孔应力集中 最大应力在孔边,是应力集中最严重的地方。 孔边应力集中有局部性,衰减较快。
(二)开孔并带有接管时的应力集中
(三)应力集中系数的计算
rm Rm rm
Rm T
RmT
二、开孔补强设计的要求
第三章 压力容器的整体设计问题
(一)允许不另行补强的最大开孔直径
第三章 压力容器的整体设计问题
补强区宽度 B=2d B=d+2Tn+2tn
补强区外侧高度
两者中取大值
h1 dtn h1=接管实际外伸长度 补强区内侧高度
两者中取小值
h2 dtn
两者中取小值
h2=接管实际内伸长度
注意:
第三章 压力容器的整体设计问题
补强材料一般需与壳体材料相同,若补强 材料许用应力小于壳体材料许用应力,则补 强面积应按壳体材料与补强材料许用应力之 比而增加。若补强材料许用应力大于壳体材 料许用应力,则所需补强面积不得减少。
(四)补强圈和焊接的基本要求
第三章 压力容器的整体设计问题
M检1查0的孔螺纹孔
补强圈与接管及与壳体的焊接是填角焊及搭焊,视 容器操作条件及设计要求决定是否全焊透。焊缝的成形 应圆滑过渡或打磨至圆滑过渡。
(五)开孔补强的设计准则
第三章 压力容器的整体设计问题
开孔补强设计: 指采取适当增加壳体或接管厚度的方法将 应力集中系数减小到某一允许数值。
补强圈补强
局部补强12..高补强强度圈钢的(厚厚σ度b壁>超5过4接0被M管补Pa强)补件和壁强铬厚钼的钢1制.5造倍的或容超器过;tmax
(碳钢tmax=32mm;16MnR tmax=30mm);
3.设计压力大整于锻等于件4M补Pa;强
压力容器壳体的开孔与补强
压力容器的开孔与补强本章重点容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫⎝⎛-=θστθσσσθσσσθθ2sin32122cos312122cos34121242224222422222rarararararararr(2)平板开孔的最大应力在孔边2πθ±=处,孔边沿ar=处:σσστπθθθ3,0max2===±=r应力集中系数:0.3max==σσtK3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole 孔边处r=a,σσ2max=, 应力集中系数0.2max==σσtK4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD=,δσ42pD=,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫⎝⎛-=θστθσσσθσσσσθθ2sin32142cos3141432cos34122312422214212242222122rarararararararr(3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r1r3r=a,=0,=(-con2),=02θθσσθστ。
压力容器的开孔与补强
压力容器的开孔与补强压力容器是一种用于贮存和运输高压气体、液体或者混合物的设备。
它们通常需要承受巨大的压力,在日常使用中,压力容器容易出现开孔和损伤的情况。
这种情况下,我们需要对压力容器进行修复和加固。
下面,我们将重点探讨压力容器的开孔与补强的相关知识。
1. 压力容器开孔的原因压力容器开孔的主要原因是意外撞击和磨损。
在使用过程中,如果受到了外力的冲击或者过度的磨损,压力容器的表面很容易出现开孔或者裂缝。
另外,压力容器还可能在制造和储存过程中出现缺陷,导致它们容易出现开孔和损伤。
2. 压力容器补强的方法常见的压力容器补强方法包括金属厚板贴补、涂覆材料和拉毛加固等。
(1) 金属厚板贴补:该方法是在压力容器的开孔处贴补一块同样厚度的金属板,然后使用焊接技术将其固定。
这种方法的优点是容易操作,效果比较显著,但是需要小心操作,否则可能会导致更严重的气体泄漏。
(2) 涂覆材料:这种方法是把一个薄的涂覆材料铺在压力容器的表面,在开孔处多涂几层。
涂覆材料通常是耐高温、抗腐蚀的特殊塑料或者橡胶材料。
该方法的优点是简单易行,不会对整个压力容器造成太大的影响。
(3) 拉毛加固:这种方法是在压力容器的开孔处用拉毛工具让金属拉伸,使其保持平整。
然后在开孔处焊接一块金属板,以加强其整体性能。
拉毛加固的优点是成本较低,对环境污染较小,适合于一些小型压力容器的修补。
3. 压力容器补强的预防措施在压力容器的设计与制造中,预防措施是非常重要的。
以下几点应该注意:(1) 在制造过程中确保压力容器表面光滑、整齐,不要有裂缝或者瑕疵。
(2) 在储存和运输时要轻拿轻放,防止碰撞和磨损。
(3) 在使用过程中,要对压力容器的外部结构进行定期检查,发现缺陷及时修复。
总之,压力容器是现代工业中必不可少的储存和运输设备。
在使用过程中,如果出现了开孔和损伤的情况,我们应该及时进行修复和加固,以确保其安全稳定运行。
同时,在设计、制造和储存过程中,也要注意预防措施,减少压力容器出现开孔和损伤的可能性。
压力容器的开孔与补强
压力容器的开孔与补强本章重点内容及对学生的要求:回转壳体上开小孔造成的应力集中;开孔补强的原则、补强结构和补强运算;不另行补强的要求;GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔邻近的应力集中1、 有关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列阻碍:开孔破坏了原有的应力分布并引起应力集中。
接管处容器壳体与接管形成结构不连续应力。
壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法运算出的最大应力为σmax ,则弹性应力集中系数为: σσmax =t K (1) 压力容器设计中关于开孔咨询题研究的两大方向是:研究开孔应力集中程度,估算Kt 值;在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and su bjected to uniform tension设有一个尺寸专门大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中咨询题能够利用弹性力学的方法进行求解。
承担单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔邻近的应力重量为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a ra r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处: σσστπθθθ3,0max 2===±=r 应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向平均拉伸应力作用时,孔边邻近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边邻近任意点的受力为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a r a r r (3) Fig. 3 Variation in stress in a cylindrical shell containing a circular h ole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中;(2) 开孔补强的原则、补强结构和补强计算;(3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax =t K (1) 压力容器设计中对于开孔问题研究的两大方向是:✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为: ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a r a r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max ==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max ==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫⎝⎛-=θστθσσσθσσσσθθ2sin32142cos3141432cos34122312422214212242222122rarararararararr(3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r1r3r=a,=0,=(-con2),=02θθσσθστ。
但是在孔边=2πθ±处θσ最大,孔边处径向截面处的应力集中系数K t=2.5。
而在另一个截面,即轴向截面的孔边r=a,π处的最大应力1=0.5θσσ,此处应力系数K t=0.5,比径向截面的应力集中系数小得多。
其他情况,例如开椭圆孔以及排孔等情况详见国标规定。
针对开孔部位的壳体或者封头壁厚为δ,直径为D,开孔的孔径为d时,在接管根部开孔边缘处的应力集中现象呈现如下的特点:➢最大应力在孔边,是应力集中最严重的地方;➢应力集中具有局部性,其范围也是极为有限的;➢应力集中的情况和开孔的孔径与直径的相对尺寸d/D成正比,开孔不宜过大;➢应力集中和D/δ成反比;所以增大开孔四周壳体的壁厚,则可以极大改善应力集中的情况,因此在开孔周围一定的范围内,采用焊接补强圈的方法。
➢球壳上开孔的应力集中系数稍低于通体上开孔的应力集中系数;因此在可能的情况下,在封头上开孔,优于在壳体上开孔。
5、应力集中对容器安全的影响➢接管和壳体均为具有良好塑性的材料制成,如果容器内介质压力平稳,对容器的安全使用不会有太大的影响;➢如果容器内有较大的压力波动,则应力集中区的金属在交变的高应力作用下会出现反复的塑性变形,导致材料硬化,并产生疲劳破坏。
应力集中是产生疲劳破坏的根源。
6、开孔并带有接管时的应力集中系数以上讨论的是仅在壳体上开孔,但是在实际中通常是还在开孔处有接管,开孔处因为接管与壳体在内压作用下发生变形协调而导致不连续应力出现。
例如球壳与圆管的连接如下图所示。
因此接管对开孔边缘处的应力集中影响也需要考虑。
Fig. 4 Deformation and internal forces in the opening of sphere shell应力集中系数曲线:为了便于设计、对不同直径的和不同厚度的壳,带有不同直径与接管,按理论计算得到的应力集中系数绘制成一组组曲线。
应力集中系数曲线图绘制根据: ●壳体的直径,壳体厚度;●接管的直径,接管厚度;●接管形式的平齐接管,插入接管,的不同而绘制。
第二节 容器的开孔补强开孔部分的应力集中将引起壳体局部的强度削弱,若开孔很小并有接管,且接管又能使强度的削弱得以补偿,则不需另行补强。
若开孔较大,就要采取适当的补强措施。
一般容器只要通过补强将应力集中系数降低到一定的范围即可。
按“疲劳设计”的容器必须严格限制开孔接管部位的最大应力。
经过补强后的接管区可以使应力集中系数降低,但不能消除应力集中。
1、开孔补强的基本原则当在容器开孔后,由于各种强度富余量的存在,开孔并非都要补强。
而在孔周围不需要进行补强的规定,称为开孔补强设计的基本原则。
(1)允许不补强开孔的原因●应力集中的局部性原因,根据应力集中的局部性特征,开孔附近的峰值应力,不会产生壳体的整体屈服;●当应力集中系数小于时,开孔附近除疲劳断裂外,不产生一般的强度破坏;●容器有效壁厚,是在计算壁厚值加上壁厚附加量,按商品钢板系列的圆整值。
一般大于强度值的要求,从整体上得到了加强。
●在壁厚计算公式中,焊缝系数一般小于1, 在规定中,明确指出,开孔不允许在焊缝影响区内,则认为开孔区的强度承载能力高于焊缝区。
(2)允许不另行补强的最大开孔直径a.不另行补强的最大孔径为δm m D d 14.0≤b.当两孔中心之间的间距大与两孔直径之和的两倍时,则每一孔均可视为单个开孔。
2、开孔补强形式(1)内加强平齐接管: 将补强金属加在接管或壳体的内侧。
(2(4)密集补强形式:补强金属集中在接管与壳体的连接处 (c)凸出接管对称加强以上四类补强形式,从补强的效果,即补强所附加金属起到的实际作用,实践证明了密集补强效果最好。
对称凸出接管列第二,外加强最差。
3、补强结构(1)贴板补强结构贴板补强结构是在开孔周围贴焊一个补强圈,补强圈的材料和厚度一般与壳体相同。
(a )需要保证补强圈与壳体全面贴合;(b)需要保证焊缝的全焊透结构;(c) 在补强圈上开有M10的通孔,以充气检验其焊透性;(d )常用场合:中低压容器。
ab (2)接管补强结构:即在开孔处焊接一段加厚的接管,加厚接管处于最大应力区,故能有效的降低应力集中系数。
(a )优点:结构简单,焊缝小,容易对焊缝质量进行检验(b)缺点:焊缝处在最大应力区内;(c)当用于重要设备时,应保证焊缝的全焊透性。
焊缝磨平,进行无损探伤。
(d )常用场合:低合金钢容器或某些高压容器。
(3)整锻件补强结构: 将接管于壳体连同加强部分做成一整体锻件。
(a )优点:补强金属集中于开孔应力最大部位,应力集中系数最小。
焊缝及热影响区离开最大应力点位置,抗疲劳性能优越。
(b)缺点:锻件供应困难,制造烦琐,成本较高。
(c )常用场合:只用于重要的设备,如高压容器,核容器等。
接管补强4、开孔补强的设计准则(1)等面积补强准则该方法认为在有效的补强范围内,壳体处本身承受内压所需截面积外的多余截面积A不少于开孔所减少的有效截面积A0。
等面积补强法是世界各国延用已久的一种经验设计方法。
◆开孔削弱的截面积,指沿壳体纵向截面上的开孔投影面积。
式中:d为开孔直径或接管内径加上壁后附加量C后的直径。
T为壳体按内压或外压计算所需的计算厚度。
Fr为材料强度削弱系数,即设计温度下接管材料与壳体材料许用应力之比,fr<1.0◆有效补强范围:等面积补强法认为在右图中的WXYZ的矩形范围内补强是有效的。
◆补强区内补强金属面积A(a)容器壳体设计厚度之外的多余金属截面积:A1筒体或封头,承受内压或外压所需的厚度和壁厚附加量之外剩余的金属面积。
A1=(B-d)[(S-C)-So],C—壁厚附加量式中Tn,tn分别为壳体及接管的名义厚度T为容器壳体的计算厚度C为接管的壁厚附加量fr为材料的强度削弱系数(b)接管所需计算厚度之外的多余金属截面积:A2 接管承受内压或外压所需厚度和壁厚附加量两者之外多余的金属面积。
A2=2h1(St-Sto-C)+2h2(St-C1-C2)式中:t-为接管按内压或外压计算所需的计算厚度;C2-为接管的腐蚀附加量。
(c)在有效补强区内焊缝金属的截面积。
(d)在有效补强区内另加的补强元件的截面积。
若A1+A2+A3≥A,开孔不需要补强A1+A2+A3 <A,开孔需要补强则A4≥A-(A1+A2+A3)A4—补强金属截面积。
(2)极限分析补强设计准则由于开孔只造成壳体的局部强度削弱,如果在某一压力载荷下容器开孔处的某一区域其整个截面进入塑性状态,以至发生塑性流动,此时的载荷便为极限载荷。
利用塑性力学方法对带有整体补强的开孔补强结构求解出塑性失效的极限载荷。
以极限载荷为依据来进行补强结构设计,即以大量的计算可以定出补强结构的尺寸要求,使其具有相同的应力集中系数。
(3)开孔补强的其他问题以上是壳体上单个开孔的等面积补强方法,工程上有时还会碰到并联开孔的情况,如果各相邻孔之间的空心距离小于两孔平均直径的两倍,则这些相邻孔可以不再以单孔计算,而应作并联孔处理。
另外还有开排孔、平板盖开孔的情况,其补强设计方法可按照压力容器标准中第六章的相应规定进行。