2008年各地高考题分类---不等式的证明

合集下载

2008年高考数学理科试题汇编--不等式

2008年高考数学理科试题汇编--不等式

2008年高考数学试题分类汇编不等式一.选择题:1.(天津卷8)已知函数2,0()2,0x x f x x x +⎧=⎨-+>≤⎩,则不等式2()f x x ≥的解集是A (A )[1,1]- (B )[2,2]- (C )[2,1]- (D )[1,2]-2.(江西卷9)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是AA .1122a b a b +B .1212a a b b +C .1221a b a b +D .12 3.(陕西卷6)“18a =”是“对任意的正数x ,21a x x+≥”的( A ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(浙江卷3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的D(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.(海南卷6)已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( B )A.(0,11a )B. (0,12a ) C. (0,31a ) D. (0,32a ) 二.填空题:1.(上海卷)不等式11x -<的解集是 .(0,2) 2.(山东卷16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。

(5,7).3.(江苏卷11)已知,,x y z R +∈,230x y z -+=,则2y xz 的最小值 .3 4.(江西卷14)不等式31122x x -+≤的解集为 .(,3](0,1]-∞- 5.(广东卷14)(不等式选讲选做题)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a的取值范围是.1 0,4⎡⎤⎢⎥⎣⎦。

2008年全国各地高考数学试题及解答分类汇编大全(02常用逻辑用语)

2008年全国各地高考数学试题及解答分类汇编大全(02常用逻辑用语)
2008 年全国各地高考数学试题及解答分类汇编大全
(02 常用逻辑用语)
一.选择题:
1.(2008 安徽文、理) a 0 是方程 ax2 2x 1 0 至少有一个负数根的( B )
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件
2.(2008 北京理)“函数 f (x)(x R) 存在反函数”是“函数 f (x) 在 R 上为增函数”的
第 1 页 (共 3 页)
9.(2008 湖北理)若非空集合 A,B,C 满足 A∪B=C,且 B 不是 A 的子集,则(B )
A.“x∈C”是“x∈A”的充分条件但不是必要条件 B. “x∈C”是“x∈A”的必要条件但不是充分条件 C. “x∈C”是“x∈A”的充分条件 D. “x∈C”是“x∈A”的充分条件也不是“x∈A”必要条件
12.(2008 江西文) “ x y ”是“ x y ”的(B )
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
13.(2008 山东文)给出命题:若函数 y f (x) 是幂函数,则函数 y f (x) 的图象不过第四
象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C )
A. a , b 方向相同
B. a , b 两向量中至少有一个为零向量
C. R , b a
D. 存在不全为零的实数 1 , 2 , 1a 2 b 0
8. (2008 湖北文)若集合 P {1, 2,3, 4},Q {x 0 x 5, x R},则 ( A ) A. “ x R ”是“ x Q ”的充分条件但不是必要条件 B. “ x R ”是“ x Q ”的必要条件但不是充分条件 C. “ x R ”是“ x Q ”的充要条件 D. “ x R ”既不是“ x Q ”的充分条件也不是“ x Q ”的必要条件

08年全国各地高考数学压轴题解析

08年全国各地高考数学压轴题解析

08年全国高考压轴题1、(安徽理)(22).(本小题满分13分)设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上22解 (1)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y += (2)方法一设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。

由题设知,,,AP PB AQ QB均不为零,记AP AQ PB QBλ==,则0λ>且1λ≠又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=于是 1241x x λλ-=-, 1211y y λλ-=-121x x x λλ+=+, 121y y y λλ+=+从而22212241x x x λλ-=-, (1) 2221221y y y λλ-=-, (2) 又点A 、B 在椭圆C 上,即221124,(3)x y += 222224,(4)x y +=(1)+(2)×2并结合(3),(4)得424s y += 即点(,)Q x y 总在定直线220x y +-=上 方法二设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB均不为零。

且 PA PB AQ QB=又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==-- (1) 2241,11x yx y λλλλ++==++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)(4)-(3) 得 8(22)0x y λ+-= 0,220x y λ≠+-=∵∴即点(,)Q x y 总在定直线220x y +-=上2、(上海文)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记 112233n n n T b a b a b a b a =++++ .(1)若1213264a a a a ++++= ,求r 的值; (2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +,…,1212m T +中有4项为100.求r 的值,并指出哪4项为100.21.解:(1)12312a a a a ++++1234(2)56(4)78(6)r r r r r =+++++++++++++++484r =+. ……2分∵48464r +=,∴4r =. ……4分 (2)用数学归纳法证明:当n Z +∈时,124n T n =-.①当1n =时,1213579114T a a a a a a =-+-+-=-,等式成立. ……6分 ②假设n k =时等式成立,即124k T k =-,那么当1n k =+时,12(1)121211231251271291211k k k k k k k k T T a a a a a a +++++++=+-+-+- ……8分4(81)(8)(84)(85)(84)(88)k k k r k k k r k =-++-+++-++++-+ 444(1)k k =--=-+,等式也成立.根据①和②可以断定:当当n Z +∈时,124n T n =-. ……10分 (3)124m T m =-(1m ≥).当121n m =+,122m +时,41n T m =+; 当123n m =+,124m +时,41n T m r =-+-; 当125n m =+,126m +时,45n T m r =+-; 当127n m =+,128m +时,4n T m r =--; 当129n m =+,1210m +时,44n T m =+; 当1211n m =+,1212m +时,44n T m =--.∵41m +是奇数,41m r -+-,4m r --,44m --均为负数,∴这些项均不可能取得100. ……15分 ∴4544100m r m +-=+=,解得24m =,1r =,此时293294297298,,,T T T T 为100. ……18分 3、(重庆理)(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 设各项均为正数的数列{a n }满足321122,(N*)n a a a a aa n ++==∈.(Ⅰ)若214a =,求a 3,a 4,并猜想a 2008的值(不需证明);(Ⅱ)记12...(N*),n n n b a a a n b =∈≥若对n ≥2恒成立,求a 2的值及数列{b n }的通项公式.(22)(本小题12分)解:(Ⅰ)因2122,2,a a -==故3423123824232,2.a a a a a a ---====由此有0223(2)(2)(2)(2)12342,2,2,2a a a a ----====,故猜想n a 的通项为 1(2)*2(N ).n n a n --=∈(Ⅱ)令2log ,2.n Sn n n n n x a S x n b ==表示的前项和,则 由题设知x 1=1且*123(N );2n n n x x x n ++=+∈ ①123(2).2n n S x x x n =+++≥≥ ② 因②式对n =2成立,有1213,12x x x ≤+=又得 21.2x ≥③ 下用反证法证明:2211..22x x ≤>假设由①得21211312()(2).22n n n n n n x x x x x x ++++++=+++因此数列12n n x x ++是首项为22x +,公比为12的等比数列.故*121111()(N ).222n n n x x x n +--=-∈ ④又由①知 211111311()2(),2222n x n n n n n x x x x x x x +++++-=--=--因此是112n n x x +-是首项为212x -,公比为-2的等比数列,所以1*1211()(2)(N ).22n n n x x x n -+-=--∈ ⑤ 由④-⑤得1*221511(2)()(2)(N ).222n n n S x x n --=+---∈ ⑥ 对n 求和得*2215111(2)(2)(2)()(N ).2232n n n x x x n ---=+---∈ ⑦由题设知21231,22k S x +≥>且由反证假设有21*22221*22221121152)(2)()(N ).22341211151()(2)(2)2(N ).23244k k k k x x k x x x k ++++---≥∈+-≤+--<+∈ (从而 即不等式22k +1<22364112x x +--对k ∈N *恒成立.但这是不可能的,矛盾. 因此x 2≤12,结合③式知x 2=12,因此a 2=2*2将x 2=12代入⑦式得S n =2-112n -(n ∈N*),所以b n =2Sn =22-112n -(n ∈N*)4、(广东理)21.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S . 21.解:(1)由求根公式,不妨设<αβ,得==αβ∴+==p αβ,==q αβ(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得,+=⎧⎨=⎩s t p st q,消去t ,得20-+=s ps q ,∴s 是方程20x px q -+=的根,由题意可知,12,==s s αβ①当≠αβ时,此时方程组+=⎧⎨=⎩s t pst q 的解记为1212==⎧⎧⎨⎨==⎩⎩s s t t ααββ或 112(),---∴-=-n n n n x x x x αβα112(),----=-n n n n x x x x βαβ即{}11--n n x t x 、{}21--n n x t x 分别是公比为1=s α、2=s β的等比数列, 由等比数列性质可得2121()---=-n n n x x x x ααβ,2121()---=-n n n x x x x ββα, 两式相减,得2212121()()()----=---n n n x x x x x βααββα221,=-= x p q x p ,222∴=++x αβαβ,1=+x αβ22221()--∴-== n n n x x αββββ,22221()---== n n n x x βαααα1()-∴-=-n nn x βαβα,即1--∴=-nnn x βαβα,11++-∴=-n n n x βαβα ②当=αβ时,即方程20x px q -+=有重根,240∴-=p q , 即2()40+-=s t st ,得2()0,-=∴=s t s t ,不妨设==s t α,由①可知2121()---=-n n n x x x x ααβ,= αβ,2121()--∴-=-=n n n n x x x x αααα即1-∴=+n n n x x αα,等式两边同时除以nα,得111--=+nn nn x x αα,即111---=nn nn x x αα∴数列{}n n xα是以1为公差的等差数列,12(1)111∴=+-⨯=+-=+n n x x n n n αααα∴=+n n n x n αα综上所述,11,(),()++⎧-≠⎪=-⎨⎪+=⎩n n nn n x n βααββααααβ(3)把1p =,14q =代入20x px q -+=,得2104-+=x x ,解得12==αβ 11()()22∴=+ n n n x n232311111111()()()...()()2()3()...()22222222n n n S n ⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭23111111()()2()3()...()22222n n n ⎛⎫=-+++++ ⎪⎝⎭111111()2()()3(3)()2222n n n n n n -=-+--=-+5、(福建理)(22)(本小题满分14分) 已知函数f (x )=ln(1+x )-x (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0,π(n ∈N*)上的最小值为b x 令a n =ln(1+n )-b x . (Ⅲ)如果对一切npc 的取值范围;(Ⅳ)求证:13132******** 1.n na a a a a a a a a a a a -+++-g g g g g g p g g g(22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(I )因为f(x)=ln(1+x )-x ,所以函数定义域为(-1,+∞),且f ′(x)=11x +-1=1x x-+. 由f ′(x )>0得-1<x <0,f (x )的单调递增区间为(-1,0); 由f ′(x )<0得x >0,f (x )的单调递增区间为(0,+∞). (II)因为f (x )在[0,n]上是减函数,所以b n =f (n )=ln(1+n )-n , 则a n =ln(1+n )-b n =ln(1+n )-ln(1+n )+n =n .(i)==>1.=又1x ==,因此c <1,即实数c 的取值范围是(-∞,1]. (II )由(i< 因为[135(21)246(2)n n ⋅⋅⋅⋅-⋅⋅⋅⋅⋅ ]23222133557(21)(21)11,2121246(2)n n n n n ⋅⋅⋅-+=⋅⋅⋅⋅⋅++<L所以135(21)246(2)n n -g g g L g g g g L g<1∈N *),则113135(21)224246(2)n n -+++g g g g L g L g g g g L g <131321122242 1.n n na a a a a a a a a a a a -+-=+++即<L L L L1(n ∈N *)解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0,n 上是减函数,所以()ln(1),n b f n n n ==+- 则ln(1)ln(1)ln(1).n n a n b n n n n =+-=+-++= (i-pn ∈N*恒成立.p n ∈N*恒成立.则2c n +p n ∈N*恒成立.设()2g n n =+ n ∈N*,则c <g (n )对n ∈N*恒成立.考虑[)()21,.g x x x =+-∈+∞因为12211()1(2) (22)1121x g x x x x x -+=-++=--+′g p =0, 所以[)()1,g x +∞在内是减函数;则当n ∈N*时,g (n )随n 的增大而减小,又因为42lim ()lim(2x x x x g n n →∞→∞+=+===1.所以对一切*N ,() 1.n g n ∈>因此c ≤1,即实数c 的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)<下面用数学归纳法证明不等式135(21)N ).246(2)n n n +-<∈g g g L g g g g L g①当n =1时,左边=12,左边<右边.不等式成立. ②假设当n=k 时,不等式成立.即135(21)246(2)k k -<g g g L g g g g L g当n=k +1时,32122321222122212121)22(2642)12(12531++++=++=++++⋯+⋯∙∙∙∙∙∙k k k k k k k k k k k k k <)()-(=,1)1(2132132148243824++=++++++∙k k k k k k k <即n =k +1时,不等式成立综合①、②得,不等式*)N (121)2(642)12(531∈+⋯-⋯∙∙∙∙∙∙∙∙n n n n <成立.所以1212)2(642)12(531--+⋯-⋯∙∙∙∙∙∙∙∙n n n n <)2(642)12(531423121n n ∙∙∙∙∙∙∙∙∙∙⋯-⋯⋯+++.112123513-+=-⋯n n +=-+-< 即*)N (1212421231423121∈-⋯⋯⋯+++-n a a a a a a a a a a a a a n nn <+. 6、(湖北理)21.(本小题满分14分) 已知数列{a n }和{b n }满足:a 1=λ,a n+1=24,(1)(321),3n n n n a n b a n +-=--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b ,S n 为数列{b n }的前n 项和。

数列求和与数列不等式的证明--高考数学【解析版】

数列求和与数列不等式的证明--高考数学【解析版】

专题27 数列求和与数列不等式的证明等差数列、等比数列的性质、通项公式和前n 项和公式构成两类数列的重要内容,在历届高考中属于必考内容,既有独立考查的情况,也有二者与其它知识内容综合考查的情况.一般地,选择题、填空题往往独立考查等差数列或等比数列的基本运算,解答题往往综合考查等差数列、等比数列.数列求和问题是高考数列中的另一个易考类型,其中常见的是“裂项相消法”、“错位相减法”.数列求和与不等式证明相结合,又是,数列考题中的常见题型,关于数列中涉及到的不等问题,通常与数列的最值有关或证明(数列的和)不等式成立或确定参数的范围,对于数列中的最值项问题,往往要依靠数列的单调性,而对于数列的和不等式的证明问题,往往可以利用“放缩法”,要根据不等式的性质通过放缩,达到解题目的.【重点知识回眸】(一)数列的求和 1.公式法(1)等差数列的前n 项和公式: S n =n a 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q =a 1-a n q1-q ,q ≠1. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形: ①111(1)1n n n n =-++;②1111()(21)(21)22121n n n n =--+-+;11n n n n =+++(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.(6)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再统计前n 项和中含多少个周期即可. (二)数列中的不等关系1.数列中的最值项,要依靠数列的单调性.如何判断数列的单调性:(1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性.由于n N *∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N *∈得到数列的单调性(2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) (3)对于某数列的前n 项和{}12:,,,n n S S S S ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决.也可以考虑相邻项比较.在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定.进而把问题转化成为判断n a 的符号问题. (三)利用放缩法证明不等式 1.与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢.④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩.从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试. 2.放缩构造裂项相消数列与等比数列的技巧:① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)② 等比数列:所面对的问题通常为“n S <常数”的形式,所构造的等比数列的公比也要满足()0,1q ∈ ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为11a q-的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.3.与数列中的项相关的不等式问题:① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即()1n n a a f n +-<或()1n na f n a +<(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为n a ,另一侧为求和的结果,进而完成证明 4.常见的放缩变形: (1)()()211111n n n n n <<+-,其中2,n n N ≥∈:可称21n为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择. 注:对于21n,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,这种放缩的尺度要小于(1)中的式子.此外还可以构造放缩程度更小的,如:()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2)n n n=+,从而有:212111n n n n n n nn n +=<<<--+++-n2,2,n n n n N n *<--≥∈ (3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ 此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题时不妨先构造出形式再验证不等关系.(4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 5.利用导数证明数列不等式 (四)数学归纳法证明不等式【典型考题解析】热点一 分组求和与并项求和【典例1】(2022·全国·高三专题练习)已知数列{n a }满足11a =,()*121N n n a a n +=+∈.(1)证明{1n a +}是等比数列,并求{n a }的通项公式; (2)求数列{1]n a n ++的前n 项和n S .【答案】(1)证明见解析;21nn a =-(2)()11222n n n n S ++=+-【分析】(1)根据题意结合等比数列定义可证1121n n a a ++=+,可得{}1n a +是首项为2,公比为2的等比数列,利用等比数列通项公式代入运算;(2)因为2n n b n =+,利用分组求和结合等差、等比数列求和公式整理运算.(1)由题意可得:1120a +=≠∵()11121212111n n n n n n a a a a a a +++==++=+++所以{}1n a +是首项为2,公比为2的等比数列则12nn a +=,即21n n a =-因此{n a }的通项公式为21n n a =-(2)由(1)知21nn a =-,令1n n b a n =++则2n n b n =+所以()()()121221222nn n S b b b n =+++=++++++.()12222(12)nn =++⋯++++⋯+()()2121122n n n -+=+-()11222n n n ++=+-.综上()11222n n n n S ++=+-.【典例2】.(2021·河南·高三开学考试(文))已知等比数列{}n a 的公比大于1,26a =,1320a a +=.(1)求{}n a 的通项公式;(2)若12331log log 22n n n n b a a a ++=+,求{}n b 的前n 项和n T .【答案】(1)123n n a -=⋅(2)131n n -+ 【分析】(1)设出公比q ,根据题目条件列方程求解; (2)先写出n b ,利用裂项求和,分组求和的办法表示出n T . (1)设等比数列{}n a 的公比为()1q q >,由26a =,1320a a +=得6620q q +=,解之得3q =或13q =(舍去),由26a =得,12a =,所以{}n a 的通项公式为123n n a -=⋅.(2) 由(1)知,()1112331111232311log log 22n n n n n n b a a an n n n --++=+=⋅+=⋅+-++所以{}n b 的前n 项和为()01111111233312231n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦13112131311n n n n -=⨯+-=--++ 【总结提升】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.热点二 裂项相消法求和【典例3】(2017·全国·高考真题(理))(2017新课标全国II 理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________. 【答案】21nn + 【解析】 【详解】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 【典例4】(2018·天津·高考真题(理))设{}n a 是等比数列,公比大于0,其前n 项和为()*n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()*n T n N ∈,(i )求n T ;(ii )证明()()()()22*122122n nk k k k T b b n N k k n ++=+=-∈+++∑. 【答案】(Ⅰ)12n n a -=,n b n =;(Ⅱ)(i )122n n T n +=--.(ii )证明见解析.【解析】 【详解】分析:(I )由题意得到关于q 的方程,解方程可得2q =,则12n n a -=.结合等差数列通项公式可得.n b n =(II )(i )由(I ),有21nn S =-,则()112122nk n n k T n +==-=--∑.(ii )因为()()()212221221k k k k k T b b k k k k ++++=-++++,裂项求和可得()()()22122122n nk k k k T b b k k n ++=+=-+++∑. 详解:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d += 由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )由(I ),有122112nn n S -==--,故()()1112122122212nnnk k n n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭∑. 【典例5】(2022·湖北·襄阳五中高三阶段练习)已知数列{}n a 满足()*1232311113333n n a a a a n n ++++=∈N . (1)求数列{}n a 的通项公式;(2)设3log n n b a =,求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .【答案】(1)()*3N n n a n =∈(2)()()1112212n T n n ⎡⎤=-⎢⎥++⎢⎥⎣⎦【分析】(1)由递推关系取1n =可求1a ,当2n ≥时,取递推关系中的1n n 可求(2)n a n ≥,由此可得数列{}n a 的通项公式;(2)由(1)可得n b n =,利用裂项相消法求数列121n n n b b b ++⎧⎫⎨⎬⎩⎭的前n 项和为n T .(1)当1n =时,13a =,当2n 时,1232311113333n na a a a n ++++=①1231231111113333n n a a a a n --++++=-② 由①-②得()1113n n a n n =--=,即()32n n a n =. 当1n =时也成立,所以数列{}n a 的通项公式为()*3N n n a n =∈(2)因为33log log 3nn n b a n ===,所以()()()()()1211111122112n n n b b b n n n n n n n ++⎡⎤==-⎢⎥+++++⎢⎥⎣⎦, 所以()()()()()11111111112122323341122212n T n n n n n n ⎡⎤⎡⎤=-+-++-=-⎢⎥⎢⎥⋅⋅⋅⋅+++++⎢⎥⎢⎥⎣⎦⎣⎦. 【规律方法】裂项相消法的步骤、原则及规律 (1)基本步骤:裂项、累加、消项; (2)裂项原则一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (3)消项规律消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 热点三 错位相减法求和【典例6】(2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果; (Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211nk k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk k n n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n nk n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k n k k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n n n n +--+⨯. 【典例7】(2022·云南·高三阶段练习)已知数列{}n a 的前n 项和为n S ,且243n n S a =-. (1)求数列{}n a 的通项公式; (2)令83n n nb a =⨯,求数列{}n b 的前n 项和n T . 【答案】(1)232n n a -=⋅(2)24(1)2n n T n +=+-⨯【分析】(1)根据n a 和n S 的关系式,即可求得数列{}n a 的通项公式. (2)由(1)中结论可得数列{}n b 的通项公式,再由错位相减法即可求得n T . (1)由已知得243n n S a =-. ①当1n =时,11132432S a a =-⇒=;当2n ≥时,11243243n n n n S a S a --=-⎧⎨=-⎩①②,-①②得12(2)n n a a n -=≥,所以{}n a 是以32为首项,2为公比的等比数列; 所以1232322n n n a --=⨯=⋅. (2)由(1)得1823n n n nb a n +=⨯=⋅, 所以21341222322n n T n +=⨯+⨯+⨯+⨯+⋅⋅⋅,①所以341221222(1)22n n n T n n ++=⨯+⨯+⋅⋅⋅+-⨯+⨯,②则-①②得:()234142222n n n T n ++-=-⨯+++⋅⋅⋅+,化简得24(1)2n n T n +=+-⨯.【典例8】(2020·全国卷Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 【答案】【解析】(1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3,即2a 1=a 1q +a 1q 2. 所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和. 由(1)及题设可得,a n =(-2)n -1. 所以S n =1+2×(-2)+…+n ×(-2)n -1,-2S n =-2+2×(-2)2+…+(n -1)×(-2)n -1+n ×(-2)n . 可得3S n =1+(-2)+(-2)2+…+(-2)n -1-n ×(-2)n =1(2)3n---n ×(-2)n .所以S n =19-(31)(2)9nn +-.【规律方法】错位相减法求和的具体步骤:热点四 其它求和方法【典例9】(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008 B .1009 C .2018 D .2019【答案】B【分析】根据()(1)1f x f x +-=,利用倒序相加法求解.【详解】解:因为4()42xx f x =+,且114444()(1)1424242244--+-=+=+=+++⨯+x x x xx x x f x f x , 令1232018()()()()2019201920192019=++++S f f f f , 又 2018201720161()()()()2019201920192019=++++S f f f f , 两式相加得:212018=⨯S , 解得1009S =, 故选:B【典例10】(2022·全国·高三专题练习(文))1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列.即1,1,2,3,5,8,13,21,34,55,该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列{}n a ,则数列{}n a 的前2022项的和为________. 【答案】2276【分析】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,知{}n a 是周期为8的数列,即可求出数列{}n a 的前2022项的和.【详解】由数列1,1,2,3,5,8,13,21,34,55,各项除以3的余数,可得{}n a 为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,{}n a ∴是周期为8的数列,一个周期中八项和为112022109+++++++=,又202225286=⨯+,∴数列{}n a 的前2022项的和2022252982276S =⨯+=. 故答案为:2276.【典例11】(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=; 当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 热点五 与裂项相消法相关的不等式证明【典例12】(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 【答案】(1)()12n n n a +=(2)见解析 【解析】【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ ∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 【典例13】(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=-且)*N n ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T <. 【答案】(1)()*2n n a n =∈N(2)证明见解析【分析】(1)将已知条件与1212n n a a a a ++++-=-两式相减,再结合等比数列的定义即可求解;(2)利用裂项相消求和法求出n T 即可证明. (1)解:因为1212n n a a a a -+++-=-,所以1212n n a a a a ++++-=-,两式相减得12(2)n n a a n +=,当2n =时,122a a -=-, 又24a =,所以1212,2a a a ==,所以()*12n n a a n +=∈N ,所以{}n a 是首项为2,公比为2的等比数列,所以()*2n n a n =∈N ;(2)证明:()()()()11122111121212121n n n n n n n n a a +++==-------, 所以2231111111111121212121212121n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=-<⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭, 由1n ,得124n +,所以1121213n +--, 综上,213n T <. 【总结提升】(1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①21111(1)1k k k kk <=---. ②2211111()2111k k k k <=--+-.③21111111k k k kk -<<-+-. ④2(12(1)n n n n n+<<--.热点六 与错位相减法相关的不等式证明【典例14】(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n nn nT --=++++, 012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.【典例15】(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii )证明)*12222nk k kk k a n N c a c +=∈-【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证; (ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得1112222n k k n k k k k a k c c a +-==-,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-, 所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅, 2122124222222n n n nn nna n anc c +--⋅⋅,所以1112222nk k n k k k k k a kc c a +-==-, 设10121112322222nn k n k k n T --===+++⋅⋅⋅+∑, 则123112322222n nn T =+++⋅⋅⋅+,两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-, 所以11112224222222nn k k n k k k k a k n c c a +--==+⎫-<⎪-⎭ 【规律方法】等差数列的判定与证明的方法方法 解读适合题型 定义法 若a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列 解答题中证明问题等差中项法 2a n =a n +1+a n -1(n ≥2,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列 选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列【精选精练】一.单选题1.(2021·全国·高三专题练习)数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,若2cos 3=πn n n b a ,且数列{}n b 的前n 项和为n S ,则11S =( ) A .64 B .80 C .64- D .80-【答案】C【分析】由已知可得111n n a a n n +-=+,即数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,由此求出22cos 3n n b n π=,分别令 1,2,3,,11n =可求出11S .【详解】数列{}n a 满足11a =,()()111n n na n a n n +=+++, 则111n na a n n+=++, 可得数列n a n ⎧⎫⎨⎬⎩⎭是首项为1、公差为1的等差数列,即有na n n=,即为2n a n =, 则222cos cos 33n n n n b a n ππ==, 则()()2222222222211112457810113692S =-++++++++++()22222222222222112334566789910112=-+--++--++--++ ()15234159642=-⨯+++=-. 故选:C.2.(2022·全国·高三专题练习(文))斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2022项和为( ) A .2698 B .2697 C .2696 D .2695【答案】C【分析】根据()*12123,,1n n n a a a n n a a --=+⋯∈==N , 递推得到数列{}n a ,然后再得到数列{}n b 是以6为周期的周期数列求解.【详解】因为()*12123,,1,n n n a a a n n a a --=+⋯∈==N所以数列{}n a 为 1,1,2,3,5,8,13,21,34,55,89,144,⋯此数列各项除以 4 的余数依次构成的数列{}n b 为:1,1,2,3,1,0,1,1,2,3,1,0,是以 6 为周期的周期数列, 所以20222022=(1+1+2+3+1+0)=26966S . 故选:C.3.(2018·浙江·高考真题)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>【答案】B 【解析】 【分析】先证不等式ln 1x x ≥+,再确定公比的取值范围,进而作出判断. 【详解】令()ln 1,f x x x =--则1()1f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()(1)0,ln 1f x f x x ≥=∴≥+,若公比0q >,则1234123123ln()a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则212341(1)(1)0,a a a a a q q +++=++≤但212311ln()ln[(1)]ln 0a a a a q q a ++=++>>,即12341230ln()a a a a a a a +++≤<++,不合题意; 因此210,(0,1)q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如ln 1,x x ≥+ 2e 1,e 1(0).x x x x x ≥+≥+≥二、填空题4.(2021·内蒙古呼和浩特·高三阶段练习(理))已知{}n a 是等比数列,公比大于1,且2420a a +=,38a =.记m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,则数列{}m b 的前60项的和60S 的值为______.【答案】243【分析】第一步求出{}n a 是等比数列的通项公式,第二步计算m b 为{}n a 在区间()*(0,]m m N ∈中的项的个数,列举求值即可。

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

一个不等式的证明——数学情境与提出问题教学课例

一个不等式的证明——数学情境与提出问题教学课例

案例评析审。

?擞’7(2008年第9期高中版)13一个不等式的证明——“数学情境与提出问题"教学课例563200贵州省桐梓县一中杨朝进“数学情境与提出问题”教学模式是以教师创设情境引导学生提出数学问题为课堂教学的起点,通过师生共同整合、选择、确定待解决的问题,以及把待解决的学生“最近发展区”内的问题不断转换、分解成学生“现有发展区”内的问题加以解决,让学生始终处于“问题情境”之中,最后让学生带着新的问题和对探索新问题的期待结束课堂教学的一种教学模式.1设置情境怎样引导学生走上“发现之路”?由于学生有比较强烈的好胜心、好奇心以及显示欲,所精心设计的情境能激起学生发现的欲望和探索的动机.T:今天我们来讨论一下曾经“很多天子骄子”未能解决的问题,那是1985年的高考题,绝大部分学生都未完善解决,看看我们能否给予解决.例设n∈z且n≥1,求证:丛三}堕<新F丁+厨+..…+石丽<丛譬盈.2让学生提出问题在某种意义上说,提出问题比解问题更加重要,课堂的责任应该是让学生没有问题走进教室,带着满脑子的问题走出教室,进而带着更多的新问题回到教室.S。

:与自然数有关的命题可用数学归纳法证明,先证:.、?n’o’_:号七……+、7i【丽<掣.(1)当n=1时,厄<i3,命题成立;(2)假设当n=k时命题成立,即0n七0l-=Is+……七、7畏【丽。

<生i墨主生至上,男5么,当凡=I|}+l时,肝々∞’…一h忍丽+汀百顶而万<掣+/(k+1)(k+2)后(k+2)+、.俪五可豇万一一。

—虿——,k(k+2)+√4J|}2+12k+9、^一生:±兰墨±三一!!±12(!±三222。

S::S。

同学的思路简单,但步骤较繁,况且还用到不等式的放缩,其实可直接利用放缩法证明之,由石币再可<n+l即得皿+厨+…一+石币百万<2+3+……+(凡+1)=掣n-掣.S,:S:同学放缩范围太大,与求证结论不同,应把石五百丌<n+l,改为石币再丌>n,则皿+厨+……+、石百了丌>1+2+……+厅:卫掣.(同学们满堂大笑,此时S,才悟出自己没有纠正S:的错误,而是证明了不等式的左端部分)3准确把握方向,适宜确定问题学生提出的问题往往具有很大的盲目性、分散性和模糊性,教师适时引导学生对问题加以整合、评价和选择,进而确定本节课要解决的数学问题.T:都很好!他们都掌握了不等式放缩的基本方法,0玎i可>/7,,√玎i玎可<几+l,能否确定一个比较准确的放缩范围?S。

高考数学专题复习-不等式(等式)的图形证明的研究与拓展

高考数学专题复习-不等式(等式)的图形证明的研究与拓展

高考数学专题复习-不等式(等式)的图形证明的研究与拓展
【探究拓展】
探究1:三角恒等式
x
x x x sin cos 1cos 1sin -=+ 探究2:基本不等式ab b a ≥+2 探究3:如图, ABCD 为梯形,其中AB=a , CD=b,设O 为对角线的交点,GH 表示平行于两底且与它们等距离的线段(即梯形的中位线),KL 表示平行于两底且使梯形ABLK 与梯形KLDC 相似的线段,EF 表示平行于两底且过点O 的线段,MN 表示平行于两底且将梯形ABCD 分为面积相等的两个梯形的线段。


研究线段MN EF KL GH ,,,与代数式2,112,,22
2b a b
a a
b b a +++之间的关系,并据此得到它们之间的一个大小关系.
探究4:已知*,,R m b a ∈且b a <,则m
b m a b a ++<.
数学与生活:
实例1:一般的人,下半身长x 与全身长y 的比值y
x 在6.0~57.0之间,而芭蕾舞演员在表演时,脚尖立起给人以美的享受. 原来,脚尖立起调整了身段的比例. 如果设人的脚尖立起提高了m ,则下半身与全身的长度比由y x 变成了m y m x ++,这样比值就非常接近黄金分割值(golden section )0.618.
女士们追求美而穿。

2008年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲)

2008年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲)

2008年全国各地高考数学试题及解答分类汇编大全(19选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:1. (2008广东文、理)已知PA 是圆O 的切线,切点为A ,PA=2. AC 是圆O 的直径, PC 与圆O 交于点B,PB=1, 则圆O 的半径R=___3____.1.解: 如图,因为PA 是圆O 的切线,PBC 是圆O 的割线,PA=2, PB=1.由切割线定理,知PC PB PA ⋅=2,所以PC=4. 在Rt △PAC 中,由购股定理AC 2=16-4=12,所以AC=23.所以, 圆O 的半径R=3.2、(2008海南、宁夏文、理)如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP垂直直线OM ,垂足为P 。

(1)证明:O M ·OP = OA 2;(2)N 为线段AP 上一点,直线NB 垂直直线ON ,且交圆O 于B 点。

过B 点的切线交直线ON 于K 。

证明:∠OKM = 90°。

2.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥.又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =g .(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥.同(Ⅰ),有2OB ON OK =g,又OB OA =, 所以OP OM ON OK =g g ,即ON OMOP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==o∠∠.3.(2008江苏) 如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D .求证:2ED EB EC =g . 证明:如图,因为AE 是圆的切线, 所以,ABC CAE ∠=∠,又因为AD 是BAC ∠的平分线, 所以 BAD CAD ∠=∠从而 ABC BAD CAE CAD ∠+∠=∠+∠ 因为 ADE ABC BAD ∠=∠+∠, DAE CAD CAE ∠=∠+∠ 所以 ADE DAE ∠=∠,故EA ED =.因为 EA 是圆的切线,所以由切割线定理知, 2EA EC EB =⋅,而EA ED =,所以2ED EC EB =gK BPA OMNB C ED A二、坐标系与参数方程:1.(2008重庆文)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (C )(A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1(C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=12.. (2008湖北文)圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为 (3,-2),和圆C 关于直线0x y -=对称的圆C ′的普通方程是 (x +2)2+(y -3)2=16 .3.(2008福建理)若直线3x+4y+m=0与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 (,0)(10,)-∞⋃+∞ .4.(2008广东文、理)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__⎪⎭⎫⎝⎛6,32π___. 4.解: 曲线21,C C 的直角坐标方程分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点的 直角坐标为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π.5.(2008江苏)在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值.5.解: 因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数) 故可设动点P的坐标为,sin φφ),其中02φπ≤<.因此1sin sin )2sin()23S x y πφφφφφ=+=+=+=+ 所以。

08年高考数学江西卷(理)最后一题研究

08年高考数学江西卷(理)最后一题研究

08年高考数学江西卷(理)最后一题有点难22.(本小题满分14分)已知函数f (x )=x +11+a +11+8+ax ax ,x ∈(0,+∞). (1)当a =8时,求f (x )的单调区间;(2)对任意正数a ,证明:l <f (x )<2. 令axc x b 8,==,则第(2)等价于:若a,b,c>0,abc=8求证: 上式不等式(1)与2004年西部奥林匹克最后一题:设a,b,c 是正数,求证:2231222222≤+++++<a c c c b b b a a类似,且证明比这道西部奥林匹克题还难。

而这道西部奥林匹克题当年参赛选手无一人完全证出。

另外,2003年中国数学奥林匹克第三题:给定正数n,求最小正数λ,使得对于任何),,...2,1)(2,0(n i i =∈πθ2212tan ...tan tan πθθθ=••n 只要,就有n θθθcos ...cos cos 21••不大于λ答案:当n ≥3,λ=n-1当n=3时,令322212tan ,tan ,tan θθθ===c b a 即得(1)右边的等式。

江西的宋庆老师说:今天阅卷结束。

该题第2小题无人挨边;14分的题全省9分一人,8分二人。

由此可知,(2)右边的不等式,江西的考生无人证出,基本上属于废题。

所以第(2)小题不宜作高考题。

此题也引起了张景中院士的兴趣,在“张景中院士解江西高考压轴题”一贴中命题人陶平生教授的证明:其中对右边不等式的证明思路基本上取自于前面提到的2003年中国数学奥林匹克第三题黄玉民教授解答。

22.解:()1、当8a =时,()131x f x x =++,求得()()321x f x x x '=+, 于是当(0,1]x ∈时,()0f x '≥;而当[1,)x ∈+∞时,()0f x '≤.即()f x 在(0,1]中单调递增,而在[1,)+∞中单调递减.(2).对任意给定的0a >,0x >,由()1181f x x a ax =+++,若令8bax =,则8abx =…①,而()f x =+…② (一)、先证()1f x >11x >+11a >+11b >+, 又由28a b x +++≥≥=,得6a b x ++≥.所以9()()(1)(1)(1)a b x ab ax bx x a b ++++++≥+++1()()1(1)(1)(1)a b x ab ax bx abx x a b +++++++==+++. (二)、再证()2f x <;由①、②式中关于,,x a b 的对称性,不妨设x a b ≥≥.则02b <≤ (ⅰ)、当7a b +≥,则5a ≥,所以5x a ≥≥1<, 1≤<,此时()2f x =+<.(ⅱ)、当7a b +<…③,由①得,8xab == 因为22211[1]114(1)2(1)b b b b b b b <-+=-++++12(1)b b <-+…④12(1)a a <-+…⑤,于是()12211a b f x a b ⎛<-+- ++⎝…⑥今证明11a b a b +>++,因为11a b a b +≥++ 只要证(1)(1)8ab ab a b ab >+++,即8(1)(1)ab a b +>++,即7a b +<,据③,此为显然. 因此⑦得证.故由⑥得()2f x <.综上所述,对任何正数a,x ,皆有()12f x <<.说句实在话,该题命题人陶平生教授所给出的证明是最好的。

2008年高考理科数学试题及答案-全国卷2

2008年高考理科数学试题及答案-全国卷2

2008年普通高等学校招生全国统一考试(全国卷2)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()M MN ðD .()M MN ð2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i -D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( ) A .2OA OB -B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a 9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100xx x y e x +<⎧=⎨⎩,,,≥的反函数是__________. 14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BCA ,C,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值. 20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;A BCDE FP Q H A ' B 'C 'D 'G(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N ) (Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ······················· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =所以ABC △的面积1sin 2S ab C ==······················································ 12分18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为·················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ···························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。

2008年全国各地高考数学试题及解答分类大全(不等式)

2008年全国各地高考数学试题及解答分类大全(不等式)

2008年全国各地高考数学试题及解答分类大全(不等式)一、选择题:1.(2008安徽文) 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C )A .34B .1C .74D .52.(2008北京文)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( A )(A)0 (B)21 (C) 1 (D)23.(2008北京理)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( B )A .0B .1C .3D .94.(2008福建文)若实数x,y 满足 ⎪⎩⎪⎨⎧002x y x y -+≤>≤,则y x 的取值范围是( D )A.(0,2) B.(0,2] C.(2,)+∞ D.[2,)+∞5.(2008福建理) 若实数x 、y 满足100x y x -+≤⎧⎨>⎩,则yx 的取值范围是(C )A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞6.(2008广东文)设R b a ∈,,若0>-b a ,则下列不等式中正确的是( C ) A .0>-a b B. 033<+b a C. 0>+a b D. 022<-b a6.解法1:由0>-b a 知, b b a -≥>,所以0>+a b ,故选C.7.(2008广东理)若变量x,y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,502,402y x y x y x ,则z=3x+2y 的最大值是 ( C )A .90 B. 80 C. 70 D. 407.解:做出可行域如图所示.(1,4)(1,1)(3,3)XO1x+2y-9=0x-y=0(1,1)(1,2)(2,2)x=1Oyx1y=2x-y=0解方程组⎩⎨⎧=+=+502402y x y x ,得⎩⎨⎧==2010y x .所以70202103max =⨯+⨯=z ,故答C.8、(2008海南、宁夏文、理)已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( B )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )9、(2008海南、宁夏文)点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( B )A. [0,5]B. [0,10]C. [5,10]D. [5,15]10. (2008湖北文)在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的( C)11.(2008湖南文)已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x则y x +的最小值是( C )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.12.(2008湖南理)已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( C. )A.2B.5C.6D.8【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,4),(3,3),代入验证知在点(3,3)时,x y +最大值是33 6.+=故选C.13.(2008江西理) 若12120,0a a b b <<<<,且12121a a b b +=+=,则下列代数式中值最大的是(A )A .1122a b a b +B .1212a a b b +C .1221a b a b +D .21 14.(2008辽宁文) 已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为(B )A .4B .2C .1D .4-15.(2008全国Ⅰ卷理)若直线1x ya b+=通过点(cos sin )M αα,,则( D ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b+≥15.D .由题意知直线1x y a b +=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a b+=由⋅≤m n m n可得cos sin 1a b αα=+≤16.(2008全国Ⅱ卷文、理) 设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( D )A .2-B .4-C .6-D .8-17.(2008山东文)不等式252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦, B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,, D .(]11132⎡⎫-⎪⎢⎣⎭,,18.(2008山东理)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( C )(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]19.(2008陕西理)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( B )A .7B .5C .4D .320.(2008四川文)不等式22x x -<的解集为( A )(A)()1,2- (B)()1,1- (C)()2,1- (D)()2,2-20.【解】:∵22x x -< ∴222x x -<-< 即222020x x x x ⎧-+>⎨--<⎩,12x Rx ∈⎧⎨-<<⎩, ∴()1,2x ∈- 故选A ;【点评】:此题重点考察绝对值不等式的解法;【突破】:准确进行不等式的转化去掉绝对值符号为解题的关键,可用公式法,平方法,特值验证淘汰法; 21.(2008天津文) 已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( A )A .[]11-,B .[]22-,C .[]21-,D .[]12-,22. (2008天津文、理)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为( D )(A) 2 (B) 3 (C) 4 (D) 522.解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .23.(2008天津理)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是( C )(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x23.解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或 所以111121212121x x x x x x R x ⎧≥-≤≤⇒≤∈-≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C .24.(2008浙江文)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是( C )(A)21 (B)4π (C)1 (D)2π25 (2008浙江文)已知则且,2,0,0=+≥≥b a b a ( C )(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a二.填空题:1.(2008安徽理)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 742.(2008北京文)不等式121>+-x x 的解集是 |x |x <-2| .3.(2008广东文)若变量x,y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,502,402y x y x y x ,则z=3x+2y 的最大值是是___70___.4. (2008江苏)已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 3 .4.【解析】本小题考查二元基本不等式的运用.由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当x =3z 时取“=”.【答案】35.(2008江西文)不等式224122x x +-≤的解集为 [3,1]- . 5.依题意2241(3)(1)0x x x x +-≤-⇒+-≤[3,1]x ⇒∈-6.(2008江西理)不等式132+-xx ≤21的解集为 (-∞,-3 ] ∪ (0,1 ] . 7.(2008全国Ⅰ卷文、理)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,≥≥≤≤则2z x y =-的最大值为 9 .7.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.8.(2008山东文)设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 11 .9.(2008山东理)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3, 则b 的取值范围为(5,7).10.(2008上海文\理)不等式11x -<的解集是 (0,2) .11.(2008浙江理)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点P (a ,b )所形成的平面区域的面积等于___1____思路一:可考虑特殊情形,比如x =0,可得a =1;y =0可得b =1。

不等式分式练习

不等式分式练习

不等式与分式例1 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B 种船票数量的一半.若设购买A种船票x张,请你解答下列问题.(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.例2已知关于x的不等式组0,245x bx-≤⎧⎨-≥⎩的整数解共有3个,则b的取值范围是______.例3已知13xx+=,求2421xx x-+的值.1.下列各式与xy相等的是( )A.22xyB.22yx++C.2xyxD.2a ba+3.分式(1)(2)(2)(1)x xx x+---有意义的条件是()A.x≠2 B.x≠1 C.x≠1或x≠2 D.x≠1且x≠25.如果把分式x yx y+-中的x和y都扩大到原来的3倍,那么分式的值()A.11a+B.1 C.11a-D.-17.化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.-b二、填空题9.若a2-6a+9与│b-1│互为相反数,则式子a bb a-÷(a+b)的值为_______________.11.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.13.化简4xyx yx y⎛⎫+-⎪+⎝⎭·4xyx yx y⎛⎫-+⎪-⎝⎭=___________.15.当x =___________时,11x -有意义. 17.已知方程23233x x =---有增根,则增根一定是__________. 19.化简2x xy x +÷22xy y xy+的结果是__________. 三、解答题20.化简3x y x y -+÷2222269x y y x xy y x y--+++.22.解下列方程. (1) 222(1)130x x x x+++-=;(3)1233x x x =+--;23.若25452310A B x x x x x -+=-+--,求A ,B 的值.25.桂林市城区百条小巷改造工程启动后,甲、乙两个工程队通过公开招标获得某小巷改造工程.已知甲队完成这项工程的时间是乙队单独完成这项工程时间的54倍,由于乙队还有其他任务,先由甲队独做55天后,再由甲、乙两队合做20天,完成了该项改造工程任务.(2)请根据题意及上表中的信息列出方程,并求甲、乙两队单独完成这条小巷改造工程任务各需多少天;(3)这项改造工程共投资200万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?一、选择题2.已知关于x 的不等式(1-a )x >2的解集为21x a<-,则a 的取值范围是( ) A .a >0B .a >1C .a <0D .a <14.若三个连续的自然数的和不大于12,则符合条件的自然数有( )A .1组B .2组C .3组D .4组6.函数y =x 的取值范围是( )A .x >-2B .x ≥-2C .x ≠-2D .x ≤-28.如果a<b <0,那么下列不等式中错误的是( )A .ab >0B .a+b <0C .a b<0 D .a -b<010.若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .x >-1B .a ≥-1C .a ≤1D .a <1二、填空题12.当a<5时,不等式51ax x a ≥++的解集是________.14.如果一元一次不等式组3,x x a>⎧⎨>⎩的解集为x >3,那么a 的取值范围是______.16.若代数式212x--的值不小于133x+的值,则x的取值范围是________.18.若关于x的不等式组41,32x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,则a的取值范围是_________.三、解答题20.解下列不等式(组).(1)382(10)127x xx---+≥;((3)111,232(3)3(2)0;x xx x⎧->-⎪⎨⎪---<⎩21.已知方程组7,13x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数,求a的取值范围.23.若干名学生合影留念,照相费为2.85元(含两张照片).若想另外加洗一张照片,则又需收费0.48元,预定每人平均交钱不超过1元,并都能分到一张照片,则参加照相的至少有几名学生?买方式?25.据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度.(本题计算结果精确到个位)(1)预计2012年底义乌市户籍人口约是多少人;(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩.。

高考中多元不等式问题的解题思想探析

高考中多元不等式问题的解题思想探析

x2 +
aln
x1 x2,
即f
(x1)
+ 2
f
(x2)
>
f
( x1
+ 2
x2) .
( &) 由 f ( x ) = x 2 + 2 + alnx , 得 x
f ∋( x ) =
2x -
2 x2
+
a x
所以 | f ∋( x 1 ) - f ∋( x 2 ) | =
例 6 ( 2006 年四川理科第 22 题) 已知函数
f (x) =
x2 +
2 x
+
alnx ( x
>
0) , f ( x ) 的导函数是
f ∋( x ) . 对任意两个不相等的正数 x 1、x 2, 证明:
( %) 当 a !
0 时,
f ( x1) + f (x2) 2
>
f
(
x1
+ 2
x2
);
( &) 当 a ! 4 时, | f ∋( x 1) - f ∋( x 2) | >
)
2
+
1 3
.
因为 -
2<
b a
<
-
1,
所以 1 ! 3
( x1- x2)2
!
x1 - x2 <
2 3
.
探析: 由等量关系 a + b + c = 0, ( %) 消去
b, 即用 a、c 表示 b , 尽管仍有两个字母, 但整理得
二次三 项式 后很 容易 联 想到 用配 方解 决问 题;

2008年全国各地高考数学试题及解答分类汇编大全(06数列)

2008年全国各地高考数学试题及解答分类汇编大全(06数列)

an
4n
5 2
, a1
a2
an
an2
bn
,n
N*
,其
中 a, b 为常数,则 ab -1
2.(2008
安徽理)在数列 {an } 在中,
an
4n
5 2
, a1
a2
an
an2
bn
,n
N*
,其
an bn

a,
b
为常数,则
lim
n
an
bn
的值是
1
3.(2008 海南、宁夏文)已知{an}为等差数列,a3 + a8 = 22,a6 = 7,则 a5 = ___15__
∴0 c 1
2.(2008 安徽理)设数列an 满足 a0 0, an1 can3 1 c, c N *, 中 中 c 为实数
(Ⅰ)证明: an [0,1] 对任意 n N * 成立的充分必要条件是 c [0,1];
(Ⅱ)设 0
c
1 3
,证明: an
1 (3c)n1, n
N* ;
(Ⅲ)设
3.解:(Ⅰ)由于 an1 (n2 n )an (n 1, 2,), 且 a1=1, 所以当 a2=-1 时,得 1 2 , 故 3.
从而 a3 (22 2 3) (1) 3.
(Ⅱ)数列{an}不可能为等差数列.证明如下:
由 a1=1, an1 (n2 n )an 得
1 2
Sn
(1)2 2
2(1 )3 2
n( 1 )n1 2
∴1 2
Sn
1 2
(1)2 2
(1)n 2
n( 1 )n1 2
∴ Sn

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

高考不等式专题-讲解

高考不等式专题-讲解
变式1:解不等式
解:
的解集是{x| -7<x 3}
变式3:解不等式
解:
注:如果知道分母的正负,则可以去分母,化分式不等式为整式不等式。
(五).解高次不等式(可分解的)
1.解高次不等式的步骤:
(1)因式分解
(2)未知数系数化正
(3)穿根(从右上角开始,奇穿偶回)
2.穿根法使用步骤:
①将不等式化为 形式,并将各因式x的系数化“+”;
化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为 的形式
将分式不等式进行形如以下四类的等价变形:
(1)
(2)
(3)
(4)
3.例题讲解:解不等式: .
解法1:化为两个不等式组来解:
∵ x∈φ或 ,
∴原不等式的解集是 .
解法2:化为二次不等式来解:
∵ ,∴原不等式的解集是
点评:提倡用解法2,避免分类讨论,提高解题速率。
(答: );
(2)已知 ,且 则 的取值范围是______
(答: )
(二)解一元一次不等式(组)
1.一元一次不等式
1.1定义:只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.
注:一元一次不等式的一般形式是ax+b>O或ax+b<O(a≠O,步骤
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.
2. 2一元一次不等式组的解集:一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.

关于证明不等式的高考题

关于证明不等式的高考题

1、已知a, b ∈ R,且a + b = 1。

求证:3a + 3b < 4。

以下哪个选项是正确的推导步骤?A. 利用均值不等式,得到3a + 3b ≥ 2√(3a * 3b)B. 直接计算3a + 3b的值C. 利用指数函数的性质,得到3a + 3b > 4D. 通过代入a + b = 1,化简得到3a + 3b < 4(答案:A,后续需进一步推导至D的结论)2、设x, y > 0,且x + y = 4。

下列不等式中正确的是:A. x2 + y2 ≥ 8B. √(xy) ≥ 2C. 1/(x + 1) + 1/(y + 1) ≤ 1/2D. x3 + y3 ≥ 64(答案:A)3、若a, b, c > 0,且a + b + c = 1,则下列不等式成立的是:A. a2 + b2 + c2 ≥ 1/3B. abc ≥ (1/3)3C. 1/(a + b) + 1/c ≥ 4D. √a + √b + √c ≤ 1(答案:A)4、设x > 1,y > 1,且xy = 4。

下列不等式正确的是:A. x + y ≥ 4B. x + y ≤ 4C. 1/x + 1/y ≥ 1D. 1/x + 1/y ≤ 1/2(答案:C)5、已知a, b > 0,且a + b = 2。

下列不等式中正确的是:A. a3 + b3 ≥ 8B. ab ≥ 1C. 1/a + 1/b ≤ 2D. √(a2 + b2) ≤ 2(答案:D)6、设x, y ∈ R,且xy ≠ 0。

若|x| + |y| = 2,则下列不等式恒成立的是:A. x2 + y2 ≥ 2B. 1/x2 + 1/y2 ≥ 1C. |x + y| ≥ 2D. |x - y| ≤ 2(答案:A)7、已知a, b, c ∈ R,且a - b = b - c = 1/2。

则下列不等式中正确的是:A. a2 + b2 + c2 ≥ 3/2B. ab + bc + ca ≥ -1/4C. a + b + c ≤ 3/2D. |a| + |b| + |c| ≥ 3/2(答案:B,注意此题需利用平方和与平方差公式进行推导)8、设x > 0,y > 0,且x + y = 5。

2008年-江西省高考数学试卷(理科)

2008年-江西省高考数学试卷(理科)

2008年-江西省高考数学试卷(理科)2008年江西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2008•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.63.(5分)(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A.B. C.D.4.(5分)(2008•江西)=()A.B.0 C.D.不存在5.(5分)(2008•江西)在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn6.(5分)(2008•江西)函数y=tanx+sinx﹣|tanx ﹣sinx|在区间内的图象是()A.B.C.D.7.(5分)(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)8.(5分)(2008•江西)展开式中的常数项为()A.B.C.D.12.(5分)(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•江西)直角坐标平面上三点A (1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=.14.(4分)(2008•江西)不等式的解集为.15.(4分)(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.16.(4分)(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点P C.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:(写出所有真命题的代号).三、解答题(共6小题,满分74分)17.(12分)(2008•江西)在△ABC中,角A,B,C所对应的边分别为a,b,c,,,2sinBcosC=sinA,求A,B及b,c.18.(12分)(2008•江西)某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令ξi(i=1,2)表示方案实施两年后柑桔产量达到灾前产量的倍数.(1).写出ξ1、ξ2的分布列;(2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?19.(12分)(2008•江西)数列{a n}为等差数列,a n为正整数,其前n项和为S n,数列{b n}为等比数列,且a 1=3,b1=1,数列是公比为64的等比数列,b2S2=64.(1)求a n,b n;(2)求证.20.(12分)(2008•江西)如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H 是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A 1、B1、C1,已知.(1)求证:B1C1⊥平面OAH;(2)求二面角O﹣A1B1﹣C1的大小.21.(12分)(2008•江西)设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2﹣y2=1的两条切线PA、PB,切点为A、B,定点.(1)求证:三点A、M、B共线.(2)过点A作直线x﹣y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.22.(14分)(2008•江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档