初中数学专题复习去括号与添括号(含答案)
2.3.2去括号与添括号(二)
2.3.2去括号与添括号(二)班级___________ 姓名_______________【学习目标】A 级:正确理解添括号法则,并能说出添括号与去括号的联系与区别.B 级:能按照要求运用添括号法则对某一个多项式进行恒等变形.C 级:能用运用添括号变形解决整体代入求值问题.D 级:能运用添括号及去括号解决综合性问题. 【知识梳理】 1.添括号法则:(1)把一个多项式或多项式的某几项放到前面带有“+”号的括号里,放到括号内的各项__________________,而且这个多项式的大小___________; (2)把一个多项式或多项式的某几项放到前面带有“-”号的括号里,放到括号内的各项__________________,而且这个多项式的大小___________. 2.(1)直接添括号:如①x +y -z = x +(________)= x -(________)=-(________)+y . ②a -b +c = a +(________)= a -(________)=-(________)+c . ③()(_________)(_______)(______)y x x y y x -+-=-+=-=--2222961161. ④把多项式x x xy y +--2中所有的二次项放到前面带有“+”的括号里,且把所有的一次项放到前面带有“-”的括号里,x x xy y +--2=_________________________; 把多项式x x xy y +--2中所有的二次项放到前面带有“-”的括号里,且把所有的一次项放到前面带有“+”的括号里,x x xy y +--2=_________________________. (2)添括号提系数:①5a -5b -c =-(________)-c=-5(_______)-c . ②5a -5b -10c =5a -(____________)=5a -5(____________); 5a -5b -10c=5a +(_____________)=5a +5(_____________). 3.请利用a -b -c 与a -(b +c )的联系谈谈恒等变形.【任务评估】 任务一:(A 级目标).1. 在横线上填入“+”或“﹣”号,使等式成立.(1)a ﹣b= (b ﹣a ); (2)a +b= (b +a );(3)(a ﹣b )2= (b ﹣a )2; (4)(a +b )2= (b +a )2. 2. 已知1﹣( )=1﹣2x +xy ﹣y 2,则在括号里填上适当的项应该是 . 任务二:(B 级目标).1.添括号变形(1)5a -2b -c -2d=5a +(_____________)=5a -(_____________)=5a -c -(__________)=5a -c -2(__________)=5a -2d +(____________); (2)-2x +3y -z -6=-2x +3y -(__________)=-(__________)+3y -6 =-(2x_____)+(3y ____6)=-2(x____6)-(________). 任务三:巧妙变形整体代入(C 级目标).(1)若a -=210,()()a a ---=221221______;若a -=212,()a a --+=22121_____.若a -=212,()a a --+=22142_____;若a -=212,()a a --+=21212_____. (2)若x -=23则()+x x --222为___________________.若x y -=5则()+x y x y --+22225为___________________.(3)已知012=++a a ,代数式a a a a a ++---54322的值是_________。
七年级数学上册第三章用字母表示数3.5去括号添括号法则是什么?素材(新版)苏科版
七年级数学上册第三章用字母表示数3.5去括号添括号法则是什么?素材(新版)苏科版
难易度:★★★★
关键词:整式的加减
答案:
所添括号前面是“+”号,括到括号里各项都不改变正负号;所添括号前面是“-”号,括到括号里各项都改变正负号。
【举一反三】
典例:按要求把多项式添上括号。
(1)把后三项括到前面带有“-”号的括号里。
(2)把四次项括到前面带有“+”号的括号里,把二次项括到前面带
有“-”号的括号里。
思路导引:此题根据添括号的法则即可:所添括号前面是“+”号,括到括号里各项都不改变正负号;所添括号前面是“-”号,括到括号里各项都改变正负号。
标准答案:(1)原式=;(2)原式
1。
知识点042 去括号与添括号(填空题)
知识点042:去括号与添括号(填空题)1.去括号:a﹣(b﹣c+d)=a﹣b+c﹣d.考点:去括号与添括号。
分析:利用去括号法则计算.括号前是负号的括号里的各项符号都要改变.解答:解:a﹣(b﹣c+d)=a﹣b+c﹣d.点评:注意:去括号时符号的变化.2.已知a﹣2b=1,则3﹣2a+4b=1.考点:去括号与添括号。
分析:先把代数式化为已知的形式,再把已知条件整体代入计算即可.解答:解:根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.点评:注意此题要用整体思想.3.a3+3a2﹣2a=a3+(2a2﹣2a),a﹣4﹣ab﹣c=(a﹣2b)﹣(4+ab+c﹣2b).考点:去括号与添括号。
分析:添括号时注意符号的变化,a3+3a2﹣2a=a3+(2a2﹣2a),加上同一个数,再减去同一个数结果不变,a﹣4﹣ab﹣c=(a﹣2b)﹣4﹣ab﹣c+2b=(a﹣2b)﹣(4+ab+c﹣2b).解答:解:根据添括号的法则可知,a3+3a2﹣2a=a3+(2a2﹣2a);a﹣4﹣ab﹣c=(a﹣2b)﹣(4+ab+c﹣2b).点评:添括号时,再运用括号前是“+”,括号里的各项都不改变符号;括号前是“﹣”,括号里的各项都改变符号这一法则.4.去括号:3a2﹣2(a﹣b﹣5c)=3a2﹣2a+2b+10c;添括号:a+2b﹣4c﹣3d=a﹣(﹣2b+4c+3d)=a+2b﹣(4c+3d).考点:去括号与添括号。
分析:(1)根据去括号法则,将﹣2与括号内的各项分别相乘;得原式=3a2﹣2a+2b+10c;(2)添括号后,括号前是“﹣”,括号里的各项都改变符号.得原式=a﹣(﹣2b+4c+3d)=a+2b ﹣(4c+3d).解答:解:3a2﹣2(a﹣b﹣5c)=3a2﹣2a+2b+10c,a+2b﹣4c﹣3d=a﹣(﹣2b+4c+3d)=a+2b﹣(4c+3d),故填3a2﹣2a+2b+10c;a+2b﹣(4c+3d).点评:运用(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添掉括号.5.计算:2ab﹣(3ab﹣5a2b)=﹣ab+5a2b.考点:去括号与添括号。
去括号和添加括号法则及练习(精排版)
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示: a +(b + c)= a + b + c例如: 23 +(77 +56)=23 +77 +56a +(b - c)= a + b - c例如: 38 +(62 - 48)= 38 + 62 -482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示: a -(b + c)= a - b - c例如:159-(59 + 26)= 159-59-26a -(b - c)= a - b + c例如: 378-(78 - 39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
人教版数学七年级下册整式加减(二)去括号与添括号
第二章 整式的加减第三节 整式的加减(二)去括号与添括号北京四中 李岩一、 基本概念1、去括号法则去括号法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号。
即:().a b c a b c ++=++去括号法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 即: 练习:去括号 练习:(1)()a b c +-= (2)()a b c --= (3)()a b c +-+= (4)()a b c --+=把上面四个式子反过来,你能发现什么规律? (1)()a b c a b c +-=+- (2)()a b c a b c -+=-- (3)()a b c a b c -+=+-+ (4)()a b c a b c +-=--+ 2、添括号法则:1、添括号后,括号前面是“+”号,括到括号里的各项都 .2、添括号后,括号前面是“-”号,括到括号里的各项都 . 练习:下列各式,等号右边添的括号正确吗?若不正确,可怎样改正?().a b c a b c -+=--(l)2x 2-3x +6= +(2x 2+3x -6); (2)4x 2-3x +6= - (4x 2+3x -6); (3)a -2b -3c = a - (2b -3c ); (4)m -n +a -b = m + (n +a +b ).注:我们添括号时,一定要细心,括号内的各项“变”还是“不变”取决于括号前添“+”号还是“-”号,“变”是括到括号里的各项都变,“不变” 是括到括号里的各项都不变. 二、典型例题例1、先去括号,再合并同类项.()()()15433a b a a b +---+()()()()22222532241a a a -+----()()222213844x y xy x y xy ⎛⎫---⎪⎝⎭例2、化简求值()()()222222133222,11,.3x y xy x y xy x y xy x y -++--==其中()()()2222255223,2a a a a a a a ⎡⎤++---=⎣⎦其中例3、请说明代数式 (){}168936m m m m +-----⎡⎤⎣⎦的值与m 无关.3224243,26,22.A x x xB x x x A B =-++=+-=-例、设求当时,的值32432545348.x x x x x x -+--+-例、一个多项式加上得,求这个多项式226352265.x x x x +---+例、若代数式的值为,试求的值练习:1、多项式3x 2+5x +2与另一个多项式B 的和是x 2-2x -4, 求多项式B.()()222232,23,1;223.M x xy y N x xy y M N M N =-+=+---2、已知求:()()222223235926735x xy y x xy xy x y ++=-++-+--、若,求的值.4、先化简,再求各式的值:()221312212,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中()()222229723,;3a a a a a a ⎡⎤+---=-⎣⎦其中()(){}1323225,, 1.2x y x x y x y x y --+-++==-⎡⎤⎣⎦其中。
部编数学七年级上册专题2.5去括号2023年7上册同步培优(解析版)【人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题2.5去括号【名师点睛】去括号与添括号(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【典例剖析】【知识点1】去括号与整式的加减【例1】先去括号,再合并同类项:﹣2n﹣(3n﹣1);a﹣(5a﹣3b)+(2b﹣a);﹣3(2a﹣5)+6a;1﹣(2a﹣1)﹣(3a+3);3(﹣ab+2a)﹣(3a﹣b);14(abc﹣2a)+3(6a﹣2abc).【分析】先去括号,再合并同类项即可.【解析】﹣2n﹣(3n﹣1)=﹣2n﹣3n+1=﹣5n+1;a﹣(5a﹣3b)+(2b﹣a)=a﹣5a+3b+2b﹣a=﹣5a+5b;﹣3(2a﹣5)+6a=﹣6a+15+6a=15;1﹣(2a﹣1)﹣(3a+3)=1﹣2a+1﹣3a﹣3=﹣5a﹣1;3(﹣ab+2a)﹣(3a﹣b)=﹣3ab+6a﹣3a+b=﹣3ab+3a+b;14(abc﹣2a)+3(6a﹣2abc)=14abc﹣28a+18a﹣6abc=8abc﹣10a.【变式1】.将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b+3a)﹣(a﹣b)(3)(2x﹣5y)﹣(3x﹣5y+1)(4)2(2﹣7x)﹣3(6x+5)(5)(﹣8x2+6x)﹣5(x2―45x+15)(6)(3a2+2a﹣1)﹣2(a2﹣3a﹣5)【分析】原式各项去括号合并即可得到结果.【解析】(1)原式=7y﹣2x﹣7x+4y=11y﹣9x;(2)原式=﹣b+3a﹣a+b=2a;(3)原式=2x﹣5y﹣3x+5y﹣1=﹣x﹣1;(4)原式=4﹣14x﹣18x﹣15=﹣32x﹣11;(5)原式=﹣8x2+6x﹣5x2+4x﹣1=﹣13x2+10x﹣1;(6)原式=3a2+2a﹣1﹣2a2+6a+10=a2+8a+9.【知识点2】整式的化简【例2】(2021•拱墅区二模)已知多项式M=(2x2+3xy+2y)﹣2(x2+x+yx+1).(1)当x=1,y=2,求M的值;(2)若多项式M与字母x的取值无关,求y的值.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)M化简的结果变形后,根据M与字母x的取值无关,确定出y的值即可.【解析】(1)M=2x2+3xy+2y﹣2x2﹣2x﹣2yx﹣2=xy﹣2x+2y﹣2,当x=1,y=2时,原式=2﹣2+4﹣2=2;(2)∵M=xy﹣2x+2y﹣2=(y﹣2)x+2y﹣2,且M与字母x的取值无关,∴y﹣2=0,解得:y=2.【知识点3】整体思想在整式的加减中的应用【例3】(2020秋•浦东新区校级期中)多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.【分析】(1)直接利用多项式乘法计算进而得出n,m的值;(2)利用(2)中所求,进而代入得出答案.【解析】(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3﹣mnx2﹣2nx+8n=3x4+(3m﹣n)x3+(6﹣mn)x2+(﹣2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,﹣2n﹣24=0,解得:n=﹣12,m=﹣4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3﹣4x2+2x﹣8)﹣2(3x+12)=3x3﹣12x2+6x﹣24﹣6x﹣24=3x3﹣12x2﹣48.【变式3】(2020秋•铜陵期中)已知多项式A和B,A=(5m+1)x2+(3n+2)xy﹣3x+y,B =6x2+5xy﹣2x﹣1,当A与B的差不含二次项时,求(﹣1)m+n•[﹣m+n﹣(﹣n)3m]的值.【分析】把A与B代入A﹣B中,去括号合并后根据差不含二次项确定出m与n的值,代入原式计算即可得到结果.【解析】∵A=(5m+1)x2+(3n+2)xy﹣3x+y,B=6x2+5xy﹣2x﹣1,∴A﹣B=(5m+1)x2+(3n+2)xy﹣3x+y﹣6x2﹣5xy+2x+1=(5m﹣5)x2+(3n﹣3)xy﹣x+y+1,由结果不含二次项,得到5m﹣5=0,3n﹣3=0,解得:m=n=1,则原式=1.【满分训练】一.选择题(共10小题)1.(2021•三元区校级开学)化简﹣(x﹣2y)的结果是( )A.﹣x﹣2y B.﹣x+2y C.x﹣2y D.x+2y【分析】根据去括号法则解答即可.【解析】﹣(x﹣2y)=﹣x+2y.故选:B.2.(2020秋•七星关区期末)下列去括号正确的是( )A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c【分析】利用去括号添括号法则,逐项判断即可得出正确答案.【解析】A、D、a+(b﹣c)=a+b﹣c,故A和D都错误;B、C、a﹣(b﹣c)=a﹣b+c,故B错误,C正确;故选:C.3.(2020秋•金塔县期末)化简﹣2(m﹣n)的结果为( )A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n 【分析】利用分配律把括号内的2乘到括号内,然后利用去括号法则求解.【解析】﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.4.(2020秋•江津区期末)下列各题去括号错误的是( )A.x﹣(3y―12)=x﹣3y+12B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.―12(4x﹣6y+3)=﹣2x+3y+3D.(a+12b)﹣(―13c+27)=a+12b+13c―27【分析】根据去括号与添括号的法则逐一计算即可.【解析】A、x﹣(3y―12)=x﹣3y+12,正确;B、m+(﹣n+a﹣b)=m﹣n+a﹣b,正确;C、―12(4x﹣6y+3)=﹣2x+3y―32,故错误;D、(a+12b)﹣(―13c+27)=a+12b+13c―27,正确.故选:C.5.(2021秋•上思县期中)不改变代数式a﹣(b﹣3c)的值,把代数式中括号前的“﹣”号变成“+”号,结果是( )A.a+(b﹣3c)B.a+(﹣b﹣3c)C.a+(b+3c)D.a+(﹣b+3c)【分析】根据添括号的方法和括号前面的符号,即可得出答案.【解析】根据题意得a﹣(b﹣3c)=a+(﹣b+3c),故选:D.6.(2021秋•阆中市校级期中)下面去括号错误的是( )A.a2﹣(a﹣b+c)=a2﹣a+b﹣cB.5+a﹣2(3a﹣5)=5+a﹣6a+5C.3a―13(3a2―2a)=3a―a2+23aD.a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.结合各选项进行判断即可.【解析】A、a2﹣(a﹣b+c)=a2﹣a+b﹣c,去括号正确,不符合题意;B、5+a﹣2(3a﹣5)=5+a﹣6a+10,去括号错误,符合题意;C、3a―13(3a2―2a)=3a―a2+23a,去括号正确,不符合题意;D、a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b,去括号正确,不符合题意;故选:B.7.(2021秋•龙沙区期末)下列各式由等号左边变到右边变错的有( )①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个【分析】根据去括号的方法逐一化简即可.【解析】根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.8.(2021春•渝北区期末)已知,a﹣b=3,a﹣c=1,则(b﹣c)2﹣2 (b﹣c)+94的值为( )A.274B.412C.272D.414【分析】根据整式的加减运算求出b﹣c的值,然后代入原式即可求出答案.【解析】∵a﹣b=3,a﹣c=1,∴(a﹣c)﹣(a﹣b)=1﹣3,∴b﹣c=﹣2,∴原式=(﹣2)2﹣2×(﹣2)+9 4=4+4+9 4,=41 4,故选:D.9.(2020秋•北碚区校级期中)若代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,则m2019n2020的值为( )A.﹣32019B.32019C.32020D.﹣32020【分析】根据关于字母x的代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,可得x2、x的系数都为零,可得答案.【解析】2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)=(2m+6)x2+(4+4n)x﹣2y2+6y﹣2.由代数式的值与x值无关,得x2及x的系数均为0,2m+6=0,4+4n=0,解得m=﹣3,n=﹣1.所以m2019n2020=(﹣3)2019(﹣1)2020=﹣32019.故选:A.10.(2021秋•淅川县期末)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy―12y2)﹣(―12x2+4xy―32y2)=―12x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( )A.﹣7xy B.+7xy C.﹣xy D.+xy 【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解析】由题意得,被墨汁遮住的一项=(﹣x2+3xy―12y2)﹣(―12x2+4xy―32y2)﹣(―12x2+y2)=﹣x2+3xy―12y2+12x2﹣4xy+32y2+12x2﹣y2=﹣xy.故选:C.二.填空题(共8小题)11.(2021秋•高州市期中)化简﹣3(a﹣2b+1)的结果为 ﹣3a+6b﹣3 .【分析】直接利用去括号法则计算得出答案.【解析】原式=﹣3a+6b﹣3.故答案为:﹣3a+6b﹣3.12.(2019秋•方城县期末)在括号内填上恰当的项:2﹣x2+2xy﹣y2=2﹣( x2﹣2xy+y2 ).【分析】根据添括号的法则解答.【解析】2﹣x2+2xy﹣y2=2﹣(x2﹣2xy+y2).故答案是:x2﹣2xy+y2.13.(2019秋•盐都区期末)已知a﹣2b=1,则3﹣2a+4b= 1 .【分析】先把代数式化为已知的形式,再把已知条件整体代入计算即可.【解析】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.14.(2018秋•宝塔区校级期中)(2x2―23x+1)― (﹣x2+43x﹣4) =3x2﹣2x+5.【分析】直接利用整式的加减运算法则结合去括号法则化简得出答案.【解析】∵2x2―23x+1﹣(3x2﹣2x+5)=﹣x2+43x﹣4.∴2x2―23x+1﹣(﹣x2+43x﹣4)=3x2﹣2x+5.故答案为:﹣x2+43x﹣4.15.(2017秋•禄丰县校级期中)与代数式8a2﹣6ab﹣4b2的和是4a2﹣5ab+2b2的代数式是 ﹣4a2+ab+6b2 .【分析】将两个代数式分别看作两个整体,根据多项式加减合并同类项.【解析】根据题意得(4a2﹣5ab+2b2)﹣(8a2﹣6ab﹣4b2)=4a2﹣5ab+2b2﹣8a2+6ab+4b2=(4﹣8)a2+(6﹣5)ab+(2+4)b2=﹣4a2+ab+6b2故填﹣4a2+ab+6b2.16.(2020秋•南充期末)多项式mx2﹣(1﹣x﹣6x2)化简后不含x的二次项,则m的值为 ﹣6 .【分析】先求出二次项的系数,然后令系数为0,求出m的值.【解析】mx2﹣(1﹣x﹣6x2)=(m+6)x2﹣1+x,∴二次项的系数为:m+6,则有m+6=0,解得:m=﹣6.故答案为:﹣6.17.(2020秋•宁波期末)已知x﹣y=5,a+b=﹣3,则(y﹣b)﹣(x+a)的值为 ﹣2. .【分析】根据整式的加减运算法则即可求出答案.【解析】原式=y﹣b﹣x﹣a=﹣(x﹣y)﹣(a+b)当x﹣y=5,a+b=﹣3时,原式=﹣5+3=﹣2.故答案为:﹣2.18.(2018秋•淮南期末)定义|a b c d|为二阶行列式,规定它的运算法则为|a b c d|=ad﹣bc,那么当二阶行列式|x―132+x1|的值为﹣9时,x= 1 .【分析】利用题中的新定义化简得到关于x的一元一次方程,求出方程的解即可得到x 的值.【解析】根据题中的新定义化简得:x﹣1﹣3(2+x)=﹣9,去括号得:x﹣1﹣6﹣3x=﹣9,移项合并得:﹣2x=﹣2,解得:x=1,故答案为:1三.解答题(共6小题)19.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2―72(a+b)―54(a+b)2+(﹣3)2(a+b).【分析】根据去括号的方法,先去大括号,再去中括号,最后去小括号,再计算即可.【解析】(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=―72(a+b)―14(a+b)2+9(a+b)=―14(a+b)2+112(a+b).20.先去括号,再合并同类项:6a2﹣2ab﹣2(3a2―12 ab);2(2a﹣b)﹣[4b﹣(﹣2a+b)];9a3﹣[﹣6a2+2(a3―23a2)];2t﹣[t﹣(t2﹣t﹣3)﹣2]+(2t2﹣3t+1).【分析】先去小括号,再去中括号,然后合并同类项即可;【解析】6a2﹣2ab﹣2(3a2―12ab)=6a2﹣2ab﹣6a2+ab=﹣ab;2(2a﹣b)﹣[4b﹣(﹣2a+b)]=4a﹣2b﹣4b﹣2a+b=2a﹣5b;9a3﹣[﹣6a2+2(a3―23a2)]=9a3+6a2﹣2a3+43a2=7a3+223a2;2t﹣[t﹣(t2﹣t﹣3)﹣2]+(2t2﹣3t+1)=2t﹣t+t2﹣t﹣3+2+2t2﹣3t+1=3t2﹣3t.21.按下列要求,给多项式3x3﹣5x2﹣3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“﹣”号;(3)把多项式后三项括起来,括号前面带有“﹣”号;(4)把多项式中间的两项括起来.括号前面“﹣”号.【分析】根据添括号的法则把给出的式子按要求进行变形,即可得出答案.【解析】(1)多项式后三项括起来,括号前面带有“+”号是3x3+(﹣5x2﹣3x+4);(2)多项式的前两项括起来,括号前面带“﹣”号是:﹣(﹣3x3+5x2)﹣3x+4;(3)多项式后三项括起来,括号前面带有“﹣”号是:3x3﹣(+5x2+3x﹣4);(4)多项式中间的两项括起来,括号前面“﹣”号是3x3﹣(5x2+3x)+4.22.(2021•泗洪县三模)已知k=―12,求代数式2(k2﹣k﹣1)﹣(k2﹣k﹣1)+3(k2﹣k﹣1)的值.【分析】先根据整式的混和运算顺和法则分别进行计算,再把所得的结果进行合并,最后把k的值代入即可.【解析】2(k2﹣k﹣1)﹣(k2﹣k﹣1)+3(k2﹣k﹣1)=2k2﹣2k﹣2﹣k2+k+1+3k2﹣3k﹣3.=4k2﹣4k﹣4.∵k=―1 2,∴原式=4×(―12)2―4×(―12)―4=﹣1.23.(2016秋•徐闻县期中)观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.【分析】利用添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号,进而将已知代入求出即可.【解析】∵a 2+b 2=5,1﹣b =﹣1,∴﹣1+a 2+b +b 2=﹣(1﹣b )+(a 2+b 2)=﹣(﹣1)+5=6.24.(2020秋•罗庄区期末)一般情况下,对于数a 和b ,a 2+b 4≠a b24(“≠”不等号),但是对于某些特殊的数a 和b ,a 2+b 4=a b24.我们把这些特殊的数a 和b ,称为“理想数对”,记作(a ,b ).例如当a =1,b =﹣4时,有12+44=1(4)24,那么(1,﹣4)就是“理想数对”.(1)(3,﹣12),(﹣2,4)可以称为“理想数对”的是 (3,﹣12) ;(2)如果(2,x )是“理想数对”,求x 的值;(3)若(m ,n )是“理想数对”,求3[(9n ﹣4m )﹣8(n ―76m )]﹣4m ﹣12的值.【分析】(1)根据题目中的新定义验证(3,﹣12),(﹣2,4)哪个符合公式a 2+b 4=a b24即可;(2)按照题意(2,x )是“理想数对”,则a =2,b =x ,满足公式a 2+b 4=a b24,代入求x ;(3)根据题意,m ,n 满足m 2+n 4=m n24,得出n =﹣4m ,然后化简代数式并把n =﹣4m 代入求值即可.【解析】(1)对于数对(3,﹣12),有32+124=31224=―32,因此(3,﹣12)是“理想数对”;对于数对(﹣2,4),22+44=0,2424=13,0≠13,所以(﹣2,4)不是理想数对;故答案为(3,﹣12);(2)因为(2,x )是“理想数对”, 所以22+x 4=2x24,解得x =﹣8,故x 的值为﹣8;(3)由题意,〈m ,n 〉是“理想数对”,所以m 2+n 4=m n24,即n =﹣4m ,3[(9n﹣4m)﹣8(n―76m)]﹣4m﹣12=3[9n﹣4m﹣8n+283m]﹣4m﹣12=27n﹣12m﹣24n+28m﹣4m﹣12=3n+12m﹣12,将n=﹣4m代入,原式=﹣12m+12m﹣12=﹣12.。
《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练
整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。
2.2.2 整式加减(二)去括号添括号(解析版)
2.2.2整式加减(二)去括号添括号去括号法则题型一:去括号法则【例题1】(2017·广东七年级期末)将x ﹣(y ﹣z )去括号,结果是( )A .x ﹣y ﹣zB .x+y ﹣zC .x ﹣y+zD .x+y+z【答案】C【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】解:x ﹣(y ﹣z )= x ﹣y+z.故选:C【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.变式训练【变式1-1】(2019·珠海市第十一中学)()x y z --去括号后的值是()A .x y z--B .x y z -+C .x y z--+D .x y z ++【答案】B 【分析】利用去括号法则计算.去括号时括号前面是负号的括号里的各项符号都要改变.【详解】()x y z x y z --=-+.故选:B .【点睛】本题主要考查了去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.【变式1-2】(2020·浙江省象山县丹城中学七年级期中)将1(2)2y x --去括号,得( )A .1-22y x +B .1-22y x -C .-12y x +D .12y x --【变式1-3】(2020·江苏景山中学七年级期中)下列去括号中,正确的是 ()A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 【答案】B 【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m ,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c ,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m ,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.【变式1-4】(2018·全国七年级单元测试)去掉下列各式中的括号:(1)8m –(3n +5); (2)n –4(3–2m ); (3)2(a –2b )–3(2m –n ).【答案】(1)8m –3n –5;(2)n –12+8m ;(3)2a –4b –6m +3n【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,对各式进行处理即可.【详解】(1)8m –(3n +5)=8m –3n –5.(2)n –4(3–2m )=n –(12–8m )=n –12+8m .(3)2(a –2b )–3(2m –n )=2a –4b –(6m –3n )=2a –4b –6m +3n .【点睛】考查去括号法则,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,是易错点.题型二:去括号合并同类项【例题2】(2020·陕西七年级期中)先去括号,再合并同类项正确的是( )A .2x-3(2x-y)=-4x-yB .5x-(-2x+y)=7x+yC .5x-(x-2y)=4x+2yD .3x-2(x+3y)=x-y【答案】C选项A, 2x -3(2x -y )=2 x -6x +6y =-4x +6y.A 错.选项B, 5x -(-2x +y )=5x +2x -y =7x +y B 错.选项C, 5x -(x -2y )=5 x -x +2y=4x +2y,C 对.选项D, 3x -2(x +3y )=3x-2x-6y=x-6y,D 错.选C.变式训练【变式2-1】(2020·毕节三联学校七年级期中)先去括号,再合并同类项.(1)5(24)a a b --(2)2223(2)x x x +-【答案】(1)34a b +;(2)26x x-+【分析】(1)先去括号,因为括号前面是负号,要注意变号,再合并同类项;(2)先根据乘法分配律去括号,再合并同类项.【详解】解:(1)原式52434a a b a b =-+=+;(2)原式2222636x x x x x =+-=-+.【点睛】本题考查去括号和合并同类项,解题的关键是掌握去括号和合并同类项的方法.【变式2-2】(2018·全国七年级单元测试)去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(12a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-92a+1.【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(12a−3)+2a2]+4=3a2−(5a−12a+3+2a2)+4=3a2−5a+12a-3-2a2+4=a2-92a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【变式2-3】(2018·全国七年级单元测试)去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【分析】根据乘法分配律去括号,再合并同类项.【详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为:-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.【变式2-4】(2020·全国)先去括号,再合并同类项:(1)2(2b-3a)+3(2a-3b);(2)4a2+2(3ab-2a2)-(7ab-1).【答案】(1)-5b;(2)-ab+1【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【详解】(1)2(2b-3a)+3(2a-3b)=4b-6a+6a-9b=-5b;(2)4a2+2(3ab-2a2)-(7ab-1)=4a2+6ab-4a2-7ab+1=-ab+1.【点睛】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.题型三:去绝对值去括号【例题3】(2020·正安县思源实验学校七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“=”或“<”填空:b ________0,+a b ________0,a c -________0,b c -________0;(2)化简a b a c b ++--.【答案】(1)<;=;>;<;(2)c -.【分析】(1)根据数轴判断a 、b 、c 的符号和绝对值,进而即可判断各式的符号;(2)先脱去绝对值,在去括号计算即可.【详解】解:(1)由数轴得a >0>c >b ,a b c =>,∴b <0;a+b =0;a-c >0;b-c <0;故答案为:<;=;>;<;(2)解:∵0a b +=,0a c ->,0b <,∴原式()()0a c b a c b c =+---=-+=-.【点睛】本题考查了根据数轴判断代数式的符号,绝对值的化简,有理数的运算法则,整式的计算等知识,根据数轴判断各式的符号是解题关键.变式训练【变式3-1】(2019·北京师范大学乌海附属学校七年级月考)有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2aB .2bC .2cD .0【答案】D 【分析】根据数轴,分别判断a+c ,a+b ,b-c 的正负,然后去掉绝对值即可.【详解】解:由数轴可得,a+c>0,a+b<0,b-c<0,则|a+c|+|a+b|-|b-c|=a+c+(-a-b )-(c-b )=a+c-a-b+b-c=0.故选D.【点睛】本题考查了化简绝对值和整式的加减,解答本题的关键是结合数轴判断绝对值符号里面代数式的正负.【变式3-2】(2018·山东七年级期末)已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A .b ﹣2c+aB .b ﹣2c ﹣aC .b+aD .b ﹣a【答案】D 【分析】观察数轴,可知:c <0<b <a ,进而可得出b ﹣c >0、c ﹣a <0,再结合绝对值的定义,即可求出|b ﹣c |﹣|c ﹣a |的值.【详解】观察数轴,可知:c <0<b <a ,∴b ﹣c >0,c ﹣a <0,∴|b ﹣c |﹣|c ﹣a |=b ﹣c ﹣(a ﹣c )=b ﹣c ﹣a +c =b ﹣a .故选D .【点睛】本题考查了数轴以及绝对值,由数轴上a 、b 、c 的位置关系结合绝对值的定义求出|b ﹣c |﹣|c ﹣a |的值是解题的关键.【变式3-3】(2020·福州三牧中学九年级月考)有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.【答案】a+b-c【分析】根据数轴,可以判断a ,b ,c 的正负情况,从而可以将所求式子的绝对值符号去掉,然后化简即可解答本题.【详解】解:由数轴可知,0,b a c b a c <<<>>,0,0a b c a \+<->∴原式()()a a b c a a a b c a a b c=-++--=-++-+=+-故答案为:a b c +-.【点睛】本题考查的知识点是数轴与绝对值的性质,根据绝对值的性质将所求式子绝对值符号去掉是解此题的关键.添括号法则题型四:添括号法则【例题4】(2019·全国)下列添括号错误的是()A .3-4x=-(4x-3)B .(a+b)-2a-b=(a+b)-(2a+b)C .-x 2+5x-4=-(x 2-5x+4)D .-a 2+4a+a 3-5=-(a 2-4a)-(a 3+5)【答案】D【分析】根据添括号法则, 当括号前添正号时直接添括号即可,当括号前添负号时括号里面的各项都要变号,即可解题.【详解】解:A,B,C 都是正确的,其中,D 项的右侧展开为-a 2+4a-a 3-5,与等号左侧不相等,故错误项选D.【点睛】本题考查了添括号的性质,属于简单题,熟悉去括号和添括号的性质与联系,特别的注意括号前为负号时要变号是解题关键.变式训练【变式4-1】(2020·全国七年级课时练习)不改变多项式3b 3﹣2ab 2+4a 2b ﹣a 3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是( )A .3b 3﹣(2ab 2+4a 2b ﹣a 3)B .3b 3﹣(2ab 2+4a 2b+a 3)C .3b 3﹣(﹣2ab 2+4a 2b ﹣a 3)D .3b 3﹣(2ab 2﹣4a 2b+a 3)【答案】D【分析】根据去括号法则:如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析.【详解】3b3﹣2ab2+4a2b﹣a3= 3b3﹣(2ab2﹣4a2b+a3).故选D.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.【变式4-2】(2019·辽宁抚顺市·八年级期末)2ab+4bc﹣1=2ab﹣( ),括号中所填入的整式应是( ) A.﹣4bc+1B.4bc+1C.4bc﹣1D.﹣4bc﹣1【答案】A【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【详解】解:2ab+4bc﹣1=2ab﹣(﹣4bc+1).故选:A.【点睛】本题考查了添括号法则,熟练掌握添括号的法则是关键.【变式4-3】(2019·上海市实验学校西校)下列各式添括号(1)2a-b-x-3y=2a-(b+x+3y);(2)2a-b-x-3y=(2a-b)-(x+3y);(3)2a-b-x-3y=-(x+3y)-(b-2a);(4)2a-b-x-3y=(2a-3y)-(b-x);错误的有几个()A.1个B.2个C.3个D.4个【答案】A【分析】根据添括号法则即可得出答案.【详解】(1)2a-b-x-3y=2a-(b+x+3y),故(1)正确;(2)2a-b-x-3y=(2a-b)-(x+3y),故(2)正确;(3)2a-b-x-3y=-(x+3y)-(-2a+b)= -(x+3y)-(b-2a),故(3)正确;(4)2a-b-x-3y=(2a-3y)-(b+x),故(4)错误;故答案选择:A.【点睛】本题考查的是添括号,需要熟练掌握添括号法则.题型五:利用添括号整体求值【例题5】(2019·泰州市第二中学附属初中九年级三模)已知x-3y=-3,则5-x+3y为()A.0B.2C.5D.8【答案】D【详解】解:∵x-3y=-3∴5-x+3y=5-( x-3y)=5+3=8故选D变式训练【变式5-1】若23a b -+的值等于5,则42a b -+的值为()A .2B .2-C .3D .3-【答案】A 【分析】根据题意可得22a b -=,然后利用整体代入法求值即可.【详解】解:∵23a b -+的值等于5∴22a b -=∴42a b-+=()42a b --=42-=2故选A .【点睛】此题考查的是求代数式的值,掌握利用整体代入法求代数式的值是解题关键.【变式5-2】(2020·北京北师大实验中学七年级期中)已232a a +=,则多项式22610a a +-的值为______.【答案】-6【分析】对原式添加括号变形,再整体代入条件即可.【详解】原式()2231022106a a =+-=´-=-,故答案为:-6.【点睛】本题考查添括号法则,以及整式求值,熟练运用添括号法则以及整体思想是解题关键.【变式5-3】(2019·安徽七年级期末)已知221x x +=-,则2364x x ++的值为______.【答案】1【分析】可将2364x x ++变形为23(2)4x x ++,再将221x x +=-整体代入即可.【详解】解:223643(2)4x x x x ++=++,因为221x x +=-,所以,原式=3(1)41´-+=.故答案为:1.【点睛】本题考查代数式求值——已知式子的值,求代数式的值,加括号法则.能利用加括号法则对需要求的代数式进行变形是解决此题的关键.【真题1】(2012·浙江温州市·中考真题)化简:2(a+1) -a=____【答案】a+2把括号外的2乘到括号内,去括号,然后合并同类项即可:原式=2a+2-a=a+2.【真题2】(2021·江苏中考真题)计算:()2222a a -+=__________.【答案】22a -【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2222a a --=22a -,故答案是:22a -.【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.【拓展1】(2019·广州市第五中学七年级月考)已知,,a b c 在数轴上的位置如图所示,所对应的点分别为、、A B C .(1)在数轴上表示1-的点与表示3的点之间的距离为;由此可得点AB 、之间的距离为 (2)化简:2a b c b b a -++---(3)若24,c b =-的倒数是它本身,a 的绝对值的相反数是2-,M 是数轴上表示x 的一点,且20x a x b x c -+-+-=,求x 所表示的数.【答案】(1)4;-a b ;(2)222a b c -+-;(3)x 所表示的数为3-或193.【分析】(1)根据数轴的定义:两点之间的距离即可得;(2)根据数轴的定义,得出,,a b c 的符号、绝对值大小,再根据绝对值运算化简即可;(3)先根据平方数、倒数、相反数的定义求出,,a b c 的值,再根据绝对值运算化简求值即可得.【详解】(1)由数轴的定义得:在数轴上表示1-的点与表示3的点之间的距离为3(1)4--=;点,A B 之间的距离为-a b故答案为:4;-a b ;(2)由,,a b c 在数轴上的位置可知:0,c b a a b<<<>则2()2()()a b c b b a a b b c a b -++---=-++---22a b b c a b=--+--+222a b c =-+-;(3)由,,a b c 在数轴上的位置可知:0c b a<<<由24c =得,2c =-或2c =(舍去)由b -的倒数是它本身得,()1b b -×-=,解得1b =-或1b =(舍去)由a 的绝对值的相反数是2-得,2a -=-,解得2a =或2a =-(舍去)将2,1,2a b c ==-=-代入得21220x x x -++++=根据数轴的定义、绝对值运算分以下四部分讨论:①当2x -≤时,21220x x x -----=解得7x =-,符合题设②当21x -<£-时,21220x x x ---++=解得17x =-,不符题设,舍去③当12x -<£时,21220x x x -++++=解得15x =,不符题设,舍去④当2x >时,21220x x x -++++=解得193x =,符合题设综上,x 所表示的数为3-或193.【点睛】本题考查了数轴的定义、绝对值运算等知识点,熟记并灵活运用数轴的定义是解题关键.【拓展2】(2017·崇仁县第二中学七年级期中)数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当,,a b c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当 1.4a a a=时,求的值,(2)当 2.5b b b =-时,求的值.(3)请根据,,a b c 三个数在数轴上的位置, abca b c +求+的值.(4)请根据,,a b c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1) 1;(2)-1;(3)-1;(4)原式=-c.试题分析:(1)当 1.4a = 时,点A 在原点右边,由题意可知,此时a a =,代入a a即可求值;(2)当 2.5b =- 时,点B 在原点左边,由题意可知,此时b b =-,代入b b 即可求值;(3)由图中获取A 、B 、C 三点的位置信息后,结合题意即可求原式的值;(4)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符合,就可化简原式了.试题解析:(1)当 1.4a =时, 1.411.4aa ==;(2)当 2.5b =-时, 2.512.5bb ==--;(3)由图可知点A 在原点左边、点B 在原点右边、点C 在原点左边,∴由题意可得:a a b b c c =-==-,,,∴abca b c ++=11(1)1a b c a b c--++=-++-=-;(4)由图可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.点睛:在解第4小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.。
知识点042 去括号与添括号(解答题)
知识点042:去括号与添括号(解答题)1.3a2﹣[7a2﹣2a﹣3(a2﹣a)+1].考点:去括号与添括号;合并同类项。
专题:计算题。
分析:根据去括号的方法,先去大括号,再去小括号.解答:解:原式=3a2﹣[7a2﹣2a﹣3a2+3a+1]=3a2﹣7a2+2a+3a2﹣3a﹣1=﹣a2﹣a﹣1.点评:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.2.化简下列各数的符号:(1)﹣(﹣);(2)﹣(+);(3)+(+3);(4)﹣[﹣(+9)].考点:去括号与添括号。
专题:常规题型。
分析:去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.解答:解:(1)﹣(﹣)=;(2)﹣(+)=﹣;(3)+(+3)=3;(4)﹣[﹣(+9)]=﹣(﹣9)=9.点评:本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.3.去括号,合并同类项:3x+2(y﹣x)﹣(﹣x﹣4y)考点:去括号与添括号;合并同类项。
专题:计算题。
分析:先把原式去括号,再合并同类项即可.解答:解:原式=3x+2y﹣2x+x+4y=2x+6y.点评:本题考查了去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.4.去括号,并合并同类项:a+(5a﹣3b)﹣(a﹣2b)考点:去括号与添括号;合并同类项。
专题:计算题。
分析:括号前面是负号,去括号是要注意符号的变化,根据合并同类项得法则可得正确的结果.解答:解:把a+(5a﹣3b)﹣(a﹣2b)去括号得,a+5a﹣3b﹣a+2b,合并同类项,得:5a﹣b.点评:考查了去括号和合并同类项,去括号时注意符号的改变,以及正确理解合并同类项的法则.5.化简2(2a﹣3b)+4(3a+5b)考点:去括号与添括号;合并同类项;整式的加减。
整式的加减—去括号与添括号(测试题带答案)
【 【2 】添括号与去括号巩固演习】一.选择题1.将(a+1)-(-b+c )去括号应当等于 () .A .a+1-b -cB .a+1-b+cC .a+1+b+cD .a+1+b -c2.下列各式中,去括号准确的是( )A .x +2(y -1)=x +2y -1B .x -2(y -1)=x +2y +2C .x -2(y -1)=x -2y -2D .x -2(y -1)=x -2y +23.盘算-(a -b )+(2a+b )的最后成果为().A .aB .a+bC .a+2bD .以上都不对4.(2010·山西)已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是() .A .-5x -1B .5x+1C .-13x -1D .13x+15.代数式2332333103(2)(672)x y x x y x y x y x --++--+的值().A .与x,y 都无关B .只与x 有关C .只与y 有关D .与x.y 都有关6.如图所示,暗影部分的面积是().A .112xyB .132xy C .6xy D .3xy 二.填空题1.添括号:(1).331(___________)3(_______)p q q -+-=+=-.(2).()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.2.(1).化简:22(2)a a b c --+=________ ; (2) 3x -[5x -(2x -1)]=________.3.若221m m -=则2242008m m -+的值是________.4.m =-1时,-2m 2-[-4m+(-m )2]=________.5.已知a =-(-2)2,b =-(-3)3,c =-(-42),则-[a -(b -c )]的值是________.6.如图所示是一组有纪律的图案,第1个图案由4个基本图形构成,第2个图案由7个基本图形构成,…,第n (n 是正整数)个图案中由________个基本图形构成.三.解答题1. 化简(1).b a ab b a 222756-+(2). 22222323xy xy y x y x -++-(3). m n mn m n mn mn n m 222238.0563--+--(4). )45(2)2(32222ab b a ab b a ---(5).(6).2237(43)2x x x x ⎡⎤----⎣⎦)3123()21(22122b a b a a -----2.化简求值:(1). 已知:2010=a ,求)443()842()33(232332-+++-++-+--a a a a a a a a a 的值.(2). 2222131343223a b a b abc a c a c abc ⎡⎤⎛⎫------ ⎪⎢⎥⎝⎭⎣⎦,个中a = -1, b = -3, c = 1.(3). 已知3532++y x 的值是6,求代数式 71494322-++--y x y x 的值.3. 有一道标题:当2b ,2a -==时,求多项式:324141421322332233233+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---+-b b a b a b b a b a b b a b a 的值.甲同窗做题时把2=a 错抄成2-=a ,乙同窗没抄错题,但他们做出的成果正好一样.你能解释是为什么吗?【答案与解析】一.选择题1. 【答案】D【解析】按照去括号轨则去失落括号即可求出成果.去括号时留意括号前面的符号.2.【答案】D【解析】依据去括号轨则来断定..3. 【答案】 C .【解析】原式22a b a b a b =-+++=+.4.【答案】A【解析】 (3x 2+4x -1)-(3x 2+9x )=3x 2+4x -1-3x 2-9x =-5x -1.5.【答案】B【解析】化简后的成果为332x --,故它的值只与x 有关.6.【答案】A【解析】111230.5622S x y y x xy xy xy =-=-=阴. 二.填空题1.【答案】(1)331q p --,31p + . (2),b c d b c d -+-+2.【答案】2b a c --;-13.【答案】2010【解析】222420082(2)20082120082010m m m m -+=-+=⨯+=4.【答案】-7【解析】22222222[4()]2(4)2434m m m m m m m m m m m ---+-=---+=-+-=-+,将m =-1代入上式得-3m 2+4m =-3(-1)2+4(-1)=-7.5.【答案】15【解析】因为a =-(-2)2=-4,b =-(-3)3=27,c =-(-42)=16,所以-[a -(b -c )]=-a+b -c =15.6.【答案】3n+1【解析】第1个图形由3×1+1=4个基本图形构成;第2个图形由3×2+1=7个基本图形构成;第3个图形由3×3+1=10个基本图形构成,故第n 个图形由(3n+1)个基本图形构成.三.解答题1. 【解析】(1)原式=2222(67)55a b ab a b ab -+=-+;(2)原式=2222(32)(32)x y xy x y xy -++-=-+;(3)原式=2263(113)(0.8)5m n n m mn +-+--+=mn 2mn 3n m 322--(4)原式=2222222263(108)63108a b ab a b ab a b ab a b ab ---=--+=22ab 5b a 4+-(5)原式=22223(7432)3332x x x x x x x --+-=--+=3352--x x(6)原式=221312223a a b a b --+-+=2344b a +- 2.【解析】(1)原式=23323233248344a a a a a a a a a --+---++++-=32(121)(143)(314)3841a a a -++-++--+-+-= 原式恒为1,与a 的值无关.(2)原式=222213(34)322a b a b abc a c a c abc ---+-- =22222133332322a b a b abc a c abc a b a c --++-=-+ 当a=-1,b=-3,c=1时,原式=9.(3)解:因为63y 5x 32=++,所以3y 5x 32=+,原式=1767)y 5x 3(22-=-=-+3.【解析】原式=2b b 3-+,因为成果中不含a,所以与a 无关,进而可得他们做出的成果一样.。
2.2.2 整式加减(二)去括号添括号(原卷版)
2.2.2整式加减(二)去括号添括号去括号法则题型一:去括号法则【例题1】(2017·广东七年级期末)将x ﹣(y ﹣z )去括号,结果是( )A .x ﹣y ﹣zB .x+y ﹣zC .x ﹣y+zD .x+y+z【点睛】本题考查了去括号的法则,解题的关键是牢记法则,并能熟练运用,去括号时特别要注意符号的变化.根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,对各式进行处理即可.变式训练【变式1-1】(2019·珠海市第十一中学)()x y z --去括号后的值是()A .x y z--B .x y z -+C .x y z --+D .x y z ++【变式1-2】(2020·浙江省象山县丹城中学七年级期中)将1(2)2y x --去括号,得( )A .1-22y x +B .1-22y x -C .-12y x +D .12y x --【变式1-3】(2020·江苏景山中学七年级期中)下列去括号中,正确的是 ()A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 【变式1-4】(2018·全国七年级单元测试)去掉下列各式中的括号:(1)8m –(3n +5);(2)n –4(3–2m ); (3)2(a –2b )–3(2m –n ).题型二:去括号合并同类项【例题2】(2020·陕西七年级期中)先去括号,再合并同类项正确的是( )A .2x-3(2x-y)=-4x-yB .5x-(-2x+y)=7x+yC .5x-(x-2y)=4x+2yD .3x-2(x+3y)=x-y 【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.变式训练【变式2-1】(2020·毕节三联学校七年级期中)先去括号,再合并同类项.(1)5(24)a a b --(2)2223(2)x x x +-【变式2-2】(2018·全国七年级单元测试)去括号,合并同类项:(1)(x -2y )-(y -3x );(2)3a 2−[5a −(12a −3)+2a 2]+4.【变式2-3】(2018·全国七年级单元测试)去括号并合并:3(a-b )-2(2a+b )=___________.【变式2-4】(2020·全国)先去括号,再合并同类项:(1)2(2b-3a )+3(2a-3b );(2)4a 2+2(3ab-2a 2)-(7ab-1).题型三:去绝对值去括号【例题3】(2020·正安县思源实验学校七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“=”或“<”填空:b ________0,+a b ________0,a c -________0,b c -________0;(2)化简a b a c b ++--.【点睛】本题考查了根据数轴判断代数式的符号,将绝对值化为括号,根据数轴判断各式的符号是解题关键.变式训练【变式3-1】有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2a B .2b C .2c D .0【变式3-2】已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A .b ﹣2c+aB .b ﹣2c ﹣aC .b+aD .b ﹣a【变式3-3】有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.添括号法则题型四:添括号法则【例题4】(2019·全国)下列添括号错误的是()A .3-4x=-(4x-3)B .(a+b)-2a-b=(a+b)-(2a+b)C .-x 2+5x-4=-(x 2-5x+4)D .-a 2+4a+a 3-5=-(a 2-4a)-(a 3+5)【点睛】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.变式训练【变式4-1】(2020·全国七年级课时练习)不改变多项式3b 3﹣2ab 2+4a 2b ﹣a 3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是( )A .3b 3﹣(2ab 2+4a 2b ﹣a 3)B .3b 3﹣(2ab 2+4a 2b+a 3)C .3b 3﹣(﹣2ab 2+4a 2b ﹣a 3)D .3b 3﹣(2ab 2﹣4a 2b+a 3)【变式4-2】(2019·辽宁抚顺市·八年级期末)2ab+4bc ﹣1=2ab ﹣(),括号中所填入的整式应是( )A .﹣4bc+1B .4bc+1C .4bc ﹣1D .﹣4bc ﹣1【变式4-3】(2019·上海市实验学校西校)下列各式添括号(1)2a-b-x-3y =2a-(b+x+3y);(2)2a-b-x-3y =(2a-b)-(x+3y);(3)2a-b-x-3y =-(x+3y)-(b-2a);(4)2a-b-x-3y =(2a-3y)-(b-x);错误的有几个( )A .1个B .2个C .3个D .4个题型五:利用添括号整体求值【例题5】(2019·泰州市第二中学附属初中九年级三模)已知x -3y=-3,则5-x+3y 为()A .0B .2C .5D .8变式训练【变式5-1】若23a b -+的值等于5,则42a b -+的值为()A .2B .2-C .3D .3-【变式5-2】(2020·北京北师大实验中学七年级期中)已232a a +=,则多项式22610a a +-的值为______.【变式5-3】(2019·安徽七年级期末)已知221x x +=-,则2364x x ++的值为______.【真题1】(2012·浙江温州市·中考真题)化简:2(a+1) -a=____【真题2】(2021·江苏中考真题)计算:()2222a a -+=__________.【拓展1】(2019·广州市第五中学七年级月考)已知,,a b c 在数轴上的位置如图所示,所对应的点分别为、、A B C .(1)在数轴上表示1-的点与表示3的点之间的距离为;由此可得点AB 、之间的距离为 (2)化简:2a b c b b a -++---(3)若24,c b =-的倒数是它本身,a 的绝对值的相反数是2-,M 是数轴上表示x 的一点,且20x a x b x c -+-+-=,求x 所表示的数.【拓展2】(2017·崇仁县第二中学七年级期中)数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当,,a b c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当 1.4a a a=时,求的值,(2)当 2.5b b b =-时,求的值.(3)请根据,,a b c 三个数在数轴上的位置, a b c a b c+求+的值.(4)请根据,,a b c 三个数在数轴上的位置,化简:a c c a b b c ++++--.。
2.4.3 去括号和添括号(课件)七年级数学上册(华东师大版2024)
课前回顾
1)合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项.
2)合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,
字母和字母的指数保持不变。
3)运用合并同类项化简多项式的一般步骤: 一、找,二、移,三、合
新课导入
第1章我们学过有理数的加法结合律,即:a+(b+c)=a+b+c.
=214a+(47a+53a)
=214a+100a
=314 a.
2)214a-39a-61a
=214a-(39a+61a)
=214a-100a
=114 a.
典例分析
1.在各式的括号中填上适当的项,使等式成立;
1) + + + = -( -a-b-c-d )
= +( a+b+c+d )
( ×) (4) x – 2 (– y + g ) = x + 2y + g
( ×) (5) –( a- 2b ) + ( c–2 ) = - a–2b + c–2
( ×) (6) - ( b + a ) = - a + b
( ×) (7) - ( 3 x – 2 ) = 2 + 3 x
典例分析
2.填空
-3a+3b+2c+2d
(10)-3(a-b)-2(-c-d)=_____________________;
典例分析
例3 化简求值:(5
解:(5
2
2
+ 5 − 7) −
+ 5 − 7) −
1
七年级数学上册合并同类项和去、添括号基础50题(原卷+解析)
C. 8y − 6y = 2
D. 3a + 2b = 5ab
17.(2019 秋•和县期末)下列计算正确的是 ( )
A. 3a + b = 3ab
B. 3a − a = 2
C. 2a2 + 3a3 = 5a5
D. −a2b + 2a2b = a2b
18.(2019 秋•焦作期末)下列计算正确的是 ( )
.
2
12.(2019 秋•东湖区期末)已知 5xa+2c y4 与 −3x3 yb 是同类项,则 2a + 3b + 4c 的值是 .
13.(2018 秋•芙蓉区校级期中)当 n =
时,单项式 7x2 y2n+1 与 − 1 x2 y5 是同类项. 3
14.(2014 秋•嘉禾县校级期末)若单项式 1 a3bn+1 和 2a b 2m−1 3 是同类项,求 3m + n 的值. 3
3
A.2
B.3
C.4
D.5
3.(2020 春•张家港市期末)如果 1 a2b2 与 − 1 a b x+1 4x− y 是同类项,则 x 、y 的值分别是 (
)
5
4
A.
x
y
= =
1 2
B.
x
y
= =
2 2
C.
x
y
=1 =1
D.
x y
= =
2 3
4.(2019 秋•邗江区校级期末)下列各组代数式中,是同类项的是 ( )
15.(2017 秋•芷江县校级期中)如果单项式 2mxa y 与 −5nx2a−3 y(7a − 22)2015 的值.
暑期预习七年级数学上册《去括号与添括号》练习题及答案
(暑假一日一练)七年级数学上册第2章整式的加减2.2.2去括号与添括号习题学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c4.﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.下列计算中正确的是()A.﹣3(a+b)=﹣3a+b B.﹣3(a+b)=﹣3a﹣b C.﹣3(a+b)=﹣3a+3b D.﹣3(a+b)=﹣3a﹣3b6.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)7.下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1 B.2 C.3 D.48.下列去括号错误的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b﹣c C.2(a﹣b)=2a﹣b D.﹣(a﹣2b)=﹣a+2b9.把a﹣2(b﹣c)去括号正确的是()A.a﹣2b﹣c B.a﹣2b﹣2c C.a+2b﹣2c D.a﹣2b+2c10.下列各式:①a﹣(b﹣c)=a﹣b+c;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2;③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y;④﹣3(x﹣y)+(a+b)=﹣3x﹣3y+a﹣b由等号左边变到右边变形错误的有()A.1个B.2个C.3个D.4个11.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是()A.3b3﹣(2ab2+4a2b﹣a3) B.3b3﹣(2ab2+4a2b+a3)C.3b3﹣(﹣2ab2+4a2b﹣a3)D.3b3﹣(2ab2﹣4a2b+a3)12.下列变形中,不正确的是()A.a﹣b﹣( c﹣d )=a﹣b﹣c﹣d B.a﹣(b﹣c+d )=a﹣b+c﹣dC.a+b﹣(﹣c﹣d )=a+b+c+d D.a+(b+c﹣d )=a+b+c﹣d13.下列各式与代数式﹣b+c 不相等的是()A.﹣(﹣c﹣b)B.﹣b﹣(﹣c)C.+(c﹣b) D.+[﹣(b﹣c)]14.下列等式中成立的是()A.a﹣(b+c)=a﹣b+c B.a+(b+c)=a﹣b+cC.a+b﹣c=a+(b﹣c)D.a﹣b+c=a﹣(b+c)15.﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z二.填空题(共10小题)16.去括号a﹣(b﹣2)= .17.化简:﹣[﹣(﹣5)]= .18.化简(2xy)﹣(x+3y)的结果是.19.在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣().20.﹣[a﹣(b﹣c)]去括号应得.21.已知1﹣()=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是.22.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.23.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().24.x2﹣2x+y=x2﹣().25.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.三.解答题(共4小题)26.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣2,求﹣1+a2+b+b2的值.27.先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)28.阅读下面材料:计算:1+2+3+4+…+99+100 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)29.将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.参考答案与试题解析一.选择题(共15小题)1.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.2.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.3.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.4.解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.解:﹣3(a+b)=﹣3a﹣3b,故选:D.6.解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.7.解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.8.解:A、a﹣(b+c)=a﹣b﹣c,故本选项不符合题意;B、a+(b﹣c)=a+b﹣c,故本选项不符合题意;C、2(a﹣b)=2a﹣2b,故本选项符合题意;D、﹣(a﹣2b)=﹣a+2b,故本选项不符合题意;故选:C.9.解:a﹣2(b﹣c)=a﹣2b+2c.故选:D.10.解:①a﹣(b﹣c)=a﹣b+c,正确;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,故此选项错误;③﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,故此选项错误;④﹣3(x﹣y)+(a+b)=﹣3x+3y+a+b,故此选项错误;故选:C.11.解:因为3b3﹣2ab2+4a2b﹣a3=3b3﹣(2ab2﹣4a2b+a3);故选:D.12.解:A、a﹣b﹣( c﹣d )=a﹣b﹣c+d,此选项错误;B、a﹣(b﹣c+d )=a﹣b+c﹣d,此选项正确;C、a+b﹣(﹣c﹣d )=a+b+c+d,此选项正确;D、a+(b+c﹣d )=a+b+c﹣d,此选项正确;故选:A.13.解:因为﹣(﹣c﹣b)=c+b,与﹣b+c不相等,故选项A正确;﹣b﹣(﹣c)=﹣b+c,与﹣b+c相等,故选项B错误;+(c﹣b)=c﹣b,与﹣b+c相等,故选项C错误;+[﹣(b﹣c)]=﹣(b﹣c)=﹣b+c,与﹣b+c相等,故选项D错误;故选:A.14.解:A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为a+(b+c)=a+b+c,故本选项错误;C、a+b﹣c=a+(b﹣c),正确D、应为a﹣b+c=a﹣(b﹣c),故本选项错误.故选:C.15.解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.二.填空题(共10小题)16.解:原式=a﹣b+2.故答案为:a﹣b+2.17.解:﹣[﹣(﹣5)]=﹣5.故答案为:﹣5.18.解:原式=2xy﹣x﹣3y故答案为:2xy﹣x﹣3y.19.解:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by).故答案是:ay﹣by.20.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.21.解:1﹣(1﹣2x+xy﹣y2)=1﹣1+2x﹣xy+y2=2x﹣xy+y2,故答案为:2x﹣xy+y2.22.解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b ﹣c+2d).故答案为:a﹣(3b﹣c+2d).23.解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.24.解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.25.解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.三.解答题(共4小题)26.解:∵a2+b2=5,1﹣b=﹣2,∴﹣1+a2+b+b2=﹣(1﹣b)+(a2+b2)=﹣(﹣2)+5=7.27.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.28.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.29.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.。
去括号与添括号重难点题型
去括号与添括号-重难点题型【知识点1 去括号的法则】(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;①a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;①去括号时改变了式子的形式,但并没有改变式子的值.【题型1 去括号】【例1】(2020秋•越秀区期末)下列去括号运算正确的是()A.﹣(3x﹣2y+1)=3x﹣2y+1B.(2x﹣3y)﹣(5z﹣1)=2x﹣3y+5z﹣1C.﹣(3a+2b)﹣(c+d)=﹣3a﹣2b﹣c﹣dD.﹣(a﹣2b)﹣(2c﹣d)=﹣a+2b﹣2c﹣d【变式1-1】(2020秋•微山县月考)下面去括号错误的是()A.a2﹣(a﹣b+c)=a2﹣a+b﹣cB.5+a﹣2(3a﹣5)=5+a﹣6a+5C.3a−13(3a2−2a)=3a−a2+23aD.a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b【变式1-2】(2020秋•西城区校级期中)下列各式中去括号错误的是()A.x﹣(3y+14)=x﹣3y−14B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.−12[4x+(6y﹣3)]=﹣2x﹣3y﹣3D.(a+12b)﹣(−25c+34)=a+12b+25c−34【变式1-3】(2021秋•海州区校级期中)下列去括号正确吗?如有错误,请改正.(1)+(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣xy=5x﹣2x+1+xy;(3)3xy﹣2(xy﹣y)=3xy﹣2xy﹣2y;(4)(a+b)﹣3(2a﹣3b)=a+b﹣6a+3b.【知识点2 添括号的法则】添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.【题型2 添括号】【例2】(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].【变式2-1】a﹣b﹣c+d=a﹣b﹣()=a+()=a﹣().【变式2-2】按下列要求,给多项式3x3﹣5x2﹣3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“﹣”号;(3)把多项式后三项括起来,括号前面带有“﹣”号;(4)把多项式中间的两项括起来.括号前面“﹣”号.【变式2-3】把多项式a3+2a2b﹣2ab2﹣b3中含有a,b项的放在前面带有“﹣”号的括号里,其他项放在前面带有“+”号的括号里.【题型3 利用去括号法则化简代数式】【例3】先去括号,再合并同类项:6a 2﹣2ab ﹣2(3a 2−12ab );2(2a ﹣b )﹣[4b ﹣(﹣2a +b )];9a 3﹣[﹣6a 2+2(a 3−23a 2)];2t ﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1).【变式3-1】先去括号,后合并同类项:(1)x +[﹣x ﹣2(x ﹣2y )];(2)12a ﹣(a +23b 2)+3(−12a +13b 2); (3)2a ﹣(5a ﹣3b )+3(2a ﹣b );(4)﹣3{﹣3[﹣3(2x +x 2)﹣3(x ﹣x 2)﹣3]}.【变式3-2】去括号,合并同类项(1)﹣3(2s ﹣5)+6s ;(2)3x ﹣[5x ﹣(12x ﹣4)]; (3)6a 2﹣4ab ﹣4(2a 2+12ab );(4)﹣3(2x 2﹣xy )+4(x 2+xy ﹣6)【变式3-3】先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2−72(a+b)−54(a+b)2+(﹣3)2(a+b).【题型4 利用添括号与去括号求值】【例4】(2020秋•北碚区校级期中)若代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,则m2019n2020的值为()A.﹣32019B.32019C.32020D.﹣32020【变式4-1】已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1B.5C.﹣5D.﹣1【变式4-2】观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.【变式4-3】先阅读下面的文字,然后按要求解题:例:1+2+3+…+100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98=…=50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b)+(a+100b)。
去(添)括号法则以及混合运算的运算顺序
例如: 78 4 22 4 78 22 4
a c b c a b c 例如:136 4 36 4 136 36 4
第2页共4页
翰林学堂
(三)混合运算的运算顺序
运算顺序是:
1、如果是同一级运算,一般按从左往右依次进行计算(特别情况下对于两个独立整体可以
去添括号法则及专项练习一去括号法则加减法同级运算中括号前是加号括号前是加号去完括号后原来括号中的运算符号不改变
翰林学堂
去(添)括号法则及专项练习
(一)去括号法则
※ 如果括号前面是加号或乘号,去掉括号后,括号里面的符号不变。 ※ 如果括号前面是减号或除号,去掉括号后,括号里面的符号全部改为与其相反的符号。 1. 加减法同级运算中括号前是加号 括号前是加号,去完括号后,原来括号中的运算符号不改变。
同时进行);
2、如果既有加减、又有乘除法,先算乘除、再算加减;
3、如果有括号,先算括号里面的;
4、如果既有小括号又有中括号,应先算小括号里面的,再算中括号里面的;
5、如果符合运算定律,可以利用运算定律进行简算。
专项练习 :
178 156 56
236 37 63
187 39 61
a b a c b c a 例如: 6518 6582 18 82 65
a c b c a b c 例如:103 27 3 27 103 3 27
4. 除法综合中的添括号
a c b c a b c
30 4 70 4
120 8 20 8
562 397 281 397
1.4 5.5 2 3.24
104 4 2.4 0.3 1.5 0.75 0.25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号与添括号
学习目标
1.使学生初步掌握去括号、添括号的法则;
2.会运用去括号法则,会按照法则,并根据要求添括号;
3.通过去括号与添括号的学习,渗透对立统一的思想.
知识讲解
一、重点、难点分析
去括号、添括号法则既是本课的重点,又是难点,突破的关键是无论去括号,还是添括号,认真把握法则要点,注意形成技能.
①关于去括号:去括号时,连同括号前的符号同时去掉,要特别注意括号前是“-”号时,去括号后括号里的各项的符号都改变.
如a2-(2a-b+c)=a2-2a-b+c是错误的;
②关于添括号:一般要明确把哪些项放在括号内,以及括号前用什么样的符号,要特别注意把某些项括到前面带“-”号的括号内时,各项符号都改变;
③关于去添括号,都改变了原来式子的形式,但不改变式子的值.
二、去括号法则
为什么要学习“去括号法则”?我们也看一个例子:计算(a-3b)+(2a+b),这里a与2a,-3b与b是同类项,但括号把它们隔开了,“可望而不可并”,只有设法把括号去掉才能计算化简.这就是学习去括号法则的一个道理.怎样才能正确地应用去括号法则?
由于乘法分配律a(b+c)=ab+ac具有去括号的功能,所以去括号法则a+(b+c)=a+b+c,a-(b+c)=a-b-c,也可以理解为把括号前的“+”号
或“-”号看成是“+1”或“-1”,然后再应用乘法分配律推导得到的.这样理解、记忆去括号法则有助于减少应用去括号法则的错误.
比如,计算3(x-2y)-5(3x-y)时,应该想到:3×x,3×(-2y),(-5)×3x,(-5)(-y),即可正确地得到:原式=3x-6y-15x+5y=-12x-y.
去括号的法则应注意两个方面;括号前为正号时,去掉括号后,不影响括号内“去”出来的各项的符号,即把括号连同前面的“+”号去掉以后,括号内的各项原原本本的“拿”出来,就算完成了去括号;而括号前如果是负号,就说明“要减去整个括号内的各项”,
考虑应用符号法则,(减正等于加负、减负等于加正),再用省略加号的写法,也就完成了“括号前如果是负号,把括号和它前面的‘-’号去掉,要改变括号内各项的符号”的去括号过程.
三、添括号法则
添括号是根据实际需要而考虑进行的.需要添括号时,也分两类进行:添括号后,括号前是“+”号,就把需要括起来的那几项,括起来就行了;若添括号后,括号前是“-”号,要把括起来的各项都改变符号.如a+b-c+d=a+(b-c+d)=a+b-(c-d).去括号、添括号都存在一个“变号”与“不变号”的问题.正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错).这些问题的关键是括号前的符号问题.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的.另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼.还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分.
典型例题
例1 去括号:(1);(2)
分析:(1)题括号前是“-”号,去掉括号和“-”,括号内的各项都变号,即
变为-,-变为,变为-;(2)题第一个括号前是“-”号,去掉括号和括号前的“-”,括号内各项都改变符号,即变为-,-变成;第二个括号前是“+”号去掉括号及“+”,括号内各项不变号,即仍为,.解:(1)
(2)
例2化简:(1);(2).
解:(1)
(2)
说明:要特别注意括号前有数字因数的情形.先用分配律数字与括号内的各项相乘,然后再去括号,熟练后,也可省略第二步,直接去括号,如(2)题的处理.例3 先去括号,再合并同类项:.
解法一:
解法二:
说明:本题指出了多项式化简的运算顺序,多重括号的去括号,一般按去小括号→去中括号→去大括号的程序,逐次去掉括号,每去一层括号都要合并同类项一次,以使运算简便.也可以由外向里脱即按去大括号→去中括号→去小括号的程序逐渐去掉括号.例4按下列要求,把多项式添括号:
(1)把多项式后三项括起来,括号前面带有“+”号;
(2)把多项式的前两括起来,括号前面带有“-”号;
(3)把多项式后三项括起来,括号前面带有“-”号;
(4)把多项式中间的两项括起来,括号前面带有“-”号.
分析:(1)题把后三项括起来,即把,,+4括起来,括号前面带有“+”号,因此把,,+4括到括号内时不变号;
(2)题要求把多项式的前两项括起来,即把,括起来,括号前面带有“-”号,把,括到括号内时都要变号.
(3)题、(4)题可进行类似地分析.
解:(1);
(2)
(3);
(4).
说明:添括号和去括号正好相反,要想检查添括号是不是正确,可以用去括号法则检验.
反馈练习
1.化简:
(1);(2);
(3);
(4).
2.求下列各式的值:
(1),其中;
(2),其中.
3.(1)在多项式中添括号:把含有的项放在前面带有“+”号的括号里,把含有的项放在前面带有“-”号的括号里;
(2)把多项式化成以为被减数的两个式子的差的形式.
答案:
1.化简:
(1);(2)
(3)(4)
2.求下列各式的值:
(1);(2)
3.(1);(2)。